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Abstract

The mean-variance optimization (MVO) theory of Markowitz (1952) for portfolio
selection is one of the most important methods used in quantitative finance. This
portfolio allocation needs two input parameters, the vector of expected returns and the
covariance matrix of asset returns. This process leads to estimation errors, which may
have a large impact on portfolio weights. In this paper we review different methods
which aim to stabilize the mean-variance allocation. In particular, we consider recent
results from machine learning theory to obtain more robust allocation.

Keywords: Portfolio optimization, active management, estimation error, shrinkage esti-
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1 Introduction
The mean-variance optimization (MVO) framework developed by Markowitz (1952) is cer-
tainly the most famous model used in asset management. This model is generally associated
to the CAPM theory of Sharpe (1964). This explains why Harry M. Markowitz and William
F. Sharpe have shared1 the Nobel Prize in 1990. However, the two models are used differ-
ently by practitioners.

The CAPM theory considers the Markowitz model from the viewpoint of micro analysis
in order to deduce the price formation for financial assets. In this model, the key concept
is the market portfolio, which is uniquely defined. In the Markowitz model, optimized
portfolios depend on expected returns and risks. Moreover, the optimal portfolio is not
unique and depends on the investor’s risk aversion. As a consequence, these two models
∗We are grateful to Clément Le Bars for his helpful comments.
1with Merton H. Miller.
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pursue different purposes. While the CAPM theory is the foundation framework of passive
management, the Markowitz model is the relevant framework for active management.

Nevertheless, even if the Markowitz model is a powerful model to transform the views
of the portfolio manager into investment bets, it has suffered a lot of criticism because it is
particularly dependent on estimation errors (Michaud, 1989). In fact, the Markowitz model
is an aggressive model of active management (Roncalli, 2013). By construction, it does not
make the distinction between real arbitrage factors and noisy arbitrage factors. The goal of
portfolio regularization is then to produce less aggressive portfolios by reducing noisy bets.

The paper is organized as follows. Section two presents the motivations to use regu-
larization methods. In particular, we illustrate the instability of mean-variance optimized
portfolios. In section three, we review the different approaches of portfolio regularization.
They concern the introduction of weight constraints, the use of resampling techniques or the
shrinkage of covariance matrices. We also consider penalization methods of the objective
function like Lasso or ridge regression and show how these methods may be used to regularize
the inverse of the covariance matrix, which is the most important quantity in portfolio opti-
mization. In section four, we consider different applications in order to illustrate the impact
of regularization on portfolio optimization. Section five offers some concluding remarks.

2 Motivations
2.1 The mean-variance portfolio
Let us consider a universe of n risky assets. Let µ and Σ be the vector of expected returns
and the covariance matrix of asset returns2. We note r the risk-free asset. A portfolio
allocation consists in a vector of weights x = (x1, . . . , xn) where xi is the percentage of the
wealth invested in the ith asset. Sometimes, we may assume that all the wealth is invested
meaning that the sum of weights is equal to one. Moreover, we may also add some other
constraints on the weights. For instance, we may impose that the portfolio is long-only. Let
us now define the quadratic utility function U of the investor which only depends of the
expected returns µ and the covariance matrix Σ of the assets:

U (x) = x> (µ− r1)− φ

2x
>Σx

where φ is the risk tolerance of the investor. The mean-variance optimized (or MVO)
portfolio x? is the portfolio which maximizes the investor’s utility. The optimization problem
can be reformulated equivalently as a standard QP problem:

x? = arg min 1
2x
>Σx− γx> (µ− r1)

where γ = φ−1. Without any constraints, the solution yields the well known formula:

x? = 1
φ

Σ−1 (µ− r1) = γΣ−1 (µ− r1)

It comes that the Sharpe ratio of the MVO portfolio is:

SR (x? | r) = x?> (µ− r1)√
x?>Σx?

=
√

(µ− r1)>Σ−1 (µ− r1)
2In this paper, we adopt the formulation presented in the book of Roncalli (2013).
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We deduce that the optimal utility of the investor is:

U (x?) = x?> (µ− r1)− φ

2x
?>Σx?

= 1
2φ (µ− r1)> Σ−1 (µ− r1)

= 1
2φ SR2 (x? | r)

Maximizing the mean-variance utility function is then equivalent to maximizing the ex-ante
Sharpe ratio of the allocation.

Remark 1 Without lack of generality, we assume that the risk-free rate r is equal to zero
in the rest of the paper.

In practice, we cannot reach the optimal allocation because we don’t know µ and Σ.
That is why we have to estimate these two quantities. Let Rt = (R1,t, . . . , Rn,t) be the
vector of historical returns for the different assets at time t. We then estimate µ and Σ by
maximum likelihood method:

µ̂ = 1
T

T∑
t=1

Rt

Σ̂ = 1
T

T∑
t=1

(Rt − µ̂) (Rt − µ̂)>

We can therefore use the estimates µ̂ and Σ̂ in place of µ and Σ in mean-variance optimiza-
tion. This estimation step is very easy. As mentioned by Roncalli (2013), “we could think
that the job is complete. However, the story does not end here”.

2.2 Evidence of mean-variance instability
Estimating the input parameters of the optimization program necessarily introduces esti-
mation errors and instability in the optimal solution. This stability issue with estimators
based on historical figures has been largely studied by academics3. Before going into the
details of this subject, we propose to illustrate the stability problem of the MVO portfolio
with the following example.

Example 1 We consider a universe of four assets. The expected returns are µ̂1 = 5%,
µ̂2 = 6%, µ̂3 = 7% and µ̂4 = 8% whereas the volatilities are equal to σ̂1 = 10%, σ̂2 = 12%,
σ̂3 = 14% and σ̂4 = 15%. We assume that the correlations are the same and we have
ρ̂i,j = ρ̂ = 70%.

We solve the mean-variance problem without constraints using the parameters given
in Example 1. The risk tolerance parameter φ is calibrated in order to target an ex-ante
volatility4 equal to 10%. In this case the optimal portfolio is x?1 = 23.49%, x?2 = 19.57%,

3See for instance Michaud (1989), Jorion (1992), Broadie (1993) Ledoit and Wolf (2004) or more recently
DeMiguel et al. (2011).

4Let σ? be the ex-ante volatility. We have:

φ =

√
µ̂>Σ̂−1µ̂

σ?



x?3 = 16.78% and x?4 = 28.44%%. In Table 1, we indicate how a small perturbation of input
parameters changes the optimized solution. For instance, if the volatility of the second asset
increases by 3%, the weight on this asset becomes −14.04% instead of 19.57%. If the realized
return of the first asset is 6% and not 5%, the optimal weight of the first asset is almost
three times larger (63.19% versus 23.49%). As a consequence, the optimized solution is very
sensitive to estimation errors.

Table 1: Sensitivity of the MVO portfolio to input parameters

ρ̂ 70% 80% 80%
σ̂2 12% 15% 15%
µ̂1 5% 6%
x?1 23.49% 19.43% 36.55% 39.56% 63.19%
x?2 19.57% 16.19% −14.04% −32.11% 8.14%
x?3 16.78% 13.88% 26.11% 28.26% 6.98%
x?4 28.44% 32.97% 37.17% 45.87% 18.38%

The stability problem comes from the solution structure. Indeed, the solution involves
the inverse of the covariance matrix I = Σ̂−1 called the information matrix. The eigenvectors
of the two matrices are the same but the eigenvalues of I are equal to the inverse of the
eigenvalues of Σ̂ (Roncalli, 2013).

Example 2 We consider our previous example but with another correlation matrix:

Ĉ =


1.00
0.50 1.00
0.40 0.30 1.00
−0.50 0.20 0.10 1.00


In Table 2, we consider Example 2 and report the eigenvectors vj and the eigenvalues λj

of the covariance and information matrices. Results show that the most important factor5

of the information matrix is the less important factor of the covariance matrix. However the
smallest factors of the covariance matrix are generally considered noise factors because they
represent a small part of the total variance. This explains why MVO portfolios are sensitive
to input parameters because small changes in the covariance matrix dramatically modify
the nature of smallest factors. Despite the simplicity of the mean-variance optimization, the
stability of the allocation is then a real problem. In this context, Michaud suggested that
mean-variance maximization is in fact ‘error maximization’:

“The unintuitive character of many optimized portfolios can be traced to the
fact that MV optimizers are, in a fundamental sense, estimation error maxi-
mizers. Risk and return estimates are inevitably subject to estimation error.
MV optimization significantly overweights (underweights) those securities that
have large (small) estimated returns, negative (positive) correlations and small
(large) variances. These securities are, of course, the ones most likely to have
large estimation errors” (Michaud, 1989, page 33).

In a dynamic framework, estimation errors can then dramatically change the weights leading
to high turnover and/or high transaction costs. Moreover, the diversifiable risk is supposed

5The jth factor is represented by the eigenvector vj and the importance of the factor is given by the
eigenvalue λj .



to be decreased thanks to the optimization that can be underestimated. Aware from these
problems, academics and practitioners have developed techniques to reduce the impact of
estimation errors.

