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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
liability liquidity risk (or funding liquidity) modeling, the second dimension focuses on
asset liquidity risk (or market liquidity) modeling, and the third dimension considers
asset-liability liquidity risk management (or asset-liability matching). The purpose of
this research is to propose a methodological and practical framework in order to perform
liquidity stress testing programs, which comply with regulatory guidelines (ESMA,
2019) and are useful for fund managers. The review of the academic literature and
professional research studies shows that there is a lack of standardized and analytical
models. The aim of this research project is then to fill the gap with the goal to develop
mathematical and statistical approaches, and provide appropriate answers.

In this first part that focuses on liability liquidity risk modeling, we propose several
statistical models for estimating redemption shocks. The historical approach must
be complemented by an analytical approach based on zero-inflated models if we want
to understand the true parameters that influence the redemption shocks. Moreover,
we must also distinguish aggregate population models and individual-based models
if we want to develop behavioral approaches. Once these different statistical models
are calibrated, the second big issue is the risk measure to assess normal and stressed
redemption shocks. Finally, the last issue is to develop a factor model that can translate
stress scenarios on market risk factors into stress scenarios on fund liabilities.

Keywords: liquidity, stress testing, liability, redemption rate, redemption frequency, re-
demption severity, zero-inflated beta model, copula.
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1 Introduction

Liquidity stress testing in asset management is a complex topic because it is related to three
dimensions — liquidity risk, asset management and stress testing, whose linkages have been
little studied and are hard to capture. First, liquidity is certainly the risk that is the most
difficult to model with the systemic risk. If we consider market, credit, operational and
counterparty risks, there is a huge amount of academic literature on these topics in terms of
models, statistical inference and analysis. In terms of liquidity risk, the number of practical
studies and applied approaches is limited. Even though a great deal of research has been
completed on this subject, much of it is overly focused on descriptive analyses of liquidity, or
its impact on systemic risk, or policy rules for financial regulation. Moreover, this research
generally focuses on the banking sector (Grillet-Aubert, 2018). For instance, the liquidity
coverage ratio (LCR) and the net stable funding ratio (NSFR) of the Basel III regulatory
framework are of no help when measuring the liquidity risk in asset management. In fact,
the concept of liquidity risk in asset management is not well defined. More generally, it is
a recent subject and we must admit that the tools and models used in asset management
are very much lagging those developed in the banking sector. This is why the culture of
asset-liability management (ALM) is poor in investment management, both on the side of
asset managers and asset owners. Therefore, if we add the third dimension, stress testing,
we obtain an unknown and obscure topic, because the combination of liquidity risk and
stress testing applied to asset management is a new and difficult task.

This is not the first time that the regulatory environment has sped up the development
of a risk management framework. Previous occurrences include the case of market risk with
the Amendment of the first Basel Accord (BCBS, 1996), credit risk with the second con-
sultative paper on Basel II (BCBS, 2001), credit valuation adjustment with the publication
of the Basel III Accord (BCBS, 2010), interest rate risk in the banking book with the IR-
RBB guidelines (BCBS, 2016), etc. However, the measurement of these risks had already
benefited from the existence of analytical models developed by academics and professionals.
One exception was operational risk, since banks started from a blank page when asked to
measure it (BCBS, 1999). Asset managers now face a similar situation at this moment.
Between 2015 and 2018, the US Securities and Exchange Commission established several
rules governing liquidity management (SEC, 2015, 2016, 2018a,b). In particular, Rule 22e-4
requires investment funds to classify their positions in one of four liquidity buckets (highly
liquid investments, moderately liquid investments, less liquid investments and illiquid in-
vestments), establish a liquid investment minimum, and develop policies and procedures on
redemptions in kind. From September 2020, European asset managers must also comply
with new guidelines on liquidity stress testing (LST) published by the European Securi-
ties and Markets Authority (ESMA, 2019). These different regulations are rooted in the
agenda proposed by the Financial Stability Board to monitor and manage systemic risk of
non-bank non-insurer systemically important financial institutions (FSB, 2010). Even if the
original works of the FSB were biased, the idea that the asset management industry can
contribute to systemic risk has gained ground and is now widely accepted. Indeed, FSB
(2015) confused systemic risk and systematic market risk (Roncalli and Weisang, 2015a).
However, Roncalli and Weisang (2015b) showed that “the liquidation channel is the main
component of systemic risk to which the asset management industry contributes”. In this
context, liquidity is the major risk posed by the asset management industry that regulators
must control. But liquidity risk is not only a concern for regulators. It must also be a
priority for asset managers. The crisis of money market funds in the fourth quarter of 2008
demonstrated the fragility of some fund managers (Schmidt et al., 2016). Market liquidity
deteriorated in March and April 2020, triggering a liquidity shock on some investment funds
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and strategies. However, aside from the 2008 Global Financial Crisis and 2020 coronavirus
pandemic, which have put all asset managers under pressure, the last ten years have demon-
strated that liquidity is also an individual risk for fund managers. It was especially true
during episodes of flash crash1, where fund managers reacted differently. In a similar way,
idiosyncratic liquidity events may affect asset managers at the individual level (Thompson,
2019). Following some high-profile fund suspensions in mid-2019, asset managers received
requests from asset owners to describe their liquidity policies and conduct a liquidity review
of their portfolios. Therefore, we notice that liquidity is increasingly becoming a priority for
asset managers for three main reasons, because it is a reputational risk, they are challenged
by asset owners and it can be a vulnerability factor for financial performance.

However, even though liquidity stress testing in asset management has become one of
the hot topics in finance, it has attracted few academics and professionals, implying that the
research on this subject is not as dynamic as one might expect. In fact, it is at the same stage
as operational risk was in the early 2000s, when there was no academic research on this topic.
And it is also at the stage of ALM banking risk, where the most significant contributions
have come from professionals. Since liquidity stress testing in asset management is an asset-
liability management exercise, modeling progress mainly comes from professionals, because
the subject is so specific, requires business expertise and must be underpinned by industry-
level data. This is obviously an enormous hurdle for academics, and this explains the lack of
modeling and scientific approach that asset managers encounter when they want to develop
a liquidity stress testing framework. Therefore, the objective of this research is twofold.
First, the idea is to provide a mathematical and statistical formalization to professionals in
order to go beyond expert qualitative judgement. Second, the aim is to assist academics
in understanding this topic. This is important, because academic research generally boosts
the development of analytical models, which are essential for implementing liquidity stress
testing programs in asset management.

Liquidity stress testing in asset management involves so many dimensions that we have
decided to split this research into three parts:

1. liability liquidity risk modeling;

2. asset liquidity risk modeling;

3. asset-liability liquidity risk management.

Indeed, managing liquidity risk consists of three steps. First, we have to model the liability
liquidity of the investment fund, especially the redemption shocks. By construction, this
step must incorporate client behavior. Second, we have to develop a liquidity model for
assets. For that, we must specify a transaction cost model beyond the traditional bid-ask
spread measure. In particular, the model must incorporate two dimensions: price impact
and trading limits. These first two steps make the distinction between funding liquidity
and market liquidity. As noticed by Brunnermeier and Pedersen (2009), these two types of
liquidity may be correlated. However, we suppose that they are independent at this level
of analysis. While the first step gives the liquidity amount of the investment fund that can
be required by the investors, the second step gives the liquidity amount of the investment
fund that can be available in the market. Therefore, the third step corresponds to the asset-
liability management in terms of liquidity, that is the matching process between required
liquidity and available liquidity. This implies defining the part of the redemption shock
that can be managed by asset liquidation and the associated liquidity costs. It also implies

1For instance, during the US stock market flash crash (May 6, 2010), the US Treasury flash crash (October
15, 2014), the US ETF flash crash (August 24, 2015), etc.

13



Liquidity Stress Testing in Asset Management

defining the liquidity tools that can be put in place in order to manage the non-covered
part of the redemption shock or the liquidation shortfall. For instance, a liquidity buffer is
an example of one of these tools, but this is not the only solution. Redemption gates, side
pockets and redemptions in kind are alternative methods, but they are extreme solutions
that may break the fiduciary duties and liquidity promises of asset managers. Swing pricing
is also an important ALM tool, and is a challenging question when we consider the fair
calibration of swing prices.

Figure 1: The sequential approach of liquidity stress testing

Asset-liability management

(liquidity matching)

Asset (or market) liquidity

Liability (or funding) liquidity

The three-stage process has many advantages in terms of modeling. First, it splits a
complex question into three independent and more manageable problems. This is partic-
ularly the case of liability and asset modeling. Second, managing liquidity risk becomes
a sequential process, where the starting point is clearly identified. As shown in Figure 1,
we should begin with the liability risk. Indeed, if we observe no inflows or outflows, the
process stops here. As such, the first stage determines the amount to sell in the market and
it is measured with respect to the investor behavior. The liquidity risk has its roots in the
severity of the redemption shock. Market liquidity is part of the second phase. Depending
on the redemption size and the liquidity of the market, the fund manager will decide the
best solution to adopt. And the sequential process will conclude with the action of the fund
manager2. Finally, the third advantage concerns the feasibility of stress testing programs.
In this approach, stress testing concerns the two independent dimensions. We can stress the
liquidity on the liability side, or we can stress the liquidity on the asset side, or both, but
the rule is simple.

In the sequential approach, the liability of the investment fund is the central node of the
liquidity risk, and the vertex of the liquidity network. However, it is not so simple, because
the three nodes can be interconnected (Figure 2). If market liquidity deteriorates sharply,
investors may be incited to redeem in order to avoid a liquidity trap. In this case, funding
liquidity is impacted by market liquidity, reinforcing the feedback loop between funding
and market liquidity, which is described by Brunnermeier and Pedersen (2009). But this is
not the only loop. For instance, the choice of an ALM decision may also influence funding
liquidity. If one asset manager decides to suspend redemptions, it may be a signal for
the investors of the other asset managers if they continue to meet redemptions. Again,
we may observe a feedback loop between funding liquidity and asset-liability management.

