
 Electronic copy available at: https://ssrn.com/abstract=3042173 

Understanding the Momentum Risk Premium:

An In-Depth Journey Through

Trend-Following Strategies∗

Paul Jusselin
Quantitative Research

Amundi Asset Management, Paris
paul.jusselin@amundi.com

Edmond Lezmi
Quantitative Research

Amundi Asset Management, Paris
edmond.lezmi@amundi.com

Hassan Malongo
Quantitative Research

Amundi Asset Management, Paris
hassan.malongo@amundi.com
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Abstract

Momentum risk premium is one of the most important alternative risk premia. Since
it is considered a market anomaly, it is not always well understood. Many publications
on this topic are therefore based on backtesting and empirical results. However, some
academic studies have developed a theoretical framework that allows us to understand
the behavior of such strategies. In this paper, we extend the model of Bruder and
Gaussel (2011) to the multivariate case. We can find the main properties found in
academic literature, and obtain new theoretical findings on the momentum risk pre-
mium. In particular, we revisit the payoff of trend-following strategies, and analyze
the impact of the asset universe on the risk/return profile. We also compare empirical
stylized facts with the theoretical results obtained from our model. Finally, we study
the hedging properties of trend-following strategies.
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1 Introduction

Momentum is one of the oldest and most popular trading strategies in the investment indus-
try. For instance, momentum strategies are crucial to commodity trading advisors (CTAs)
and managed futures (MFs) in the hedge funds industry. They also represent the basic trad-
ing rules that are described in the famous Turtle trading experiment held by Richard Dennis
and William Eckhardt in the nineteen-eighties1. Momentum strategies are also highly pop-
ular among asset managers. By analyzing the quarterly portfolio holdings of 155 equity
mutual funds between 1974 and 1984, Grinblatt et al. (1995) found that “77% of these
mutual funds were momentum investors”. Another important fact concerns the relation-
ship between options and momentum. Indeed, it is well-known that the manufacturing of
structured products is based on momentum strategies. Hedging demand from retail and
institutional investors is therefore an important factor explaining the momentum style.

In practice, momentum encompasses different types of management strategies. However,
trend-following strategies are certainly the main component. There is strong evidence that
trend-following investing is one of the more profitable styles, generating positive excess
returns for a very long time. Thus, Lempérière et al. (2014b) and Hurst et al. (2014)
backtest this strategy over more than a century, and establish the existence of trends across
different asset classes and different study periods. This is particularly true for equities and
commodities. For these two asset classes, the momentum risk factor has been extensively
documented by academics since the end of nineteen-eighties. Jegadeesh and Titman (1993)
showed evidence of return predictability based on past returns in the equity market. They
found that buying stocks that have performed well over the past three to twelve months
and selling stocks that have performed poorly produces abnormal positive returns. Since
this publication, many academic works have confirmed the pertinence of this momentum
strategy (e.g. Carhart, 1997; Rouwenhorst, 1998; Grundy and Martin, 2001; Fama and
French, 2012). In the case of commodities, there is an even larger number of studies2.
However, the nature of momentum strategies in commodity markets is different than in
equity markets, because of backwardation and contango effects (Miffre and Rallis, 2007).
More recently, academics have investigated momentum investing in other asset classes and
also found evidence in fixed-income and currency markets (Moskowitz et al., 2012; Asness
et al., 2013).

The recent development of alternative risk premia impacts the place of momentum in-
vesting for institutional investors, such as pension funds and sovereign wealth funds (Ang,
2014; Hamdan et al., 2016). Since they are typically long-term and contrarian investors,
momentum strategies were relatively rare among these institutions. However, the significant
growth of factor investing in equities has changed their view of momentum investing. Today,
many institutional investors build their strategic asset allocation (SAA) using a multi-factor
portfolio that is exposed to size, value, momentum, low beta and quality risk factors (Caza-
let and Roncalli, 2014). This framework has been extended to multi-asset classes, including
rates, credit, currencies and commodities. In particular, carry, momentum and value are
now considered as three risk premia that must be included in a strategic allocation in order
to improve the diversification of traditional risk premia portfolios (Roncalli, 2017). However,
the correlation diversification approach, which consists in optimizing the portfolio’s volatil-
ity (Markowitz, 1952), is inadequate for managing a universe of traditional and alternative
risk premia, because the relationships between these risk premia are non-linear. Moreover,
carry, momentum and value exhibit different skewness patterns (Lempérière et al., 2014).

1See http://www.investopedia.com/articles/trading/08/turtle-trading.asp
2For example, we can cite Elton et al. (1987), Likac et al. (1988), Taylor and Tari (1989), Erb and

Harvey (2006), Szakmary et al. (2010) and Gorton et al (2013).
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This is why carry and value are generally considered as skewness risk premia3, whereas
momentum is a market anomaly4. In this context, the payoff approach is more appropriate
for understanding the diversification of SAA portfolios. More precisely, mixing concave and
convex strategies is crucial for managing the skewness risk of diversified portfolios.

Since momentum investing may now be part of a long-term asset allocation, institutional
investors need to better understand the behavior of such strategies. However, the investment
industry is generally dominated by the syndrome of backtesting. Backtests focus on the
past performance of trend-following strategies. Analyzing the risk and understanding the
behavior of such strategies is more challenging. However, the existence of academic and
theoretical literature on this topic may help these institutional investors to investigate these
topics. We notably think that some research studies are essential to understand the dynamics
of these strategies beyond the overall performance of momentum investing. These research
works are Fung and Hsieh (2001), Potters and Bouchaud (2006), Bruder and Gaussel (2011)
and Dao et al. (2016).

Fung and Hsieh (2001) developed a general methodology to show that “trend followers
have nonlinear, option-like trading strategies”. In particular, they showed that a trend-
following strategy is similar to a lookback straddle option, and exhibits a convex payoff.
They then deduced that it has a positive skewness. Moreover, they noticed a relationship
between a trend-following strategy and a long volatility strategy. By developing a theoretical
framework and connecting their results to empirical facts, this research marks a break with
previous academic studies, and has strongly influenced later research on the momentum risk
premium.

Potters and Bouchaud (2006) published another important paper on this topic. In partic-
ular, they derived the analytical shape of the corresponding probability distribution function.
The P&L of trend-following strategies has an asymmetric right-skewed distribution. They
also focused on the hit ratio (or the fraction of winning trades), and showed that the best
case is obtained when the asset volatility is low. In this situation, the hit ratio is equal to
50%. However, the hit ratio decreases rapidly when volatility increases. This is why they
concluded that “trend followers lose more often than they gain”. Since the average P&L
per trade is equal to zero in their model, Potters and Bouchaud (2006) also showed that the
average gain is larger than the average loss. Therefore, they confirmed the convex option
profile of the momentum risk premium.

The paper of Bruder and Gaussel (2011) is not focused on momentum, but is concerned
more generally with dynamic investment strategies, including stop-loss, contrarian, averag-
ing and trend-following strategies. They adopted an option-like approach and developed a
general framework, where the P&L of a dynamic strategy is decomposed into an option pro-
file and a trading impact. The option profile can be seen as the intrinsic value of the option,
whereas the trading impact is equivalent to its time value. By applying this framework to
a continuous-time trend-following model, Bruder and Gaussel (2011) confirmed the results
found by Fung and Hsieh (2001) and Potters and Bouchaud (2006): the option profile is
convex, the skewness is positive, the hit ratio is lower than 50% and the average gain is
larger than the average loss. They also highlight the important role of the Sharpe ratio and
the moving average duration in order to understand the P&L. In particular, a necessary
condition to obtain a positive return is that the absolute value of the Sharpe ratio is greater
than the inverse of the moving average duration. Another important result is the behavior
of the trading impact, which has a negative vega. Moreover, the loss of the trend-following
strategy is bounded, and is proportional to the square of the volatility.

3A skewness risk premium is rewarded for taking a systematic risk in bad times (Ang, 2014).
4The performance of a market anomaly is explained by behavioral theories, not by a systematic risk.
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The paper of Dao et al. (2016) goes one step further by establishing the relationship
between trend-following strategies and the term structure of realized volatility. More specif-
ically, the authors showed that “the performance of the trend is positive when the long-term
volatility is larger than the short-term volatility”. Therefore, trend followers have to risk-
manage the short-term volatility in order to exhibit a positive skewness and a positive
convexity. Another interesting result is that the authors are able to replicate the cumula-
tive performance of the SGA CTA Index, which is the benchmark used by professionals for
analyzing CTA hedge funds. Another major contribution by Dao et al. (2016) concerns
the hedging properties of trend-following strategies. They demonstrated that the payoff of
the trend-following strategy is similar to the payoff of an equally-weighted portfolio of ATM
strangles. They then compared the two approaches for hedging a long-only exposure. They
noticed that the strangle portfolio paid a fixed price for the short-term volatility, whereas
the trend-following strategy is directly exposed to the short-term volatility. On the contrary,
the premium paid on options markets is high. The authors finally concluded that “even if
options provide a better hedge, trend-following is a much cheaper way to hedge long-only
exposures”.

Our research is based on the original model of Bruder and Gaussel (2011). The idea is to
confirm the statistical results cited above using a unique framework in terms of convexity,
probability distribution, hit ratio, skewness, etc. Since it is a continuous-time model, we
can extend the analysis to the multivariate case, and derive the corresponding statistical
properties of the trend-following strategy applied to a multi-asset universe. Contrary to
the previous studies, we can analyze the impact of asset correlations on the performance
of trend-following strategies. It appears that the concept of diversification in a long/short
approach is different and more complex than for a long-only portfolio. Therefore, three
parameters are important to understand the behavior of the momentum risk premium: the
vector of Sharpe ratios, the covariance matrix of asset returns, and the frequency matrix of
the moving average estimator. The sensitivity of the P&L to these three key parameters is
of particular interest for investors and professionals.

Today, a significant part of investments in CTAs and trend-following programs is mo-
tivated by a risk management approach, and not only by performance considerations. In
particular, some investors are tempted to use CTAs as a hedging program without paying a
hedging premium (Dao et al., 2016). Therefore, we extend the model by mixing long-only
and trend-following exposures in order to measure the hedging quality of the momentum
strategy, and to see if it can be a tool for tail risk management and downside protection.

This paper is organized as follows. In Section Two, we present the model of Bruder and
Gaussel (2011). We derive new results concerning the statistical properties of the trading
impact. We also analyze the impact of leverage on the ruin probability. Then, we extend the
model to the multivariate case. This allows us to measure the impact of asset correlations,
and the influence of the choice of the moving average. Using the multivariate model, we can
also draw a distinction between time-series and cross-section momentum. In Section Three,
we study the empirical properties of trend-following strategies. We show how to decompose
the P&L of the strategy into low- and high-frequency components. We then study the
optimal estimation of the trend frequency, and the relationship between trends and risk
premia. We also replicate the cumulative performance of the SG CTA Index by using our
theoretical model. Section Four deals with downside protection and the hedging properties
of the trend-following strategy. We analyze the single asset case, and calculate the analytical
probability distribution and the value-at-risk of the hedged portfolio. The multivariate case
is also considered, and particularly the cross-hedging strategy, when we hedge one asset by
another asset. Then, we illustrate the behavior of the trend-following strategy in presence
of skewness events. Finally, Section Five summarizes the different results of the paper.
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2 A model of a trend-following strategy

2.1 The Bruder-Gaussel framework

2.1.1 Estimating the trend with an exponential weighted moving average

Bruder and Gaussel (2011) assume that the asset price St follows a geometric Brownian
motion with constant volatility, but with a time-varying trend:{

dSt = µtSt dt+ σSt dWt

dµt = γ dW ?
t

where µt is the unobservable trend. By introducing the notation dyt = dSt/St, we obtain:

dyt = µt dt+ σ dWt

We denote µ̂t = E [µt| Ft] the estimator of the trend µt with respect to the filtration Ft.
Bruder and Gaussel (2011) show that µ̂t is an exponential weighted moving average (EWMA)
estimator:

µ̂t = λ

∫ t

0

e−λ(t−u) dyu + e−λtµ̂0

where λ = σ−1γ is the EWMA parameter. λ is related to the average duration of the moving
average filter and control the measurement noise filtering (Potters and Bouchaud, 2006).

2.1.2 P&L of the trend-following strategy

Bruder and Gaussel (2011) assume that the exposure of the trading strategy is proportional
to the estimated trend of the asset:

et = αµ̂t

Therefore, the dynamics of the investor’s P&L Vt are given by:

dVt
Vt

= et
dSt
St

= αµ̂t dyt

Bruder and Gaussel (2011) show that:

ln
VT
V0

=
α

2λ

(
µ̂2
T − µ̂2

0

)
+ ασ2

∫ T

0

(
µ̂2
t

σ2

(
1− ασ2

2

)
− λ

2

)
dt

Remark 1 An alternative specification of the exposure is:

et =
`

σ2

√
λµ̂t

where ` is the standardized exposure. In this case, the exposure is normalized such that
dVt/Vt is of order one and has approximatively the same volatility. This specification is a
special case of the general model where α = `σ−2

√
λ.
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2.1.3 Relationship with option trading

The return of the trend-following strategy is composed of two terms:

ln
VT
V0

= G0,T +

∫ T

0

gt dt

where the short-run component is:

G0,T =
α

2λ

(
µ̂2
T − µ̂2

0

)
and the long-run component is5:

gt = ασ2

(
µ̂2
t

σ2

(
1− ασ2

2

)
− λ

2

)
Bruder and Gaussel (2011) interpret G0,T as the option profile and gt as the trading impact.
This result relates to the robustness of the Black-Scholes formula. El Karoui et al. (1998)
assume that the underlying price process is given by:

dSt = µtSt dt+ σtSt dWt

whereas the trader hedges the European option with the implied volatility Σ, meaning that
the risk-neutral process is:

dSt = rSt dt+ ΣSt dWQ
t

They show that the value of the delta-hedging strategy is equal to:

VT = G0,T +
1

2

∫ T

0

er(T−t)Γt
(
Σ2 − σ2

t

)
S2
t dt

where G0,T is the payoff of the European option and Γt is the gamma sensitivity coefficient.
It follows that a positive P&L is achieved by overestimating the realized volatility if the
gamma is positive, and underestimating the realized volatility if the gamma is negative.

In Figure 1, we have reported the option profile G0,T of the trend-following strategy with
respect to the final trend µ̂T when the parameters are the following: α = 25 and µ̂0 = 30%.
In Appendix A.4.4 on page 72, we show that λ is related to the average duration τ of the
EWMA estimator:

λ =
1

τ
For instance, if the average duration of the moving average is equal to three months, λ is
equal to 4. Figure 1 illustrates that the option profile of the trend-following strategy is
convex. This confirms the result found by Fung and Hsieh (2001), who suggested that the
payoff of trend followers is similar to a long exposure on a straddle. However, the convexity
of the payoff depends highly on the average duration of the moving average. In particular,
short-term strategies exhibit less convexity than long-term strategies. To understand this
result, we recall that τ is the ratio between the asset volatility and the trend volatility:

τ =
σ

γ

It follows that a high value of τ implies that the volatility of the asset dominates the volatility
of the trend. This means that the observed trend is relatively less noisy. In this case, it is
rational to use a longer period for estimating the trend.

5We notice that the Markowitz solution α ∝ σ−2 is equivalent to use the normalized exposure:

gt = `
√
λ

(
µ̂2t
σ2

(
1−

`
√
λ

2

)
−
λ

2

)
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Figure 1: Option profile of the trend-following strategy
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Figure 2: Impact of the initial trend when τ is equal to one year
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It is remarkable that only the magnitude of the trend, and not the direction, is impor-
tant. This symmetry property holds because the trend-following strategy makes sense in a
long/short framework. We also notice that the option profile of the trend-following strategy
also depends on the relative position between the initial trend µ̂0 and the final trend µ̂T .
When the initial trend is equal to zero, the option profile is always positive. This is also the
case when the final trend is larger than the initial trend in absolute value. The worst case
scenario appears when the final trend is equal to zero. In this case, the loss is bounded:

G0,T ≥ −
α

2λ
µ̂2

0

Figure 2 summarizes these different results6. We also notice that the maximum loss is a
decreasing function of λ, or equivalently an increasing function of the average duration of
the moving average. This implies that short-term momentum is less risky than long-term
momentum. This result is obvious since long-term momentum is more sensitive to reversal
trends, and short-term momentum is better to capture a break in the trend.

2.1.4 Statistical properties of the trend-following strategy

In Appendix A.4.3 on page 71, we show that gt is a linear transformation of a noncentral chi-
square random variable, where the degree of freedom is 1 and the noncentrality parameter
is ζ = s2

t/λ:

Pr {gt ≤ g} = F
(

2g + λασ2

λασ2 (2− ασ2)
; 1,

s2
t

λ

)
where st is the Sharpe ratio of the asset at time t. In Figures 3 and 4, we report the cumu-
lative distribution function of the trading impact gt for different moving average windows
when the parameters are σ = 30% and α = 1. In the first figure, we set the Sharpe ratio
equal to zero. In this case, the probability of loss is larger than the probability of gain.
However, the expected value of gain is larger than the expected value of loss. Here we face
a trade-off between loss/gain frequency and loss/gain magnitude. As explained by Potters
and Bouchaud (2006), the trend-following strategy loses more frequently than it gains, but
the magnitude of gain is more important than the magnitude of loss. This theoretical result
is backed by practice. Most of the time, there are noisy trends or false signals. During
these periods, the trend-following strategy posts zero or negative returns. Sometimes, the
financial market exhibits a big trend. In this case, the return of the trend-following strategy
may be very large, but the probability of observing a big trend is low.

In Appendix A.4.5 on page 73, we derive the hit ratio of the strategy:

H = Pr {gt ≥ 0}

We have reported the relationship between H and the Sharpe ratio st in Figure 5 using
the previous parameters (σ = 30% and α = 1) and a one-year moving average. It follows
that when the Sharpe ratio is lower than 0.35, the hit ratio of the trend-following strategy
is lower than 50%. If we consider the expected loss and the expected gain7, we obtain the
results given in Figure 6. We confirm that the average loss is limited. The expected gain is
an increasing concave function of the absolute value of the Sharpe ratio, meaning that the
effect of the Sharpe ratio is amplified by the trend-following strategy.

6We use the same parameter values as for Figure 1.
7Analytical formulas are given in Appendix A.4.6 on page 73.
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Figure 3: Cumulative distribution function of gt (st = 0)
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Figure 5: Hit ratio H of the trend-following strategy
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Figure 6: Expected loss and gain of the trend-following strategy
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We show here the statistical moments of gt computed by Hamdan et al. (2016):

µ (gt) =
ασ2

(
2− ασ2

)
2

s2
t +

λασ2

2

(
1− ασ2

)
σ (gt) =

∣∣∣∣∣λασ2
(
2− ασ2

)
2

∣∣∣∣∣
√

2λ+ 4s2
t

λ

γ1 (gt) =
(
2λ+ 6s2

t

)√ 2λ

(λ+ 2s2
t )

3

γ2 (gt) = λ
12λ+ 48s2

t

(λ+ 2s2
t )

2

These statistical moments8 are reported in Figure 7. Generally, we have ασ2 � 1, implying
that:

µ (gt) ≈ ασ2

(
s2
t +

λ

2

)
This explains that µ (gt) depends on the frequency parameter λ as illustrated in the first
panel in Figure 7. We also notice that the volatility and the kurtosis coefficients are a
decreasing function of the moving-average duration (second and fourth panels). This means
that a short-term trend-following strategy is more risky than a long-term trend-following
strategy. In contrast, the skewness is positive and not negative (third panel). This is due to
the convex payoff of the strategy.