Table 2: Eigendecomposition of the covariance and information matrices(∗) (in %)

Covariance matrix Σ̂ Information matrix I
vj v1 v2 v3 v4 v1 v2 v3 v4
1 33.68 44.44 −22.21 79.99 79.99 −22.21 44.44 33.68
2 54.04 −0.79 −72.62 −42.48 −42.48 −72.62 −0.79 54.04
3 73.38 8.93 64.94 −17.83 −17.83 64.94 8.93 73.38
4 23.66 −89.13 −3.92 38.47 38.47 −3.92 −89.13 23.66
λj 2.66 2.61 1.19 0.20 510.79 83.88 38.37 37.65

(*) The eigenvalues of the information matrix are not expressed in %, but as decimals.

Remark 2 In Section 3.3.1, we will see how to interpret the eigenvectors and the eigenval-
ues of the covariance matrix in the MVO framework.

2.3 Input parameters versus estimation errors
After estimating the input parameters, the optimization is done as if these quantities were
perfectly certain, implying that estimation errors are introduced into the allocation pro-
cess. Various solutions exist to stabilize the optimization from the simplest to the most
complicated, but we generally distinguish two ways to regularize the solution.

The first one consists in reducing the estimation errors of the input parameters thanks
to econometric methods. For instance, Michaud (1998) uses the resampling approach to
reduce the impact of noise estimation. Ledoit and Wolf (2003) propose to replace the co-
variance estimator by a shrinkage version whereas Laloux et al. (1999) clean the covariance
matrix thanks to the random matrix theory. Another route is chosen by Black and Litter-
man (1992), who suggest combining manager views and market equilibrium to modify the
expected returns6.

The second way is to directly shrink the portfolio weights using weight bounds, penal-
ization of the objective function or regularization of input parameters. Jagannathan and
Ma (2003) show that imposing constraints on the mean-variance optimization can be inter-
preted as a modification of the covariance matrix. In particular, lower bounds (resp. upper
bounds) decrease (resp. increase) asset return volatilities. Constraints on weights reduce
then the degree of freedom of the optimization and the allocation is forced to remain in
certain intervals. Instead of using constraints, we can also use other values of input param-
eters than those estimated with historical figures. For instance, we can consider a diagonal
matrix instead of the full covariance matrix or we can use a unique value for the expected
returns. This is the case of the equally-weighted (or EW) portfolio, which is the solution
for the mean-variance portfolio when Σ = In and µ = 1. This solution is obtained using

6See DeMiguel et al. (2011) for a review of shrinkage estimators of the covariance matrix of asset returns
and the vector of expected returns.



wrong estimators. However, these estimators have a null variance and minimize the impact
of estimation errors on the optimized portfolio.

The correction of estimation errors is such difficult task that several studies tend to show
that heuristic allocations perform better than mean-variance allocations in terms of the
Sharpe ratio. For example, DeMiguel et al. (2009) compare the performances of 14 different
portfolio models and the equally-weighted portfolio on different datasets and conclude that
sophisticated models are not better than the EW portfolio. More recently, Tu and Zhou
(2011) propose to combine the EW portfolio with optimized allocation to outperform naive
strategies. In a similar way, Dupleich et al. (2012) combine MVO portfolios with different
lag windows to remove model uncertainty. By mixing stable noisy portfolios, the authors
seek to improve the stability of the allocation. In fact, we will see that most of mixing
schemes are equivalent to denoising input parameters.

3 Regularization methods for portfolio optimization
In what follows, we present the most popular techniques used to solve the problem of esti-
mation errors. The first three paragraphs concern weight constraints, resampling methods
and shrinkage procedures of the covariance matrix. We then consider the penalization ap-
proach of the objective function. Finally, the stability of hedging portfolios based on the
information matrix is explained in the last paragraph.

3.1 Using weight constraints
Adding constraints is certainly the first approach that has been used by portfolio managers
to regularize optimized portfolios, and it remains today the most frequent method to avoid
mean-variance instability.

Let us consider the optimization problem with the normalization constraint:

x? (γ) = arg max 1
2x
>Σ̂x− γx>µ̂

u.c. 1>x = 1

The constraint 1>x = 1 means that the sum of weights is equal to one. It is easy to show
that the optimized portfolio is then:

x? (γ;λ) = γΣ̂−1µ̃

where µ̃ = µ̂+ (λ/γ) · 1 and λ is the Lagrange coefficients associated to the constraint. We
notice that imposing a portfolio that is fully invested with a leverage equal to exactly one is
equivalent to regularize the vector of expected returns. The constraint

∑n
i=1 xi = 1 is then

already a regularization method.

Example 3 We consider a universe of four assets. The expected returns are µ̂1 = 8%,
µ̂2 = 9%, µ̂3 = 10% and µ̂4 = 8% whereas the volatilities are equal to σ̂1 = 15%, σ̂2 = 20%,
σ̂3 = 25% and σ̂4 = 30%. The correlation matrix is the following:

Ĉ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.60 1.00





If we suppose that γ = 0.5, we obtain results reported in Table 3. If there is no constraint,
the portfolio is highly leveraged. For instance, the weight of the first asset is equal to
207.05%. By adding the simple constraint

∑n
i=1 xi = 1, the dispersion of optimized weights

is smaller7. We also notice that the regularized expected returns are lower, because λ is
equal to −2.65%.

Table 3: Optimized portfolio with the constraint
∑n
i=1 xi = 1

Unconstrained Constrained
µi x? (γ) µ̃i x? (γ;λ)

1 8.00% 207.05% 2.69% 64.61%
2 9.00% 136.24% 3.69% 42.06%
3 10.00% −22.75% 4.69% 11.55%
4 8.00% −32.28% 2.69% −18.22%

The previous framework may be generalized to other constraints. For instance, Jagan-
nathan and Ma (2003) show that adding a long-only constraint is equivalent to regularizing
the covariance matrix. This result also holds for any equality or inequality constraints
(Roncalli, 2013). If we consider our previous example and add a long-only constraint, the
optimized portfolio is x?1 = 52.23%, x?2 = 42.41%, x?3 = 1.36% and x?4 = 0.00%. In this
case, the regularized vector of expected returns µ̃ and the regularized covariance matrix Σ̃
are given in Table 4. We notice that the long-only constraint is equivalent to decrease the
volatility and the correlation of the fourth asset in order to eliminate its short exposure.

Table 4: Regularized parameters µ̃ and Σ̃

Asset µ̃i σ̃i ρ̃i,j
1 2.83% 15.00% 100.00%
2 3.83% 20.00% 10.00% 100.00%
3 4.83% 25.00% 40.00% 70.00% 100.00%
4 2.83% 26.72% 32.90% 27.49% 53.43% 100.00%

Remark 3 Portfolio managers generally find the optimal portfolio by sequential steps. They
perform the portfolio optimization, analyze the solution to define some regularization con-
straints, design a new optimization problem by considering these constraints, analyze the new
solution and add more satisfying constraints, etc. This step-by-step approach is then very
popular, because portfolio managers implicitly regularize the parameters in a coherent way
with their expectations for the solution. The drawback may be that the regularized parame-
ters are no longer coherent with the initial parameters. Moreover, the constrained solution
is generally overfitted.

3.2 Resampling methods
Resampling techniques are based on Monte Carlo and bootstrapping methods. Jorion (1992)
was the first to apply these techniques to portfolio optimization. The idea is to create more
realistic allocation by introducing uncertainty in the decision process of the allocation. For

7The weight of the first asset is then equal to 64.61%.



that, we consider a universe of n assets. Let µ̂ and Σ̂ be the estimates of the expected re-
turns and the covariance matrix of assets returns. The efficient frontier computed with these
statistics is an estimation of the true efficient frontier. Michaud (1998) proposed then av-
eraging many realizations of optimized MV solutions to improve out-of-sample performance
thanks to the statistical diversification.

The procedure is the following. We generate K samples of asset returns from the original
data using Monte Carlo or bootstrap methods:

• Monte Carlo
The returns are simulated according to a multivariate Gaussian distribution with mean
µ̂ and covariance matrix Σ̂.

• Bootstrap
The returns are drawn randomly from the original sample with replacement.

We assume that the MV solution is computed for a given value of the risk tolerance. We
then calculate the mean µ̂(k) and the covariance matrix Σ̂(k) of the k-th simulated sample.
We also calculate the MVO portfolios for a grid of risk tolerance. Finally, we average the
weights with respect to the grid and estimate the resampled efficient frontier.