2Of course, the fund manager’s action is not uniquely determined, because it depends on several pa-
rameters. This means that two fund managers can take two different decisions even if they face the same
situation in terms of redemption and market liquidity.
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Finally, it is also obvious that market liquidity is related to ALM decisions, because of many
factors such as trading policies, the first-mover advantage and crowding effects (Roncalli
and Weisang, 2015a). It follows that the liquidity risk given in Figure 1 is best described
by the dense and fully connected network given in Figure 2. Nevertheless, developing a
statistical model that takes into account the three reinforcing loops is not straightforward
and certainly too complex for professional use. Therefore, it is more realistic to adjust and
update the sequential models with second-round effects than to have an integrated dynamic
model.

Figure 2: The network risk of liquidity

Asset-liability
management

Market
liquidity

risk

Funding
liquidity

risk

Liquidity is a long-standing issue and also an elusive concept. This is particularly true
in asset management, where liquidity covers several interpretations. For example, some
asset classes are considered as highly liquid whereas other asset classes are illiquid. In the
first category, we generally find government bonds and large cap stocks. The last category
includes real estate and private equities. However, categorizing liquidity of a security is not
easy and there is no consensus. Let us consider for example Rule 22e-4(b) that is applied in
the US. The proposed rule was based on the ability to convert the security to cash within
a given period and distinguished six buckets: (a) convertible to cash within 1 business day,
(b) convertible to cash within 2-3 business days, (c) convertible to cash within 4-7 calendar
days, (d) convertible to cash within 8-15 calendar days, (e) convertible to cash within 16-30
calendar days (f) convertible to cash in more than one month. Finally, the adopted rule is
the following:

1. highly liquid investments (convertible to cash within three business days);

2. moderately liquid investments (convertible to cash within four to seven calendar days);

3. less liquid investments (expected to be sold in more than seven calendar days);

4. illiquid investments (cannot be sold in seven calendar days or less without significant
price impact).

Classifying a security into a bucket may be different from one fund manager to another.
Moreover, the previous categories depend on the market conditions. Nevertheless, even
if the current market liquidity is abundant, securities that can be categorized in the first
bucket must also face episodes of liquidity shortage (Blanqué and Mortier, 2019a). A typical
example concerns government bonds facing idiosyncratic risks. Blanqué and Mortier (2019a)
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gave the case of Italian bonds in 2018 during the discussion on the budget deficit. However,
most of the time, when we consider the liquidity of an asset class, we assume that it is static.
Certainly, this way of thinking reflects the practice of portfolio management. Indeed, it is
common to include a constant illiquidity premium when estimating the expected returns
of illiquid assets. But investors should stick to their investments without rebalancing and
trading if they want to capture this illiquidity premium. The split between liquid and illiquid
investments does not help, because it is related to the absolute level of asset illiquidity, and
not liquidity dynamics. However, the issue is more complex:

“[...] there is also broad belief among users of financial liquidity – traders, in-
vestors and central bankers – that the principal challenge is not the average level
of financial liquidity... but its variability and uncertainty” (Persaud, 2003).

This observation is important because it is related to the liquidity question from a regulatory
point of view. The liquidity risk of private equities or real assets is not a big concern for
regulators, because one knows that these asset classes are illiquid. Even if they become more
illiquid at some point, this should not dramatically influence investors (asset managers and
owners). Regulators and investors are more concerned by securities that are liquid under
some market conditions and illiquid under other market conditions. At first sight, it is
therefore a paradox that liquidity stress testing programs must mainly focus on highly or
moderately liquid instruments than on illiquid instruments. In fact, liquidity does not like
surprises and changes. This is why the liquidity issue is related to the cross-section of the
expected illiquidity premium for illiquid assets, but to the time-series illiquidity variance for
liquid assets.

This is all the more important that the liquidity risk must be measured and managed in
a stress testing framework, which adds another layer of complexity. Indeed, stress scenarios
are always difficult to interpret, and calibrating them is a balancing act, because they must
correspond to extreme but also plausible events (Roncalli, 2020). This is why the historical
method is the most used approach when performing stress testing. However, it is very poor
and not flexible in terms of risk management. Parametric approaches must be preferred since
stress periods are very heterogenous and outcomes are uncertain. Therefore, it makes more
sense to estimate and use stressed liquidity parameters than directly estimate a stressed
liquidity outcome. In this approach, the normal model is the baseline model on which we
could apply scenario analysis on the different parameters that define the liquidity model.
This is certainly the best way to proceed if we want to develop a factor-based liquidity stress
testing program, which is an important issue for fund management. Otherwise, liquidity
stress testing would be likely to remain a regulatory constraint or a pure exercise of risk
measurement, but certainly not a risk management process supporting investment policies
and fund management.

This paper is organized as follows. Section Two introduces the concept of redemption
rates and defines the historical approach of liquidity stress testing. In Section Three, we
consider parametric models that can be used to estimate redemption shocks. This implies
making the distinction between the redemption event and the redemption amount. From a
statistical point of view, this is equivalent to modeling the redemption frequency and the
redemption severity. After having developed an aggregate population model, we consider
an individual-based model. It can be considered as a first attempt to develop a behavioral
model, which is the central theme of Section Four. We analyze the simple case where re-
demptions between investors are independent and then extend the model where redemptions
are correlated to take into account spillover effects and contagion risk. Then, we develop
factor-based models of liquidity stress testing in Section Five. Finally, Section Six offers
some concluding remarks.
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2 Understanding the liability side of liquidity risk

In order to assess the liquidity risk of an investment fund, we must model its ‘funding ’
liquidity. Therefore, managing the liquidity in asset management looks like a banking asset-
liability management process (Roncalli, 2020). However, there is a major difference since
banking ALM concerns both balance sheet and income statement. This is not the case of an
investment fund, because we only focus on its balance sheet and the objective is to model
the redemption flows.

2.1 Balance sheet of an investment fund

In order to define the liability risk, we first have to understand the balance sheet of a
collective investment fund. A simplified illustration is given in Figure 3 for a mutual fund.
The total (gross) assets A (t) correspond to the market value of the investment portfolio.
They include stocks, bonds and all financial instruments that are invested. On the liability
side, we have two main balance sheet items. The first one corresponds to the debits D (t),
which are also called current or accrued liabilities. They are all the expenses incurred by
the mutual fund. For instance, the current liabilities include money owed to lending banks,
fees owed to the fund manager and the custodian, etc. The second liability item is the unit
capital C (t), which is owned by the investors. Each investor owns a number of units (or
shares) and is referred to as a ‘unitholder ’. This unit capital is equivalent to the equity
concept of a financial institution. A unitholder is then also called a shareholder in reference
to capital markets.

Figure 3: Balance sheet of mutual funds

A (t)

C (t)

D (t)

Unit capital

Debits

Total

Assets

Assets Liabilities

2.1.1 Definition of net asset value

The total net assets (TNA) equal the total value of assets less the current or accrued liabil-
ities:

TNA (t) = A (t)−D (t)

The net asset value (NAV) represents the share price or the unit price. It is equal to:

NAV (t) =
TNA (t)

N (t)
(1)

where the total number N (t) of shares or units in issue is the sum of all units owned by
all unitholders. The previous accounting rules show that the capital is exactly equal to the
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total net assets, which is also called the assets under management (AUM). The investment
fund’s capital is therefore an endogenous variable and depends on the performance of the
total net assets:

C (t) = N (t) ·NAV (t)

= TNA (t)

At time t+1, we assume that the portfolio’s return is equal to R (t+ 1). Since D (t)� A (t),
it follows that:

TNA (t+ 1) = A (t+ 1)−D (t+ 1)

= (1 +R (t+ 1))A (t)−D (t+ 1)

≈ (1 +R (t+ 1)) · TNA (t)

meaning that:
NAV (t+ 1) ≈ (1 +R (t+ 1)) ·NAV (t)

The investment fund’s capital is therefore time-varying. It increases when the performance
of the asset is positive, and it decreases otherwise.

Remark 1 In the sequel, we assume that the mutual fund is priced daily, meaning that the
NAV of the mutual fund is calculated at the end of the market day. Therefore, the time t
represents the current market day, whereas the time t + 1 corresponds to the next market
day.

2.1.2 The effect of subscriptions and redemptions

Let us now introduce the impact of subscriptions and redemptions. In this case, new and
current investors may purchase new mutual fund units, while existing investors may redeem
all or part of their shares. Subscription and redemption orders must be known by the fund
manager before t+ 1 in order to be executed. In this case, the number of units becomes:

N (t+ 1) = N (t) +N+ (t+ 1)−N− (t+ 1)

where N+ (t+ 1) is the number of units to be created and N− (t+ 1) is the number of units
to be redeemed. At time t+ 1, we have:

NAV (t+ 1) =
TNA (t+ 1)

N (t+ 1)

=
TNA (t+ 1)

N (t) +N+ (t+ 1)−N− (t+ 1)

We deduce that:

TNA (t+ 1) = N (t) ·NAV (t+ 1) + F+ (t+ 1)−F− (t+ 1) (2)

where F+ (t+ 1) = N+ (t+ 1) · NAV (t+ 1) and F− (t+ 1) = N− (t+ 1) · NAV (t+ 1) are
the investment inflows and outflows. Again, we notice that the investment fund’s capital is
time-varying and depends on the fund flows.