Figure 7: Statistical moments of gt
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8We again consider the previous parameters σ = 30% and α = 1.
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Remark 2 The Sharpe ratio of the trend-following strategy is represented in Figure 8. When
the Sharpe ratio of the asset is low (lower than 0.40), the Sharpe ratio of the strategy is
higher. However, it is lower than a buy-and-hold portfolio when the Sharpe ratio of the asset
is high. Moreover, we note that long-term momentum strategies have a higher Sharpe ratio
than short-term momentum strategies.

Figure 8: Sharpe ratio of gt
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2.1.5 The importance of the realized Sharpe ratio

The previous analysis highlights the role of the Sharpe ratio st. In this paragraph, we focus
on the estimated Sharpe ratio, which can be viewed as the realized Sharpe ratio thanks to
Kalman filtering.

We have seen that the P&L of the trend-following strategy can be decomposed in a
similar way to the robustness formula of the Black-Scholes model. In this case, we have the
following correspondence between the parameters:

Delta-hedging ΓtS
2
t Σ2 σ2

t

Trend-following ασ2 ŝ2
t λ

At first sight, the parameters of the trend-following strategies seem to be non-homogenous
with respect to those of the delta-hedging strategy. However, there is a strong correspon-
dence. For instance, ΓtS

2
t measures the residual nominal exposure of the delta-hedging

strategy while ασ2 measures the normalized nominal exposure once the trend has been
normalized by the variance of asset return. Indeed, we have:

et = α′µ̂′t

12
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where α′ = ασ2 and µ̂′t = σ−2µ̂t. We will see later what the rationale of such formulation
may be. The Sharpe ratio ŝt plays the role of the implied volatility. It is the main risk factor
of the trend-following strategy, exactly like volatility is the main risk factor of the delta-
hedging strategy. Therefore, the trade-off between implied volatility and realized volatility
takes an original form in the case of the trend-following strategy9:

gt ' ασ2

(
ŝ2
t −

1

2
var
(
ŝ2
t

))
= ασ2ŝ2

t︸ ︷︷ ︸
Gamma gain

− 1

2
ασ2 var (ŝt)︸ ︷︷ ︸
Gamma cost

The trade-off is now between the squared Sharpe ratio and its half-variance. This result
must be related to Equation (8) found by Dao et al. (2016), who show that the performance
of the trend-following strategy depends on the difference between the long-term volatility
(gamma gain) and the short-term volatility (gamma cost).

The robustness formula also tells us a very simple rule. If we want to obtain a positive
P&L, we must hedge the European option using an implied volatility that is higher than the
realized volatility if the gamma of the option is positive. In the case of the trend-following
strategy, this rule becomes:

gt ≥ 0 ⇔ ασ2

(
ŝ2
t

(
1− ασ2

2

)
− λ

2

)
≥ 0

⇔ |ŝt| ≥
(
1− ασ2/2

)−1/2 1√
2τ

⇒ |ŝt| ≥
1√
2τ

We obtain the result of Bruder and Gaussel (2011). In Figure 9, we report the admissible
region in order to obtain a positive trading impact. We notice that a low duration implies
a high Sharpe ratio. For instance, if we use a three-month EWMA estimator, the absolute
value of the Sharpe ratio must be larger than 1.41 in order to observe a positive trading
impact. In the case of a one-year moving average, the bound is 0.71 (see Table 1).

Table 1: Upper and lower bounds of the admissible region

Duration 1W 1M 3M 6M 1Y
Bounds ± 5.10 ± 2.45 ± 1.41 ± 1.00 ± 0.71

The reason is that the estimator depends on the duration. In Figure 10, we have reported
the probability density function of the Sharpe ratio estimator ŝt when the true value of st is
equal to 0.5. We observe that the standard deviation is wide, even if we consider a ten-year
period. This is why the Sharpe ratio estimate must be significant in order to generate a
positive P&L. Since gamma costs increase with the frequency of the moving average, it is
perfectly normal that the estimate must be higher for low duration than for high duration.

Remark 3 All these results confirm that short-term momentum strategies must exhibit more
cross-section variance than long-term momentum strategies. Another implication is the im-
portance of trading costs induced by gamma trading in particular for short-term momentum
strategies.

9We assume that ασ2 � 1.
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Figure 9: Admissible region for positive trading impact

Figure 10: Probability density function of the Sharpe ratio estimator
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2.1.6 The leverage effect and the ruin probability

Bruder and Gaussel (2011) propose using the optimal Markowitz allocation:

α =
m

σ2

Since this rule is simple and seems to be natural, it is not obvious that it is the optimal
leverage. In Figure 11, we have reported the relationship between the leverage α and the
trading impact gt when the Sharpe ratio is equal to 2. We notice that gt is concave function
of α (panel 1). In particular, the P&L decreases when α is higher than a certain value α?.
The maximization of the trading impact implies that the optimal leverage α? is equal to10:

α? = max

(
min

(
2ŝ2
t − λ
σ2

,
2

σ2

)
, 0

)
We have reported the value of α? and also the corresponding exposure e? in the third and
fourth panels. These results show that the exposure must be an increasing function of the
Sharpe ratio and also a decreasing function of the asset volatility. However, this conclusion
must be contrasted, because too high an exposure can destroy the strategy. In the previous
paragraphs, we have always assumed that ασ2 � 1. Otherwise, we obtain:

gt = ασ2ŝ2
t︸ ︷︷ ︸

Gamma gain

− 1

2
ασ2 var (ŝt) +

1

2
α2σ4ŝ2

t︸ ︷︷ ︸
Gamma cost

It follows that gamma costs can be prohibitive in this case.

Figure 11: The leverage effect
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10This result is valid if we assume that ŝ2t is relatively constant.
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Figure 12: Ruin probability (` = −75%)
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Remark 4 In Figure 12, we have reported the ruin probability p` = Pr {gt ≤ −`} when `
is set to 75%. We verify that it is an increasing function of the leverage α. We also notice
that the ruin probability is larger for short-term momentum than long-term momentum. This
result is counter-intuitive, because we could think that a short-term momentum may react
quickly if it has a false signal. Here our analysis assumes that we annualize the return and
does not take into account the final payoff that may be extremely negative for long-term
momentum.

2.2 Extension to the multivariate case

Here we discuss the general case when the momentum strategy invests in n risky assets:{
dSt = µt � St dt+ (σ � St)� dWt

dµt = σ? � dW ?
t

where St, µt, σ and σ? are four n × 1 vectors. We also assume that E
[
WtW

>
t

]
= C and

E
[
W ?
t W

?>
t

]
= C? where C and C? are two square matrices, and E

[
W ?
t W

>
t

]
= 0. We denote

Σ the covariance matrix of asset returns and Γ the covariance matrix of trends11.

The portfolio is a weighted sum of the asset returns:

dVt
Vt

=

n∑
i=1

ei,t
dSi,t
Si,t

where ei,t is the exposure on Asset i at time t. Let St = (S1,t, . . . , Sn,t) and et =
(e1,t, . . . , en,t) be the vectors of asset prices and exposures. The matrix form of the pre-

11We have Σi,j = Ci,jσiσj and Γi,j = C?i,jσ?i σ?j .
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vious equation is:
dVt
Vt

= e>t
dSt
St

The momentum strategy is defined by:

et = Aµ̂t

where A is the allocation matrix and µ̂t = (µ̂1,t, . . . , µ̂n,t) is the vector of estimated trends.

In this section, we will see that the generalization to the multi-dimensional case is very
natural, and also that correlations have a big impact on the strategy.

Figure 13: Cumulative distribution function of gt (st = 0, Ci,j = 0)
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2.2.1 Uncorrelated assets

If we assume that the matrix A is diagonal12 and the assets are uncorrelated (C = 0 and
C? = 0), the expression of the P&L becomes:

ln
VT
V0

=

n∑
i=1

αi
2λi

(
µ̂2
i,T − µ̂2

i,0

)
+

∫ T

0

n∑
i=1

αiσ
2
i

(
µ̂2
i,t

σ2
i

(
1− αiσ

2
i

2

)
− λi

2

)
dt

= G0,T +

∫ T

0

gt dt

We obtain the decomposition between the option profile and the trading impact.

12We have:
A = diag (α1, . . . , αn)
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In Appendix A.5.3 on page 75, we show that gt is a Gaussian quadratic form of random
variables:

Pr {gt ≤ g} = Q1

(
g +

1

2

n∑
i=1

λiαiσ
2
i ; a, b

)
where a = (ai), b = (bi) and:

ai =
λiαiσ

2
i

(
2− αiσ2

i

)
2

bi =
si,t√
λi

Let us illustrate the impact of the asset number n on the cumulative probability distribution.
We use the same parameters for all the assets: the Sharpe ratio is equal to 0, the volatility is
equal to 30% and the average duration of the moving average is set to one year. In order to
compare the results, the exposure αi is equal to 1/n, where n is the number of assets. The
cumulative distribution function is shown in Figure 13. The number of uncorrelated assets
changes its shape. In particular, it reduces the loss probability, but also the gain probability.
These effects are due to the diversification effect, and are close to those observed with the
equally-weighted long-only portfolio. When the Sharpe ratio of assets is equal to zero, we
also notice that:

lim
n→∞

gt = 0

There is no miracle: the trading impact tends to zero when the number of assets in large.
In Figure 14, we consider the case where the absolute value of the Sharpe ratio is equal to
2. As before, the cumulative distribution function shifts towards the right.

Figure 14: Cumulative distribution function of gt (|st| = 2, Ci,j = 0)
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Figure 15: Statistical moments of gt with respect to the number of uncorrelated assets
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Figure 16: Probability density function of gt (|st| = 2, Ci,j = 0)
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The statistical moments13 of gt for a one-year EWMA are given in Figure 15. The
number of uncorrelated assets has no impact on the mean, but dramatically reduces the
other moments. Since the volatility decreases, the Sharpe ratio of the momentum strategy
increases with the number of uncorrelated assets. Moreover, skewness and excess kurtosis
coefficients tend to zero when n tends to ∞. Therefore, the probability distribution tends
to be Gaussian as shown in Figure 16 – the corresponding cumulative distribution functions
are those given in Figure 14.

2.2.2 Correlated assets

We now turn to the general case. The optimal estimator of the trend becomes:

µ̂t =

∫ t

0

e−(t−u)ΛΛ dyu + e−tΛµ̂0

As previously, we obtain an exponentially-weighted moving average, but it is multi-dimensional14

and depends on the matrix Λ = Υ∞Σ−1.

In Appendix A.5.2 on page 74, we show that the expression of the P&L is equal to:

ln
VT
V0

=
1

2

(
µ̂>TA

>Λ−1µ̂T − µ̂>0 A>Λ−1µ̂0

)
+∫ T

0

(
µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

))
dt

We again obtain a decomposition of the performance between an option profile and a trading
impact15. Since gt is a Gaussian quadratic form, we deduce that16:

Pr {gt ≤ g} = Q2

(
g +

1

2
tr
(
A>ΣΛ>

)
;µt,ΛΣ, A>

(
In −

1

2
ΣA

))

We consider the example with the same parameters for all assets. The asset volatility is
equal to 30%, the Sharpe ratio is equal to st and the average duration of the moving average
is equal to three months17. We also assume that the correlation matrix C corresponds to a
uniform correlation matrix Cn (ρ). Since we have Λ = λIn, we deduce that Γ = Λ>ΣΛ = λ2Σ
and Υ∞ = ΛΣ = λΣ. Therefore, the correlation matrices of Γ and Υ∞ are exactly equal to
Cn (ρ). The results are given in Figures 17, 18, 19 and 20. The first figure shows the impact
of the uniform correlation ρ when the Sharpe ratio of the assets is equal to zero. We notice
that a positive correlation has the same effect as a negative correlation. Here we obtain an
interesting result: the best case for diversification is reached when the correlation ρ is equal
to zero.

13These are described on page 77.
14We will discuss this result later in Section 2.2.4 on page 25.
15If A = αIn and Λ = diag (λ, . . . , λ), we obtain a simple expression:

ln
VT

V0
=

α

2λ

(
µ̂>T µ̂T − µ̂

>
0 µ̂0

)
+ α

∫ T

0

(
µ̂>t

(
In −

1

2
αΣ

)
µ̂t −

λ

2
tr (Σ)

)
dt

We see the previous result obtained in the one-dimensional case:

ln
VT

V0
=

α

2λ

(
µ̂2T − µ̂

2
0

)
+ α

∫ T

0

(
µ̂2t

(
1−

ασ2

2

)
−
λσ2

2

)
dt

16See Appendix A.5.4 on page 77.
17We have λ = 4.
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Figure 17: Impact of the correlation on Pr {gt ≤ g} (|st| = 0)
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Figure 18: Impact of the correlation on Pr {gt ≤ g} (st = 2)
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Figure 19: Impact of the number of assets on Pr {gt ≤ g} (|st| = 0, ρ = 80%)
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Figure 20: Impact of the number of assets on Pr {gt ≤ g} (st = 2, ρ = 80%)
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Remark 5 Let us consider a portfolio (α1, α2) composed of two assets. The corresponding
volatility is equal to:

σ (ρ) =
√
α2

1σ
2
1 + 2ρα1α2σ1σ2 + α2

2σ
2
2

In the case of a long-only portfolio, the best case for diversification is reached when the
correlation is equal to −1:

σ (−1) = |α1σ1 − α2σ2|

whereas the worst case for diversification is reached when the two assets are perfectly corre-
lated. We have:

|α1σ1 − α2σ2| = σ (−1) ≤ σ (ρ) ≤ σ (1) = α1σ1 + α2σ2

We notice that this result does not hold in the long-short case. Let us assume that α1 > 0
and α2 < 0. We have: σ (1) ≤ σ (ρ) ≤ σ (−1). However, this property is not realistic.
Indeed, it is more relevant to assume that sgn (α1α2) = sgn (ρ). Therefore, the best case for
diversification is reached when the correlation is equal to zero:

σ (0) ≤ σ (ρ)

In particular, a correlation of −1 is equivalent to a correlation of +1 in the long-short case.
Indeed, when the correlation is equal to −1, the investor will certainly be long on one asset
and short on the other asset, implying that this is the same bet, exactly when the two assets
are perfectly correlated in the long-only case.

This symmetry between positive and negative correlations is not verified when the Sharpe
ratio of the assets is not equal to zero. For instance, it is better to have a negative correlation
than a positive correlation when the Sharpe ratios are all positive (see Figure 18). Another
interesting result is that the number of assets has a small impact on the trading impact
when the correlation parameter is high (Figures 19 and 20).

2.2.3 Impact of the correlation in the two-asset case

We assume that Λ = λI2 and A = diag
(

1
2 ,

1
2

)
. The expression of the hit ratio is equal to:

H = 1−Q2

(
λσ2

1 + λσ2
2

4
;µt, λΣ,

4I2 − Σ

8

)
Figure 21 shows the evolution of the hit ratio with respect to the correlation parameter18.
We notice that the optimal parameter ρ? that maximizes the hit ratio satisfies the following
conditions:

ρ? =

 < 0 if sgn (µ1µ2) > 0
= 0 if µ1µ2 = 0
> 0 if sgn (µ1µ2) < 0

Indeed, we have:

gt =
1

2

(
1− σ2

1

4

)
µ̂2
t,1 +

1

2

(
1− σ2

2

4

)
µ̂2
t,2 −

ρσ1σ2

4
µ̂t,1µ̂t,2 −

λ

4

(
σ2

1 + σ2
2

)
We notice that the correlation parameter ρ only impacts the term µ̂t,1µ̂t,2. Maximizing
the hit ratio with respect to the correlation ρ is then equivalent to minimizing the term
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Figure 21: Hit ratio (in %) with respect to the asset correlation ρ
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ρσ1σ2µ̂t,1µ̂t,2. Since we have E [µ̂t,1µ̂t,2] = µ1µ2 + λρσ1σ2, it is therefore natural that ρ? is
a function of − sgn (µ1µ2).

We have reported the statistical moments of gt in Figure 22. We notice that the impact
of the correlation is rather small on the expected return19, but large on volatility, skewness
and kurtosis. Moreover, we observe that the risk is minimized when the correlation is close to
zero. All these results confirm the special nature of the correlation in momentum strategies:
the best case for diversification is obtained when the correlation is close to zero.

18We have σ1 = σ2 = 30% and λ = 4.
19We now assume that A = diag (α1, α2). Using Appendix A.5.6 on page 78, we deduce that the first

moment is equal to:

µ (gt) =

(
α1 −

1

2
α2
1σ

2
1

)(
µ21,t + λσ2

1

)
+

(
α2 −

1

2
α2
2σ

2
2

)(
µ22,t + λσ2

2

)
+

−α1α2ρσ1σ2 (µ1,tµ2,t + λρσ1σ2)−
λ

2

(
α1σ

2
1 + α2σ

2
2

)
It follows that:

ρ? = arg maxµ (gt)

= −
µ1,tµ2,t

2λσ1,tσ2,t

= −
1

2λ
s1,ts2,t

This result confirms the intuition about the optimal correlation for the hit ratio.
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Figure 22: Statistical moments of gt with respect to the asset correlation ρ
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2.2.4 Impact of the EWMA estimator

Market practice We recall that Λ is related to the covariance matrices Σ, Γ and Υ∞:{
Λ = Υ∞Σ−1

Γ = ΛΣΛ>

Until now, we have assumed that Λ = λIn, meaning that Γ = λ2Σ and Υ∞ = λΣ. We
deduce that asset and trend correlation matrices are the same – C = C? – while asset and
trend volatilities are proportional. Therefore, the parametrization (Σ,Λ) is equivalent to
imposing the covariance matrix Γ of trends. We have used this parametrization because
it is the practice used in the market. Indeed, fund managers consider Λ as an exogenous
parameter and most of them assume that Λ = λIn. Sometimes, the fund manager will
use different moving average estimators in order to reduce the model misspecification and
improve the robustness. If we assume that A = αIn, we obtain:

ln
VT
V0

=
1

m

m∑
j=1

α

2λj

(
µ̂

(j)>
T µ̂

(j)
T − µ̂

(j)>
0 µ̂

(j)
0

)
+

α

m

∫ T

0

m∑
j=1

(
µ̂

(j)>
t

(
In −

1

2
αΣ

)
µ̂

(j)
t −

λj
2

tr (Σ)

)
dt

when we consider m moving averages and an equally-weighted allocation between the m
trend-following strategies. We show the impact on the option profile in Figure 49 on page

89 when the parameters are the following: α = 25 and µ̂
(j)
i,0 = 30%. For the payoff, we

notice that combining different moving averages is equivalent to considering one exponential
weighted moving average, whose parameter λ is the harmonic mean of the individual EWMA
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parameters:

λ = m

 m∑
j=1

λ−1
j

−1

In Figure 49 on page 89, we have λ1 = 1, λ2 = 4 and λ = 1.6. Therefore, combining one-
year and three-month moving averages is equivalent to having a 7.5-month moving average20.