Example 4 We consider a universe of four assets. The expected returns are µ̂1 = 5%,
µ̂2 = 9%, µ̂3 = 7% and µ̂4 = 6% whereas the volatilities are equal to σ̂1 = 4%, σ̂2 = 15%,
σ̂3 = 5% and σ̂4 = 10%. The correlation matrix is the following:

Ĉ =


1.00
0.10 1.00
0.40 0.20 1.00
−0.10 −0.10 −0.20 1.00


We illustrate the resampling procedure in Figure 1 by considering Example 4. MVO

portfolios are computed under the constraints 1>x = 1 and 0 ≤ xi ≤ 1. We consider
500 simulated samples and 60 points for the grid. The estimated frontier is calculated
with µ̂ and Σ̂ statistics. The averaged frontier corresponds to the average of the different
efficient frontiers obtained for each sample of simulated asset returns. It is different from the
resampled frontier, which corresponds to the frontier of resampled portfolios. For instance,
we report one optimal resampled portfolio (designed by the red star symbol) which is the
average of the 500 resampled portfolios (indicated with the blue cross symbol).

The resampled efficient frontier in Figure 2 is performed with S&P 100 asset returns
during the period from January 1, 2011 to December 31, 2011. The resampled frontier
is largely below the estimated and averaged efficient frontiers. Moreover, portfolios with
high returns are unattainable on the resampled frontier, meaning that these portfolios are
extreme points on the estimated efficient frontier and are purely due to estimation noises.

Remark 4 Resampling techniques have faced some criticisms (Scherer, 2002). The first
one concerns the procedure itself, because the resampled portfolio always contains estimation
errors since it is computed with the initial parameters µ̂ and Σ̂. The second criticism is the
lack of theory. Resampling techniques is more an empirical method which seems to correct
some biases, because portfolio averaging produces more diversified portfolios. However, they
do not solve the robustness question concerning optimized portfolios.



Figure 1: Simulated resampled efficient frontier (Monte Carlo approach)

Figure 2: S&P 100 resampled efficient frontier (Bootstrap approach)



3.3 Regularization of the covariance matrix
3.3.1 The eigendecomposition approach

The goal of this method is to reduce the instability of the covariance matrix estimator Σ̂.
For that, we consider the eigendecomposition Σ̂ = V ΛV > where Λ = diag (λ1, · · · , λn) is
the diagonal matrix of the eigenvalues with λ1 > λ2 > · · · > λn and V is an orthogonal
matrix where each column vj is an eigenvector. With this decomposition, also known as
principal components analysis, we can build endogenous factors Ft = Λ−1/2V >Rt. In this
case, the cleaning process consists in deleting some noise factors Fj,t.

Let m be the number of relevant factors. We can then keep the most informative factors,
i.e. the factors with the largest eigenvalues. In this case, factors with low eigenvalues are
considered as noise factors and we have:

m = max {j : λj ≥ (λ1 + · · ·+ λn)/n}

Another solution consists in computing the implicit exposures of the portfolio to these fac-
tors. For instance, we can reformulate the MVO portfolio as follows:

x? = γΣ̂−1µ̂ = V Λ−1/2β

where β = γΛ−1/2V >µ̂. If we compute the return of the portfolio’s investor, we obtain:

Rt (x?) = x?>Rt = β>Λ−1/2V >Rt = β>Ft

We deduce that βj is exactly the exposure of the investor to the PCA factor Fj,t. We notice
that the weights β of the factors in the MVO portfolio are inversely proportional to the
square root of the eigenvalues: βj ∝

√
λj . Thus the optimized portfolio can be strongly

exposed to low variance factors, meaning that some noise factors may have a high impact
on the MVO solution.

Example 5 Using the returns of the S&P 100 universe from 2011-2012, we perform the
PCA decomposition of the sample correlation matrix. We also compute the implicit exposure
βj to each factor with respect to the MVO portfolio when φ is set to 5.

Table 5: Factor exposures of the MVO portfolio (in %)

Rank 1 7 97 3 73 80
Oil & Gas 11.78 −9.52 −18.89 6.30 12.33 2.98
Basic Materials 4.48 1.05 −11.16 −0.07 −12.61 −5.61
Industrials 16.47 −13.06 2.34 0.68 11.09 19.86
Consumer Goods 11.07 16.41 9.66 6.48 2.63 −6.56
Health Care 9.53 1.98 14.36 8.02 −15.72 4.21
Consumer Services 12.04 −11.21 −16.97 7.92 6.01 8.09
Telecommunications 2.57 −4.65 5.12 −1.54 −15.40 12.56
Utilities 3.62 −11.42 14.88 −4.76 −10.13 −7.28
Financials 16.98 25.37 2.29 −40.87 −4.18 −30.09
Technology 11.47 5.32 4.33 23.36 9.90 −2.76
βj −0.16 −2.90 2.87 2.49 2.45 −2.41



Results are reported in Table 5. For each factor, we give the loading coefficients with
respects to ICB classification8. The second column is the eigenvector with the largest eigen-
value. You can see that it is a proxy of a sector-weighted portfolio9. It may be viewed as
a market factor. The other reported factors are the top five most important factors of the
MVO portfolio in terms of beta exposures. These factors correspond to long-short portfolios
of industry sectors. We notice that the factor with the highest beta is ranked 7, whereas
the second most important factor corresponds to the factor ranked 97, which is certainly a
noise factor. We verify that the beta exposure of the market factor is very small10. This
example illustrates how some factors can introduce noise in the MVO solution and how an
investor can be exposed to non significant factors. A way to reduce this noise is then to set
to 0 the weight of these noisy factors.

A last solution consists in using random matrix theory to regularize eigenvalues of the
correlation matrix. Thanks to the random matrix theory, Laloux et al. (1999) showed that
the eigenvalues of the estimated correlation matrix are generally more dispersed than the true
ones. A first consequence for the MVO allocation is the overweighing of some assets. Indeed
the optimization focuses on some low eigenvalues whereas these eigenvalues were equal to the
others in the true correlation matrix. Random matrix theory allows to test if the dispersion
of the eigenvalues is significant or just due to noise. As a consequence, regularizing the
estimated correlation matrix would be either to delete or equalize the eigenvalues, which are
not significant. Laloux et al. (1999) studied the estimated correlation matrix of n identical
independent asset returns based on T observations and showed that the eigenvalues follow
a Marcenko-Pastur (MP) distribution11:

ρ (λ) = Q

2πσ2

√
(λmax − λ) (λ− λmin)

λ

where Q = T/n. The maximum and minimum eigenvalues are then given by:

λmax
min = σ2

(
1±

√
1/Q

)2

It is therefore difficult to distinguish the true eigenvalues from noisy eigenvalues for a ma-
trix whose eigenvalue distribution looks like the MP distribution. On the other hand, the
eigenvalue spectrum outside this distribution could represent real information.

Example 6 We compute the theoretical distribution of λ for different value of T when
n = 100. We also simulate the eigenvalue distribution of independent asset returns with
n = 100 and T = 260. We finally consider the eigenvalue distribution of S&P 100 asset
returns for the year 2011.

In the first panel in Figure 3, we report on the Marcenko-Pastur distribution of the
eigenvalues. In the second panel, we compare the histogram of simulated independent asset
returns (red bars) and the theoretical MP distribution (blue line). The last panel corresponds
to the eigenvalues of the correlation matrix in the case of the S&P 100 universe. For that,
we remove the first eigenvalue which represents 60% of the total variance. If we consider the
99 remaining eigenvalues, we observe that their histogram is close to the MP distribution,

8The ICB repartition of the 100 stocks is the following: Energy (11), Basic Materials (4), Industrials
(15), Consumer Goods (12), Health Care (10), Consumer Services (13), Telecommunications (3), Utilities
(4), Financials (16) and Technology (12).

9The weight of the sector is closed to the frequency of stocks belonging to it.
10It is equal to −0.16%.
11See Marcenko and Pastur (1967).



Figure 3: Eigenvalue distribution

except for seven eigenvalues which are outside the dashed blue line. Denoising the correlation
matrix can then be performed by replacing all the eigenvalues under the dashed blue line
by their mean.

3.3.2 The shrinkage approach

This method was popularized by Ledoit and Wolf (2003). They propose do define the
shrinkage estimator of the covariance matrix as a combination of the sample estimator of
the covariance matrix Σ̂ and a target covariance matrix Φ̂:

Σ̃α = αΦ̂ + (1− α) Σ̂

where α is a constant between 0 and 1. We know that Σ̂ is a non-biased estimator, but
its convergence is slow. The underlying idea is then to combine it with a biased estimator
Φ̂, but which converges faster. As a result, the mean squared error of the estimator is
reduced. This approach is very close to the principle of bias and variance trade-off well
known in regression analysis (James and Hastie, 1997). Ledoit and Wolf (2003) use the
bias-variance decomposition with respect to the Frobenius norm to propose an optimal
shrinkage parameter α?. The loss function considered by Ledoit and Wolf is the following:

L (α) =
∥∥∥αΦ̂ + (1− α) Σ̂− Σ

∥∥∥2

By solving the minimization problem α? = arg minE [L (α)], they give an analytical expres-
sion of α?.