From Equation (2), we deduce that:

TNA (t+ 1) = N (t) ·NAV (t+ 1) + F+ (t+ 1)−F− (t+ 1)

≈ N (t) · (1 +R (t+ 1)) ·NAV (t) + F+ (t+ 1)−F− (t+ 1)

= (1 +R (t+ 1)) · TNA (t) + F+ (t+ 1)−F− (t+ 1)
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The current net assets are approximatively equal to the previous net assets plus the perfor-
mance value plus the net flow. We retrieve the famous formula of Sirri and Tufano (1998)
when we want to estimate the net flow from the NAV and TNA of the fund:

F (t+ 1) = F+ (t+ 1)−F− (t+ 1)

= TNA (t+ 1)− (1 +R (t+ 1)) · TNA (t)

= TNA (t+ 1)−
(

NAV (t+ 1)

NAV (t)

)
TNA (t) (3)

2.1.3 Liability risks

Since the capital is a residual, we face three liability risks. The first one deals with the ac-
crued liabilities D (t). Generally, the debits are a very small part of the liabilities. However,
we can potentially face some situations where the debits are larger than the assets, implying
that the net asset value becomes negative. In particular, this type of situation occurs when
the fund is highly leveraged. The second risk concerns the inflows. If the investment fund
has a big subscription, it may have some difficulties buying the financial instruments. For
instance, this type of situation may occur when the fund must buy fixed-income securities
in a bond bull market and it is difficult to find investors who are looking to sell bonds.
The third liability risk is produced by the outflows. In this case, the fund manager must
sell assets, which could be difficult in illiquid and stressed market conditions. The last two
situations are produced when supply and demand dynamics are totally unbalanced (higher
supply for buying assets or higher demand for selling assets). In this article, we focus on
the third liability risk, which is also called redemption risk.

2.2 Measuring redemption risk

In order to assess an investment fund’s redemption risk, we need an objective measurement
system, which is well scaled. For instance, the outflows F− (t) are not very interesting,
because they depend on the investment fund’s assets under management. In fact, they must
be scaled in order to be a homogeneous measure that can be used to compare the redemption
behavior across time, across funds and across investors.

2.2.1 Gross redemption rate

The (gross) redemption rate is defined as the ratio between the fund’s redemption flows and
total net assets:

R (t) =
F− (t)

TNA (t)
(4)

We verify the property that R (t) ∈ [0, 1]. For example, if we observe an outflow of $100 mn
for a fund of $5 bn, we have R (t) = 100/5 000 = 2%. In the case where the outflow is $10
mn and the fund size is $100 mn, the redemption rate is equal to 10%. The redemption is
more severe for the small fund than for the large fund.

We notice that Equation (4) is used to calculate the ex-post redemption rate, meaning
that the value of outflows is known. Therefore, Equation (4) corresponds to the definition
of the redemption rate, but it can also be used to estimate or predict the redemption flows.
Indeed, we have:

F̂− (t+ 1) = R (t+ 1) · TNA (t) (5)

In this case, R (t+ 1) is a random variable and is not known at the current time t. By
assuming that redemption rates are stationary, the challenge is then to model the associated
probability distribution F.
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2.2.2 Net redemption rate

The guidelines on the liquidity stress testing published by ESMA (2019) refer to both gross
and net redemptions:

“LST should be adapted appropriately to each fund, including by adapting:
[...] the assumptions regarding investor behaviour (gross and net redemptions)”
(ESMA, 2019, page 36).

Following this remark, we can also define the net flow rate by considering both inflows and
outflows:

R ± (t) =
F (t)

TNA (t)
(6)

This quantity is more complex than the previous one, because it cannot be used from an
ex-ante point of view:

F̂ (t+ 1) 6= R ± (t+ 1) · TNA (t)

The reason is that the outflows are bounded and cannot exceed the current assets under
management. This is not the case for the inflows. For example, we consider a fund with
a size of $100 mn. By construction, we have3 F̂− (t+ 1) ≤ 100, but we can imagine that
F̂+ (t+ 1) > 100. The fund size can double or triple, in particular when the investment
fund is young and small.

Nevertheless, the use of net flows is not foolish since the true liability risk of the fund is
on the net flows. If the fund manager faces a large redemption, which is offset by a large
subscription, there is no liquidity risk. The issue is that the use of net flows is difficult
to justify in stress periods. In these cases, inflows generally disappear and the probability
distribution of R ± (t) may not reflect the liability risk in a stress testing framework. For
example, let us consider an asset class that has experienced a bull market over the last
three years. Certainly, we will mainly observe positive net flows and a very small number
of observations with negative net flows. We may think that these data are not relevant for
building stress scenarios. More generally, if an asset manager uses net flow rates for stress
testing purposes, only the observations during historical stress periods are relevant, meaning
that the calibration is based on a small fraction of the dataset.

In fact, the use of net flows is motivated by other considerations. Indeed, the computation
of R (t) requires us to know the outflows F− (t) exactly. Moreover, as we will see later, R (t)
must be computed for all the investor categories that are present in the fund (retail, private
banking, institutional, etc.). This implies in-depth knowledge of the fund’s balance sheet
liability, meaning that the asset manager must have a database with all the flows of all the
investors on a daily basis. From an industrial point of view, this is a big challenge in terms of
IT systems between the asset manager and the custodian. This is why many asset managers
don’t have the disaggregated information on the liability flows. An alternative measure is
to compute the net redemption rate, which corresponds to the negative part of the net flow
rate:

R − (t) = max

(
0,− F (t)

TNA (t)

)
It has the good mathematical property that R − (t) ∈ [0, 1]. Indeed, we have:

R − (t) = max

(
0,
F− (t)−F+ (t)

TNA (t)

)
(7)

3In order to simplify the calculus, we do not take into account the daily performance of the fund.
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and its maximum value is reached when F− (t) = TNA (t) and F+ (t) = 0. Moreover, we
notice that the net redemption rate is equal to the gross redemption rate when there are no
inflows:

R − (t) = max

(
0,
F− (t)

TNA (t)

)
= R (t)

Otherwise, we have:
R − (t) < R (t)

From a risk management point of view, it follows that redemption shocks based on net re-
demptions may be underestimated compared to redemption shocks based on gross redemp-
tions. However, we will see later that the approximation R (t) ≈ R − (t) may be empirically
valid under some conditions.

2.2.3 Liability classification

The computation of redemption rates only makes sense if they are homogeneous, coherent
and comparable. Let us assume that we compute the redemption rate R (t) at the level of
the asset management company, and we have the historical data for the last ten years. By
assuming that there are 260 market days per year, we have a sample of 2 600 redemption
rates. We can compute the mean, the standard deviation, different quantiles, etc. Does it
help with building a stress scenario for a mutual fund? Certainly not, because redemptions
depend on the specific investor behavior at the fund level and not on the overall investor
behavior at the asset manager level. For instance, we can assume that an investor does
not have the same behavior if he is invested in an equity fund or a money market fund.
We can also assume that the redemption behavior is not the same for a central bank, a
retail investor, or a pension fund. Therefore, we must build categories that correspond
to homogenous behaviors. Otherwise, we will obtain categories, whose behavior is non-
stationary. But, without the stationarity property, risk measurement is impossible and
stress testing is a hazardous exercise.

Therefore, liability categorization is an important step before computing redemption
rates. For instance, ESMA (2019) considers four factors regarding investor behavior: in-
vestor category, investor concentration, investor location and investor strategy. Even though
the last three factors are significant, the most important factor remains the investor type.
For instance, AMF (2017, page 12) gives an example with the following investor types: large
institutional (tier one), small institutional (tier two), investment (or mutual) fund, private
banking network and retail investor. Other categories can be added: central bank, sovereign,
corporate, third-party distributor, employee savings plan, wealth management, etc. More-
over, it is also important to classify funds into homogeneous buckets such as balanced funds,
bond funds, equity funds, etc. An example of an investor/fund categorization matrix is
given in Table 1.

Remark 2 The granularity of the investor/fund classification is an important issue. It is
important to have a very detailed classification at the level of the database in order to group
categories together from a computational point of view. In order to calibrate stress scenarios,
we must have a sufficient number of observations in each cell of the classification matrix.
Let us for instance consider the case of central banks. We can suppose that their behavior
is very different to the other investors. Therefore, it is important for an asset manager to
be aware of the liabilities with respect to central banks. Nevertheless, there are few central
banks in the world, meaning we may not have enough observations for calibrating some cells
(e.g. central bank/equity or central bank/real asset), and we have to merge some cells (across
investor and fund categories).
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Table 1: An example of two-dimensional categorization matrix
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2.2.4 The arithmetic of redemption rates

We consider a fund. We note TNAi (t) the assets under management of the investor i for
this fund. By definition, we have:

TNAi (t) = Ni (t) ·NAV (t)

where NAV (t) is the net asset value of the fund and Ni (t) is the number of units held by
the investor i for the fund. The fund’s assets under management are equal to:

TNA (t) =
∑
k

TNA(k) (t)

where TNA(k) (t) =
∑
i∈IC(k)

TNAi (t), and IC(k) is the k th investor category. It follows

that:

TNA (t) =
∑
k

∑
i∈IC(k)

TNAi (t)

=
∑
k

∑
i∈IC(k)

Ni (t) ·NAV (t)

= N (t) ·NAV (t)

where N (t) =
∑
k

∑
i∈IC(k)

Ni (t) is the total number of units in issue. We retrieve the

definition of the assets under management (or total net assets) at the fund level. We can
obtain a similar breakdown for the outflows4:

F− (t) =
∑
k

∑
i∈IC(k)

F−i (t) =
∑
k

F−(k) (t)

The redemption rate for the investor category IC(k) is then equal to:

R (k) (t) =
F−(k) (t)

TNA(k) (t)
(8)

4We have F−k (t) =
∑
i∈IC(k)

F−i (t).
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We deduce that the relationship between the investor-based redemption rates and the fund-
based redemption rate is:

R (t) =
F− (t)

TNA (t)

=

∑
k F
−
(k) (t)

TNA (t)

=

∑
k TNA(k) (t) · R (k) (t)

TNA (t)

=
∑
k

ω(k) (t) · R (k) (t) (9)

where ω(k) (t) represents the weights of the investor category IC(k) in the fund:

ω(k) (t) =
TNA(k) (t)

TNA (t)

Equation (9) is very important, because it shows that the redemption rate at the fund level
is a weighted-average of the redemption rates of the different investor categories.