However, the previous analysis does not take into account the fact that µ̂
(j)
T 6= µ̂

(k)
T , meaning

that the estimators are not the same. The problem is even trickier when we consider the
trading impact:

gt =
α

m

m∑
j=1

µ̂
(j)>
t

(
In −

1

2
αΣ

)
µ̂

(j)
t −

λ̄

2
α tr (Σ)

where λ̄ = m−1
∑m
j=1 λj . Indeed, gt depends on the joint distribution of

(
µ̂

(1)
t , . . . , µ̂

(m)
t

)
and

in particular the covariance matrix between µ̂
(j)
t and µ̂

(k)
t . The fund manager’s underlying

idea is to reduce the variance of the quadratic term without decreasing the expected return
of the strategy. To go further, we have to investigate what impact a misclassification of the
matrix Λ has on the trend-following strategy.

Univariate versus multivariate filtering We recall that the natural parametrization
of our model is (Σ,Γ), and not (Σ,Λ). Therefore, Λ is an endogenous parameter, and its
computation requires a two-step approach:

1. we solve the algebraic Riccati equation: Υ∞Σ−1Υ∞ = Γ;

2. we set Λ = Υ∞Σ−1.

Let us assume that σ = (20%, 20%, 20%), σ? = (10%, 20%, 30%), and C = C? = C3 (ρ),
implying that the covariance matrices Σ and Γ only differ by the volatilities. When the
uniform correlation ρ is equal to 30%, we obtain:

Λ =

 0.4600 0.0346 0.0745
−0.1325 1.0045 0.0872
−0.2314 −0.0516 1.5661


The diagonal terms Λi,i are approximately equal to the volatility ratio σ?i /σi. Therefore,
when ρ is close to zero, Λ may be approximated by a diagonal matrix, whose elements are
equal to Λi,i = σ?i /σi. Suppose now that ρ is equal to 90%. The matrix Λ becomes:

Λ =

 −0.4572 0.1145 0.7745
−1.7999 1.0921 1.3524
−2.4824 0.0099 3.2662


In this case, Λ can no longer be approximated by a diagonal matrix21.

20We notice that the global duration τ is the mean of individual durations τj = λ−1
j :

τ =
1

m

m∑
j=1

τj

21In Tables 4 and 5 on page 87, we have reported the values of Υ∞ and Λ calculated using the naive and
Riccati approaches. We notice that the solution Υ∞ = Γ1/2Σ1/2 is not valid when the matrices Σ and Γ are
not proportional.
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If we neglect the initial trend µ̂0 or if t is sufficiently large, we have:

µ̂t '
∫ t

0

ω (s) dyt−s

where ω (s) = e−ΛsΛ. If we assume that all the eigenvalues of Λ are positive, µ̂t is stationary,
ω (0) = Λ and lims→∞ ω (s) = 0. Moreover, ω (s) is a diagonal matrix only if C = C? = In,
and we have:

µ̂i,t =

∫ t

0

n∑
j=1

ωi,j (s) dyj,t−s

6=
∫ t

0

ωi,i (s) dyi,t−s

Therefore, we notice that correlations between assets or trends can be used in order to
improve the estimation of trends. Let us consider the case:

C = C? =

 1.00 0.90 0
0.90 1.00 0

0 0 1.00


We obtain22:

Λ =

 −0.1734 0.6503 0
−1.3007 1.9944 0

0 0 1.5


In Figure 50 on page 90, we have reported the dynamics of non-zero components ωi,j (s). We
notice that the trend of the first and second assets is estimated using a long/short approach,
which is not the case for the third asset. We recall that the naive estimator is equal to:

Λ =

 0.5 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.5


The results are given in Figure 51 on page 90. The naive estimator corresponds exactly to
the univariate case. If we consider the first asset, Figure 23 presents the comparison of the
two estimators. Since the (asset and trend) correlation between the first and second assets
is very high, in the short run the optimal estimator uses the returns of the second asset,
because the average duration of the second trend is lower than that of the first trend. When
s is larger than 0.7 year, the optimal estimator put more weight on the first asset than on
the second asset, because the returns of the first asset become more pertinent for estimating
a trend with a two-year average duration.

Misspecification of the EWMA estimator We may wonder what is the consequence of
choosing a biased EWMA estimator. The first impact concerns the covariance matrix Υ∞.
When we use the optimal estimator Λ, we deduce its value from the optimal covariance
matrix Υ∞ that satisfies the algebraic Riccati equation: Γ − Υ∞Σ−1Υ∞ = 0. Then, we
have Λ = Υ∞Σ−1. When the EWMA matrix is given by the portfolio manager and is
equal to Λ̃, the corresponding covariance matrix Υ̃∞ does not satisfy the algebraic Riccati
equation, but the Lyapunov equation23:

−Λ̃Υ̃∞ − Υ̃∞Λ̃> + Γ + Λ̃ΣΛ̃> = 0

22The results are given in Table 6 on page 87.
23Proof is given in Appendix A.5.7 on page 78.
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Figure 23: Comparison of optimal and naive estimators ω (s) for the first asset
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Let us consider the examples of the previous paragraph. In Tables 7–9 in page 88, we have
reported the matrices Υ∞ and Υ̃∞ when we consider three specifications of Λ̃:

• We first assume that we have optimal univariate filters:

Λ̃1 = diag (0.5, 1.0, 1.5)

• Then, we consider a three-month moving average:

Λ̃2 = diag (0.25, 0.25, 0.25)

• Finally, we use the average of univariate moving averages24:

Λ̃3 = diag (1.0, 1.0, 1.0)

We verify that any specification of Λ̃ produces a covariance matrix Υ̃∞ that is larger than
the optimal covariance matrix Υ∞ in the sense of Loewner ordering:

x>Υ̃∞x ≥ x>Υ∞x

for any x ∈ Rn.

The second impact concerns the expected value of µ̂t. Indeed, the Kalman-Bucy filter
ensures that:

µ̂t ∼ N (µt,Υ∞)

24The duration of univariate moving averages is respectively equal to six months, one year and eighteen
months.
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When we specify a given matrix Λ̂, we obtain:

µ̂t ∼ N
(
µ̃t, Υ̃∞

)
where µ̃t 6= µt. Since we have25:

d (µ̂t − µt) = −Λ̃ (µ̂t − µt) dt+ Λ̃Σ
1/2 dZt − Γ

1/2 dZ?t

it follows that:
E [d (µ̂t − µt)] = −Λ̃E [µ̂t − µt] dt

If all the eigenvalues of Λ̃ are positive, we notice that µ̃t = E [µ̂t]→ µt when t→∞. There-
fore, the bias µ̃t − µt decreases over time. Nevertheless, this result may be misunderstood
because we may feel that we could obtain an unbiased estimator and the choice of Λ̃ is not
important. Let us consider the market practice Λ̃ = λIn. We have:

d (µ̂t − µt) = −λ (µ̂t − µt) dt+ Λ̃Σ
1/2 dZt − Γ

1/2 dZ?t

The Lyapunov equation becomes:

−λΥ̃t − λΥ̃t + Γ + λ2Σ = 0

We deduce the following solution:

Υ̃t =
λ−1Γ + λΣ

2

We notice that:
lim
λ→∞

Υ̃t = lim
λ→0

Υ̃t = Ξ

where Ξ is an infinite matrix. We conclude that the arbitrary choice of Λ̃ leads to a trade-off
between the bias E [µ̂t − µt] of the estimator and the error magnitude Υ̃∞ − Υ∞ of the
covariance.

Remark 6 In the univariate case, we verify that the lowest variance υ̃t of the trend esti-
mator is obtained26 when λ? = γσ−1. Figure 24 illustrates the behavior of υ̃t with respect
to the frequency λ for different values of σ and γ. We check that the variance is infinite at
the extremes. However, if the choice of λ is not so far from the optimal value, the efficiency
loss is limited, because the variance υ̃t is almost flat around λ?.

2.2.5 Time-series versus cross-section momentum

Asset managers distinguish two trend-following strategies: time-series momentum and cross-
section momentum. The first strategy, also called trend continuation, assumes that the past
trend is a good estimate of the future trend (Moskowitz et al., 2012). In this case, we have:{

µ̂i,t ≥ 0⇒ ei,t ≥ 0
µ̂i,t < 0⇒ ei,t < 0

25See Appendix A.5.7 on page 78.
26Let Γ = γ2 and Σ = σ2. The first-order condition is:

∂ υ̃t

∂ λ
=

1

2

(
−
γ2

λ2
+ σ2

)
= 0

We deduce that λ? = γσ−1 and υ̃t = γσ.
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Figure 24: Evolution of the volatility
√
υ̃t with respect to the frequency λ

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

This implies that the exposure on Asset i depends on the sign of the trend. For instance, the
specification A = diag (α1, . . . , αn) where αi > 0 corresponds to a time-series momentum
strategy since we have:

ei,t = αiµ̂i,t

The consequence is that the portfolio is long (resp. short) on all assets if they all have a
positive (resp. negative) trend. The second strategy consists in being long on past best
performing assets and short on past worst performing assets (Jegadeesh and Titman, 1993;
Carhart, 1997). A typical cross-section momentum approach consists of selecting assets
within the top and bottom quantiles, for example the top 20% and bottom 20%. If we use
the mean as the selection threshold, we obtain:{

µ̂i,t ≥ µ̄t ⇒ ei,t ≥ 0
µ̂i,t < µ̄t ⇒ ei,t < 0

where:

µ̄t =
1

n

n∑
j=1

µ̂j,t

Remark 7 This ranking system is very popular with asset managers and hedge funds. For
instance, it is much used in statistical arbitrage or relative value. However, the alloca-
tion rule ei,t = αiµ̂i,t is naive and may be not realistic. Fund managers prefer to use an
equally-weighted or an equal risk contribution portfolio on the selected assets in order to
have a diversified portfolio of active bets. Another approach consists in using Markowitz
optimization. The goal is then to eliminate common risk factors and to keep only specific
risk factors.
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Let α = (α1, . . . , αn) be the vector of weights. The cross-section momentum strategy
can be studied in our framework by setting:

ei,t = αi

µ̂i,t − 1

n

n∑
j=1

µ̂j,t


= αi

(
1− 1

n

)
µ̂i,t −

αi
n

∑
j 6=i

µ̂j,t

We deduce that:

A =


α1

(
1− n−1

)
−α1n

−1 −α1n
−1

−α2n
−1 α2

(
1− n−1

)
−α2n

−1

. . .

−αnn−1 −αnn−1 αn
(
1− n−1

)


= diag (α)− 1

n
α⊗ 1>n

Remark 8 There are two issues concerning the determination of the probability distribution
of trading impact. First, we are not sure that A>Λ−1 is a symmetric matrix27. This means
that the formulas of G0,T and gt are only approximations of the ‘true’ payoff and trading
impact. Second, Q = A>

(
In − 1

2ΣA
)

may be not a symmetric positive definite matrix. This
implies that the trading impact is not necessarily a definite quadratic form. If we assume
that αi = αj = α and Λ is a diagonal matrix, the first issue is solved. We also deduce that
Q is symmetric28.

Let us consider the two-asset case. We assume that α1 = α2 = α and Λ = λI2. In this
case, the option profile is equal to:

G0,T =
α

4λ

(
(µ̂1,T − µ̂2,T )

2 − (µ̂1,0 − µ̂2,0)
2
)

Figure 25 shows the option profile when the parameters are α = 1, λ = 1 and µ̂1,0 = µ̂2,0.
The option profile is a convex function and is maximum when |µ̂1,T − µ̂2,T | is maximum.
While time-series momentum is based on absolute trends, cross-section momentum is sensi-
tive to relative trends, and its performance depends on the dispersion of trends. However, it
is certainly not realistic for a cross-momentum strategy to be based on two opposite trends.
Indeed, this generally means that the two assets are anti-correlated. Therefore, this case is
equivalent to a time-series momentum strategy. It is more realistic to focus on the region
around the line µ̂1,T = µ̂2,T . Here, the rationale of the cross-section momentum is to benefit
from the dispersion of realized trends when the assets are (highly) correlated.

If we consider the trading impact, we obtain:

gt =
α

2

(
1− α

4

(
σ2

1 + σ2
2

))
(µ̂1,t − µ̂2,t)

2 − αλ

4

(
σ2

1 + σ2
2

)
+

α

2
ρσ1σ2

(α
2

(µ̂1,t − µ̂2,t)
2

+ λ
)

In Figure 53 (Appendix C on page 91), we have reported the distribution29 of gt for different
correlation values ρ. Contrary to the time-series strategy, the sign of the correlation has

27See Footnote 71 on page 75.
28Because A is symmetric.
29We use the following parameters: α = 1, λ = 1, µ1,t = 30%, µ2,t = 10% and σ1,t = σ2,t = 30%.
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Figure 25: Option profile of the cross-section momentum
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an impact on the trading impact. This is confirmed by the statistical moments of gt given
in Figure 26. The expected return is a decreasing function of the correlation ρ. However,
the risk of the strategy is maximal when ρ is equal to −1 whatever the risk measure we use
(volatility, skewness and kurtosis). Contrary to a long-only portfolio, the diversification of
cross-section momentum is not improved when we have negative correlations. Finally, we
notice that the best Sharpe ratio is obtained when the correlation is positive and high (see
Figure 54 on page 92). This result can be readily understood as the cross-section strategy
is a relative strategy between trends. Therefore, we would like the assets to be correlated in
order to capture spread risk between trends, and not the directional risk of trends.

Remark 9 In Appendix C on page 92, we have reported the probability distribution, the
statistical moments and the Sharpe ratio of gt in a four-asset case (Figures 55, 56 and 57).
The results are similar to those obtained in the two-asset case. In particular, the best case for
reducing risk and increasing the Sharpe ratio is to consider assets that are highly correlated.

3 Empirical properties of trend-following strategies

3.1 P&L decomposition into low- and high-frequency components

Our model has been developed in continuous-time in order to obtain analytical formulas.
For the implementation, we now consider the discrete-time version. We assume that we
rebalance the portfolio at a series of pre-fixed dates {t0, t1, t2, . . .}. We recall that the trend-
following strategy is defined by the following exposure at time30 tk:

ek = αµ̂k

30We use the notation �k instead of �tk in order to simplify the equations.
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Figure 26: Statistical moments of gt with respect to the correlation ρ (cross-section, n = 2)
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where31:
µ̂k = (1− λ · (tk − tk−1)) · µ̂k−1 + λ ·RSk

where λ is the frequency of the exponentially weighted moving average and RSk is the return
of the underlying asset S (t) between tk−1 and tk. Therefore, the empirical return of the
trend-following strategy V (t) at time tk is equal to:

RVk = ek−1 ·RSk

According to our model, we can calculate the theoretical return as follows:

R̃Vk = R̃Gk + R̃gk

where:
R̃Gk =

α

2λ

(
µ̂2
k − µ̂2

k−1

)
and32:

R̃gk = ασ2

(
µ̂2
k−1

σ2

(
1− ασ2

2

)
− λ

2

)
(tk − tk−1)

R̃Gk corresponds to the option profile component whereas R̃gk is the part of the performance
due to the trading impact. By construction, the empirical return converges to the empirical

31The true formula is:

µ̂k = (1− λ · (tk − tk−1)) · µ̂k−1 + (λ · (tk − tk−1)) ·
RSk

(tk − tk−1)

Indeed, we have to scale the return in order to obtain a yearly estimate of the trend.
32In practice, we do not know the true volatility σ so we replaced it by an estimate σ̂k−1. In what follows,

σ̂k−1 is calculated using a one-year exponentially weighted moving average.
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return of the trend-following strategy when the rebalancing period tends to zero:

lim
tk−tk−1→0+

R̃Vk = RVk

In this paper, we consider daily rebalancing, implying that R̃Vk ≈ RVk .

Let us illustrate the decomposition RVk ≈ R̃Gk + R̃gk. To do this, we simulate a geometric
Brownian motion and we backtest the trend-following strategy with α = 1 and λ = 2. In
Figure 27, we have reported the underlying asset St in the first panel, and the cumulative
performance33 of the trend-following strategy in the second panel34. We notice that Ṽt is
very close to Vt. The accuracy of the model is also verified with the scatter plot between
R̃Vk and RVk (third panel). Therefore, we can decompose the cumulative performance of Vt
by two components:

• a low-frequency component, which corresponds to the trading impact gt;

• a high-frequency component, which corresponds to the option profile Gt;

Contrary to the widely-held belief, the long-term dynamics of Vt are explained by the trading
impact whereas the short-term dynamics of Vt are explained by the option profile.

Figure 27: Comparison of the strategy performance Vt and the model performance Ṽt when
the underlying asset is a simulated geometric Brownian motion
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We now apply the previous decomposition to some financial assets. In Figure 29, we
report the cumulative performance of Vt, Gt and gt in the case of the Eurostoxx 50 Index.
For this, we follow Bruder and Gaussel (2011) who prefer to perform the trend-following

33All cumulative performances are calculated using the recursive formula: Xk =
(
1 +RXk

)
Xk−1 where

X0 = 100 and Xt stands for Vt, Ṽt, Gt and gt.
34Two other simulations are reported in Appendix C on page 94 (Figures 58 and 59).
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Figure 28: The low- and high-frequency components of Vt
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strategy on the volatility targeted index rather than on the index itself. We consider a 20%
volatility target strategy and we assume that the parameter λ is equal to 2, meaning that
the average momentum duration is six months, whereas the leverage α is set to 1. Again,
we obtain the decomposition between the option profile and the trading impact. We also
confirm that most of the performance of the momentum strategies comes from the trading
impact, while the contribution of the option profile is not significant. In Figure 30, we have
represented the relationship between the returns of the underlying asset and the returns of
the trend-following strategy35. We verify that:

1. the momentum strategy exhibits a convex option profile36 (first panel in Figure 30);

2. the large losses are due to the option profile Gt;

3. the performance of the option profile is close to zero;

4. the trading impact is not necessarily a convex function of the asset return37 (second
panel in Figure 30);

5. the losses of the trading impact are limited;

6. the expected return of the trading impact is positive.

If we consider other assets, we obtain similar results (see Appendix C on Page 95 for the
results with S&P 500 and Nikkei 225 indices).

35The returns correspond to the annualized 4-month rolling performance.
36The solid black line corresponds to the quartic polynomial fit between RSk and RGk .
37The solid black line corresponds to the quartic polynomial fit between RSk and Rgk.
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Figure 29: Decomposition of the trend-following strategy (Eurostoxx 50)
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Figure 30: Scatterplot between asset returns and momentum returns (Eurostoxx 50)
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3.2 Optimal estimation of the trend frequency

We recall that: {
dyt = µt dt+ σ dWt

dµt = γ dW ?
t

where dyt = dSt/St. The corresponding discrete-time state space model is:{
RSk = (tk − tk−1)µk + σ

√
tk − tk−1 εk

µk = µk−1 + γ
√
tk − tk−1 ε

?
k

where εk ∼ N (0, 1) and ε?k ∼ N (0, 1) are two independent Gaussian processes. The log-
likelihood function for the sample38 is equal to39:

` (θ) = −T
2

ln 2π − 1

2

T∑
k=1

lnFk −
1

2

T∑
k=1

v2
k

Fk

where vk and Fk are the innovation process and its variance for the observation tk. These
two quantities are easily calculated using the Kalman filter. Therefore, we can estimate
the parameters θ = (σ, γ) by maximizing the log-likelihood function ` (θ). This approach is
called the time-domain maximum likelihood method.