Ledoit and Wolf (2003) consider the single-factor model of Sharpe (1963). In this case,
the vector of asset returns Rt can be written as a function of the market return Rm,t and



uncorrelated Gaussian residuals εt ∼ N (0, D):

Rt = βRm,t + εt

where β is the vector of market betas, σm is the volatility of the market portfolio and
D = diag

(
σ̃2

1 , . . . , σ̃
2
n

)
is the covariance of specific risks. The covariance matrix Φ̂ of the

single-factor model is then:
Φ̂ = σ2

mββ
> +D

Assuming that the first eigenvector of Σ̂ is the market factor, we obtain12:

Σ̃α ' λ1v1v
>
1 +

n∑
i=2

(
(1− α)λi + ασ̃2) viv>i

The expression (1− α)λi + ασ̃2 shows that shrinking toward the single-factor matrix is
equivalent to modifying the distribution of eigenvalues. The highest eigenvalue is unchanged
whereas the other eigenvalues are forced to be closer to specific risks. Others models can be
considered like the constant correlation matrix (Ledoit and Wolf, 2004), but the result of
the shrinkage approach is always to reduce the dispersion of eigenvalues.

3.4 Penalization methods
The idea of using penalizations comes from the regularization problem of linear regres-
sions. These techniques have been largely used in machine learning in order to improve
out-of-sample forecasting (Tibshirani, 1996; Zou and Hastie, 2005). Since mean-variance
optimization is related to linear regression (Scherer, 2007), regularizations may improve the
performance of MVO portfolios. For instance, DeMiguel et al. (2010) consider the following
norm-constrained problem:

x? (λ) = arg min 1
2x
>Σ̂x+ λ ‖x‖

u.c. 1>x = 1

where ‖x‖ is the norm of the portfolio x. In particular they proved that the solution of the L1
norm-constrained MV problem is the same as the short-sale constrained minimum-variance
portfolio analyzed in Jagannathan and Ma (2003). They also demonstrate that using the
L2 norm is equivalent to combine MV and EW portfolios.

3.4.1 The L1 constrained portfolio

The L1 norm or the Lasso approach is one of the most famous regularization procedures.
The penalty consists to constrain the sum of the absolute values of the weights. We have13:

x? (γ, λ) = arg min 1
2x
>Σ̂x− γx>µ̂+ λ ‖x‖ (1)

The L1 penalty has useful properties. It improves the sparsity and thus the selection of
assets in large portfolio. Moreover, it stabilizes the problem by imposing size restriction on
the weights. Even there is no closed solution of Equation (1), it can be easily solved with QP

12See Appendix A.1 for computational details. We also assume that the idiosyncratic volatilities are equal
(σ̃1 = . . . = σ̃n = σ̃).

13The L1 norm is defined as follows: ‖x‖ =
∑n

i=1 |xi|. It may be interpreted as the portfolio leverage.



algorithm. If the covariance matrix is the identity, we obtain an analytical formula which
gives insight on the effect on the L1 norm. The solution is14:

x? (γ, λ) = sgn (µ̂) · (γ |µ̂| − λ)+

The L1 norm corresponds then to a soft-thresholding operator of the expected return.

The L1 penalty is also well adapted to portfolio optimization under transaction or liquid-
ity costs (Scherer, 2007). Let c be the vector of transaction costs and x0 the initial portfolio.
The transaction cost paid by the investor is c>|x?−x0| and may be easily introduced into the
mean-variance optimization. Another way to use the L1 norm is to perform asset selection.
The investor may then choose the parameter λ which corresponds to the given number m
of selected assets.

Example 7 We consider the asset returns of the S&P 100 universe for the period January
2011 – December 2011. We compute the regularized L1 MVO portfolio for different values
of λ.

Results are reported in Figure 4. In the first panel, we indicate the number of selected
stocks. The optimized value of the utility function (or the ex-ante Sharpe ratio) is given
in the second panel. We also report the weight evolution of the consumer services stocks.
Finally, we indicate the leverage

∑n
i=1 |xi| of the portfolio in the last panel. This example

illustrates the sparsity property when λ increases. We also notice the impact of λ in the
leverage of the portfolio. For instance, if λ = 0.2%, the leverage is divided by a factor larger
than six whereas the decrease of the utility function is equal to 28%. As a result, we may
obtain more sparse portfolios with limited impacts on the ex-ante Sharpe ratio.

3.4.2 The L2 constrained portfolio

The L2 constrained MVO problem is defined as follows:

x? (γ, λ) = arg min 1
2x
>Σ̂x− γx>µ̂+ 1

2λx
>x

= arg min 1
2x
>
(

Σ̂ + λIn

)
x− γx>µ̂

x? (γ, λ) is then a MVO portfolio with a modified covariance matrix Σ̃ = Σ̂ +λIn. Imposing
the L2 constraint is equivalent to adding the same amount λ to the diagonal elements of the
covariance matrix. This approach is therefore very close to the shrinkage method of Ledoit
and Wolf (2003).

Remark 5 The L2 constraint may be viewed as an eigenvalue shrinkage method. Indeed,
we have Σ̂ = V ΛV > and Σ̃ = V (Λ + λIn)V > because V V > = In. The parameter λ is thus
useful to stabilize the small eigenvalues of the covariance matrix.

14We notice that sgn (x?) = sgn (µ̂). The first order condition is x− γµ̂+ λ sgn (µ̂) = 0. We deduce that:

• If µ̂i ≥ 0, the first order condition becomes xi − γµ̂i + λ = 0 and we have:

x?i = γµ̂i − λ
= sgn (µ̂i) · (γ |µ̂i| − λ)+

• If µ̂i < 0, the first order condition becomes xi − γµ̂i − λ = 0 and we have:

x?i = γµ̂i + λ

= sgn (µ̂i) · (γ |µ̂i| − λ)+



Figure 4: Illustration of the L1 norm-constrained portfolio optimization

The solution can be written as a linear combination of the MVO solution x? (γ):

x? (γ, λ) = γ
(

Σ̂ + λIn

)−1
µ̂

=
(
In + λΣ̂−1

)−1
x? (γ)

Using the eigendecomposition Σ̂ = V ΛV >, the solution can be expressed in a simple form:

x? (γ, λ) =
(
V V > + λV Λ−1V >

)−1
x? (γ)

= V Λ̃V >x? (γ)

where Λ̃ is a diagonal matrix with elements Λ̃j = Λj/ (Λj + λ). We notice that the weights
are equal to 0 when λ = +∞.

Instead of using the identity matrix, we can consider a general matrix A to define the
L2 norm:

x? (γ, λ) = arg min 1
2x
>Σ̂x− γx>µ̂+ 1

2λx
>Ax

= arg min 1
2x
>
(

Σ̂ + λA
)
x− γx>µ̂

The solution is then:

x? (γ, λ) = γ
(

Σ̂ + λA
)−1

µ̂

=
(
In + λΣ̂−1A

)−1
x? (γ)



In the case of L2 identity constraint, the covariance matrix is shrunken toward the
identity matrix. If A is the diagonal matrix of asset variances (A = υ), the shrinkage is
based on the correlation matrix15. This approach is sometimes used by portfolio managers
when they reduce the correlations even if they don’t realize it. Indeed, we have:

x? (γ, λ) = γ
(

Σ̂ + λυ
)−1

µ̂

= γ

1 + λ

(
ηΣ̂ + (1− η) υ

)−1
µ̂

with η = (1 + λ)−1. In this case, the solution x? (γ, λ) is an optimized portfolio where we
keep a percentage η of the correlations.

Example 8 To illustrate the L2 approach, we consider a universe of four assets. The
correlation matrix is:

Ĉ =


1.00
0.60 1.00
0.20 0.20 1.00
−0.20 −0.20 −0.20 1.00


The expected returns are 10%, 0%, 5% and 10% whereas the volatilities are the same and
are equal to 10%.

Figure 5: Weights with respect to λ

15See Appendix A.2.1.



Figure 6: Effect of the penalty matrix

We assume that γ = 0.5%. In Figure 5, we report the evolution of the weights when
A = In. We verify that the solution is the MVO portfolio if λ = 0 and tends to 0 if λ
increases. In Figure 6, we consider that A = diag

(
κσ̂2

1 , σ̂
2
2 , σ̂

2
3 , σ̂

2
4
)
. We observe the impact

on the weight x1 of the first asset when the uncertainty κ on this asset increases.