Let us now consider different funds. We note R (f,k) (t) as the redemption rate of the
investor category IC(k) for the fund f at time t. By relating the fund f to its fund category
FC(j), we obtain a database of redemption rates by investor category IC(k) and fund category
FC(j):

DB(j,k) (T ) =
{

R (f,k) (t) : f ∈ FC(j), t ∈ T
}

DB(j,k) (T ) is then the sample of all redemption rates of the investor category IC(k) for all the
funds that fall into the fund category FC(j) during the observation period T . We notice that
DB(j,k) (t) does not have a unique element for a given date t because we generally observe
several redemptions at the same date for different funds and the same investor category.

2.3 Calibration of historical redemption scenarios

The key parameter for computing the redemption flows is the redemption rate, which is
defined for an investor category and a fund category. It is not calibrated at the fund level,
because past redemption data for a given specific fund are generally not enough to obtain
a robust estimation. This is why we have pooled redemption data as described in the
previous paragraph. Using these data, we can estimate the probability distribution F of the
redemption rate and define several statistics that can help to build stress scenarios.

2.3.1 Data

In what follows, we consider the liability data provided by Amundi Asset Management from
January, 1st 2019 to August, 19th 2020. The database is called ‘Amundi Cube Database’ and
contains 1 617 403 observations if we filter based on funds with assets under management
greater than e5 mn. The breakdown by investor categories5 is given in Table 40 on page 102.
The number of observations is 464 399 for retail investors, 310 452 for third-party distribu-
tors, 267 600 for institutionals, etc. The investor category which is the smallest is central
banks with 15 523 observations. In terms of fund categories, bond, equity and balanced
funds dominate with respectively 452 942, 436 401 and 361 488 observations. The smallest

5The Amundi database contains 13 investor and 13 fund categories.
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categories are private loan funds and real estate funds. In terms of classification matrix, the
largest matrix cells are retail/balanced, third-party distributor/equity, retail/equity, insti-
tutional/bond, retail/bond, third-party distributor/bond, retail/structured, etc.

Remark 3 In what follows, we apply a filter that consists in removing observations that
corresponds to dedicated mutual funds (FCP and SICAV) and mandates (see Table 41 on
page 103). The motivation is to focus on mutual funds with several investors, and this issue
will be extensively discussed in Section 4.1.3 on page 54.

2.3.2 Net flow, net redemption and gross redemption rates

Figure 4: Retail investor
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We first begin by comparing the gross redemption rate R , the net flow rate R ± and the
net redemption rate R −. Some results are given in Figures 4 and 5 for retail and insurance
investors and bond and equity funds. In the case of insurance companies, we notice that the
approximation R ≈ R − ≈ −R ± is valid when the redemption rate is greater than 20%. This
is not the case for retail investors, where we observe that some large redemptions may be
offset by large subscriptions6. The difference between retail and insurance categories lies in
the investor concentration. When an investor category is concentrated, there is a low prob-
ability that this offsetting effect will be observed. This is not the case when the granularity
of the investor category is high. We also observe that the approximation R ≈ R − ≈ −R ±

depends on the fund category. For instance, it is not valid for money market funds. The
reason is that we generally observe subscriptions in a bull market and redemptions in a bear
market when the investment decision mainly depends on the performance of the asset class.
This is why large redemptions and subscriptions tend to be mutually exclusive (in the math-
ematical sense) in equity or bond funds. The mutual exclusivity property is more difficult

6We observe the same phenomenon when we consider the data of third-party distributors (see Figure 37
on page 104).
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Figure 5: Insurance
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Figure 6: Money market fund
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to observe for money market, enhanced treasury or balanced funds, because their inflows
are less dependent on market conditions. We conclude that net redemption rates may be
used in order to perform stress scenarios under some conditions regarding the concentration
of the investor category and the type of mutual fund.

2.3.3 Statistical risk measures

For a given investor/fund category, we note F as the probability distribution of the redemp-
tion rate. We can define several risk measures (Roncalli, 2020, pages 62-63):

• the mean:

M =

∫ 1

0

xdF (x)

• the standard deviation-based risk measure:

SD (c) = M + c

∫ 1

0

(
x−M2

)
dF (x)

• the quantile (or the value-at-risk) at the confidence level α:

Q (α) = F−1 (α)

• the average beyond the quantile (or the conditional value-at-risk):

C (α) = E
[
R | R ≥ F−1 (α)

]
The choice of a risk measure depends on its use. For instance, M can be used by the fund
manager daily, because it is the expected value of the daily redemption rate. If the fund
manager prefers to have a more conservative measure, he can use SD (1). M and SD (c) make
sense in normal periods from a portfolio management perspective, but they are less relevant
in a stress period. This is why it is better to use Q (α) and C (α) from a risk management
point of view. In the asset management industry, the consensus is to set α = 99%.

In Table 2, we have reported the values of M, Q (99%) and C (99%) by considering the
empirical distribution of gross redemption rates by client category. We do not consider the
SD-measure because we will see later that there is an issue when it is directly computed
from a sample of historical redemption rates. On average, the expected redemption rate is
roughly equal to 20 bps. It differs from one client category to another, since the lowest value
of M is observed for central banks whereas the highest value of M is observed for corporates.
The 99% value-at-risk is equal to 3.5%. This means that we observe a redemption rate
of 3.5% every 100 days, that is every five months. Again, there are some big differences
between the client categories. The riskiest category is corporate followed by sovereign and
auto-consumption. If we focus on the conditional value-at-risk, we are surprised by the high
values taken by C (99%). If we consider all investor categories, C (99%) is more than 15%,
and the ratio R (99%) between C (99%) and Q (99%) is equal to 4.51. This is a very high
figure since this ratio is generally less than 2 for market and credit risks. For example,
in the case of a Gaussian distribution N

(
0, σ2

)
, the ratio R (α) between the conditional

value-at-risk and the value-at-risk is equal to:

R (α) =
C (α)

Q (α)
=

φ
(
Φ−1 (α)

)
(1− α) Φ−1 (α)
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This ratio is respectively equal to 1.37 and 1.15 when α = 90% and α = 99%. Moreover,
Roncalli (2020, page 118) showed that it is a decreasing function of α and:

lim
α→1−

R (α) = 1

We deduce that the ratio is lower than 1.5 for reasonable values of the confidence level α.
Therefore, the previous figure R (99%) = 4.51 indicates that redemption risk is more skewed
than market and credit risks.

Table 2: Redemption statistical measures in % by investor category

Client M Q (99%) C (99%) R (99%)
Auto-consumption 0.38 7.44 24.86 3.34
Central bank 0.04 0.00 4.38 ∞
Corporate 0.54 12.71 28.21 2.22
Corporate pension fund 0.13 0.50 13.06 26.22
Employee savings plan 0.06 1.13 4.86 4.30
Institutional 0.27 5.11 22.79 4.46
Insurance 0.26 5.25 21.24 4.05
Other 0.23 3.41 20.22 5.92
Retail 0.15 1.92 9.18 4.77
Sovereign 0.45 8.28 39.85 4.81
Third-party distributor 0.23 3.90 13.72 3.52
Total 0.22 3.50 15.79 4.51

Table 3 reports the statistical measures by fund category. Again, we observe some big
differences. Money market and enhanced treasury funds face a high redemption risk followed
by bond and equity funds. This is normal because treasury funds can be converted to cash
very quickly, investors are motivated to redeem these funds when they need cash, and their
holding period is short. At the global level, we also notice that the redemption behavior
is similar between bond and equity funds. For instance, their 99% value-at-risk is close
to 3% (compared to 6% for the enhanced treasury category and 22% for money market
funds). Another interesting result is the lower redemption rate of balanced funds compared
to bond and equity funds. This result is normal because balanced funds are more diversified.
Therefore, investors in balanced funds are more or less protected by a bond crisis or an equity
crisis. Finally, structured funds are the least exposed category to redemption risk, because
they generally include a capital guarantee or protection option.