Another approach is to consider the frequency-domain maximum likelihood method. We
assume that tk − tk−1 is a constant δ. It follows that:

RSk −RSk−1 = δ (µk − µk−1) + σδ1/2 (εk − εk−1)

= γδ3/2 ε?k + σδ1/2 (1− L) εk

We deduce that the stationary form of RS is S
(
RS
)

= RSk −RSk−1 and the spectral density

of S
(
RS
)

is equal to:

fS(RS) (ϑ) =
γ2δ3

2π
+ 2 (1− cosϑ)

σ2δ

2π

where ϑ ∈ [0, 2π]. Let IS(RS) (ϑ) be the periodogram of S
(
RS
)
. Whittle (1953) shows that

the log-likelihood function is given by:

` (θ) = −T
2

ln 2π − 1

2

T−1∑
j=0

ln fS(RS) (ϑj)−
1

2

T−1∑
j=0

IS(RS) (ϑj)

fS(RS) (ϑj)

where ϑj = 2πj/T .

Using the (time-domain or frequency-domain) maximum likelihood method, we estimate
the parameters θ = (σ, γ). We deduce that the ML estimate of the trend frequency λ is
equal to:

λ̂ =
γ̂

σ̂

We can also calculate the variance40 of λ̂:

var
(
λ̂
)

=
1

σ̂2

(
λ̂2 var (σ̂) + var (γ̂)− 2λ̂ cov (σ̂, γ̂)

)
We consider the universe of indices (equities, bonds, currencies and commodities) studied

by Dao et al. (2016):

38T is the number of observations in the sample.
39We apply the results given in Appendix A.1.2 on page 62.

40The covariance matrix of θ̂ = (σ̂, γ̂) is estimated by
(
−H

(
θ̂
))−1

where H
(
θ̂
)

= ∂2θ `
(
θ̂
)

.
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Table 2: Results of the frequency-domain maximum likelihood method

Index σ̂ γ̂
λ̂ σ

(
λ̂
)

sign.
τ̂

(in %) (in %) (in days) (in months)
Euribor 0.40 4.51 11.27 0.76 *** 23 1M
Eurodollar 0.69 1.37 1.97 0.35 *** 132 6M
Short Sterling 0.57 7.85 13.72 0.65 *** 19 1M
UST 6.16 42.90 6.97 0.37 *** 37 2M
Bund 5.44 8.26 1.52 0.24 *** 171 8M
Gilts 6.09 78.87 12.95 0.49 *** 20 1M
JGB 3.20 36.38 11.38 0.42 *** 23 1M
SPX 19.62 200.21 10.20 0.31 *** 25 1M
SX5E 24.72 288.88 11.68 0.38 *** 22 1M
FTSE 100 19.08 236.26 12.38 0.37 *** 21 1M
Nikkei 225 24.91 74.09 2.97 0.25 *** 87 4M
EUR/USD 10.16 94.23 9.28 0.43 *** 28 1M
JPY/USD 10.33 69.77 6.76 0.33 *** 38 2M
GBP/USD 9.36 50.26 5.37 0.38 *** 48 2M
AUD/USD 13.15 12.26 0.93 0.19 *** 279 1Y
CHF/USD 11.75 63.46 5.40 0.25 *** 48 2M
Crude Oil 37.05 104.29 2.82 0.31 *** 92 4M
Gold 18.11 67.01 3.70 0.18 *** 70 3M
Copper 27.57 127.43 4.62 0.42 *** 56 3M
Soybean 23.98 125.57 5.24 0.42 *** 50 2M

• Short term interest rates: Euribor, Eurodollar and Short Sterling;

• Government bonds: 10Y US Treasury Note, Bund, Gilts and JGB;

• Stock indices: S&P 500, EuroStoxx 50, FTSE 100 and Nikkei 225;

• Foreign exchange rates: EUR/USD, JPY/USD, GBP/USD, AUD/USD and CHF/USD;

• Commodities: WTI Crude Oil, Gold, Copper and Soybean.

The study period is from January 2000 to July 2017. We estimate the optimal value of λ
by the maximum likelihood in the frequency domain. The idea is to determine which assets
have a long trend or a short trend. The results41 are given in Table 2. We notice that the
optimal moving average is generally short, between one and four months. We also find that
commodities have a longer trend than equities. Results concerning Eurodollar, Bund, Nikkei
225 and AUD/USD are surprising and are not in line with those obtained for the other assets
of the same asset class. The cases of Nikkei 225 and AUD/USD may be explained by the
fact that the Japanese equity market is very singular and because the Australian dollar is
considered as a commodity currency that mainly depends upon exports such as minerals and
agricultural products. However, these results should be taken with some caution, because
they are very sensitive to the study period. For instance, if we consider the last five years,
equities present more longer trends with a 4-month average duration. If we focus on the
last 10 years, government bonds have an average duration of one year, whereas the average
duration of short term interest rates is three months.

41***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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3.3 Trends versus risk premia

For some assets, we notice that the exposure is mainly positive except for some short periods.
It follows that the momentum risk premium can then benefit from two main patterns: trends
and risk premia. In the first case, the asset must exhibit strong trends in order to obtain good
performance. This is less relevant in the second case, since the momentum risk premium
comes from the capacity to leverage or deleverage traditional risk premia. Therefore, the
timing risk of the risk premium can be reduced by considering positive high Sharpe ratio
assets.

Table 3: Exposure of the trend-following strategy (in %)

Index
Average Absolute Negative Positive Frequency

ē |ē| ē− ē+ f+

Euribor 56.5 153.3 −117.8 178.1 58.9
Eurodollar 157.6 250.7 −227.1 256.8 79.5
Short Sterling 59.3 157.8 −124.0 180.1 60.2
UST 48.8 108.2 −102.8 110.4 71.1
Bund 76.4 107.6 −107.4 107.6 85.5
Gilts 22.6 107.0 −105.8 107.8 60.1
JGB 82.8 135.5 −82.3 160.7 67.9
SPX 63.9 138.4 −91.2 171.1 59.1
SX5E 54.2 127.0 −83.4 160.7 56.4
FTSE 100 43.7 124.8 −92.9 149.6 56.3
Nikkei 225 47.5 124.5 −84.0 158.9 54.1
EUR/USD 22.2 108.8 −95.0 120.6 54.3
JPY/USD −9.9 103.8 −114.2 93.5 50.2
GBP/USD 16.7 106.7 −91.2 121.9 50.6
AUD/USD 28.4 116.4 −101.2 128.1 56.5
CHF/USD 32.4 112.3 −114.0 111.4 65.0
Crude Oil 34.9 113.3 −98.8 122.8 60.3
Gold 28.7 105.3 −101.3 107.9 62.1
Copper 10.9 114.9 −115.5 114.5 55.0
Soybean 16.9 109.3 −115.7 105.1 60.1

Let us illustrate the relationship between momentum and risk premia with the previous
asset universe. We backtest the EWMA trend-following strategy for each asset class42 and
analyze the time-varying exposure for each asset. We then calculate the empirical values
of the average exposure ē = E [et], the average absolute exposure |ē| = E [|et|], the average
negative exposure ē− = E [et| et < 0], the average positive exposure ē+ = E [et| et > 0] and
the frequency of positive exposure f+ = Pr {et > 0}. The results are given in Table 3.
Except for the JPY/USD exchange rate, the average exposure ē is systematically positive.
On average, it is equal to 10% for currencies, 23% for commodities, 52% for equities, 58%
for bonds and more for interest rates instruments. It is generally accepted that currencies
and commodities do not exhibit risk premia. This explains that their average momentum
exposure is low. On the contrary, equities and bonds have risk premia and their momentum
exposure is high. In the case of these two asset classes, we can then assume that the
momentum strategy benefits from their risk premium. If we consider the average absolute

42α is calibrated for each asset class such that the realized volatility of the trend-following strategy is
equal to the realized volatility of the buy-and-hold strategy.
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exposure |ē|, it is generally close to 100%, meaning that the gross exposure is comparable
to that of the buy-and-hold strategy. An interesting point is the symmetry between ē− and
ē+. Indeed, the average positive exposure is similar to the average negative exposure for all
asset classes, except for equities. In this last case, the value of long exposures is generally
two times the value of short exposures. This result confirms the specific nature of equities
and the associated risk premium. Another interesting point is the high level of the positive
exposure frequency f+ in the case of bonds. Positive trends are more frequent than negative
trends with the same magnitude, but their strengths are similar.

3.4 Replication of trend-following strategies

In Section 3.1 on page 32, we have built trend-following strategies for some assets. We now
consider the following exercise: Given a well-known trend-following strategy, is it possible
to replicate its performance using our theoretical framework? This question is related to
the subject of hedge fund replication that emerged in the mid-2000s. Hasanhodzic and Lo
(2007) show that we can replicate the performance of a hedge fund portfolio using a linear
factor model with traditional asset classes. This portfolio replication is based on the linear
factor model:

R
(HF)
t = rt +

nF∑
j=1

βj,tFj,t + εt

where R
(HF)
t is the hedge fund portfolio’s return, rt is the risk-free rate, Fj,t is the excess

return of factor j, βj,t is the exposure of the hedge fund portfolio to factor j and εt is a white
noise process. Contrary to traditional factor models where βj,t is assumed to be constant,
the idea of Hasanhodzic and Lo (2007) is to assume that the exposure βj,t is time-varying:

βj,t = βj,t−1 + ηj,t

where ηj,t is a white noise process independent of εt. When we apply this framework to
a well-diversified hedge fund portfolio, the R-squared coefficient of this dynamic model is
generally larger than 80%. The reason is that a large part of the hedge fund’s performance
is linked to alternative betas (Roncalli and Teiletche, 2007). However, the replication of a
specific hedge fund strategy and not a diversified portfolio of hedge fund strategies is more
problematic (Roncalli and Weisang, 2011). This is the case of CTA or managed futures
strategies (Hamdan et al., 2016). Even if we use a sophisticated approach for estimating the
time-varying exposure (like the Kalman filter), the R-squared coefficient of the factor model
is generally lower than 20%.

Dao et al. (2016) suggest that the issue with CTA replication does not come from the
estimates of the exposures βj,t, but from the poor specification of the risk factors Fj,t.
Indeed, using an equally-weighted portfolio of basic trend-following strategies, they are able
to replicate the SG CTA Index with a correlation of 80%. To align with the work of Dao et al.
(2016), we implement the trend-following strategy on each asset in the previous universe43

with a volatility target of 20%. Then, we consider an equally-weighted portfolio of the 20
trend-following strategies44. In Figure 31, we report the daily correlation between this naive
trend-following strategy and the SG CTA Index with respect to the frequency parameter
λ. We notice that the daily correlation is larger than 70% when λ ≥ 1. We find that the
optimal value of λ is equal to 2.3, meaning that the optimal average duration is close to
five months45. In this case, the daily correlation is equal to 78%. In Figure 32, we have

43Described on page 37 (see also Table 2).
44The exposure α is calibrated in order to obtain the volatility of the SG CTA Index.
45This figure should be compared with the 6-month optimal moving average found by Dao et al. (2016).
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reported the cumulative performance of the naive strategy and its decomposition between
low- and high-frequency components. This result revisits the findings of Fung and Hsieh
(2001), since it shows that the most important component is the trading impact and not
the straddle option profile.

Figure 31: Correlation between the naive replication strategy and the SG CTA Index
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We may wonder what contribution is made by each asset class. To see this, we perform
the same replication exercise asset class by asset class. The results46 are given in Figures
33 and 34. First, we notice that the daily correlation decreases and is generally below 50%.
Second, the cumulative performance of the replicated strategies cannot be compared to the
cumulative performance of the SG CTA Index. We conclude that diversification is a key
parameter for understanding the performance of CTA strategies47.

Remark 10 We notice that the optimal value of λ obtained by the replication method is far
from the optimal value estimated by the method of Whittle. Therefore, hedge funds prefer to
use longer moving averages. Turnover and transaction costs may explain such choice.

4 Tail risk management

Tail risk management is generally associated with portfolio insurance, which can be im-
plemented using the CPPI method (Black and Perold, 1992; Perold and Sharpe 1995) or
the OPBI approach (Leland, 1980; Rubinstein and Leland; 1981). The constant proportion
portfolio insurance (CPPI) method is a dynamic trading strategy that allocates investments
between the underlying asset and the reserve (or risk-free) asset. The option-based portfo-
lio insurance (OBPI) method considers a portfolio that is invested in the underlying asset

46We do not report those obtained with short rate instruments, because the daily correlation is very low
about 30%.

47See page 97 for more results concerning the combination of asset classes.
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Figure 32: Comparison between the cumulative performance of the naive replication strategy
and the SG CTA Index (λ = 2.3)
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Figure 33: Correlation between the asset class trend-following strategy and the SG CTA
Index
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Figure 34: Comparison between the cumulative performance of the asset class trend-
following strategy and the SG CTA Index
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and a protective put option. In this case, the allocation between the two assets may be
dynamically rebalanced. CPPI and OPBI methods have evolved significantly since the end
of 1990s. For instance, CPPI may now be implemented using adjusted floors48 (Estep and
Kritzman, 1988), managed drawdowns (Grossman and Zhou, 1993), conditional multiples
(Hamidi et al., 2014) and adaptive protection (Soupé et al., 2016), whereas OBPI strategies
may use put spreads, calendar collars, etc. Today, asset managers and banks also propose a
new spectrum of other methodologies, in particular managed volatility strategies (Hocquard
et al., 2013) and volatility overlay methods (Whaley, 2013).

At first sight, all these methods seem to be very different. However, they have at least
two points in common:

• they are dynamic trading strategies;

• they exchange short-term volatility for long-term volatility.

The first point is related to the difference between passive and dynamic asset allocation.
Even if the strategic asset allocation (SAA) is very well-diversified, investors must be active if
they want to control their tail risk49. This is particularly true given that many institutional
investors implement a constant-mix strategy for their SAA portfolio. Such a strategy is
clearly contrarian and may increase the tail risk because of its concave option profile50.
Only a strategy that presents a convex option profile may then reduce the drawdown risk.
The second point is related to the price of hedging strategies. By exchanging short-term

48This method is called time-invariant portfolio protection (TIPP).
49This is why buy-and-hold strategies are not really efficient.
50An alternative approach is to consider a risk parity strategy, which helps, but is not sufficient (Roncalli,

2013).
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volatility for long-term volatility, managing tail risk necessarily induces a positive cost and
raises the issue of profitability.

Since trend-following strategies have a convex option profile, they are good candidates
for hedging tail risk. The empirical works of Fung and Hsieh (2001) and the 2008 Global
Financial Crisis (GFC) have pushed asset owners and managers to use CTAs as a tail
protection. For instance, the SGA CTA Index posted a performance of +13% in 2008,
whereas the return of many long-term CTAs was higher than 20% during the same period.
Moreover, we know that the delta hedging of options is highly related to momentum trading
strategies. For example, a call option can be seen as a long-only trend-following strategy
where the trend estimate corresponds to the delta of the option. In this section, we therefore
consider all these elements for analyzing the momentum risk premium from a tail protection
perspective.

4.1 The single-asset case

4.1.1 Theoretical results

We again consider the Bruder-Gaussel model, but the portfolio now consists in a 100% long
position on the asset and an unfunded trend-following strategy on the same asset. Thus,
the exposure becomes:

et = 1 + αµ̂t

In Appendix A.6 on page 80, we show that the portfolio’s P&L may be decomposed into an
option profile G̃0,T and a trading impact g̃t:

ln
VT
V0

= G̃0,T +

∫ T

0

g̃t dt

where:

G̃0,T =
α

2λ

(
µ̂2
T − µ̂2

0

)
+

1

λ
(µ̂T − µ̂0)

and:

g̃t = α

(
1− ασ2

2

)(
µ̂t −

ασ2 − 1

α (2− ασ2)

)2

−

( (
1− ασ2

)2
α (4− 2ασ2)

+
1

2
(1 + αλ)σ2

)

We notice that the hedged portfolio’s option profile is the sum of the asset’s option profile
and the option profile of the momentum strategy. In Figure 35, we report the different option
profiles when the average duration τ is equal to six months. We verify that the convexity
of the long-only strategy is improved. In particular, the return is larger when the asset’s
performance is negative. We can increase the convexity by using a higher leverage for the
momentum strategy (see Figure 36). However, these results create the illusion that the
option profile is always improved for any state of the asset. This is due to the initial trend,
which is equal to zero. When µ̂0 6= 0, the option profile of the hedged portfolio may be
lower than the option profile of the asset in some scenarios (see Figures 66 and 67 on page
98). In this case, we must have a very strong negative trend in order to be sure to improve
the option profile of the hedged portfolio. This means that there are many situations where
hedging the asset with a trend-following strategy induces a cost. This is particular true when
we observe a reversal of the trend, for instance when the past trend is strongly negative and
the current trend is medium.

Let us now see the behavior of the trading impact. In Figures 37 and 38, we assume
that α = 1, µt = −20%, σ = 20% and λ = 1. The expected Sharpe ratio st is then equal
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Figure 35: Option profile of the hedged strategy (α = 1, µ̂0 = 0%)
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Figure 36: Option profile of the hedged strategy (α = 5, µ̂0 = 0%)
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to −1. In our model, the asset has a Gaussian distribution and the momentum strategy
has a noncentral chi-square distribution. The mix of the two strategies gives a noncentral
chi-square distribution. This is why introducing the trend-following strategy reduces the
magnitude of the largest loss (Figure 38). However, the loss reduction depends on the
quantity α. For instance, we obtain Figures 68 and 69 on page 99 when α is set to 50%. The
reduction is smaller51. The shape of the distribution is then highly dependent on the value
of α. In Appendix A.6.3 on page 84, we show that α must be sufficiently large in order to
change the shape of the P&L.

Figure 37: Probability density function of g̃t (st = −1, α = 1, λ = 1)
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The impact of α may also be illustrated by calculating the statistical moments52 of
g̃t. In Figure 39, we notice that increasing alpha is equivalent to increasing the skewness
and the kurtosis53. This is normal since the underlying asset in our model is a Gaussian
random variable. The impact on volatility is less obvious. When the Sharpe ratio is nega-
tive, introducing the trend-following strategy in the buy-and-hold portfolio first reduces the
hedged portfolio’s volatility risk. However, the volatility increases if the exposure on the
trend-following strategy is too large, because we accumulate too much risk. The volatility
reduction is related to the diversification effect of the trend-following strategy. For instance,
this property disappears when the Sharpe ratio is positive, because buy-and-hold and trend-
following strategies both lead to a long position on the underlying asset. We also notice that
the expected return is improved, but this is due to the unfunded nature of the trend-following
strategy. In order to better understand the loss reduction, we can calculate the value-at-risk

51Other illustrations are provided on pages 100 and 101 when the frequency λ is set to 2.
52The formulas are given on page 82.
53The parameters are σ = 20% and λ = 2.
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Figure 38: Cumulative distribution function of g̃t (st = −1, α = 1, λ = 1)
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where p is the confidence level of the VaR and ζ is the noncentral chi-square coefficient:

ζ = λ−1

(
st −

β
(
ασ2 − 1

)
ασ (2− ασ2)

)2

Using the previous parameters, we obtain Figure 40. We observe that there is an optimal
value of α that corresponds to the minimum value-at-risk.