The L2 portfolio optimization can also be used when investors target a portfolio x0:

x? (γ, λ) = arg min 1
2x
>Σ̂x− γx>µ̂+ 1

2λ (x− x0)>A (x− x0) (2)

The parameter λ controls the distance between the MVO portfolio and the target portfolio.
For instance, the target portfolio could be an heuristic allocation like the EW, MV or ERC
portfolio (Roncalli, 2013) or it could be the actual portfolio in order to limit the turnover.
In this case, we interpret λ as risk aversion with respect to the MVO portfolio. We notice
that the analytical solution is:

x? (γ, λ) =
(

Σ̂ + λA
)−1

(γµ̂+ λAx0)

If A = In, the optimal portfolio becomes:

x? (γ, λ) =
(

Σ̂ + λIn

)−1
(γµ̂+ λx0)

= γΣ̃−1µ̃

where Σ̃ = Σ̂ +λIn and µ̃ = µ̂+ (λ/γ)x0. This approach corresponds to a double shrinkage
of the covariance matrix Σ̂ and the vector of expected returns µ̂ (Candelon et al., 2012). We
can also reformulate the solution as follows16:

x? (γ, λ) = Bx? (γ) + (In −B)x0

16See Appendix A.2.2.



where B =
(
In + λΣ̂−1

)−1
. The optimal portfolio is then a linear combination between the

MVO portfolio and the target portfolio, and coincides with classical allocation policy. For
example, when an investor considers a 50/50 allocation policy, B is equal to In/2 and we
obtain:

x? (γ, λ) = 1
2x

? (γ) + 1
2x0

Example 9 We consider a universe of three assets. The expected returns are 5%, 6% and
7% whereas the volatilities are 10%, 15% and 20%. The correlation matrix is:

Ĉ =

 1.00
0.50 1.00
0.20 −0.30 1.00


The risk aversion parameter γ is set to 30%. We assume that the target portfolio is the EW
portfolio.

Table 6: L2 portfolio with a target allocation

asset x0 x? (γ) x? (γ, λ)
λ = 0.01 λ = 0.10 λ = 1.00

1 33.33 58.13 54.55 39.58 34.10
2 33.33 87.14 68.75 42.45 34.41
3 33.33 66.29 56.68 40.41 34.24

In Table 6, we report the solution for different values of λ. When λ is small, the diagonal
elements of B are high and the MVO portfolio x? (γ) dominates the target portfolio x0. For
instance, if λ = 1%, we obtain:

B =

 0.43 0.15 0.07
0.15 0.64 −0.08
0.07 −0.08 0.78



If we are interested to reduce the turnover, we can use a time-varying regularization:

x?t (γ, λ) = arg min 1
2x
>
t Σ̂txt − γx>t µ̂t + 1

2λ (xt − xt−1)>A (xt − xt−1) (3)

where t − 1 and t are two successive rebalancing dates and xt−1 is the previous allocation.
The analytical solution is:

x?t (γ, λ) = γ
(

Σ̂t + λA
)−1

µ̂t + λ
(

Σ̂t + λA
)−1

Axt−1

= Btx
?
t (γ) + (In −Bt)xt−1

with Bt =
(
In + λΣ̂−1

t A
)−1

. If we assume that xt−1 = x?t−1 (γ, λ), it follows that the
current allocation is a moving average of past unconstrained MVO portfolios:

x?t (γ, λ) = Btx
?
t (γ) +

t∑
i=1

i−1∏
j=0

(In −Bt−j)Bt−ix?t−i (γ)



Remark 6 Suppose that Σ̂t = Σ̂t−1 and A = diag
(
σ̂2

1 , . . . , σ̂
2
n

)
. If asset returns are not

correlated, we obtain:

x?i,t (γ, λ) = γ

σ̂2
i + λσ̂2

i

µ̂i,t + λσ̂2
i

σ̂2
i + λσ̂2

i

x?i,t−1 (γ, λ)

= αx?i,t (γ) + (1− α)x?i,t−1 (γ, λ)

where α = 1/(1 + λ). The solution is an exponentially weighted moving average filter.
Calibrating λ is then equivalent to choosing the holding period to turn the portfolio.

3.5 Information matrix and hedging portfolios
The previous methods are focused on the covariance matrix. However, the important quan-
tity in mean-variance optimization is the information matrix I = Σ̂−1, i.e. the inverse of the
covariance matrix (Scherer, 2007; Roncalli, 2013). Stevens (1998) gives a new interpretation
of the information matrix using the following regression framework:

Ri,t = β0 + β>i R
(−i)
t + εi,t (4)

where R(−i)
t denotes the vector of asset returns Rt excluding the ith asset and εi,t ∼ N (0, s2

i ).
Let R2

i be the R-squared of the linear regression (4) and β̂ be the matrix of OLS coefficients
with rows β̂>i . Stevens (1998) shows that the diagonal elements of the information matrix
are given by:

Ii,i = 1
σ̂2
i (1−R2

i )
whereas the off-diagonal elements are:

Ii,j = − β̂i,j
σ̂2
i (1−R2

i )
= − β̂j,i

σ̂2
j

(
1−R2

j

)
Using this expression of I, we obtain a new formula of the MVO portfolio:

x?i (γ) = γ
µ̂i − β̂>i µ̂(−i)

σ̂2
i (1−R2

i )

Scherer (2007) interprets µ̂i − β̂>i µ̂
(−i) as the excess return after regression hedging and

σ̂2
i

(
1−R2

i

)
as the non-hedging risk. We remind that R2

i = 1− ŝ2
i /σ̂

2
i . We finally obtain:

x?i (γ) = γ
µ̂i − β̂>i µ̂(−i)

ŝ2
i

From this equation, we deduce the following conclusions:

1. The better the hedge, the higher the exposure. This is why highly correlated assets
produces unstable MVO portfolios.

2. The long-short position is defined by the sign of µ̂i − β̂>i µ̂(−i). If the expected return
of the asset is lower than the conditional expected return of the hedging portfolio, the
weight is negative.

It has been shown that the linear regression can be improved using norm constraints (Hastie
et al., 2009). For example we can use the L2 regression to improve the predictive power of
the hedging relationships. We can also estimate the hedging portfolios with the L1 penalty.



Example 10 We consider a universe of four assets. The expected returns are µ̂1 = 7%,
µ̂2 = 8%, µ̂3 = 9% and µ̂4 = 10% whereas the volatilities are equal to σ̂1 = 15%, σ̂2 = 18%,
σ̂3 = 20% and σ̂4 = 25%. The correlation matrix is the following:

Ĉ =


1.00
0.50 1.00
0.50 0.50 1.00
0.60 0.50 0.40 1.00


In Table 7, we have reported the results of the hedging portfolios. The OLS coefficients

β̂i, the coefficient of determination R2
i and the standard error ŝi of residuals are computed

thanks to the formulas given in Appendix A.4. We also have computed the conditional
expected return17 µ̄i = µ̂i − β̂>i µ̂(−i). We can then deduce the corresponding information
matrix I and the MVO portfolio x? for γ = 0.5. We finally obtain a very well balanced
allocation, because the weights range between 19.28% and 69.80%. Let us now change the
value of the correlation between the third and fourth assets. If ρ3,4 = 95%, we obtain results
given in Table 8. In this case, the story is different, because the optimized portfolio is not
well balanced. Indeed, because two assets are strongly correlated, some hedging relationships
present high value of R2. The information matrix is then very sensitive to these hedging
portfolios. This explains that the weights are now in the range between −168.70% and
239.34%!

Table 7: Hedging portfolios when ρ3,4 = 40%

Asset β̂i R2
i ŝi µ̄i x?

1 0.139 0.187 0.250 45.83% 11.04% 1.70% 69.80%
2 0.230 0.268 0.191 37.77% 14.20% 2.06% 51.18%
3 0.409 0.354 0.045 33.52% 16.31% 2.85% 53.66%
4 0.750 0.347 0.063 41.50% 19.12% 1.41% 19.28%

Table 8: Hedging portfolios when ρ3,4 = 95%

Asset β̂i R2
i ŝi µ̄i x?

1 0.244 −0.595 0.724 47.41% 10.88% 3.16% 133.45%
2 0.443 0.470 −0.157 33.70% 14.66% 2.23% 52.01%
3 −0.174 0.076 0.795 91.34% 5.89% 1.66% 239.34%
4 0.292 −0.035 1.094 92.38% 6.90% −1.61% −168.67%

4 Some applications
In this section, we look at three applications which are directly linked to the previous
framework. The first application concerns the relationship between the MVO portfolio
and the principal portfolios derived from PCA analysis. The second application shows the
usefulness of the L2 covriance matrix regularization. We finally illustrate how the Lasso
approach may improve the robustness of the information matrix and hedging portfolios in
the third application.

17We note that µ̄i is also equal to the intercept β̂0 of the linear regression.



4.1 Principal portfolios
We first consider the problem of mean-variance optimization in a multi-assets universe. We
have shown that this portfolio has implicit exposition to arbitrage and risk factors that we
call principal portfolios (Meucci, 2009). The universe is composed of ten indices, four de-
veloped market equity indexes, one emerging market equity index, two bond indexes, two
currency indexes and one commodity index: S&P 500 index, Eurostoxx 50 index, Topix
index, Russell 2000 index, MSCI EM index, Merrill Lynch US High Yield index, JP Morgan
Emerging Bonds index, EUR/USD and JPY/USD exchange rates and S&P GSCI Commod-
ity index.

To better understand the importance of principal portfolios, we look at the mean-variance
optimization at the end of 2006. The covariance matrix is estimated using historical daily
returns from January 2006 to December 2006. We then assume that this portfolio is held
until the end of 2007. For the purpose of the study, we will consider perfect views of the
market. The expected returns are therefore the realized returns of each asset from January
2007 to December 2007. We report in Table 9 the expected return, the volatility and the
Sharpe ratio of each asset. The mean-variance optimized portfolio is computed under a 10%
volatility constraint18. The optimized weights are given in the last column in Table 9.