Table 3: Redemption statistical measures in % by fund category

Fund M Q (99%) C (99%) R (99%)
Balanced 0.14 1.77 8.14 4.61
Bond 0.20 3.18 14.23 4.47
Enhanced treasury 0.40 6.30 31.15 4.94
Equity 0.18 2.68 12.94 4.84
Money market 1.06 21.76 46.13 2.12
Other 0.11 1.19 9.32 7.84
Structured 0.04 0.45 3.52 7.88
Total 0.22 3.50 15.79 4.51
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Table 4: Historical M-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.27 0.36 0.65 0.30 1.58 0.18 0.38
Central bank 0.01 0.06 0.11 0.04
Corporate 0.08 0.15 0.27 0.25 1.52 0.07 0.54
Corporate pension fund 0.17 0.05 0.10 0.10 0.55 0.00 0.13
Employee savings plan 0.03 0.05 0.13 0.06 0.06 0.08 0.06
Institutional 0.13 0.16 0.64 0.18 1.47 0.06 0.27
Insurance 0.17 0.15 0.12 0.16 0.90 0.08 0.26
Other 0.08 0.10 0.33 0.21 0.76 0.02 0.23
Retail 0.15 0.14 0.26 0.16 0.91 0.07 0.04 0.15
Sovereign 0.01 0.01 0.16 0.19 1.91 0.06 0.45
Third-party distributor 0.12 0.24 0.67 0.19 0.92 0.28 0.08 0.23
Total 0.14 0.20 0.40 0.18 1.06 0.11 0.04 0.22

Table 5: Historical Q-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 2.93 7.57 12.62 5.46 25.98 3.23 7.44
Central bank 0.00 0.00 0.12 0.00
Corporate 0.30 1.58 4.90 3.88 24.14 0.00 12.71
Corporate pension fund 0.39 0.05 1.30 0.03 13.09 0.00 0.50
Employee savings plan 1.06 1.70 2.35 1.08 2.51 0.25 1.13
Institutional 0.84 1.94 8.68 3.10 34.82 0.00 5.11
Insurance 0.32 0.21 3.87 0.50 18.39 0.00 5.25
Other 0.73 0.56 2.40 2.20 14.75 0.05 3.41
Retail 2.01 1.50 4.72 1.65 18.36 1.17 0.45 1.92
Sovereign 0.11 0.14 7.98 0.22 66.36 0.00 8.28
Third-party distributor 1.32 4.59 11.13 3.38 14.66 3.96 1.11 3.90
Total 1.77 3.18 6.30 2.68 21.76 1.19 0.45 3.50

Table 6: Historical C-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 21.08 23.37 40.73 21.24 54.96 15.50 24.86
Central bank 1.28 6.05 10.11 4.38
Corporate 7.31 14.98 22.80 22.48 38.37 6.52 28.21
Corporate pension fund 17.22 5.14 9.24 9.58 32.33 0.00 13.06
Employee savings plan 2.48 3.16 10.60 4.91 4.97 7.91 4.86
Institutional 10.99 15.40 62.30 16.27 58.10 6.26 22.79
Insurance 16.35 14.65 10.59 15.32 37.28 7.62 21.24
Other 7.45 9.84 32.56 18.61 46.88 2.17 20.22
Retail 7.02 8.34 15.99 8.95 44.38 5.03 3.03 9.18
Sovereign 0.39 1.35 15.20 17.97 86.47 5.73 39.85
Third-party distributor 6.69 14.53 42.24 11.22 32.68 20.16 6.85 13.72
Total 8.14 14.23 31.15 12.94 46.13 9.32 3.52 15.79

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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The historical statistical measures7 for the classification matrix are given in Tables 4,
5 and 6. We notice that the two dimensions are important, since one dimension does not
dominate the other. This means that a low-risk (resp. high-risk) investor category tends
to present the lowest (resp. highest) redemption statistics whatever the fund category. In
addition, the ranking of redemption statistics between fund categories is similar whatever
the investor category. Nevertheless, we observe some exceptions and new stylized facts. For
instance, we have previously noticed that bond and equity funds have similar redemption
rates on average. This is not the case for the corporate, corporate pension fund and sovereign
categories, for which historical C-statistics are more important for equity funds than bond
funds. For the corporate pension fund category, the risk is also higher for balanced funds
than for bond funds.

2.3.4 Defining historical stress scenarios

According to BCBS (2017, page 60), a historical stress scenario “aims at replicating the
changes in risk factor shocks that took place in an actual past episode”. If we apply this
definition to the redemption risk, the computation of the historical stress scenario is simple.
First, we have to choose a stress period T stress and second, we compute the maximum
redemption rate:

X
(
T stress

)
= max
t∈T stress

R (t)

For example, if we apply this definition to our study period, we obtain the results given
in Table 7. We recall that the study period runs from January 2019 to August 2020 and
includes the Coronavirus pandemic crisis, which was a redemption stress period. We observe
that the X-statistic is generally equal to 100%! This is a big issue, because it is not helpful
to consider that liquidity stress testing of liabilities leads to a figure of 100%. The problem is
that the X-statistic is not adapted to redemption risk. Let us consider an investor category
IC(k) and a fund category FC(j). The X-statistic is computed by taking the maximum of
all redemption rates for all funds that belong to the fund category:

X(j,k)

(
T stress

)
= max
t∈T stress

{
R (f,k) (t) : f ∈ FC(j)

}
If there is one fund with only one investor and if this investor redeems 100%, X(j,k) (T stress)
is equal to 100%. However, the asset manager does not really face a liquidity risk in this
situation, because there is no other investor in this fund. So, the other investors are not
penalized. We have excluded this type of fund. However, we face a similar situation in many
other cases: small funds with a large fund holder, funds with a low number of unitholders,
etc. Moreover, this type of approach penalizes big asset managers, which have hundreds of
funds. Let us consider an example. For a given investor/fund category, the fund manager A
has 100 funds of $100 million, whereas the fund manager B has one fund of $10 billion. From
a theoretical point of view, A and B face the same redemption risk, since they both manage
$10 billions for the same investor/fund category. However, it is obvious that XA � XB ,
meaning that the historical stress scenario for the fund manager A will be much higher than
the historical stress scenario for the fund manager B. This is just a probabilistic counting
principle as shown in Appendix A.1 on page 88. If we consider the previous example, the
historical stress scenario for the fund manager A is larger than 99.9% when the historical
stress scenario for the fund manager B is larger than 6.68% (see Figure 38 on page 105).
More generally, the two stress scenarios are related in the following manner:

Xn = 1− (1− X1)
n

where X1 is the X-measure for one fund and Xn is the X-measure for n funds.

7They are not calculated if the number of observations is less than 200.
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Table 7: Historical X-statistic in % by investor/fund category

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption 100.00 100.00 100.00 100.00 99.65 100.00
Central bank 9.17 29.60 50.00
Corporate 78.64 83.44 100.00 94.14 97.72 100.00
Corporate pension fund 100.00 100.00 15.79 100.00 94.78 0.00
Employee savings plan 50.79 15.35 100.00 100.00 14.71 100.00
Institutional 99.09 100.00 100.00 100.00 100.00 100.00
Insurance 99.99 100.00 56.96 100.00 99.93 77.13
Other 50.00 100.00 100.00 100.00 100.00 100.00
Retail 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Sovereign 5.44 21.12 24.91 100.00 100.00 100.00
Third-party distributor 100.00 100.00 100.00 100.00 97.04 100.00 97.98

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured

Remark 4 Another approach consists in computing the average redemption rate daily:

R (j,k) (t) =
∑

f∈FC(j)

TNA(f)∑
f∈FC(j) TNA(f)

R (f,k) (t)

where the weights are proportional to the size of funds f that belong to the jth fund category
FC(j). In this case, we have:

X(j,k)

(
T stress

)
= max
t∈T stress

R (j,k) (t)

This method does not have the previous drawback, but it has other shortcomings such as an
information loss. However, the biggest disadvantage is that the historical stress scenario is
generally based on the largest fund, except when the funds have similar size.

Since X-measures can not be used to build redemption shocks, we propose using Q or
C-measures. Q (99%) is the daily value-at-risk at the 99% confidence level. This means
that its return period is 100 days. On average, we must observe that redemption shocks are
greater than Q (99%) two and a half times per year. We can also use the conditional value-
at-risk C (99%) if we want more severe redemption shocks. The drawback of C (99%) is that
we don’t know the return period of such event. However, it does make sense because it is a
very popular measure in risk management, and it is well received by regulatory bodies and
supervisors (Roncalli, 2020). Nevertheless, we must be cautious about the computed figures
obtained in Tables 5 and 6 on page 28. For example, we don’t have the same confidence
level between the matrix cells, because the estimates are not based on the same number
of observations. In the case of retail investors or third-party distributors, we generally use
a huge number of observations whereas this is not the case with the other categories. In
Table 8, we give an example of confidence level codification. We see that some cells are not
well estimated since the number of observations is less than 10 000. For some of them, the
number of observations is very low (less than 200), implying that the confidence on these
estimates is very poor.