4.1.2 Empirical results

We consider the asset universe described on page 37. For each asset, we calculate the
simulated performance of the hedged portfolio. The hedging strategy is implemented on the
20% volatility targeted asset. In order to avoid overfitting, we consider the same parameter
λ = 2 for all the assets. Moreover, the exposure α on the trend-following strategy is chosen
such that the risk contribution of this strategy to the hedged portfolio’s volatility is equal
to δ. The results54 are given in Figures 41 and 42 for one asset per asset class (Bund,
S&P 500, AUD/USD and Crude Oil). We observe that the trend-following strategy reduces
extreme losses, but it may increase medium losses. We also notice that the convexity of the
hedged portfolio is more pronounced in bull markets than in bear markets. These results
are disturbing, because there is clearly an asymmetry between negative and positive trends.

54The returns correspond to the annualized 4-month rolling performance.
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Figure 39: Statistical moments of g̃t (λ = 2)
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Figure 40: 95% Value-at-risk of the hedged portfolio (σ = 20%, λ = 2)
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Figure 41: Scatterplot between returns of the asset and the hedged portfolio (δ = 20%)
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Figure 42: Scatterplot between returns of the asset and the hedged portfolio (δ = 40%)
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4.2 The multi-asset case

4.2.1 Hedging a diversified portfolio

In the multivariate case, the allocation becomes:

et = Aµ̂t +B

In Appendix A.6.2 on page 83, we show that:

ln
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V0

= G̃0,T +

∫ T

0

g̃t dt

where the option profile is equal to:
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1
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and the trading impact has the following expression:
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Dao et al. (2016) show that there is a link between convexity and diversification. In
particular, they notice that a diversified trend-following strategy provides a hedge for a
multi-asset risk parity portfolio. In fact, our experience shows that this result depends on
the portfolio construction of the diversified strategy and the trend-following strategy. It is
obvious that using the same allocation scheme helps55. More generally, the hedging gain
depends on the correlation between the diversified portfolio and the equivalent long-only
portfolio deduced from the trend-following strategy. In order to better understand this
point, in the next paragraph we develop the case where we hedge a first asset by a second
asset. The following analysis can then be applied to hedge a diversified portfolio by another
(diversified) portfolio.

4.2.2 Hedging one asset with another asset

We consider a portfolio composed of a 100% long position on one asset and an unfunded
trend-following strategy on another asset. This is a special case of the multi-asset model,
where the allocation is given by A = diag (0, α) and B = (1, 0). Therefore, the P&L is equal
to:

dVt
Vt
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dS1,t

S1,t︸ ︷︷ ︸
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+ αµ̂2,t
dS2,t

S2,t︸ ︷︷ ︸
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If we assume that Λ = λI2, we obtain:
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55For instance, A may be a diagonal matrix that is proportional to the vector B.
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where ct is the hedging cost that depends on the correlation ρ between the two assets:

ct = αρσ1σ2µ̂2,t

The previous formulas show that we can theoretically hedge the first asset by the second
asset if the following conditions are met56:

• the absolute value of the correlation is high:

|ρ| ' 1

• the Sharpe ratio of the second asset is larger than the Sharpe ratio of the first asset:

|s2,t| � |s1,t|

These results are obvious and are well known by overlay managers. It is sometimes more
efficient to hedge one asset by a proxy, which is easier to trade because it is more liquid and
for which a futures contract is available. The key point is then the basis risk, which is the
tracking error between the asset and the hedge. In order to reduce this basis risk, we can
choose proxies that are highly correlated to the hedged asset.

Our results highlight another important fact. Indeed, we notice that the hedging strategy
may be implemented by a proxy that is negatively correlated with the asset. At first sight,
we have the feeling that cases ρ < 0 and ρ > 0 are symmetric:

• ρ < 0
µ̂1,t < 0⇒ µ̂2,t > 0⇒ ct < 0

• ρ > 0
µ̂1,t < 0⇒ µ̂2,t < 0⇒ ct < 0

This analysis ignores the impact of the correlation on the dependence between ŝ1,t and ŝ2
2,t.

In order to illustrate this asymmetry, we run a five-year Monte Carlo simulation. We assume
that µ1 = 0, σ1 = 20%, σ2 = 20% and λ = 2%. As previously, the exposure α is chosen such
that the risk contribution of the trend-following strategy to the hedged portfolio’s volatility
is equal to δ. In Figure 43, we report one run of the MC simulation for different values
of s2,t and ρ. In the first panel, the correlation is set to 90%, we see the convexity of the
hedged portfolio. In the second panel, we have increased the Sharpe ratio and decreased
the correlation. It seems that the hedging strategy is less efficient. In the two last panels,
the correlation is negative and the hedged portfolio presents a convex profile. If we run
another simulation, we obtain different results (see Figure 75 on page 102). However, we
find some common patterns between these different simulations on average. Among the
four sets of parameters, it is the first set that exhibits the most important left and right
convexity. This implies that the trend-following strategy generally reduces extreme losses,
but also increases the best returns. This case corresponds to a high correlation between the
buy-and-hold asset and the hedging asset. When the correlation is medium and positive, the
hedged portfolio’s option profile is more concave than convex. Therefore, the trend-following
strategy may increase extreme losses. When the correlation is negative, both losses and gains

56Another expression of the trading impact is:

g̃t = ασ2
2
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2

2

)
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Figure 43: Simulation of the cross-hedging strategy (δ = 0.40)
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are highly reduced. In order to verify these patterns, we conduct a Monte Carlo simulation
with 500 trials using the same parameters. For each simulation, we calculate the reduction
in drawdown ∆ (R−) and the increase in the maximum gain ∆ (R+) of the hedged portfolio
with respect to the asset. We also calculate the increase in the positive return frequency
∆ (f+) and the variation of the average return. The results are given below:

s2,t ρ
s1,t = 0 s1,t = 1

∆ (R−) ∆ (R+) ∆ (f+) ∆ (R) ∆ (R−) ∆ (R+) ∆ (f+) ∆ (R)
0.5 0.90 9.3 64.3 −6.0 2.3 7.5 56.4 −8.1 2.5
1.0 0.50 −9.1 45.0 3.2 8.5 −10.0 36.8 −1.9 8.2
1.0 −0.50 43.4 −8.2 9.1 8.7 62.1 −7.8 8.0 8.6
1.0 −0.90 84.4 −10.9 12.4 8.6 92.9 −7.4 16.3 8.3

We observe that the drawdown is reduced by 9% for the parameter set (s2,t = 0.5, ρ = 0.9),
whereas it is increased by 9% for the parameter set (s2,t = 1.0, ρ = 0.5). The cross-hedging
strategy significantly improves the best return for these two sets of parameters. However,
it reduces the best return when the correlation is negative. On average, the hedged perfor-
mance has a better return than the buy-and-hold strategy. Curiously, this improvement is
lower for the first set of parameters than for the other sets of parameters.

Remark 11 We applied the cross-hedging strategy to the S&P 500 Index. Some results are
given in Figure 44. We notice that some assets provide a partial hedge to a long exposure
on the S&P 500. We also observe that the profile of the hedged portfolio may be concave57.
Curiously, assets that are negatively correlated with the S&P 500 do not necessarily provide
a good hedge. For instance, this is the case of the Bund or the 10Y T-bond. Moreover, the

57This is the case when we would like to hedge the S&P 500 with crude oil.
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Figure 44: Cross-hedging of the S&P 500 Index (δ = 0.40)
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efficiency of the hedge highly depends on the period. We do not observe the same patterns
during the internet bubble crisis and the subprime crisis.

4.3 The skewness risk puzzle

One important issue when implementing a hedge is the choice of the frequency λ of the
trend-following strategy. More precisely, it is obvious that the hedging efficiency is related
to this parameter and the frequency ω of the drawdown risk that we would like to hedge.
The basic hedging rule suggests to use the following tip:

λ ' 2ω

However, trend-following strategies are generally implemented by investors at medium or
low frequencies. Therefore, short-term hedging is a challenge in this framework, because the
time scale of skewness events is very different than the time scale of trends.

In fact, we think that there is a misconception about CTAs. Many people think that
CTAs are good strategies for hedging the skewness risk of the stock market. In reality,
trend-following strategies help to hedge drawdowns due to volatility risk. For instance,
CTAs did a very good job in 2008, because the Global Financial Crisis is more a high
volatility event than a pure event of skewness risk. However, it is not obvious that CTAs
may post similar performances when facing skewness events. For instance, the performance
of CTAs was disappointing during the Eurozone crisis in 2011 and the Swiss CHF chaos
in January 2015. In Figure 45, we have reported the cumulative performance of the trend-
following strategy applied to the CHF/USD currency. On January 15th 2015, we observe a
large drawdown whatever the frequency of the moving average estimator. This illustration
shows that hedging skewness events with a trend-following strategy is inefficient.
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Figure 45: Cumulative performance of the trend-following strategy (CHF/USD)
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5 Conclusion

The momentum risk premium has been extensively documented by academics and profession-
als. There is no doubt that momentum strategies have posted impressive (real or simulated)
past performance. There is no doubt that asset owners and asset managers widely use mo-
mentum strategies in their portfolios. There is also no doubt that the momentum risk factor
explains part of the performance of assets. With the emergence of alternative risk premia,
momentum is now under the scrutiny of sophisticated institutional investors, in particular
pension funds and sovereign wealth funds. Therefore, Roncalli (2017) supports the view
that carry and momentum58 are the most relevant alternative risk premia since they are
present across different asset classes, and must be included in a strategic asset allocation.
Nevertheless, the development of alternative risk premia has some big impacts on portfolio
construction, because the relationships between these strategies are non-linear. In this case,
the traditional diversification approach based on correlations must be supplemented by a
payoff approach. However, most risk premia have a concave payoff. The momentum risk
premium thus plays a central role as it exhibits a convex payoff, and we know that mixing
concave and convex strategies is key for managing skewness risk in bad times.

Sophisticated institutional investors need to profoundly understand these new risk premia
in order to allocate them in an optimal way. On the one hand, there are many academic and
professional studies based on backtesting. Such an approach is interesting to understand
past performance, but it is limited when we consider portfolio construction. On the other
hand, there are a few research studies that have proposed analytical models, but most of
them are not known by professionals (or by academics59). The objective of our article was

58Carry and momentum are, along with the value (or contrarian) strategy, generic trading strategies.
Other trading programs can be viewed as a combination of these 3 investment styles.

59With the exception of Fung and Hsieh (2001), which has about 1100 quotes, the other articles have very
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twofold. First, this was an opportunity to review the different results obtained previously.
Second, most of these results only concern the single-asset case. Hence, our objective was
therefore to extend them to a multi-asset framework. It was important to consider a simple
model in order to use a unified approach for treating the various questions related to the
momentum risk premium. The continuous-time model was also chosen to obtain tractable
formulas. The framework used by Bruder and Gaussel (2011) was sufficiently flexible to
develop a multivariate momentum model, which is why we adopted this framework.

In our model, asset prices follow a multi-dimensional geometric Brownian motion with
a stochastic trend. It is then a variant of the standard Black and Scholes financial model.
We can then deduce that the optimal estimator of the trend is an exponentially weighted
moving average. We see a standard market practice. However, contrary to investors who
generally use an exogenous moving average frequency, the optimal frequency is the ratio
between the trend volatility and the asset volatility. A short moving average is then optimal
when the short-term component of the volatility dominates the long-term component. In the
multivariate case, we show that the optimal filtering of the trend depends on the correlation
structure of asset returns. We also demonstrate that a multivariate moving average produces
better trend estimates than a collection of univariate moving averages. However, errors due
to a misspecification of the moving average are relatively low. In other words, estimating a
4-month trend with a 6-month or a 3-month moving average does not make much difference.

By assuming that the exposure of the strategy is proportional to the moving average, we
demonstrate that the P&L of the trend-following strategy has two components. The first
component is the option profile and the second component is the trading impact (Gaussel and
Bruder, 2011). This decomposition is very similar to the robustness equation of the Black-
Scholes formula (El Karoui et al., 1998). We establish a bridge between trend-following and
delta hedging. As already found by Fung and Hsieh (2001), we obtain a convex payoff, but it
is a second-order. The primary effect is the trading impact, which depends on the absolute
value of the asset’s Sharpe ratio and the frequency of the moving average. The trading
impact is bounded below, implying that the loss of a momentum strategy is bounded, but
its gain may be infinite. In the case where the absolute value of the Sharpe ratio is low, the
hit ratio is smaller than 50%. We confirm the result of Potters and Bouchaud (2006), who
argue that “trend followers lose more often than they gain”. However, this result does not
hold when the Sharpe ratio is highly negative or positive. In this case, the gain frequency
may be larger than the loss frequency.

Another outcome is that the expected gain is larger than the expected loss whatever the
value taken by the Sharpe ratio. It is also remarkable that the probability distribution of
the P&L is related to the chi-square distribution. Contrary to traditional assets, the returns
of a momentum strategy cannot be approximated by a Gaussian distribution. This is why
the momentum risk premium has a positive skewness contrary to traditional risk premia.
This result makes the momentum very singular in the universe of risk premia, because it is
certainly the only strategy that presents this property of positive skewness. However, this
does not mean that it is not a risky strategy. The momentum risk premium has two main
risks. The first one is obvious, and concerns trend reversals. This point has been already
observed by Daniel and Moskowitz (2016), who showed that investors may face momentum
crashes, especially when they use a cross-section implementation. This point is also related
to the coherency between the duration of the trend and the duration of the moving average.
The second risk is less obvious because it is associated with the leverage effect. At first
sight, leverage may be viewed as a homogeneous scaling mechanism. In the case of CPPI
products, we know that the scaling is not homogenous and that an excessively high leverage

few quotes: 19 for Potters and Bouchaud (2006), 11 for Bruder and Gaussel (2011), 8 for Martin and Zou
(2012), 2 for Dao et al. (2016), etc. (source: Google Scholar).
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dramatically destroys the performance of such products. For momentum strategies, we
observe a similar effect, because the gamma costs may be prohibitive when we exceed a
certain level of leverage and when the asset volatility is high. As a consequence, even if the
ruin probability of a momentum strategy is significantly lower than for value and contrarian
strategies, investors may pay attention to the leverage risk.

As already said, to understand performance, two market parameters are important:
the realized Sharpe ratio and the realized volatility. Since a trend-following strategy has
a negative vega, the momentum risk premium does not like volatility to increase. This
result is the opposite of that obtained with value and contrarian strategies. In contrast, the
momentum risk premium likes assets with high negative or positive Sharpe ratios. However,
it is essential that the temporal measure of the Sharpe ratio corresponds to the duration of
the moving average. The Sharpe ratio is a relative measure of the strength of the trend.
Our model shows that a strong trend with a high volatility is not necessarily better than
a medium trend with a very low volatility. This is why a momentum risk premium faces
a trade-off between trend and volatility. A famous example is the Global Financial Crisis
in 2008. Some people think that the incredible performance of trend-following strategies in
2008 is mainly due to short exposures on the equity market. This is not true, because even
though we had a very strong negative trend on stocks, the volatility of this market was also
very high. Because the performance of stocks and bonds was negatively correlated during
this period, trend-following strategies benefited from the positive trend on sovereign bonds,
whose volatility was contained. In the end, long fixed-income exposures contributed more
to the momentum risk premium in 2008 than short equity exposures.

The diversification effect is an important topic when we build a multi-asset trend-
following strategy. In the case of a long-only investment portfolio, the best case for di-
versification is when some assets are negatively correlated to other assets. This explains
why the stock/bond asset mix policy is certainly the most well-known diversified portfolio.
However, the case of negative correlation is symmetric to the case of positive correlation.
For instance, if we consider the two extreme cases, a correlation of +1 between two assets is
equivalent to a correlation of −1 in a long/short portfolio, because there is only one trend
in both cases. Therefore, the best case is when the correlation is equal to zero, because
we have two independent trends. In fact, the concept of diversification is more complex
for momentum strategies than for long-only investment portfolios. In particular, we must
distinguish time-series momentum and cross-section momentum. A time-series momentum
strategy prefers independent assets rather than (positively or negatively) correlated assets.
It also prefers a small number of assets with a significant Sharpe ratio in absolute value to
a large number of assets with a low Sharpe ratio. In contrast, a cross-section momentum
prefers highly correlated assets to independent assets. The absolute level of Sharpe ratios
is not important, because a cross-section momentum is more sensitive to the dispersion of
Sharpe ratios. In the multivariate case, the allocation matrix becomes a key parameter for
understanding the performance. For a time-series momentum strategy, weight diversification
reduces the expected gain. For a cross-section momentum strategy, weight diversification
improves the expected gain. The reason is that there are few big trends in financial mar-
kets. When a big trend appears, the time-series strategy should concentrate its exposure
on this bet rather than diversify the bets. This is not the case of the cross-section strategy,
because it should be exposed to many relative bets. The choice of the universe is therefore
essential when considering a trend-following strategy. Generally, time-series momentum is
implemented with a multi-asset universe in order to have decorrelated assets and absolute
bets, whereas cross-section momentum is implemented within a single-asset class in order
to have correlated assets and relative bets.

For a long time, investors perceived trend-following strategies in a pure alpha portfolio,
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because they were mainly managed and proposed by hedge funds. The analysis of these
strategies was therefore done on a standalone basis, in order to verify that they have a
good risk/return profile. After this period, investors started to consider trend-following
strategies as a building block in a diversified allocation, and not as an absolute return
portfolio. Indeed, they realized that such strategies have locally a lot of beta. In the long-
run, their beta is close to zero, because they dynamically manage these exposures, but this
result is purely statistical. They understood that their diversification power comes from the
short exposure and depends on the market regime. In particular, they observed that they
have the tendency to perform well in a period of stressed equity markets (Fung and Hsieh,
2001). Since the concepts of diversification and hedging are related, some asset owners and
asset managers then considered that trend-following strategies could be hedging strategies.
It is true that they share common properties with option and overlay strategies (Dao et
al., 2016). As expected, our results confirm that trend-following strategies can be used to
manage downside protection. However, our theoretical model shows that it is less obvious
when we consider the multivariate case, when the hedged asset is a multi-asset diversified
portfolio. Another important point concerns the definition of downside protection. Our
simulations demonstrate that trend-following strategies are not able to manage the tail risk,
and the momentum risk premium may suffer when skewness risks occur. Therefore, downside
protection is not the same as tail risk protection, but must been seen as volatility risk
protection. When the market downturn is gradual, momentum strategies may be hedging
tools, but they are inefficient when skewness events drive sharp falls in asset prices. This is
the story behind the performance of CTAs in January 2015.