Table 9: Statistics and MVO portfolio at the end of 2006

Asset µ̂i σ̂i SRi x?i
SPX 1.27% 10.04% 0.13 65.57%
SX5E 6.24% 14.65% 0.43 −1.97%
TPX −10.60% 18.85% −0.56 −24.39%
RTY −4.84% 17.37% −0.28 −49.54%
MSCI EM 30.15% 18.11% 1.66 55.60%
US HY −3.07% 1.69% −1.82 −489.99%
EMBI 0.50% 4.08% 0.12 29.26%
EUR/USD 9.27% 7.72% 1.20 41.91%
JPY/USD 2.04% 8.28% 0.25 −20.96%
GSCI 24.76% 21.17% 1.17 2.62%

Let us now study the decomposition of the MVO portfolio by its principal portfolios.
Their weights are given in Table 10. By construction, each principal portfolio is independent
from the others and is composed by all the assets (Meucci, 2009). The MVO portfolio is
then a combination of these principal portfolios. It follows that the optimal weight x∗i of
an asset i is the sum of the exposure βj of the principal portfolio Fj in the MVO portfolio
multiplied by the weight wi,j of the asset i in the portfolio Fj :

x∗i =
10∑
j=1

βj · wi,j

We have also reported the expected return µj and the ex-ante volatility σj associated to
each principal portfolio Fj . The first portfolio F1 is the riskier portfolio. We notice that
it is a long-only portfolio and it has the profile of a risk weighted portfolio. Assets with
a lower volatility have then a lower weight. As a result, the other principal portfolios can

18In this case, γ is equal to 2.39%.



be considered as neutral risk weighted portfolios, because they are uncorrelated to the first
principal portfolio. Nevertheless, if we consider the exposures βj , we observe that the first
principal portfolio is underweighted compared to the other principal portfolios.

Table 10: Decomposition of the MVO portfolio at the end of 2006

Asset F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SPX 22.52 -22.39 26.56 -18.43 -12.03 -6.50 -8.73 86.49 14.24 -0.37
SX5E 37.59 -20.94 14.89 17.05 78.50 -36.98 4.23 -8.30 4.37 0.56
TPX 42.23 -0.13 -74.05 -46.21 -7.01 -23.06 2.26 -0.11 -3.09 1.17
RTY 41.56 -37.56 47.66 -36.01 -32.97 6.93 8.81 -45.49 -3.28 -0.78
MSCI EM 56.86 -2.69 -19.41 57.13 -11.10 53.91 -4.38 3.44 7.63 0.76
US HY 2.41 -1.06 -0.65 3.81 -1.15 -2.77 -0.51 2.98 -22.49 -97.23
EMBI 7.72 -2.22 4.57 9.42 -2.96 -5.76 -11.15 11.75 -94.80 23.10
EUR/USD 5.92 5.36 0.88 33.88 -32.34 -42.44 76.71 6.88 -0.12 2.84
JPY/USD 7.05 -0.80 1.48 34.19 -37.01 -56.97 -61.52 -13.21 14.31 0.18
GSCI 34.45 87.22 30.28 -15.93 2.77 -4.03 -3.14 0.51 0.97 -1.03
βj 7.11 12.11 6.14 39.16 1.50 34.59 31.02 75.86 95.32 484.58
µj 22.47 21.53 8.61 24.52 0.69 9.94 3.21 4.29 3.98 3.29
σj 27.51 20.63 18.32 12.25 10.48 8.30 4.98 3.68 3.16 1.27
SRj 0.82 1.04 0.47 2.00 0.66 1.20 0.64 1.17 1.26 2.58

Let us consider the other principal portfolios. For instance, the principal portfolio F8
can be interpreted as an arbitrage portfolio which bets on large cap versus small cap equities
whereas the principal portfolio F7 is an arbitrage portfolio on FX spread. Principal portfolio
F10 seems to be an arbitrage portfolio between the two bond indexes. This is the portfolio
with the highest expected Sharpe ratio19 SRj and with the highest weight βj in the MVO
portfolio20. By using mean-variance optimization, we implicitly have a high exposure on this
principal portfolio. Indeed, The US HY index has a high negative expected Sharpe ratio
(−1.82) whereas EMBI index has a weak positive expected Sharpe ratio (0.12) resulting in a
principal portfolio which is short of the US HY index and long of the EMBI index. Since the
correlation between the two indexes is about 60% and their volatilities are low, the principal
portfolio has also a low volatility and its weight in the MVO portfolio is dramatically high
(β10 = 484.58%). In this case, the performance of the MVO portfolio is strongly dependent
on the performance of the tenth principal portfolio.

We have computed the realized performance of these portfolios over 2007. Results are
reported in Table 11. The realized volatility of the MVO portfolio is 14.63%, which is above
the targeted volatility of 10%. This suggests that the allocation defined at the end of 2006
was probably too optimistic. We also notice that the riskiest portfolio is the tenth principal
portfolio. This result is not surprising because, even if this portfolio was the less risky
portfolio in an ex-ante viewpoint, it was also the most leveraged portfolio. In Figure 7, we
have represented the cumulative performance of the MVO and F10 portfolios. We can see
that their behavior is very close21. If we consider the Sharpe ratio, the better portfolio is
the principal portfolio F4, and not the principal portfolio F10, even if the investor has the
right views on expected returns22.

19It is equal to 2.58.
20The weight of the principal portfolio F10 is equal to 484.58%.
21The correlation between the MVO and F10 (resp. F4) portfolios is 73% (resp. 21%) in 2007.
22We remind that the expected returns are exactly equal to the realized returns in 2007.



Table 11: Performance of MVO and principal portfolios in 2007

MVO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
µj 50.32 1.60 2.63 0.53 10.04 0.01 3.46 0.98 3.21 3.79 16.27
σj 14.63 2.16 2.49 1.29 4.58 0.17 3.01 2.08 5.17 3.48 12.70

SRj 3.44 0.74 1.05 0.41 2.19 0.06 1.15 0.47 0.62 1.09 1.28

Figure 7: Cumulative performance of MVO and principal portfolios in 2007

Remark 7 As mentioned earlier, the problem comes from the fact that the MVO portfolio
is sensitive to the information matrix. Let us now consider the risk budgeting construction,
which is not sensitive to the information matrix but to the covariance matrix. We obtain
the results given in Table 12 in the case of the ERC portfolio23. We can see that the risk
allocated to the first principal portfolio is the higher. We retrieve the fact that risk budgeting
portfolios make less active bets than MVO portfolios (Roncalli, 2013).

Table 12: Decomposition of the ERC portfolio at the end of 2006

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
βj 32.70 -0.18 5.46 15.90 -16.83 -32.30 1.02 15.16 -49.36 -87.07
µj 2.48 -0.01 0.18 0.24 -0.19 -0.22 0.00 0.02 -0.05 -0.01
σj 27.51 20.63 18.32 12.25 10.48 8.30 4.98 3.68 3.16 1.27
SRj 0.09 0.00 0.01 0.02 -0.02 -0.03 0.00 0.01 -0.02 -0.01

23The implied expected returns are then equal to µ = φΣ̂xerc (Roncalli, 2013). The value of φ is scaled
to target a 10% volatility.



4.2 Regularized portfolios
We continue the previous example by adding a L2 penalization on the MVO optimization.
We report the solution in Table 13 when λ takes the value 0.1%. Even if it is a low penalty,
it has a real impact on the allocation. For instance, we notice a high reduction of the US
HY exposure. By using this constraint, we modify the composition and the risk associated
to each principal portfolio (see Table 14). It helps then to reduce the highest exposures on
arbitrage portfolios and to have a more balanced allocation. In our case, we also notice that
this is the fourth principal portfolio which now has the highest expected Sharpe ratio (1.94).

Table 13: Comparison of MVO and L2 portfolios at the end of 2006

Index MVO L2−MVO
SPX 65.57% 51.11%
SX5E −1.97% −4.53%
TPX −24.39% −38.69%
RTY −49.54% −45.53%
MSCI EM 55.60% 66.64%
US HY −489.99% −112.58%
EMBI 29.26% −37.02%
EUR/USD 41.91% 33.25%
JPY/USD −20.96% −25.71%
GSCI 2.62% 10.25%

Table 14: Decomposition of the L2−MVO portfolio at the end of 2006

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
βj 10.56 17.81 8.97 55.23 2.06 45.43 33.24 65.66 71.65 101.90
µj 22.47 21.53 8.61 24.52 0.69 9.94 3.21 4.29 3.98 3.29
σj 27.69 20.87 18.59 12.65 10.95 8.88 5.90 4.85 4.47 3.41
SRj 0.81 1.03 0.46 1.94 0.06 1.12 0.54 0.88 0.89 0.96

The performance of these allocations is reported in Table 15. We notice that the realized
volatility is equal to 11.62%, which is close to the target volatility and that the Sharpe
ratio is similar than the one obtained in the non-regularized portfolio. The risk of principal
portfolios is now more balanced. These portfolios benefit then from regularization. Indeed,
the correlation of the L2−MVO portfolio with the principal portfolio F10 is now equal to
−2% whereas the correlation with the principal portfolio F4 is 47%.