Therefore, the estimated values cannot be directly used as redemption shocks. However,
they help risk managers and business experts to build redemption shocks. Starting from
these figures, they can modify them and build a table of redemption shocks that respect
the risk coherency Cinvestor between investor categories and the risk coherency Cfund between
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Table 8: Confidence in estimated values with respect to the number of observations

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption • • • • • • • • • • • • • • • • ◦ ◦ ◦
Central bank • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Corporate • • • • • • • • • • • • ◦ ◦ ◦
Corporate pension fund • • • • • • • • • • • ◦ ◦ ◦
Employee savings plan • • • • • • • • • • • ◦ ◦ ◦ • •
Institutional • • • • • • • • • • • • • • • ◦ ◦ ◦
Insurance • • • • • • • • • • • • • • ◦ ◦ ◦
Other • • • • • • • • • • • • • • ◦ ◦ ◦
Retail • • • • • • • • • • • • • • • • • • • •
Sovereign • • • • • • • • • • • ◦ ◦ ◦
Third-party distributor • • • • • • • • • • • • • • • • • • •

◦ ◦ ◦ 0− 10, ◦ ◦ 11− 50, ◦ 51− 200, • 201− 1 000, • • 1 001− 10 000, • • • +10 000

fund categories8. The risk coherency Cinvestor means that if one investor category is assumed
to be riskier than another, the global redemption shock of the first category must be greater
than the global redemption shock of the second category:

IC(k1) � IC(k2) ⇒ S(k1) ≥ S(k2)

For example, if we consider the Q-measure, we can propose the following risk ordering:

1. central bank, corporate pension fund

2. employee savings plan, retail

3. other, third-party distributor

4. institutional, insurance

5. auto-consumption, corporate, sovereign

In this case, the redemption shock S(j,k) for the (j, k)-cell depends on the global redemption
shock S(k) for the investor category IC(k). For instance, we can set the following rule of
thumb:

S(j,k) = m(j) · S(k) (10)

where m(j) is the multiplicative factor of the fund category FC(j). In a similar way, the risk
coherency Cfund means that if one fund category is assumed to be riskier than another, the
global redemption shock of the first category must be greater than the global redemption
shock of the second category:

FC(j1) � FC(j2) ⇒ S(j1) ≥ S(j2)

For example, if we consider the Q-measure, we can propose the following risk ordering:

1. structured

2. balanced, other

3. bond, equity

8For instance, if we consider the sovereign category, it is difficult to explain the big difference of C (99%)
between bond and equity funds
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4. enhanced treasury

5. money market

The redemption shock S(j,k) for the (j, k)-cell depends then on the redemption shock S(j)
for the fund category IC(j). Again, we can set the following rule of thumb:

S(j,k) = m(k) · S(j) (11)

where m(k) is the multiplicative factor of the investor category IC(k). We can also combine
the two rules of thumb and we obtain the mixed rule:

S(j,k) =
m(k) · S(j) +m(j) · S(k)

2
(12)

Let us illustrate the previous rules of thumb by considering the Q-measure. Table 9 gives an
example of S(j,k) by considering the risk coherency9 Cinvestor, whereas Table 10 corresponds
to the risk coherency10 Cfund. The mixed rule is reported in Table 11. These figures can then
be modified by risk managers and business experts by considering the specificity of some
matrix cells. For instance, it is perhaps not realistic to have the same redemption shock
for balanced funds between auto-consumption and corporates. Moreover, these redemption
shocks can also be modified by taking into account the C-measure. For instance, the con-
ditional value-at-risk for bond funds is much higher for third-party distributors than for
sovereigns. Perhaps we can modify the redemption shock of 3.3% and have a larger value
for third-party distributors. It is even more likely that the estimated values of Q and C
are based on 75 591 observations for the third-party distributor category, and 2 261 for the
sovereign category. Therefore, we can consider that the estimated value of 4.59% obtained
in Table 5 on page 28 does make more sense than the proposed value of 3.3% obtained in
Table 11 for the third-party distributor/bond matrix cell. In a similar way, we can consider
that the estimated value of 0.14% does make less sense than the proposed value of 7.0% for
the sovereign/bond matrix cell.

The previous analysis shows that building redemption shocks in a stress testing frame-
work is more of an art than a science. A pure quantitative approach is dangerous because
it is data-driven and it does not respect some coherency properties. However, historical
statistics are very important because they provide an anchor point for risk managers and
business experts in order to propose stress scenarios that are satisfactory from regulatory,
risk management and fund management points of view. Historical data are also important
because they help to understand the behavior of clients. It is different from one fund cate-
gory to another, it also depends on the granularity of the classification, it may depend on
the time period, etc. In what follows, we complete this pure historical analysis using more
theoretical models. These models are important, because an historical approach is limited
when we want to understand contagion effects between investors, correlation patterns be-
tween funds, time properties of redemption risk, the impact of the holding period, etc. The
idea is not to substitute one model with another, but to rely on several approaches, because
there is not just one single solution to the liability stress testing problem.

9We use the following values: S(k) = 0.5% for central banks and corporate pension funds, S(k) = 2%
for employee savings plans and retail, S(k) = 3.5% for other and third-party distributors, S(k) = 5% for
institutionals and insurance companies, and S(k) = 8% for auto-consumption, corporates and sovereigns.
For the multiplication factor, we assume that m(j) = 0.25 for structured, m(j) = 0.5 for balanced and other,
m(j) = 1 for bond and equity, m(j) = 1.75 for enhanced treasury, and m(j) = 6 for money market.

10We use the following values: S(j) = 0.5% for structured, S(j) = 1.5% for balanced and other, S(j) =
3% for bond and equity, S(j) = 5% for enhanced treasury, and S(j) = 20% for money market. For the
multiplication factor, we assume that m(k) = 0.25 for central banks and corporate pension funds, m(k) = 0.5
for employee savings plans and retail, m(k) = 1 for other and third-party distributors, m(k) = 1.5 for
institutionals and insurance companies, and m(k) = 2 for auto-consumption, corporates and sovereigns.
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Table 9: Redemption shocks in % computed with the rule of thumb (10)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Central bank 0.3 0.5 0.9 0.5 3.0 0.3 0.1 0.5
Corporate 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Corporate pension fund 0.3 0.5 0.9 0.5 3.0 0.3 0.1 0.5
Employee savings plan 1.0 2.0 3.5 2.0 12.0 1.0 0.5 2.0
Institutional 2.5 5.0 8.8 5.0 30.0 2.5 1.3 5.0
Insurance 2.5 5.0 8.8 5.0 30.0 2.5 1.3 5.0
Other 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5
Retail 1.0 2.0 3.5 2.0 12.0 1.0 0.5 2.0
Sovereign 4.0 8.0 14.0 8.0 48.0 4.0 2.0 8.0
Third-party distributor 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5
Total 1.8 3.5 6.1 3.5 21.0 1.8 0.9 3.5

Table 10: Redemption shocks in % computed with the rule of thumb (11)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Central bank 0.4 0.8 1.3 0.8 5.0 0.4 0.1 0.9
Corporate 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Corporate pension fund 0.4 0.8 1.3 0.8 5.0 0.4 0.1 0.9
Employee savings plan 0.8 1.5 2.5 1.5 10.0 0.8 0.3 1.8
Institutional 2.3 4.5 7.5 4.5 30.0 2.3 0.8 5.3
Insurance 2.3 4.5 7.5 4.5 30.0 2.3 0.8 5.3
Other 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5
Retail 0.8 1.5 2.5 1.5 10.0 0.8 0.3 1.8
Sovereign 3.0 6.0 10.0 6.0 40.0 3.0 1.0 7.0
Third-party distributor 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5
Total 1.5 3.0 5.0 3.0 20.0 1.5 0.5 3.5

Table 11: Redemption shocks in % computed with the rule of thumb (12)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Central bank 0.3 0.6 1.1 0.6 4.0 0.3 0.1 0.7
Corporate 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Corporate pension fund 0.3 0.6 1.1 0.6 4.0 0.3 0.1 0.7
Employee savings plan 0.9 1.8 3.0 1.8 11.0 0.9 0.4 1.9
Institutional 2.4 4.8 8.1 4.8 30.0 2.4 1.0 5.1
Insurance 2.4 4.8 8.1 4.8 30.0 2.4 1.0 5.1
Other 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5
Retail 0.9 1.8 3.0 1.8 11.0 0.9 0.4 1.9
Sovereign 3.5 7.0 12.0 7.0 44.0 3.5 1.5 7.5
Third-party distributor 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5
Total 1.6 3.3 5.6 3.3 20.5 1.6 0.7 3.5

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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3 The frequency-severity modeling approach

The direct computation of value-at-risk, conditional value-at-risk and other statistics from
historical redemption rates is particularly problematic. Indeed, we observe a large proportion
of zeros in the redemption rate database. On average, we have 68.9% of zeros, this proportion
reaches 99.5% for some investors and it is more than 99.9% for some matrix cells. Therefore,
the data of redemption rates are “clumped-at-zero”, meaning that the redemption rate is a
semi-continuous random variable, and not a continuous random variable (Min and Agresti,
2002). This discontinuity is a real problem when estimating the probability distribution F.
This is why we consider that the redemption rate is not the right redemption risk factor. We
prefer to assume that the redemption risk is driven by two dimensions or two risk factors:

1. the redemption frequency, which measures the occurrence E of the redemption;

2. the redemption severity R ?, which measures the amount of the redemption.

It is obvious that this modeling approach finds its root in other risk models that deal with
extreme events or counting processes, such as operational and insurance risks (Roncalli,
2020).

3.1 Zero-inflated models

In the frequency-severity approach, we distinguish the redemption event E that indicates if
there is a redemption, and the redemption amount R ? that measures the redemption rate
in case of a redemption. An example is provided in Figure 7. The probability to observe
a redemption is equal to 5%, and in the case of a redemption, the amount can be 2%, 5%,
15% and 50%. It follows that the redemption rate is the convolution of two risk factors.

Figure 7: Zero-inflated modeling of the redemption risk
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Figure 8: Zero-inflated probability density function
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3.1.1 Zero-inflated probability distribution

We assume that the redemption event E follows a bernoulli distribution B (p), whereas the
redemption severity11 R ? follows a continuous probability distribution G. We have:

Pr {E = 1} = Pr {R > 0} = p

and:
Pr {R ≤ x | E = 1} = G (x)

We deduce that the unconditional probability distribution of the redemption rate is given
by:

F (x) = Pr {R ≤ x}
= 1 {x ≥ 0} · (1− p) + 1 {x > 0} · p ·G (x)

Its density probability function is singular at x = 0:

f (x) =

{
1− p if x = 0
p · g (x) otherwise

where g (x) is the density function of G. Some examples are provided in Figure 8 when
p = 5%. We observe that the density function is composed of a dirac measure and a
continuous function. In the case of G1, the distribution is right-skewed, meaning that the
probability to observe small redemptions is high. In the case of G2, we have a bell curve,
meaning that the redemption amount is located around the mean if there is a redemption.
Finally, the distribution is left-skewed in the case of G3, meaning that the probability to
observe high redemptions is high if there is of course a redemption, because we recall that
the probability to observe a redemption is only equal to 5%.