Readers of this paper might think that harvesting the momentum risk premium is rel-
atively straightforward. Indeed, we have shown that we can easily replicate the SG CTA
Index using our theoretical model. However, we must warn investors that our backtest does
not take into account transaction costs, and the simulated performance is calculated without
applying management and performance fees. In reality, building a robust trend-following
strategy is much more complex than the theoretical model we have developed in this paper.
This model is enough to understand the behavior of the momentum risk premium, but it
remains a toy model if the objective is to build an investment product that aims to fully
capture the momentum risk premium. The reason is that three issues are not modeled in our
study. The first issue is the portfolio turnover and the associated transaction costs. In our
model, we do not manage turnover, because we assume that we continuously rebalance the
portfolio. The second issue concerns the allocation. In our model, it is assumed to be given
and is not dynamic. Finally, the third issue is the dynamics of asset prices. In our model,
the dynamics are known and relatively simple. Therefore, we have no statistical problems
for estimating trends. In the real world, asset prices are not geometric Brownian motions,
but they incorporate jumps and are discontinuous. Trend estimation is then a challenge for
professionals. In conclusion, our experience shows that considerable expertise is needed to
harvest the momentum risk premium, but these recipes are out of the scope of this article.
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A Mathematical results

A.1 Kalman-Bucy filtering

A.1.1 Continuous-time modeling

We consider the state space model:{
dYt = AtXt dt+Bt dWt

dXt = CtXt dt+Dt dW ?
t

where Yt is the observed vector process and Xt is the hidden vector process. We assume
that the multi-dimensional Brownian processes Wt and W ?

t are uncorrelated, and At, Bt, Ct
and Dt are non-random matrices60. The filtering problem consists in calculating the best
estimate of Xt given the observed path {Ys | s ≤ t}. Let X̂t be the conditional mean:

X̂t = E [Xt | Ft]

We denote P̂t the error covariance matrix:

P̂t = E
[(
Xt − X̂t

)(
Xt − X̂t

)>]
The solution is given by the Kalman-Bucy filter61:

dX̂t = CtX̂t dt+ P̂tA
>
t

(
BtB

>
t

)−1
dŴt

and:

dP̂t =
(
CtP̂t + P̂tC

>
t − P̂tA>t

(
BtB

>
t

)−1
AtP̂t +DtD

>
t

)
dt

where Ŵt is the innovation process:

dŴt = dYt −AtX̂t dt

In the case of constant matrices, the error covariance matrix satisfies:

dP̂t =
(
CP̂t + P̂tC

> − P̂tA>
(
BB>

)−1
AP̂t +DD>

)
dt

and the steady-state P̂∞ is the solution of the algebraic Riccati equation:

CP̂∞ + P̂∞C
> − P̂∞A>

(
BB>

)−1
AP̂∞ +DD> = 0

A.1.2 Discrete-time modeling

We now consider the discrete-time state space model:{
Yk = AkXk + ak +Bkεk
Xk = CkXk−1 + ck +Dkε

?
k

60The matrix dimensions are respectively (n× 1) for Yt, (m× 1) for Xt, (p× 1) for Wt, (q × 1) for W ?
t ,

(n×m) for At, (n× p) for Bt, (m×m) for Ct and (m× q) for Dt.
61See Kalman and Bucy (1961) for the derivation of these equations.
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where Yk is the observed vector process and Xk is the hidden vector process. Here, the
time is indexed by k ∈ N. We assume that εk ∼ N (0, Sk) and ε?k ∼ N (0, S?k) are two
uncorrelated processes62. We note:

X̂k = E [Xk | Fk]

and:
X̂k|k−1 = E [Xk | Fk−1]

The corresponding error covariance matrices are:

P̂k = E
[(
Xk − X̂k

)(
Xk − X̂k

)>]
and:

P̂k|k−1 = E
[(
Xk − X̂k|k−1

)(
Xk − X̂k|k−1

)>]
Let X0 ∼ N

(
X̂0, P̂0

)
be the initial position of the state vector. The estimates of X̂k and

P̂k can be obtained by using the recursive Kalman filter63:

X̂k|k−1 = CkX̂k−1 + ck
P̂k|k−1 = CkP̂k−1C

>
k +DkS

?
kD
>
k

vk = AkX̂k|k−1 + ak − Yk
Fk = AkP̂k|k−1A

>
k +BkSkB

>
k

X̂k = X̂k|k−1 + P̂k|k−1A
>
k F
−1
k vk

P̂k =
(
Im − P̂k|k−1A

>
k F
−1
k Ak

)
P̂k|k−1

We notice that vk is the innovation process at time k:

vk = E [Yk | Fk−1]− Yk
Since we have vk ∼ N (0, Fk), the log-likelihood function for observation k is equal to:

`k = −n
2

ln 2π − 1

2
ln |Fk| −

1

2
v>k F

−1
k vk

A.2 The noncentral chi-square distribution

A.2.1 Definition

Let (Y1, . . . , Yν) be a set of independent Gaussian random variables such that Yi ∼ N
(
µi, σ

2
i

)
.

The noncentral chi-square random variable is defined as follows:

X =

ν∑
i=1

Y 2
i

σ2
i

We write X ∼ χ2
ν (ζ) where ν is the number of degrees of freedom and ζ is the noncentrality

parameter:

ζ =

ν∑
i=1

µ2
i

σ2
i

When µi is equal to zero, X becomes a central chi-square distribution χ2
ν (0).

62The matrix dimensions are respectively (n× 1) for Yk, (m× 1) for Xk, (p× 1) for εk, (q × 1) for ε?k,
(n×m) for Ak, (n× 1) for ak, (n× p) for Bk, (m×m) for Ck, (m× 1) for ck, (m× q) for Dk, (p× p) for
Sk and (q × q) for S?k .

63See Harvey (1990) for the derivation of these equations.
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A.2.2 Statistical properties

The cumulative distribution function of X is defined as:

F (x; ν, ζ) = Pr {X ≤ x} =

∞∑
j=0

e−ζ/2ζj

2jj!
F (x; ν + 2j, 0)

where F (x; ν, 0) is the cumulative distribution function of the chi-square distribution with
ν degrees of freedom. We have:

F (x; ν, 0) =
γ (ν/2, x/2)

Γ (ν/2)

where γ (a, b) is the lower incomplete Gamma function and Γ (a) is the Gamma function.
We deduce that the probability density function is:

f (x; ν, ζ) =

∞∑
j=0

e−ζ/2ζj

2jj!
f (x; ν + 2j, 0)

where f (x; ν, 0) is the probability density function of the chi-square distribution:

f (x; ν, 0) = 1 {x > 0} · x
ν/2−1 e−x/2

2ν/2 Γ (ν/2)

We may also show that the mean and the variance of X are ν+ζ and 2 (ν + 2ζ), respectively.
For the skewness and excess kurtosis coefficients, we obtain:

γ1 = (ν + 3ζ)

√
23

(ν + 2ζ)
3

γ2 =
12 (ν + 4ζ)

(ν + 2ζ)
2

A.2.3 Conditional expectation of the noncentral chi-square random variable
χ2

1 (ζ)

We note Y ∼ N
(
µ, σ2

)
and:

X =
Y 2

σ2
∼ χ2

1 (ζ)

Let m+ (x, ζ) be the conditional expectation of X given that X ≥ x. We have:

m+ (x, ζ) = E [X|X ≥ x]

= E
[
Y 2

σ2

∣∣∣∣ Y 2

σ2
≥ x

]
=

E
[
1
{
Y 2 ≥ xσ2

}
· Y 2

]
σ2 Pr {X ≥ x}
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It follows that64:

E
[
Y 2
∣∣Y 2 ≥ xσ2

]
=

∫ −σ√x
−∞

y2

σ
φ

(
y − µ
σ

)
dy +

∫ ∞
σ
√
x

y2

σ
φ

(
y − µ
σ

)
dy

=

∫ −√x−√ζ
−∞

(µ+ σz)
2
φ (z) dz +

∫ ∞
√
x−
√
ζ

(µ+ σz)
2
φ (z) dz

=

∫ −√x−√ζ
−∞

(
µ2 + 2µσz + σ2z2

)
φ (z) dz +∫ ∞

√
x−
√
ζ

(
µ2 + 2µσz + σ2z2

)
φ (z) dz

Using the following results:∫ b

a

φ (z) dz = Φ (b)− Φ (a)∫ b

a

zφ (z) dz = φ (a)− φ (b)∫ b

a

z2φ (z) dz = aφ (a)− bφ (b) + Φ (b)− Φ (a)

we obtain: ∫ b

a

(
µ2 + 2µσz + σ2z2

)
φ (z) dz =

(
µ2 + σ2

)
(Φ (b)− Φ (a)) +(

2µσ + aσ2
)
φ (a)−(

2µσ + bσ2
)
φ (b)

We deduce that:

E
[
Y 2
∣∣Y 2 ≥ xσ2

]
=

(
µ2 + σ2

) (
Φ
(
−
√
x−

√
ζ
)

+ 1− Φ
(√

x−
√
ζ
))

+(
µσ +

√
xσ2

)
φ
(√

x−
√
ζµ
)
−
(
µσ −

√
xσ2

)
φ
(√

x+
√
ζ
)

and:

m+ (x, ζ) =
1

1− F (x; 1, ζ)

(
(1 + ζ)

(
Φ
(
−
√
x−

√
ζ
)

+ 1− Φ
(√

x−
√
ζ
))

+(√
ζ +
√
x
)
φ
(√

x−
√
ζ
)

+
(√

x−
√
ζ
)
φ
(√

x+
√
ζ
))

We also have:

m− (x, ζ) = E [X|X ≤ x]

=
1 + ζ − (1− F (x; 1, ζ))m+ (x, ζ)

F (x; 1, ζ)

=
1

1− F (x; 1, ζ)

(
(1 + ζ)

(
Φ
(√

x+
√
ζ
)
− Φ

(
−
√
x+

√
ζ
))
−(√

ζ +
√
x
)
φ
(√

x−
√
ζ
)
−
(√

x−
√
ζ
)
φ
(√

x+
√
ζ
))

64We have
√
ζ = σ−1µ.
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A.3 Distribution of Gaussian quadratic forms

A.3.1 The case of uncorrelated Gaussian random variables

Let (Z1, . . . , Zn) be a set of independent standardized Gaussian random variables. We
consider the quadratic form Q1 defined by:

Q1 (a, b) =

n∑
i=1

ai (Zi + bi)
2

where ai > 0. According to Ruben (1962, 1963) and Kotz et al. (1967), the cumulative
density function65 of Q1 admits a series expansion based on the chi-square distribution:

Q1 (q; a, b) = Pr {Q1 (a, b) ≤ q}

=
∞∑
j=0

cjF
(
q

β
;n+ 2j, 0

)
Here, β is an arbitrary constant such that 0 < β ≤ mini ai, F (x; ν, 0) is the χ2

ν (0) cumulative
distribution function and the coefficients cj are given by:{

c0 = e−ζ/2
∏n
i=1 (β/ai)

1/2

cj = j−1
∑j−1
k=0 gj−kck

where:

ζ =

n∑
i=1

b2i

and:

gm =
1

2

(
n∑
i=1

(
1− β

ai

)m
+mβ

n∑
i=1

b2i
ai

(
1− β

ai

)m−1
)

Remark 12 We could also compute the cumulative density function of Q1 using the series
expansion of Kotz et al. (1967) based on the noncentral chi-square distribution:

Q1 (q; a, b) =

∞∑
j=0

djF
(
q

β
;n+ 2j, ζ

)
where the noncentrality parameter is:

ζ =

n∑
i=1

b2i

Here, the coefficients dj are given by:

dj = eζ/2
j∑

k=0

hj−kck

with:

hm =
(−ζ/2)

m

m!
65If we are interested by the probability density function, we obtain:

f (q) =
1

β

∞∑
j=0

cjf

(
q

β
;n+ 2j, 0

)
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We now consider the calculation of the four moments. We have:

Q1 (a, b) =

n∑
i=1

ai (Zi + bi)
2

=

n∑
i=1

ai
(
Z2
i + 2biZi + b2i

)
It follows that:

E [Q1 (a, b)] =

n∑
i=1

ai
(
1 + b2i

)
and:

var (Q1 (a, b)) = E

( n∑
i=1

ai
(
Z2
i − 1 + 2biZi

))2


= 2

n∑
i=1

a2
i

(
1 + 2b2i

)
For order k ≥ 3, the direct computation of E

[
Xk
]

is tricky. However, we can show that the
kth cumulant of Q1 (a, b) is equal to:

κk (Q1 (a, b)) =
∂kK (0)

∂ tk

where K (t) is the cumulant generating function:

K (t) = lnE [exp (tQ1 (a, b))]

= lnE

[
exp

(
t

n∑
i=1

ai (Zi + bi)
2

)]

=

n∑
i=1

lnE
[
exp

(
tai (Zi + bi)

2
)]

By linearity of the derivation, we obtain:

κk (Q1 (a, b)) =

n∑
i=1

κk

(
ai (Zi + bi)

2
)

Since we have κk (aX) = akκk (X), it follows that:

κk

(
ai (Zi + bi)

2
)

= aki 2k−1 (k − 1)!
(
1 + kb2i

)
and:

κk (Q1 (a, b)) = 2k−1 (k − 1)!

(
n∑
i=1

aki
(
1 + kb2i

))
We deduce that:

γ1 (Q1 (a, b)) =
2
√

2
∑n
i=1 a

3
i

(
1 + 3b2i

)
(
∑n
i=1 a

2
i (1 + 2b2i ))

3/2

and:

γ2 (Q1 (a, b)) =
12
∑n
i=1 a

4
i

(
1 + 4b2i

)
(
∑n
i=1 a

2
i (1 + 2b2i ))

2
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A.3.2 The case of correlated Gaussian random variables

Let X ∼ N (µ,Σ) be a Gaussian random vector and Q be a symmetric non-negative definite
matrix. We define the quadratic form Q2 as follows:

Q2 (µ,Σ, Q) = X>QX

Following Imhof (1961), Liu et al. (2009) show that the kth cumulant of Q2 (µ,Σ, Q) is equal
to:

κk (Q2 (µ,Σ, Q)) = 2k−1 (k − 1)!
(

tr (QΣ)
k

+ kµ> (QΣ)
k−1

Qµ
)

It follows that the mean and the variance of Q2 (µ,Σ, Q) are κ1 and κ2. For the skewness
and excess kurtosis coefficients, we obtain:

γ1 =
κ3

κ
3/2
2

=
√

8s1

and:
γ2 =

κ4

κ2
2

= 12s2

Liu et al. (2009) suggest approximating the GQF probability distribution by a linear
transformation of a non-central chi-square distribution:

Q2 (q;µ,Σ, Q) = Pr {Q2 (µ,Σ, Q) ≤ q}
= F (µ? + σ?q?; ν, ζ)

where:

q? =
q − κ1√
κ2

µ? = ν + ζ

σ? =
√

2ν + 4ζ

If s2
1 > s2, we obtain: {

ζ = s1ω
3 − ω2

ν = ω2 − 2ζ

where:

ω =
1

s1 −
√
s2

1 − s2

If s2
1 ≤ s2, the solution becomes: {

ζ = 0
ν = 1/s2

1

A.3.3 Relationship between the two Gaussian quadratic forms

Q1 is related to Q2 as follows:

Q1 (a, b) =

n∑
i=1

ai (Zi + bi)
2

= Q2 (µ,Σ, Q)

where µ = b, Σ = In and Q = diag (a1, . . . , an).

68



Understanding the Momentum Risk Premium

If we consider Q2, Liu et al. (2009) show that66:

Q2 (µ,Σ, Q) = X>QX

= Y >DY

where Y ∼ N (m, In), D = diag (d1, . . . , dn) and U are the eigenvalue and eigenvector
matrices of Σ1/2QΣ1/2, and m = U>Σ−1/2µ. We deduce that:

Q2 (µ,Σ, Q) =

n∑
i=1

diY
2
i

=

n∑
i=1

di (Zi +mi)
2

= Q1 (d,m)

where d = (d1, . . . , dn).

A.3.4 The case of indefinite quadratic forms

In the general case where Q is a symmetric matrix, which is not necessarily positive definite,
we have:

Q = Q1 −Q2

where Q1 and Q2 are two symmetric positive semi-definite matrices. It follows that:

Q2 (µ,Σ, Q) = X>QX

= X>Q1X −X>Q2X

= Q2 (µ,Σ, Q1)−Q2 (µ,Σ, Q2)

Any indefinite quadratic form may then be written as the difference of two definite quadratic
forms. We deduce that:

Q2 (q;µ,Σ, Q) = Pr {Q2 (µ,Σ, Q) ≤ q}
= Pr {Q2 (µ,Σ, Q1)−Q2 (µ,Σ, Q2) ≤ q}

The exact computation of Q2 (q;µ,Σ, Q) is more complicated than in the definite case since
it requires the convolution of Q2 (µ,Σ, Q1) and Q2 (µ,Σ, Q2) (Gurland, 1955; Provost and
Rudiuk, 1996). However, we can find an upper bound:

Q2 (q;µ,Σ, Q) = Pr {Q2 (µ,Σ, Q1) ≤ q +Q2 (µ,Σ, Q2)}
≤ Pr {Q2 (µ,Σ, Q1) ≤ q}
= Q2 (q;µ,Σ, Q1)

because Q2 (µ,Σ, Q2) ≥ 0. In particular, this upper bound can be used as an approximation
if:

n∑
i=1

di (Q1)�
n∑
i=1

di (Q2)

where di (Q) is the ith eigenvalue of Q.

66We note Ω = Σ1/2QΣ1/2. We have Ω = UDU>, D = U>ΩU and U−1 = U>. The random vector
Y = U>Σ−1/2X is normally distributed N

(
U>Σ−1/2µ, In

)
. Since we have X = Σ1/2UY , it follows that:

X>QX = Y >U>Σ
1/2QΣ

1/2UY

= Y >U>ΩUY

= Y >DY
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A.4 The Bruder-Gaussel model

A.4.1 Derivation and statistical properties of the EWMA estimator

We assume that: {
dSt = µtSt dt+ σSt dWt

dµt = γ dW ?
t

Let dyt = dSt/St. We have: {
dyt = µt dt+ σ dWt

dµt = γ dW ?
t

We denote µ̂t = E [µt| Ft] the estimator of the trend µt with respect to the filtration Ft,
and υt = E

[
(µ̂t − µt)2

∣∣∣Ft] the variance of the estimation error. The Kalman-Bucy filter

equations are:

dµ̂t =
υt
σ2

(dyt − µ̂t dt)

and:
dυt
dt

= γ2 − 1

σ2
υ2
t

We verify that υ∞ = γσ, implying that67:

dµ̂t = λ (dyt − µ̂t dt)

where the parameter λ is equal to γσ−1. Finally, Bruder and Gaussel (2011) deduce that
µ̂t is an exponential weighted moving average (EWMA) estimator:

µ̂t = λ

∫ t

0

e−λ(t−u) dyu + e−λtµ̂0

We also verify that the sum of EWMA weights are equal to one, because we have:

λ

∫ t

0

e−λ(t−u) du =
[
e−λ(t−u)

]t
0

= 1− e−λt

If the asset volatility σ is larger than the trend volatility γ, the EWMA parameter λ is less
than one. Otherwise, it is more than one.