Table 15: Performance of L2−MVO and principal portfolios in 2007

L2−MVO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
µj 41.37 2.37 3.87 0.77 14.37 0.01 4.55 1.05 2.79 2.85 3.36
σj 11.62 3.21 3.67 1.89 6.45 0.23 3.95 2.22 4.47 2.62 2.67

SRj 3.56 0.74 1.05 0.41 2.23 0.06 1.15 0.47 0.62 1.09 1.26



Figure 8: Cumulative performance of L2-MVO and principal portfolios in 2007

Remark 8 We modify the previous example by considering unperfect views. Suppose that
we have wrong expected returns for the bond indexes, i.e. 3.07% for the US HY index and
−0.5% for the EMBI index. In this case, exposures change slightly except for the principal
portfolio F10, which becomes −452%. We have reported in Table 16 the performance of the
optimized and principal portfolios. We can see that having the wrong views has a big impact
on the MVO portfolio. Its return is reduced by 81%! For the L2−MVO portfolio, the return
only decreases by 29%.

Table 16: Performance of optimized and principal portfolios in 2007 with wrong views

L2−MVO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
MVO

µj 11.19 1.69 2.76 0.55 10.64 0.01 3.60 1.05 3.42 3.56 -14.38
σj 17.57 2.28 2.62 1.35 4.84 0.17 3.13 2.24 5.51 3.27 11.85

SRj 0.64 0.74 1.05 0.41 2.20 0.06 1.15 0.47 0.62 1.09 -1.21
L2−MVO

µj 32.43 2.39 3.88 0.76 14.53 0.01 4.52 1.08 2.84 2.55 -2.96
σj 12.91 3.23 3.68 1.88 6.52 0.22 3.93 2.29 4.56 2.35 2.38

SRj 2.51 0.74 1.05 0.41 2.23 0.06 1.15 0.47 0.62 1.09 -1.24

4.3 Hedging portfolios
We recall that the MVO portfolio involves the inverse of the covariance matrix. Since the
information matrix reflects the hedging relationships, we illustrate how penalization methods
may be used to obtain better hedging portfolios. For that, we impose a L1 constraint on



hedging regressions in order to build sparse hedging portfolios. To choose the penalization
parameter λ, we use the BIC criterion as described in Zou et al. (2007).

We consider the universe of the 10 diversified indexes and compute the hedging portfolios
based on the daily asset returns for 2006. Results are reported in Tables 17 and 18. For each
asset i, we indicate the hedging coefficients β̂i, the standard deviation ŝi of the residuals and
the coefficient of determination R2

i . These statistics are expressed in %. We notice that OLS
regression produces noisy portfolios with very small exposures on some assets. For instance,
the weight of the Topix index is 0.4% in the S&P 500 hedging portfolio. With the Lasso
regression, the hedging portfolio is more sparse without a high decrease of the coefficient R2

i .
For instance, the S&P 500 index is hedged with the Russell 2000 and Eurostoxx 50 indexes
whereas the difference in terms of R2 is only 1%. The long-short exposure on US HY and
EMBI and the short exposure on EM equities vanish. From an economic point of view, the
Lasso hedging portfolios is then more reliable than the OLS hedging portfolio.

Table 17: OLS hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2
i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1

Table 18: Lasso hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 49.2 146.8 5.0 -3.2
SX5E 5.1 32.3 3.2
TPX 37.4 0.8 -3.1
RTY 46.8 -3.1 10.4 1.9
EM 25.0 61.3 6.5 0.8 4.3 2.6 22.4
US HY 82.2 65.9 93.8 19.1 20.7
EMBI 24.9 -70.3 71.6 17.5 33.8
EUR -23.7 33.6 1.4 51.9 13.8
JPY 9.3 1.1 7.6 48.9
GSCI 10.2 -0.3 1.6 2.9
ŝi 0.3 0.7 1.0 0.5 0.7 0.1 0.2 0.4 0.4 1.3
R2
i 82.0 44.9 33.9 82.1 60.4 38.0 51.5 39.7 41.5 7.8

We now consider the example of the S&P 100 universe for the period January 2000 to



December 2011. We compute the minimum variance portfolio using the hedging relation-
ships:

x?i (γ) = γ
1− β̂>i 1

ŝ2
i

γ is a scaling parameter such that the sum of weights is equal to 100%. We rebalance the
portfolio every month whereas the information matrix is computed using a rolling window
of 260 trading days. Results are reported in Table 19. We notice that the Lasso-MV
portfolio improves the performance of the OLS-MV portfolio (higher return µ (x), lower
volatility σ (x) and lower drawdown MDD). Moreover, we notice that the turnover τ
is dramatically reduced thanks to the norm constraint. This result suggests that a lot
of hedging relationships made by non-regularized MVO portfolios are not optimal. If we
compute the sparsity rate24 of the information matrix at each rebalancing dates, its range
is between 0% and 0.02% for the OLS regression whereas it is between 73.70% and 87.14%
for the Lasso regression. We verify that the Lasso-MV portfolio produces sparse hedging
relationships, which is not the case with the traditional OLS-MV portfolio. For instance,
Google is hedged by 99 stocks at December 2011, if we consider the OLS-MV portfolio.
Using the L1 constraint, Google is hedged by only 13 stocks25. In Figure 9, we have reported
some statistics about the 100 hedging relationships at December 2011. The coefficient R2

is reduced when we consider Lasso regression, meaning that Lasso hedging portfolios have
a lower in-the-sample explanatory power. Nevertheless, the Lasso net exposure

∑
j 6=i β̂i,j is

generally close to the OLS net exposure. In fact, one of the benefits with Lasso regression is
to reduce the short exposure26 of the hedging portfolio. In the end, Lasso hedging portfolios
are less leveraged27. In this case, it is obvious that the Lasso-MV portfolio uses a less noisy
information matrix than the classical MV portfolio.

Table 19: Performance of OLS-MV and Lasso-MV portfolios

µ (x) σ (x) SR (x) MDD τ
OLS-MV 3.60% 14.39% 0.25 −39.71% 19.4
Lasso-MV 5.00% 13.82% 0.36 −35.42% 5.9

5 Conclusion
In this paper, we have reviewed the different approaches of portfolio allocation. The first
generation of methods (resampling, random matrix theory and covariance shrinkage), which
were proposed at the end of the Nineties, aim to reduce the noisy part of the covariance
matrix. However, this type of approach is not sufficient. The second generation of methods
(Lasso and ridge regression) seeks to directly regularize the MVO portfolio by introducing
more sparsity in the solution. These sparse methods are more satisfactory because they
produce more robust portfolios that are less sensitive to input parameters.

The first application of the paper clearly shows how the noisy part of the covariance
matrix impacts the optimized portfolio. Principal portfolios are then the adequate tool

24We consider the sparsity measure `0ε defined in Hurley and Rickard (2009) with ε = 10−5.
25They are Boeing (4.6%), United technologies (1.1%), Schlumberger (1.8%), Williams cos. (1.8%), Mi-

crosoft (13.7%), Honeywell intl. (2.7%), Caterpillar (0.9%), Apple (25.0%), Mastercard (2.5%), Devon
energy (2.9%), Nike (1.2%), Amazon (6.7%) and Apache (8.7%).

26It is measured as the opposite of
∑

j 6=i min
(
0, β̂i,j

)
.

27We compute the leverage as
∑

j 6=i

∣∣β̂i,j∣∣.



Figure 9: Statistics of OLS and Lasso hedging relationships (December 2011)

to understand the relationships between the MVO portfolio and the eigendecomposition of
the covariance matrix. The second application illustrates how penalization methods make it
possible to obtain portfolios that are less sensitive to the noise of the covariance matrix. With
this type of regularization, investment bets are less aggressive and optimized portfolios are
more robust. Finally, the last application proposes to interpret mean-variance optimization
as an allocation model that takes exposures with respect to hedging portfolios. In this case,
the regularization method consists of introducing robustness in the estimation of hedging
portfolios. By using sparse regression methods, portfolio turnover is dramatically reduced
and robustness is improved.

The improvement of the Markowitz model is an endless issue. The most common pro-
posed solutions are generally less than satisfactory. This is the case of the three main
approaches: resampling, denoising and shrinkage methods. Other sophisticated methods
exist, like the robust approach of Tütüncü and Koenig (2004), but they are not used by
practitioners because they failed to significantly improve Markowitz portfolios. A new form
of portfolio regularization has been introduced recently by Brodie et al (2009) and DeMiguel
et al (2009). Contrary to the previous approaches, these methods of sparse portfolio alloca-
tion aim to directly regularize the solution instead of the input parameters. In particular,
Lasso and ridge methods are today largely used by portfolio managers. They have helped to
rehabilitate the Markowitz model in the active management field when the goal is precisely
to incorporate views or bets in actively managed long-short portfolios.