11It is defined as the non-zero redemption rate.
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From a probabilistic point of view, the redemption rate is then the product of the re-
demption event and the redemption severity:

R = E·R ?

In Appendix A.2.1 on page 88, we show that:

E [R ] = pE [R ?] (13)

and:
σ2 (R ) = pσ2 (R ?) + p (1− p)E2 [R ?] (14)

Moreover, the skewness coefficient is equal to:

γ1 (R ) =
ϑ1 (R ?)

(pσ2 (R ?) + p (1− p)E2 [R ?])
3/2

(15)

where:

ϑ1 (R ?) = pγ1 (R ?)σ3 (R ?) + 3p (1− p)σ2 (R ?)E [R ?] +

p (1− p) (1− 2p)E3 [R ?]

For the excess kurtosis coefficient, we obtain:

γ2 (R ) =
ϑ2 (R ?)

(pσ2 (R ?) + p (1− p)E2 [R ?])
2 (16)

where:

ϑ2 (R ?) = (pγ2 (R ?) + 3p (1− p))σ4 (R ?) + 4p (1− p) γ1 (R ?)σ3 (R ?)E [R ?] +

6p (1− p) (1− 2p)σ2 (R ?)E2 [R ?] + p (1− p)
(
1− 6p+ 6p2

)
E4 [R ?]

In Figure 9 we have reported the moments of the redemption rate R by considering the
following set of parameters:

#1 E [R ?] = 40%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 0;

#2 E [R ?] = 20%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 0;

#3 E [R ?] = 40%, σ (R ?) = 40%, γ1 (R ?) = −1 and γ2 (R ?) = 0;

#4 E [R ?] = 40%, σ (R ?) = 20%, γ1 (R ?) = 0 and γ2 (R ?) = 1.

We notice that the parameter values of R ? have a major impact on the statistical moments,
but the biggest effect comes from the frequency probability p. Indeed, we verify the following
properties: {

limp→0+ E [R ] = limp→0+ σ (R ) = 0
limp→0+ γ1 (R ) = limp→0+ γ2 (R ) =∞ (17)

This means that the redemption risk is very high for small frequency properties. In this
case, the expected redemption rate and its standard deviation are very low, but skewness
and kurtosis risk are very high! This creates a myopic situation where the asset manager
may have the feeling that redemption risk is not a concern because of historical data. Indeed,
when p is low, the probability of observing large redemption rates is small, implying that they
are generally not observed in the database. For instance, let us consider two categories that
have the same redemption severity distribution, but differ from their redemption frequency
probability. One has a probability of 50%, the other has a probability of 1%. It is not
obvious that the second category experienced sufficient severe redemption events such that
the historical data are representative of the severity risk.
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Figure 9: Statistical moments of the redemption rate R in zero-inflated models
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3.1.2 Statistical risk measures of the zero-inflated model

For the M-measure, we have:
M = pE [R ?] (18)

The formula of the value-at-risk is equal to:

Q (α) =

 0 if p ≤ 1− α

G−1
(
α+ p− 1

p

)
otherwise

(19)

We notice that computing the quantile α of the unconditional distribution F is equivalent
to compute the quantile αG of the severity distribution G:

αG = max

(
0,
α+ p− 1

p

)
The relationship between p, α and αG is illustrated in Figure 39 on page 105. Let us focus
on the 99% value-at-risk:

Q (99%) =

 0 if p ≤ 1%

G−1
(
p− 1%

p

)
otherwise

If the redemption frequency probability is greater than 1%, the value-at-risk corresponds
to the quantile (p− 1%) /p. The relationship between p and αG = (p− 1%) /p is shown
in Figure 10. If p is greater than 20%, αG is greater than 95%. If p is less than 5%, we
observe a high curvature of the relationship, implying that we face a high estimation risk.
For instance, if p is equal to 1.5%, the 99% value-at-risk corresponds to the quantile 3.33%
of the redemption severity. If p becomes 2.0%, the 99% value-at-risk is then equal to the
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quantile 50% of the redemption severity! Therefore, there is a high sensitivity of the 99%
value-at-risk when p is low, implying that a small error in the estimated value of p leads to
a high impact on the value-at-risk.

Figure 10: Relationship between p and αG for the 99% value-at-risk
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For the conditional value-at-risk, we obtain:

C (α) =
1

1− α

∫ 1

α

Q (u) du (20)

where Q (u) is the quantile function of R for the confidence level u. In the case where
p > 1− α, we obtain:

C (α) =
p

1− α

∫ 1

1−p−1(1−α)
G−1 (u) du

Another expression of the conditional value-at-risk is:

C (α) =
1

1− α

∫ 1

Q(α)

x dF (x)

In the case where p > 1− α, we obtain:

C (α) =
p

1− α

∫ 1

Q(α)

xg (x) dx

where g (x) is the probability density function of G (x). All these formulas can be computed
numerically thanks to Gauss-Legendre integration.

We now introduce a new risk measure which is very popular when considering parametric
model. Roncalli (2020) defines the distribution-based (or parametric-based) stress scenario
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S (T ) for a given horizon time T such that the return time of this scenario is exactly equal
to T . From a mathematical point of view, we have:

1

Pr {R ≥ S (T )}
= T

Pr {R ≥ S (T )} is the exceedance probability of the stress scenario, implying that the quan-

tity Pr {R ≥ S (T )}−1 is the return time of the exceedance event. For example, if we set

S (T ) = Q (α), we have Pr {R ≥ S (T )} = 1 − α and T = (1− α)
−1

. The return time
associated to a 99% value-at-risk is then equal to 100 days, the return time associated to a
99.9% value-at-risk is equal to 1 000 days (or approximately 4 years), etc. This parametric
approach of stress testing is popular among professionals, regulators and academics when
they use the extreme value theory for modeling the risk factors.

By combining the two definitions S (T ) = Q (α) and T = (1− α)
−1

, we obtain the
mathematical expression of the parametric stress scenario:

S (T ) = Q
(

1− 1

T

)
(21)

If we consider the zero-inflated model, we deduce that:

S (T ) =

 0 if p ≤ T −1

G−1
(

1− 1

pT

)
otherwise

(22)

The magnitude of T is the year, but the unit of T is the day. For example, since one year
corresponds to 260 market days, the five-year stress scenario is equal to12:

S (5) = G−1
(

1− 1

1300 p

)
3.1.3 The zero-inflated beta model

The choice of the severity distribution is an important issue. Since R ? is a random variable
between 0 and 1, it is natural to use the two-parameter beta distribution B (a, b). We have:

G (x) = B (x; a, b)

where B (x; a, b) is the incomplete beta function. The corresponding probability density
function is equal to:

g (x) =
xa−1 (1− x)

b−1

B (a, b)

where B (a, b) is the beta function:

B (a, b) =
Γ (a) Γ (b)

Γ (a+ b)

Concerning the statistical moments, the formulas are given in Appendix A.2.2 on page 91.

We report some examples of density function in Figure 11. Instead of providing the
parameters a and b, we have indicated the value µ and σ of the mean and the volatility. The
first distribution is skewed, because the volatility is high compared to the mean. The other
three distributions have a mode. Figure 12 shows the corresponding statistical moments of
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Figure 11: Density function of the beta distribution
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Figure 12: Statistical moments of the zero-inflated beta distribution
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the associated zero-inflated model. We notice that the first and third distributions have the
largest skewness and kurtosis.

In Figure 13, we report the 99% value-at-risk of the redemption rate. As explained before,
the Q-measure highly depends on the redemption frequency p. Again, we observe that the
sensitivity of the value-at-risk is particularly important when p is small13. The ratio between
the 99% conditional value-at-risk and the 99% value-at-risk is given in Figure 14. When the
redemption frequency p is high, the ratio is less than 1.5 and we retrieve the typical figures
that we observe for market and credit risks14. When the redemption frequency p is small,
the ratio may be greater than 2.0. These results shows that the sensitivity to redemption
risk is very high when the observed redemption frequency is low. The stress scenarios S (T )
are given in Figure 15 when the redemption frequency p is equal to 1%. By definition, S (T )
increases with the return time T . From a theoretical point of view, the limit of the stress
scenario is 100%:

lim
T→∞

S (T ) = lim
T→∞

G−1
(

1− 1

pT

)
= 1

However, we observe that stress scenarios reach a plateau at five years, meaning that stress
scenarios beyond 5 years have no interest. This is true for small values of p, but it is even
more the case for larger values of p as shown in Figures 40 and 41 on page 106.

Figure 13: Q (99%)-measure in % with respect to the redemption frequency
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Remark 5 In order to better understand the use of the C-measure as a stress scenario,
we compute the implied return time such that the stress scenario is exactly equal to the

12We assume that the redemption frequency is greater than 1/1300 or 7.69 bps. Otherwise, the quantile
is equal to zero.

13Because of the impact of p on the confidence level αG — see Figure 10 on page 38.
14When p tends to one, the ratio is respectively equal to 1.15, 1.09, 1.06 and 1.03 for the four probability

distributions of the redemption severity.
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Figure 14: Ratio R (99%) with respect to the redemption frequency

0 2 4 6 8 10 12

1

1.5

2

2.5

3

3.5

4

Figure 15: Stress scenario S (T ) in % (p = 1%)
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conditional value-at-risk:
TC(α) = {T : S (T ) = C (α)}

Results are given in Table 12. We notice that the value is between 0.77 and 1.03. On average,
we can consider that the return time of the 99% conditional value-at-risk is about one year.
This is 2.6 times the return time of the 99% value-at-risk15.