A.4.2 P&L of the trend-following strategy

We recall that the Kalman filtering equation is:

dµ̂t = λ (dyt − µ̂t dt)

meaning that:

dyt =
1

λ
dµ̂t + µ̂t dt

It follows that:

dVt
Vt

= et
dSt
St

=
α

λ
µ̂t dµ̂t + αµ̂2

t dt

67We assume here that the Kalman filter has sufficiently converged in order to replace υt by its limit υ∞.
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We deduce that68:

d 〈V, V 〉t =
α2

λ2
V 2
t µ̂td 〈µ̂, µ̂〉t µ̂t

= α2V 2
t µ̂

2
tσ

2 dt

If we apply Ito’s formula to Wt = lnVt, we obtain:

dWt =
dVt
Vt
− 1

2V 2
t

d 〈V, V 〉t

=
α

λ
µ̂t dµ̂t + αµ̂2

t

(
1− ασ2

2

)
dt

Since we have:

dµ̂2
t = 2µ̂t dµ̂t + d 〈µ̂, µ̂〉t

= 2µ̂t dµ̂t + λ2σ2 dt

we obtain the following expression:

dWt =
α

2λ

(
dµ̂2

t − λ2σ2 dt
)

+ αµ̂2
t

(
1− ασ2

2

)
dt

=
α

2λ
dµ̂2

t +

(
αµ̂2

t

(
1− ασ2

2

)
− λασ2

2

)
dt

Therefore, the P&L of the trend-following strategy is equal to:

ln
VT
V0

=
α

2λ

(
µ̂2
T − µ̂2

0

)
+ ασ2

∫ T

0

(
µ̂2
t

σ2

(
1− ασ2

2

)
− λ

2

)
dt

A.4.3 Probability distribution of the trend-following strategy

By definition, the Sharpe ratio of the asset is equal to:

st =
µt
σ

The Sharpe ratio estimator is then equal to:

ŝt =
µ̂t
σ

Using Kalman filter, we have µ̂t ∼ N (µt, υt). Since we have made the approximation
υt = υ∞, we deduce that:

ŝt ∼ N
(
st,

υ∞
σ2

)
where:

υ∞
σ2

=
γσ

σ2
= λ

68We have:

d 〈µ̂, µ̂〉t = 〈dµ̂, dµ̂〉t
= γ2 dt

= λ2σ2 dt
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It follows that ŝ2
t/λ is a noncentral chi-square random variable χ2

1 (ζ) with:

ζ =
s2
t

λ

Let us now consider the trading impact gt:

gt = ασ2

(
ŝ2
t

(
1− ασ2

2

)
− λ

2

)
=

ασ2

2

(
2− ασ2

)
ŝ2
t −

λασ2

2

We deduce that gt is an affine transformation of a noncentral chi-square random variable:

Pr {gt ≤ g} = Pr

{
ασ2

2

(
2− ασ2

)
ŝ2
t −

λασ2

2
≤ g
}

= Pr

{
ŝ2
t ≤

2g + λασ2

ασ2 (2− ασ2)

}
= F

(
2g + λασ2

λασ2 (2− ασ2)
; 1, ζ

)
where F (x; ν, ζ) is the cumulative distribution function of the noncentral chi-square distri-
bution, whose degree of freedom is ν and noncentrality parameter is ζ.

A.4.4 Average duration of the EWMA estimator

In order to better understand the parameter λ, we compute the average duration of the
EWMA estimator:

τ = lim
t→∞

λ

1− e−λt

∫ t

0

e−λ(t−u) (t− u) du

We have: ∫ t

0

e−λ(t−u) (t− u) du = t

∫ t

0

e−λ(t−u) du−
∫ t

0

e−λ(t−u)udu

= t

(
1− e−λt

λ

)
−
(
t

λ
− 1− e−λt

λ2

)
=
−te−λt

λ
+

1− e−λt

λ2

We deduce that:

τ = lim
t→∞

λ

1− e−λt

(
−te−λt

λ
+

1− e−λt

λ2

)
=

1

λ

The average duration of the EWMA estimator is then equal to the inverse of the frequency
parameter λ.
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A.4.5 Hit ratio

We note:
ŝt = st +

√
λX

where X ∼ N (0, 1). We deduce that the hit ratio H is equal to:

H = Pr {gt ≥ 0}

= Pr

{
ŝ2
t ≥

λ

2− ασ2

}
= Pr

{(
st +

√
λX
)2

≥ λ

2− ασ2

}
= Pr

{
X ≥

√
1

2− ασ2
− st√

λ

}
+ Pr

{
X ≤ −

√
1

2− ασ2
− st√

λ

}

= 1− Φ

(√
1

2− ασ2
− st√

λ

)
+ Φ

(
−
√

1

2− ασ2
− st√

λ

)
The hit ratio depends then on four parameters: st, α, σ and λ. We verify that the sign of
the Sharpe ratio does not change the value of the hit ratio:

H (st;α, σ, λ) = H (−st;α, σ, λ)

A.4.6 Expected loss and gain

We have:

E [gt| gt ≤ 0] = E
[
ασ2

(
ŝ2
t

(
1− ασ2

2

)
− λ

2

)∣∣∣∣ασ2

(
ŝ2
t

(
1− ασ2

2

)
− λ

2

)
≤ 0

]
= ασ2

(
1− ασ2

2

)
E
[
ŝ2
t

∣∣∣∣ŝ2
t ≤

λ

2− ασ2

]
− λασ2

2

Since we have:
ŝ2
t

λ
∼ χ2

1 (ζ)

We deduce that the expected loss and gain are equal to:

E [gt| gt ≤ 0] = ασ2

(
1− ασ2

2

)
m−

(
1

2− ασ2
, ζ

)
− λασ2

2

and:

E [gt| gt ≥ 0] = ασ2

(
1− ασ2

2

)
m+

(
1

2− ασ2
, ζ

)
− λασ2

2

where m− (x, ζ) and m+ (x, ζ) are the functions defined in Appendix A.2 on page 63.

A.5 The multivariate case

We now consider that: {
dSt = µt � St dt+ (σ � St)� dWt

dµt = σ? � dW ?
t

where St, µt, σ and σ? are four n × 1 vectors. We also assume that E
[
WtW

>
t

]
= CIn and

E
[
W ?
t W

?>
t

]
= C?In where C and C? are two square matrices, and E

[
W ?
t W

>
t

]
= 0. We

denote Σ the covariance matrix of asset returns and Γ the covariance matrix of trends69.
69We have Σi,j = Ci,jσiσj and Γi,j = C?i,jσ?i σ?j .
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A.5.1 Derivation of the EWMA estimator

Let dyt = dSt/St. We denote µ̂t = E [µt | Ft] the estimator of the trend µt, and Υt =

E
[
(µ̂t − µt) (µ̂t − µt)>

]
the error covariance matrix. The Kalman-Bucy filter gives:

dµ̂t = ΥtΣ
−1 (dyt − µ̂t dt)

and:
dΥt =

(
Γ−ΥtΣ

−1Υt

)
dt

At the steady state Υ∞, we have:

dµ̂t = Λ (dyt − µ̂t dt)

where Λ = Υ∞Σ−1. We deduce that µ̂t is a multi-dimensional exponential moving average
estimator (Brockwell, 2004):

µ̂t =

∫ t

0

e−Λ(t−u)Λ dyu + e−Λtµ̂0

Remark 13 The steady state Υ∞ is obtained by solving the continuous algebraic Riccati
equation:

Γ−Υ∞Σ−1Υ∞ = 0

In some special cases, we obtain the following analytical solution:

Υ∞ = Γ
1/2Σ

1/2

In this case, we have Λ = Γ1/2Σ−1/2. However, this equation is only valid when the matrices
Γ1/2 and Σ1/2 commute. Indeed, we verify that Γ1/2Σ1/2 is always one solution of the equation
Γ−Υ∞Σ−1Υ∞ = 0, but it does not necessarily define a symmetric matrix.

A.5.2 Expression of the P&L

The P&L of the momentum strategy is given by:

dVt
Vt

= e>t
dSt
St

We assume that:
et = Aµ̂t

where A is a squared matrix and µ̂t = (µ̂1,t, . . . , µ̂n,t) is the vector of estimated trends. It
follows that:

dVt
Vt

= µ̂>t A
> (Λ−1 dµ̂t + µ̂t dt

)
and70:

d 〈V, V 〉t = V 2
t µ̂
>
t A
>Λ−1 d 〈µ̂, µ̂〉t

(
Λ>
)−1

Aµ̂t

= V 2
t µ̂
>
t A
>Λ−1ΛΣΛ>

(
Λ>
)−1

Aµ̂t dt

= V 2
t µ̂
>
t A
>ΣAµ̂t dt

70We have:

d 〈µ̂, µ̂〉t = 〈dµ̂, dµ̂〉t

= Λ

〈
dS

S
,

dS

S

〉
t

Λ>

= ΛΣΛ> dt
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If we apply Itô’s lemma to Wt = ln Vt, we obtain:

dWt =
dVt
Vt
− 1

2V 2
t

d 〈V, V 〉t

= µ̂>t A
> (Λ−1 dµ̂t + µ̂t dt

)
− 1

2
µ̂>t A

>ΣAµ̂t dt

= µ̂>t A
>Λ−1 dµ̂t + µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t dt

Since we have71:

d
(
µ̂>t A

>Λ−1µ̂t
)

= 2µ̂>t A
>Λ−1 dµ̂t + tr

(
A>Λ−1d 〈µ̂, µ̂〉t

)
= 2µ̂>t A

>Λ−1 dµ̂t + tr
(
A>ΣΛ>

)
dt

we obtain the following expression:

dWt =
1

2
d
(
µ̂>t A

>Λ−1µ̂t
)

+

(
µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

))
dt

We finally conclude that the P&L of the momentum strategy is given by:

ln
VT
V0

=
1

2

(
µ̂>TA

>Λ−1µ̂T − µ̂>0 A>Λ−1µ̂0

)
+∫ T

0

(
µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

))
dt

A.5.3 The case of uncorrelated assets

In the case where the matrix A is diagonal72, the exposure of Asset i is given by:

ei,t = αiµ̂i,t

If we assume that the assets are uncorrelated (C = 0 and C? = 0), the EWMA matrix Λ
becomes a diagonal matrix:

Λ = diag (λ1, . . . , λn)

Therefore, the expression of the P&L is reduced to:

ln
VT
V0

=

n∑
i=1

αi
2λi

(
µ̂2
i,T − µ̂2

i,0

)
+

n∑
i=1

αiσ
2
i

∫ T

0

(
µ̂2
i,t

σ2
i

(
1− αiσ

2
i

2

)
− λi

2

)
dt

We see the previous decomposition between the option profile and the trading impact:

ln
VT
V0

= G0,T +

∫ T

0

gt dt

where:

G0,T =

n∑
i=1

αi
2λi

(
µ̂2
i,T − µ̂2

i,0

)
71This result is only valid if A>Λ−1 is a symmetric matrix.
72We have:

A = diag (α1, . . . , αn)
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and:

gt =

n∑
i=1

αiσ
2
i

(
µ̂2
i,t

σ2
i

(
1− αiσ

2
i

2

)
− λi

2

)

Another expression of the trading impact gt is:

gt =

n∑
i=1

wi

((
µ̂i,t
σi

)2

− λ̄i
2

)

=

n∑
i=1

wi

(
µ̂i,t
σi

)2

− λ̄

2

where:

wi = αiσ
2
i

(
1− αiσ

2
i

2

)
and:

λ̄i =
2λi

2− αiσ2
i

The parameter λ̄ is defined as follows:

λ̄ =

n∑
i=1

wiλ̄i

If we would like to find the probability distribution of gt, we have:

gt =

n∑
i=1

wiŝ
2
i,t −

λ̄

2

where ŝi,t ∼ N (si,t, λi). Let Z ∼ N (0, In). We have:

gt =

n∑
i=1

wi

(√
λiZi + si,t

)2

− λ̄

2

=

n∑
i=1

wiλi

(
Zi +

si,t√
λi

)2

− λ̄

2

= Q1 (a, b)− λ̄

2

where a = (ai), ai = wiλi, b = (bi) and bi = si,t/
√
λi. We deduce that:

Pr {gt ≤ g} = Pr

{
Q1 (a, b)− λ̄

2
≤ g
}

= Pr

{
Q1 (a, b) ≤ g +

λ̄

2

}
= Q1

(
g +

λ̄

2
; a, b

)
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If we are interested in the statistical moments of gt, we have:

E [gt] =
∑n
i=1 ai

(
1 + b2i

)
− λ̄

2
var (gt) = 2

∑n
i=1 a

2
i

(
1 + 2b2i

)
γ1 (gt) =

2
√

2
∑n
i=1 a

3
i

(
1 + 3b2i

)
(
∑n
i=1 a

2
i (1 + 2b2i ))

3/2

γ2 (gt) =
12
∑n
i=1 a

4
i

(
1 + 4b2i

)
(
∑n
i=1 a

2
i (1 + 2b2i ))

2

A.5.4 Probability distribution of the trend-following strategy

Using the Kalman filter, we have µ̂t ∼ N (µt,Υt). At the steady state, we can then use the
following approximation:

µ̂t ∼ N (µt,Υ∞)

It follows that:

µ̂>t A
>
(

In −
1

2
ΣA

)
µ̂t ∼ Q2

(
µt,Υ∞, A

>
(

In −
1

2
ΣA

))
and:

Pr {gt ≤ g} = Pr

{
µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

)
≤ g
}

= Pr

{
Q2

(
µt,Υ∞, A

>
(

In −
1

2
ΣA

))
≤ g +

1

2
tr
(
A>ΣΛ>

)}
= Q2

(
g +

1

2
tr
(
A>ΣΛ>

)
;µt,Υ∞, A

>
(

In −
1

2
ΣA

))
Therefore, we can compute the distribution function of gt by using the approximation of Liu
et al. (2009) or the Ruben formula:

Pr {gt ≤ g} = Q1

(
g +

1

2
tr
(
A>ΣΛ>

)
; a, b

)
where a = diag (D), b = U>Υ

−1/2
∞ µt, D and U are the eigenvalue and eigenvector matrices

of Ω = Υ
1/2
∞A>

(
In − 1

2ΣA
)

Υ
1/2
∞ .

A.5.5 Hit ratio

We have:

H = Pr {gt ≥ 0}

= Pr

{
µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

)
≥ 0

}
= Pr

{
Q2

(
µt,Υ∞, A

>
(

In −
1

2
ΣA

))
≥ 1

2
tr
(
A>ΣΛ>

)}
= 1−Q2

(
1

2
tr
(
A>ΣΛ>

)
;µt,Υ∞, A

>
(

In −
1

2
ΣA

))
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In the case where A = n−1In and Λ = λIn, we obtain:

H = 1−Q2

(
λ

2n

n∑
i=1

σ2
i ;µt, λΣ,

2nIn − Σ

2n2

)

A.5.6 Statistical moments of gt

We have:

gt = Q2

(
µt,Υ∞, A

>
(

In −
1

2
ΣA

))
− 1

2
tr
(
A>ΣΛ>

)
Using Appendix A.3.2 on page 68, we deduce that:

µ (gt) = tr (QΛΣ) + µ>t Qµt −
1

2
tr
(
A>ΣΛ>

)
σ (gt) =

√
2
(

tr (QΛΣ)
2

+ 2µ>t QΛΣQµt

)
γ1 (gt) =

√
8

(
tr (QΛΣ)

3
+ 3µ>t (QΛΣ)

2
Qµt

)
(

tr (QΛΣ)
2

+ 2µ>t QΛΣQµt

)3/2

γ2 (gt) = 12

(
tr (QΛΣ)

4
+ 4µ>t (QΛΣ)

3
Qµt

)
(

tr (QΛΣ)
2

+ 2µ>t QΛΣQµt

)2

where:

Q = A>
(

In −
1

2
ΣA

)
A.5.7 Covariance of the estimation error

We recall that the Kalman-Bucy filter defines an optimal EWMA estimator. In this case,
the EWMA matrix Λ is given by:

Λ = Υ∞Σ−1

where Υ∞ is the solution of the algebraic Riccati solution:

Γ−Υ∞Σ−1Υ∞ = 0

When the matrices Γ1/2 and Σ1/2 commute, the solution becomes Υ∞ = Γ1/2Σ1/2 and we
have Λ = Γ1/2Σ−1/2.

We now assume that the EWMA matrix is a given matrix, which is not necessarily equal
to Υ∞Σ−1. We denote Λ̃ this matrix and Υ̃t the associated covariance matrix of estimation
errors. We always have:

dµ̂t = Λ̃ (dyt − µ̂t dt)

However, the dynamics of the covariance matrix Υ̃t is not given by the Kalman-Bucy filter.
It follows that73:

d (µ̂t − µt) = Λ̃ (dyt − µ̂t dt)− dµt

= −Λ̃ (µ̂t − µt) dt+ Λ̃Σ
1/2 dZt − Γ

1/2 dZ?t
73We recall that: {

dyt = µt dt+ Σ1/2 dZt
dµt = Γ1/2 dZ?t

where Zt and Z?t are two uncorrelated vectors of independent Brownian motions.
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and:

d
(

(µ̂t − µt) (µ̂t − µt)>
)

= d (µ̂t − µt) · (µ̂t − µt)> + (µ̂t − µt) · d (µ̂t − µt)> +

d
〈

(µ̂t − µt) (µ̂t − µt)>
〉

= −Λ̃ (µ̂t − µt) (µ̂t − µt)> dt− (µ̂t − µt) (µ̂t − µt)> Λ̃> dt+

(Γ + Λ̃ΣΛ̃>) dt+ dMt

where Mt is a local martingale. We deduce that:

dΥ̃t = E
[
d
(

(µ̂t − µt) (µ̂t − µt)>
)]

=
(
−Λ̃Υ̃t − Υ̃tΛ̃

> + Γ + Λ̃ΣΛ̃>
)

dt

= %
(

Υ̃t; Λ̃
)

dt

We obtain a Lyapunov equation and the solution is:

Υ̃t =

∫ t

0

e−Λ̃(t−u)
(

Γ + Λ̃ΣΛ̃>
)
e−Λ̃>(t−u) du+ e−Λ̃t

0 Υ̃0e
−Λ̃>t

The covariance matrix Υ̃t tends exponentially to the solution of %
(

Υ̃t; Λ̃
)

= 0. By the

implicit function theorem, the equation %
(

Υ̃t; Λ̃
)

= 0 defines a curve Υ̃t = g
(

Λ̃
)

, and

dg
(

Λ̃
)/

dΛ̃ = 0 is equivalent to ∂ %
(

Υ̃t; Λ̃
)/

∂ Λ̃ = 0. We have74:

∂ %
(

Υ̃t; Λ̃
)

∂ Λ̃
= −2Υ̃t + 2Λ̃Σ = 0

We deduce that the optimal solution is:

Λ̃? = Υ̃tΣ
−1 = Λ

In this case, we retrieve the Kalman-Bucy filter:

dΥ̃t =
(
−ΛΥ̃t − Υ̃tΛ

> + Γ + ΛΣΛ>
)

dt

=
(

Γ− Υ̃tΣ
−1
t Υ̃>t

)
dt

We confirm that the Kalman-Bucy solution Λ = Υ
t
Σ−1 minimizes the estimation error.