A Mathematical results

A.1 The single-factor model

We assume that the first factor of the covariance matrix corresponds to the market factor and
that the idiosyncratic volatilities are equal (σ̃1 = . . . = σ̃n = σ̃). In terms of eigenvectors,
we have:

v1 = β√∑n
i=1 β

2
i

Because V V > = I and λ1 ' σ2
m

∑n
i=1 β

2
i + σ̃2, we obtain the following expression of Σ̃α:

Σ̃α = αΦ̂ + (1− α) Σ̂
= α

(
σ2
mββ

> +D
)

+ (1− α)V ΛV >

= α
(
σ2
mββ

> +DV V >
)

+ (1− α)
n∑
i=1

λiviv
>
i

' ασ2
mββ

> + αDV V > + (1− α)λ1
ββ>∑n
i=1 β

2
i

+ (1− α)
n∑
i=2

λiviv
>
i

=
(
ασ2

m + (1− α) λ1∑n
i=1 β

2
i

)
ββ> + (1− α)

n∑
i=2

λiviv
>
i + αDV V >

It follows that:

Σ̃α '
(
ασ2

m + (1− α) λ1∑n
i=1 β

2
i

)
ββ> + (1− α)

n∑
i=2

λiviv
>
i +

α

(
σ̃2 ββ>∑n

i=1 β
2
i

+
n∑
i=2

σ̃2viv
>
i

)

=
(
ασ2

m + (1− α) λ1∑n
i=1 β

2
i

+ α
σ̃2∑n
i=1 β

2
i

)
ββ> +

(1− α)
n∑
i=2

λiviv
>
i + α

n∑
i=2

σ̃2viv
>
i

= λ1
ββ>∑n
i=1 β

2
i

+
n∑
i=2

(
(1− α)λi + ασ̃2) viv>i

= λ1v1v
>
1 +

n∑
i=2

(
(1− α)λi + ασ̃2) viv>i

A.2 Analytical solutions of L2 portfolio optimization

A.2.1 The case of variance penalization

We have the following optimization program:

x? (γ, λ) = arg min 1
2x
>
(

Σ̂ + λA
)
x− γx>µ̂



We assume that A is the covariance matrix without correlations. We have A = υ =
diag

(
σ̂2

1 , . . . , σ̂
2
n

)
. It follows that:

Σ̃ = Σ̂ + λυ

= υ1/2Ĉυ1/2 + λυ1/2υ1/2

= υ1/2
(
Ĉ + λIn

)
υ1/2

By setting y = υ1/2x, we get:

y? (γ, λ) = arg min 1
2y
>
(
Ĉ + λIn

)
y − γy>ŝ

where ŝ is the vector of expected Sharpe ratios. The solution is then:

x? (γ, λ) = υ−1/2y? (γ, λ)

= γυ−1/2
(
Ĉ + λIn

)−1
ŝ

When λ tends to ∞ and when we renormalize the solution, we retrieve the analytical ex-
pression of Merton (1969):

lim
λ→∞

x?i (γ, λ) ∝ γ µ̂i
σ̂2
i

A.2.2 The case of a target portfolio

We remind that:
x? (γ, λ) =

(
Σ̂ + λIn

)−1
(γµ̂+ λx0)

We see that:

In −
(
In + λΣ̂−1

)−1
=

(
In + λΣ̂−1

)−1 (
In + λΣ̂−1

)
−
(
In + λΣ̂−1

)−1

=
(
In + λΣ̂−1

)−1
λΣ̂−1

We then obtain:

x? (γ, λ) =
(

Σ̂ + λIn

)−1
γµ̂+

(
Σ̂ + λIn

)−1
λx0

=
(
In + λΣ̂−1

)−1
x? (γ) +

(
In + λΣ̂−1

)−1
λΣ̂−1x0

= Bx? (γ) + (In −B)x0

where B =
(
In + λΣ̂−1

)−1
.

A.3 Relationship between penalization and robust portfolio opti-
mization

A.3.1 Robust portfolio optimization

Robust optimization is a technique designed to build a portfolio that performs well in a num-
ber of different scenarios including the extreme ones. For instance, a portfolio manager may



apply a confidence interval on each coefficients of the estimated covariance matrix. Halldórs-
son and Tütüncü (2003) have extensively studied this problem and define the uncertainty
set U as follows:

U =
{

Σ : Σ− ≤ Σ ≤ Σ+,Σ � 0
}

where Σ− and Σ+ are extreme values of the set U . In the case of the MVO problem, we
obtain:

x? (γ;U) = arg min max
Σ∈U

1
2x
>Σx− γx>µ̂

Under the constraint x ≥ 0, we notice that the solution is:

x? (γ;U) = γ
(
Σ+)−1

µ̂

A.3.2 QP formulation of the optimization problem

By decomposing the weights as xi = x+
i − x

−
i with x+

i ≥ 0 and x−i ≥ 0, we obtain:

1
2x
>Σx− γx>µ̂ = 1

2

n∑
i=1

n∑
j=1

Σi,jxixj − γx>µ̂

= 1
2

n∑
i=1

n∑
j=1

Σi,jx+
i x

+
j + 1

2

n∑
i=1

n∑
j=1

Σi,jx−i x
−
j

−
n∑
i=1

n∑
j=1

Σi,jx+
i x
−
j − γx

>µ̂

Let us consider the following function:

m (x) = max
Σ∈U

1
2x
>Σx− γx>µ̂

For a given set of weights x, the worst covariance matrix among U is the highest (resp. the
lowest) element of U if xixj ≥ 0 (resp. xixj ≤ 0). It comes that:

m (x) = 1
2 x̃
>Σ̃x̃− γx̃>µ̃

with:
x̃ =

(
x+

x−

)
, Σ̃ =

(
Σ+ −Σ−
−Σ− Σ+

)
and µ̃ =

(
µ̂
−µ̂

)
We finally obtain:

x? (γ;U) = arg min 1
2 x̃
>Σ̃x̃− γx̃>µ̃

u.c. x̃ ≥ 0

This problem can be solved using classical QP algorithm under the condition that Σ̃ is
positive definite.

A.3.3 L1 formulation of the optimization problem

Robust estimation is not frequently used in practice, because it is time consuming and it is
extremely difficult to define the set U . If we omit the definite positive condition Σ � 0, we



can nevertheless use the L1 approach to solve a similar problem with the set U defined as
follows:

U =
{

Σ : Σ̂−A ≤ Σ ≤ Σ̂ +A
}

where A is a positive definite matrix of noise. We have28:

x̃>Σ̃x̃ = x̃>
(

Σ̂ +A −Σ̂ +A

−Σ̂ +A Σ̂ +A

)
x̃

= x̃>
(

Σ̂ −Σ̂
−Σ̂ Σ̂

)
x̃+ x̃>

(
A A
A A

)
x̃

=
(
x+ − x−

)> Σ̂
(
x+ − x−

)
+
(
x+ + x−

)>
A
(
x+ + x−

)
= x>Σ̂x+ |x|>A |x|

We deduce that the minmax problem can be reformulated as follows:

x? (γ;A) = arg min 1
2x
>Σ̂x− γx>µ̂+ 1

2 |x|
>
A |x| (5)

Using a confidence interval on the empirical covariance matrix implies then a penalization
on the squared L1 norm.

Remark 9 If A = cIn with c a scalar, the optimization problem (5) is a L2 constrained
problem. In this case, we have:

U =
{

Σ : V (Λ−A)V > ≤ Σ ≤ V (Λ +A)V >
}

where V ΛV > is the eigendecomposition of Σ̂. As a result, the L2 constraint is also a minmax
problem with uncertain eigenvalues. This gives some intuitions to choose the L2 shrinkage
parameter λ equal to the average of diagonal elements of A.

A.4 Relationship between the conditional normal distribution and
the linear regression

Let us consider a Gaussian random vector defined as follows:(
Y
X

)
∼ N

((
µy
µx

)
,

(
Σyy Σyx
Σxy Σxx

))
The conditional distribution of Y given X = x is a multivariate normal distribution. We
have (Roncalli, 2013):

µy|x = E [Y | X = x]
= µy + ΣyxΣ−1

xx (x− µx)

and:

Σyy|x = σ2 [Y | X = x]
= Σyy − ΣyxΣ−1

xxΣxy

We deduce that:
Y = µy + ΣyxΣ−1

xx (x− µx) + u

28Since Σ̂ and A are two positive definite matrices, Σ̃ is also a positive definite matrix.



where u is a centered Gaussian random variable with variance s2 = Σyy|x. It follows that:

Y =
(
µy − ΣyxΣ−1

xxµx
)︸ ︷︷ ︸

β0

+ ΣyxΣ−1
xx︸ ︷︷ ︸

β>

x+ u

We recognize the linear regression of Y on X:

Y = β0 + β>x+ u

Moreover, we have:

R2 = 1− s2

Σyy

= ΣyxΣ−1
xxΣxy

Σyy
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