A.5.8 Probability distribution of the cross-section momentum strategy

We recall that:

A = diag (α)− 1

n
α⊗ 1>n

Another expression of A is:

A = diag (α)

(
In −

1

n
1n1>n

)
74We need Λ̃ to commute with Υ̃t.
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The eigenvalues of In− 1
n1n1>n are all equal to one, except the last eigenvalue, which is equal

to zero. It follows that rank (A) = n − 1. If we consider the matrix Q = A>
(
In − 1

2ΣA
)
,

we deduce that rank (Q) ≤ n − 1. In the cross-section momentum, the quadratic form
Q2 (µt,Υ∞, Q) is then a sum of n− 1 independent noncentral chi-square random variables.
This is why we can compute the distribution of gt by using the parametrization Q1 with the
first n− 1 eigenvalues.

A.6 The hedged strategy

A.6.1 The univariate case

We now assume that the portfolio is both long on the underlying asset and the trend-
following strategy, meaning that the allocation is as follows:

et = αµ̂t + β

where β ≥ 0 is the buy-and-hold exposure on the asset St.

P&L of the strategy We have:

dVt
Vt

= (αµ̂t + β) dyt

and:

d lnVt = (αµ̂t + β) dyt −
1

2
(αµ̂t + β)

2
σ2 dt

Since we have dyt = λ−1 dµ̂t + µ̂t dt, we deduce that75:

d lnVt = (αµ̂t + β)λ−1 dµ̂t + (αµ̂t + β) µ̂t dt− 1

2
(αµ̂t + β)

2
σ2 dt

=
d (αµ̂t + β)

2

2αλ
+

(
(αµ̂t + β) µ̂t −

1

2
(αµ̂t + β)

2
σ2 − 1

2
αλσ2

)
dt

=
d (αµ̂t + β)

2

2αλ
+

(
αµ̂2

t + βµ̂t −
1

2

(
α2µ̂2

t + 2αβµ̂t + β2
)
σ2 − 1

2
αλσ2

)
dt

=
α

2λ
dµ̂2

t +
β

λ
dµ̂t +

(
αµ̂2

t −
1

2
α2σ2µ̂2

t −
1

2
αλσ2

)
dt+

β

(
µ̂t −

σ2

2
(2αµ̂t + β)

)
dt

We conclude that:

d lnVt = dGt + gt dt+ ht

75We have:

d (αµ̂t + β)2 = 2α (αµ̂t + β) dµ̂t + α2 d 〈µ̂, µ̂〉t
= 2α (αµ̂t + β) dµ̂t + α2λ2σ2 dt

and:

(αµ̂t + β) dµ̂t =
d (αµ̂t + β)2 − α2λ2σ2 dt

2α

80



Understanding the Momentum Risk Premium

where:

Gt =
α

2λ
µ̂2
t

gt = αµ̂2
t

(
1− ασ2

2

)
− 1

2
αλσ2 = ασ2

(
µ̂2
t

σ2

(
1− ασ2

2

)
− λ

2

)
and:

ht = βλ−1 dµ̂t + β

(
µ̂t
(
1− ασ2

)
− βσ2

2

)
dt

Therefore, the P&L of the portfolio is composed of three terms:

ln
VT
V0

= G0,T +

∫ T

0

gt dt+

∫ T

0

ht

The hedging cost As previously, we can derive a closed formula of the P&L, where we
identify both the P&L of the buy-and-hold strategy and the P&L of the trend-following plus
an additional term, which may be interpreted as the cost of the hedge. Indeed, we have:

ht = βλ−1 dµ̂t + β

(
µ̂t
(
1− ασ2

)
− βσ2

2

)
dt

= β
(
λ−1 dµ̂t + µ̂t dt

)
− β

(
ασ2µ̂t −

βσ2

2

)
dt

=

(
βdyt −

β2σ2

2
dt

)
− αβσ2µ̂t dt

= d (βlnSt)− αβσ2µ̂t dt

The new term ht is decomposed into a usual asset price term and an additional term, coming
from the aggregation of trend following and long-only positions. We obtain:

d lnVt = d (Gt + β lnSt) + gt dt− ct dt

where ct = αβσ2µ̂t. Since we have:{
ct ≥ 0⇔ µ̂t ≥ 0
ct ≤ 0⇔ µ̂t ≤ 0

ct is the price of hedging in a bullish market (when µ̂t ≥ 0). In return, the strategy benefits
from out-performance when the market is down.

The option profile We have:

d lnVt =
d (αµ̂t + β)

2

2αλ
+

(
(αµ̂t + β) µ̂t −

1

2
(αµ̂t + β)

2
σ2 − 1

2
αλσ2

)
dt

= dG̃t + g̃t dt

where:

G̃t =
(αµ̂t + β)

2

2αλ
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It follows that the option profile of the hedged strategy is:

G̃0,T =
(αµ̂T + β)

2 − (αµ̂0 + β)
2

2αλ

=
α

2λ

(
µ̂2
T − µ̂2

0

)
+
β

λ
(µ̂T − µ̂0)

= G0,T +
β

λ
(µ̂T − µ̂0)

This is the shifted option profile of the trend-following strategy.

Probability distribution of the hedged strategy The trading impact of the hedged
strategy has the following expression:

g̃t = (αµ̂t + β) µ̂t −
1

2
(αµ̂t + β)

2
σ2 − 1

2
αλσ2

= α

(
1− ασ2

2

)(
µ̂t −

β
(
ασ2 − 1

)
α (2− ασ2)

)2

−

(
β2
(
1− ασ2

)2
α (4− 2ασ2)

+
β2σ2

2
+

1

2
αλσ2

)

= ασ2

(
1− ασ2

2

)(
ŝt −

β
(
ασ2 − 1

)
ασ (2− ασ2)

)2

−

(
β2
(
1− ασ2

)2
α (4− 2ασ2)

+
β2σ2

2
+

1

2
αλσ2

)
= a (ŝt − b)2 − c

We notice that:
ŝt − b ∼ N (st − b, λ)

It follows that λ−1 (ŝt − b)2
is a noncentral chi-square random variable χ2

1 (ζ) with ζ =

λ−1 (st − b)2
. We deduce that g̃t is an affine transformation of a noncentral chi-square

random variable:

Pr {g̃t ≤ g} = Pr
{
a (ŝt − b)2 − c ≤ g

}
= Pr

{
(ŝt − b)2 ≤ g + c

a

}
= F

(
g + c

λa
; 1, ζ

)
where F (x; ν, ζ) is the cumulative noncentral chi-square probability distribution.

Remark 14 Another expression of the probability distribution is:

Pr {g̃t ≤ g} = Pr

{
−g + c

a
≤ ŝt − b ≤

g + c

a

}
= Φ

(
b+ a−1 (g + c)− st√

λ

)
− Φ

(
b− a−1 (g + c)− st√

λ

)
We now compute the statistical moments. Since g̃t = aλχ2

1 (ζ)− c, we have:

µ (g̃t) = aλ (1 + ζ)− c

=
λασ2

(
2− ασ2

)
(1 + ζ)

2
− 1

2
αλσ2 −

β2
(
1− ασ2

)2
α (4− 2ασ2)

− β2σ2

2
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where:

ζ = λ−1

(
st −

β
(
ασ2 − 1

)
ασ (2− ασ2)

)2

For the second moment, we obtain:

σ (g̃t) =

∣∣∣∣∣λασ2
(
2− ασ2

)
2

∣∣∣∣∣√2 + 4ζ

We also have:

γ1 (g̃t) = (1 + 6ζ)

√
2

(1 + 2ζ)
3

and:

γ2 (g̃t) =
12 + 48ζ

(1 + 2ζ)
2

A.6.2 The multivariate case

In the multivariate case, the allocation becomes:

et = Aµ̂t +B

P&L of the strategy Using some technical assumptions76, we obtain:

dVt
dt

= e>t dyt

and:

d lnVt = (Aµ̂t +B)
>

dyt −
1

2
(Aµ̂t +B)

>
Σ (Aµ̂t +B) dt

= (Aµ̂t +B)
>

Λ−1 dµ̂t +

(
(Aµ̂t +B)

>
µ̂t −

1

2
(Aµ̂t +B)

>
Σ (Aµ̂t +B)

)
dt

Since we have:

(Aµ̂t +B)
>

Λ−1 dµ̂t =
1

2
d
(
µ̂>t A

>Λ−1µ̂t
)

+ d
(
B>Λ−1µ̂t

)
− 1

2
tr
(
A>ΣΛ>

)
dt

we deduce that:
d lnVt = dG̃t + g̃ dt

where:

G̃t =
1

2
µ̂>t A

>Λ−1µ̂t +B>Λ−1µ̂t

= Gt +B>Λ−1µ̂t

and:

g̃t = (Aµ̂t +B)
>
µ̂t −

1

2
(Aµ̂t +B)

>
Σ (Aµ̂t +B)− 1

2
tr
(
A>ΣΛ>

)
= µ̂>t A

>
(

In −
1

2
ΣA

)
µ̂t −

1

2
tr
(
A>ΣΛ>

)
+(

B> −B>ΣA
)
µ̂t −

1

2
B>ΣB

= gt +
(
B> −B>ΣA

)
µ̂t −

1

2
B>ΣB

76We recall that the matrices (A,Σ) and (Λ, B) commute, and AΣ−1 is symmetric.
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The hedging cost Another expression of the P&L is:

d lnVt = dGt + gt dt+ ht

where:

ht = B>Λ−1 dµ̂t +

((
B> −B>ΣA

)
µ̂t −

1

2
B>ΣB

)
dt

= B>dyt −
(
B>ΣAµ̂t +

1

2
B>ΣB

)
dt

= d ln
(
B>St

)
−B>ΣAµ̂t dt

We deduce that:
d lnVt = d

(
Gt + ln

(
B>St

))
+ gt dt− ct dt

where ct = B>ΣAµ̂t.

A.6.3 The shape of the hedged strategy

Shape of noncentral chi-square distribution LetX be a noncentral chi-square random
variable with ν degrees of freedom and noncentrality parameter ζ. We define the function
g (ζ) as follows:

g (ζ) =
Iν/2

(√
ζ (ζ + ν − 4)

)
Iν/2−1

(√
ζ (ζ + ν − 4)

) − ζ − 2√
ζ (ζ + ν − 4)

where Iν (x) denotes the modified Bessel function of the first kind. Let ζ? ∈ (4− ν,∞) be
the unique solution of the equation g (ζ) = 0. Yu (2011) shows the following results:

• the density of X is log-concave iff ν ≥ 2;

• the density of X is decreasing iff 0 < ν ≤ 2 and ζ ≤ ζ?;

• the density of X is bi-modal iff 0 < ν < 2 and ζ > ζ?.

In Figure 46, we represent the density for some parameters. The parameters (ν = 1, ζ = 1)
produce a decreasing function, the bi-modal shape is obtained for the parameters (ν = 1, ζ = 1),
whereas the parameters (ν = 3, ζ = 5) correspond to a log-concave density. Figure 47 shows
the critical value ζ? that splits noncentral chi-square densities between decreasing curves
and bi-modal curves.

Application to the trading impact g̃t In the one-dimension case, we recall that the
degree of freedom ν is equal to one and the noncentral parameter is defined by:

ζ =

(
ασ
(
2− ασ2

)
st − β

(
ασ2 − 1

))2
α2λσ2 (2− ασ2)

2

The solution ζ? of the equation g (ζ) = 0 is equal to 4.2166. We deduce that a low exposure
α produces a bi-modal density for g̃t. This property holds as long as ζ ≥ ζ?. Then, we obtain
a decreasing density function. An illustration is given in Figure 48 with β = 1, σ = 30%
and λ = 2.
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Figure 46: Noncentral chi-square probability density functions
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Figure 48: Noncentral parameter ζ
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B Additional tables

Table 4: Difference between naive and Riccati solutions (ρ = ρ? = 30%)

Naive solution Riccati solution

Υ∞ = Γ1/2Σ1/2 Υ∞Σ−1Υ∞ = Γ

Υ∞

 0.0199 0.0069 0.0074
0.0101 0.0399 0.0131
0.0137 0.0161 0.0598

  0.0197 0.0078 0.0089
0.0078 0.0396 0.0140
0.0089 0.0140 0.0592


Λ = Υ∞Σ−1 = Γ1/2Σ1/2 Λ = Υ∞Σ−1

Λ

 0.4828 0.0160 0.0358
−0.0611 1.0027 0.0452
−0.1118 −0.0253 1.5367

  0.4600 0.0346 0.0745
−0.1325 1.0045 0.0872
−0.2314 −0.0516 1.5661



Table 5: Difference between naive and Riccati solutions (ρ = ρ? = 90%)

Naive solution Riccati solution

Υ∞ = Γ1/2Σ1/2 Υ∞Σ−1Υ∞ = Γ

Υ∞

 0.0193 0.0186 0.0197
0.0321 0.0386 0.0367
0.0451 0.0487 0.0578

  0.0137 0.0160 0.0186
0.0160 0.0276 0.0286
0.0186 0.0286 0.0416


Λ = Υ∞Σ−1 = Γ1/2Σ1/2 Λ = Υ∞Σ−1

Λ

 0.1965 0.0233 0.2939
−0.6139 1.0178 0.5553
−0.9087 −0.0101 2.2731

  −0.4572 0.1145 0.7745
−1.7999 1.0921 1.3524
−2.4824 0.0099 3.2662



Table 6: Difference between naive and Riccati solutions (C = C? 6= C3 (ρ))

Naive solution Riccati solution

Υ∞ = Γ1/2Σ1/2 Υ∞Σ−1Υ∞ = Γ

Υ∞

 0.0196 0.0194 0
0.0317 0.0392 0

0 0 0.0600

  0.0165 0.0198 0
0.0198 0.0330 0

0 0 0.0600


Λ = Υ∞Σ−1 = Γ1/2Σ1/2 Λ = Υ∞Σ−1

Λ

 0.2783 0.2346 0
−0.4692 1.4011 0

0 0 1.5000

  −0.1734 0.6503 0
−1.3007 1.9944 0

0 0 1.5000
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Table 7: Difference between Riccati and Lyapunov solutions (ρ = ρ? = 30%)

Riccati solution Lyapunov solution for Λ̃1

Υ∞ =

 0.0197 0.0078 0.0089
0.0078 0.0396 0.0140
0.0089 0.0140 0.0592

 Υ̃∞ =

 0.0200 0.0080 0.0090
0.0080 0.0400 0.0144
0.0090 0.0144 0.0600


Lyapunov solution for Λ̃2 Lyapunov solution for Λ̃3

Υ̃∞ =

 0.0250 0.0135 0.0195
0.0135 0.0850 0.0375
0.0195 0.0375 0.1850

 Υ̃∞ =

 0.0250 0.0090 0.0105
0.0090 0.0400 0.0150
0.0105 0.0150 0.0650



Table 8: Difference between Riccati and Lyapunov solutions (ρ = ρ? = 90%)

Riccati solution Lyapunov solution for Λ̃1

Υ∞ =

 0.0137 0.0160 0.0186
0.0160 0.0276 0.0286
0.0186 0.0286 0.0416

 Υ̃∞ =

 0.0200 0.0240 0.0270
0.0240 0.0400 0.0432
0.0270 0.0432 0.0600


Lyapunov solution for Λ̃2 Lyapunov solution for Λ̃3

Υ̃∞ =

 0.0250 0.0405 0.0585
0.0405 0.0850 0.1125
0.0585 0.1125 0.1850

 Υ̃∞ =

 0.0250 0.0270 0.0315
0.0270 0.0400 0.0450
0.0315 0.0450 0.0650



Table 9: Difference between Riccati and Lyapunov solutions (C = C? 6= C3 (ρ))

Riccati solution Lyapunov solution for Λ̃1

Υ∞ =

 0.0165 0.0198 0
0.0198 0.0330 0

0 0 0.0600

 Υ̃∞ =

 0.0200 0.0240 0
0.0240 0.0400 0

0 0 0.0600


Lyapunov solution for Λ̃2 Lyapunov solution for Λ̃3

Υ̃∞ =

 0.0250 0.0405 0
0.0405 0.0850 0

0 0 0.1850

 Υ̃∞ =

 0.0250 0.0270 0
0.0270 0.0400 0

0 0 0.0650
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C Additional figures

Figure 49: Impact of using two moving averages on the option profile
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Figure 50: Evolution of the ω (s) matrix (optimal estimator)
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Figure 51: Evolution of the ω (s) matrix (naive estimator)
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Figure 52: Evolution of the volatility
√
υ̃t with respect to the duration τ

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 53: Cumulative distribution function of gt (cross-section, n = 2)
(α = 1, λ = 1, µ1,t = 30%, µ2,t = 10% and σ1,t = σ2,t = 30%)
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Figure 54: Sharpe ratio of the trading impact gt (cross-section, n = 2)
(α = 1, λ = 1 and σ1,t = σ2,t = 30%)
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Figure 55: Cumulative distribution function of gt (cross-section, n = 4)
(α = 0.5, λ = 1, µt = (30%, 10%,−30%, 0%) and σi,t = 30%)
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Figure 56: Statistical moments of gt with respect to the correlation ρ (cross-section, n = 4)
(α = 0.5, λ = 1 and σi,t = 30%)
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Figure 57: Sharpe ratio of the trading impact gt (cross-section, n = 4)
(α = 0.5, λ = 1 and σi,t = 30%)
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Figure 58: Comparison of the strategy performance Vt and the model performance Ṽt when
the underlying asset is a simulated geometric Brownian motion
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Figure 59: Comparison of the strategy performance Vt and the model performance Ṽt when
the underlying asset is a simulated geometric Brownian motion
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Figure 60: Decomposition of the trend-following strategy (S&P 500)
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Figure 61: Scatterplot between asset returns and momentum returns (S&P 500)
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Figure 62: Decomposition of the trend-following strategy (Nikkei 225)
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Figure 63: Scatterplot between asset returns and momentum returns (Nikkei 225)
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Figure 64: Correlation between the asset class trend-following strategy and the SG CTA
Index
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Figure 65: Comparison between the cumulative performance of the asset class trend-
following strategy and the SG CTA Index
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Figure 66: Option profile of the hedged strategy (α = 5, µ̂0 = −30%)
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Figure 67: Option profile of the hedged strategy (α = 5, µ̂0 = 30%)
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Figure 68: Probability density function of g̃t (st = −1, α = 0.5, λ = 1)
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Figure 69: Cumulative distribution function of g̃t (st = −1, α = 0.5, λ = 1)
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Figure 70: Probability density function of g̃t (st = 1, α = 1.0, λ = 2)
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Figure 71: Cumulative distribution function of g̃t (st = 1, α = 1.0, λ = 2)
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Figure 72: Probability density function of g̃t (st = 1, α = 0.5, λ = 2)
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Figure 73: Cumulative distribution function of g̃t (st = 1, α = 0.5, λ = 2)
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Figure 74: 95% Value-at-risk of the hedged strategy (σ = 30%, λ = 2)
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Figure 75: Simulation of the cross-hedging strategy (δ = 0.40)
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