Table 12: Implied return time TC(99%) in year

µ 10% 20% 30% 50%
σ 10% 10% 20% 20%

1% 1.03 0.86 0.87 0.77
2% 1.00 0.94 0.89 0.85
3% 0.99 0.95 0.90 0.86

p 5% 0.99 0.97 0.90 0.87
10% 0.99 0.98 0.90 0.88
50% 0.98 0.99 0.91 0.89
99% 0.98 0.99 0.91 0.89

3.1.4 Extension to other probability distributions

The choice of the beta distribution is natural since the support is [0, 1], but we can consider
other continuous probability distributions for modeling R ?. For example, the Kumaraswamy
distribution is another good candidate, but it is close to the beta distribution. When the
support of the probability distribution is [0,∞), we apply the truncation formula16:

G[0,1] (x) =
G (x)

G (1)

For instance, we can use the gamma or log-logistic distribution. However, our experience
shows that some continuous probability distributions are not adapted such as the log-gamma
and log-normal distributions, because the logarithm transform performs a bad scale for
random variables in [0, 1]. Finally, we can also use the logit transformation, which is very
popular for modeling the probability of default (PD) or the loss given default (LGD) in credit
risk. Following Roncalli (2020, page 910), we assume that R ? is a logit transformation of a
random variable X ∈ (−∞,∞), meaning that17:

X = logit (R ?) = ln

(
R ?

1− R ?

)
For instance, in the case of the logit-normal distribution, we have:

logit (R ?) ∼ N
(
a, b2

)
15We recall that the return time of the 99% value-at-risk is equal to 100 market days or

100

260
≈ 0.38 years.

16For the probability density function, we have:

g[0,1] (x) =
g (x)

G (1)

17We also have:

R ? = logit−1 (X) =
1

1 + e−X
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We deduce that:

G (x) = Pr (R ? ≤ x)

= Pr (X ≤ logit (x))

= Φ

(
logit (x)− a

b

)
and:

g (x) =
1

bx (1− x)
φ

(
logit (x)− a

b

)
A summary of these alternative approaches18 is given in Table 13. In the sequel, we continue
to use the beta distribution, because it is easy to calibrate and it is the most popular approach
when modeling a random variable in [0, 1]. However, we cannot claim that it is the best
fitting model. Such a debate has already taken place in operational risk with the log-
normal distribution and the modeling of the severity distribution of operational risk losses
(Roncalli, 2020). Nevertheless, we think that this debate is too early in the case of liability
stress testing, and can wait when we will have more comprehensive redemption databases.

Table 13: List of continuous probability distributions

Distribution Symbol G (x) g (x) Support

Beta B (a, b) B (x; a, b)
xa−1 (1− x)

b−1

B (a, b)
[0, 1]

Gamma G (a, b)
γ (a, bx)

Γ (a)

baxa−1e−bx

Γ (a)
[0,∞)

Kumaraswamy K (a, b) 1− (1− xa)
b

abxa−1 (1− xa)
b−1

[0, 1]

Log-logistic LL (a, b)
xb

ab + xb
b (x/a)

b−1

a
(

1 + (x/a)
b
)2 [0,∞)

Logit-normal LN
(
a, b2

)
Φ

(
logit (x)− a

b

)
1

bx (1− x)
φ

(
logit (x)− a

b

)
[0, 1]

3.2 Parametric stress scenarios

As explained previously, the zero-inflated beta model is appealing for producing stress sce-
narios. For that, we proceed in two steps. We first calibrate the parameters of the model,
and then we compute the stress scenarios for a given return time.

3.2.1 Estimation of the zero-inflated beta model

Let Ω = {R 1, . . . ,R n} be the sample of redemption rates for a given matrix cell. Three
parameters have to be estimated: the redemption frequency p and the parameters a and b
that control the shape of the beta distribution. We note n0 as the number of observations
that are equal to zero and n1 = n − n0 as the number of observations that are strictly
positive19. In Appendix A.3 on page 91, we show that the maximum likelihood estimates
are:

p̂ =
n1

n0 + n1

18γ (α, x) is the lower incomplete gamma function.
19We have n0 =

∑n
i=1 1 {R i = 0} = n− n1 and n1 =

∑n
i=1 1 {R i > 0} =

∑n
i=1 Ei.
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and: {
â, b̂
}

= arg max
a,b

− n1 lnB (a, b) +
∑

R i>0

(a− 1) ln R i +
∑

R i>0

(b− 1) ln (1− R i)

The estimates â and b̂ can be found by numerical optimization.

This is the traditional approach for estimating a zero-inflated model. However, it is not

convenient since the parameters
(
p̂, â, b̂

)
should be modified by risk managers and business

experts before computing redemption shocks. Indeed, the calibration process of parametric
stress scenarios follows the same process when one builds historical stress scenarios, and

estimated values
(
p̂, â, b̂

)
cannot be directly used because they do not necessarily respect

some risk coherency principles and their robustness varies across matrix cells.

A second approach consists in using the method of moments. In this case, the estimator
of p has the same expression:

p̂ =
n1

n0 + n1
(23)

For the parameters of the beta distribution, we first calculate the empirical mean µ̂ and the
standard deviation σ̂ of the positive redemption rates R ?, and then we use the following
relationships (Roncalli, 2020, page 193):

â =
µ̂2 (1− µ̂)

σ̂2
− µ̂ (24)

and:

b̂ =
µ̂ (1− µ̂)

2

σ2
− (1− µ̂) (25)

The differences between the two methods are the following:

• In the case of the method of maximum likelihood, a and b are explicit parameters.
Once the parameters p, a and b are estimated, we can calculate the mean µ and
standard deviation σ for the severity distribution. In this approach, µ and σ are
implicit, because they are deduced from a and b.

• In the case of the method of moments, a and b are implicit parameters. Indeed, they
are calculated after having estimated the mean µ and standard deviation σ for the
severity distribution. In this approach, µ and σ are explicit and define the severity
distribution.

The first approach is known as the p−a− b parameterization, whereas the second approach
corresponds to the p− µ− σ parameterization. By construction, this last approach is more
convenient in a liquidity stress testing framework, because the parameters µ and σ are
intuitive and self-explanatory measures, which is not the case of a and b. Therefore, they
can be manipulated by risk managers and business experts.

We have estimated the parameters p, a, b, µ and σ with the two methods. Table 14 shows
the redemption frequency. On average, p̂ is equal to 31%, but we observe large differences
between the matrix cells. For instance, p̂ is less than 5% for central banks, corporate
pension funds and employee savings plans, whereas the largest values of p̂ are observed for
retail investors and third-party distributors. The values of µ̂ and σ̂ are reported in Tables
15 and 16. The average redemption severity is 0.72%, whereas the redemption volatility is
4.55%. Again, we observe some large differences between the matrix cells.

Remark 6 In Tables 42 and 43 on page 107, we have also reported the implicit values of â
and b̂ that are deduced from µ̂ and σ̂. Moreover, we have reported the estimated values by
the method of maximum likelihood on pages 108 and 109.
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Table 14: Estimated value of p in %

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 21.63 19.41 30.00 25.46 50.60 6.39 22.16
Central bank 0.16 0.34 1.47 0.47
Corporate 15.04 6.19 6.25 2.87 39.81 0.21 14.54
Corporate pension fund 8.11 3.38 3.98 3.37 7.57 0.00 4.12
Employee savings plan 2.67 2.83 2.97 2.71 2.29 2.75 2.69
Institutional 19.36 6.28 1.96 6.51 32.83 1.04 8.23
Insurance 12.19 6.72 3.45 7.22 27.92 1.04 9.71
Other 9.67 3.87 3.68 19.35 21.52 2.22 8.82
Retail 44.59 45.04 58.76 70.50 45.75 17.51 27.32 45.61
Sovereign 16.30 3.18 1.05 10.07 18.23 0.06 10.14
Third-party distributor 33.77 37.36 45.97 45.94 65.94 32.86 6.52 40.61
Total 34.66 27.10 24.19 38.34 37.57 11.14 24.79 31.11

Table 15: Estimated value of µ in % (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 1.24 1.88 2.15 1.19 3.11 2.81 1.70
Central bank
Corporate 0.55 2.50 3.82 3.73
Corporate pension fund 1.54 2.84 7.26 3.21
Employee savings plan 1.29 2.08 2.10
Institutional 0.67 2.62 2.80 4.46 3.23
Insurance 1.36 2.20 2.19 3.21 2.66
Other 0.87 2.60 1.10 3.51 0.99 2.65
Retail 0.34 0.31 0.44 0.23 1.98 0.43 0.15 0.33
Sovereign 0.06 1.84 10.48 4.46
Third-party distributor 0.35 0.64 1.45 0.42 1.40 0.86 1.21 0.56
Total 0.40 0.73 1.64 0.48 2.82 0.98 0.18 0.72

Table 16: Estimated value of σ in % (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 7.38 6.86 9.73 5.98 8.80 9.10 7.09
Central bank
Corporate 5.55 9.57 7.49 8.70
Corporate pension fund 10.36 13.51 13.14 12.09
Employee savings plan 3.26 8.40 8.61
Institutional 5.46 9.99 9.23 11.46 10.86
Insurance 8.66 10.56 10.11 8.13 9.35
Other 3.61 9.36 7.27 11.88 6.70 10.68
Retail 2.80 2.58 3.32 2.10 7.52 3.22 2.64 2.88
Sovereign 0.25 9.90 21.63 14.94
Third-party distributor 2.68 3.48 7.63 2.58 4.71 5.84 6.98 3.37
Total 3.31 4.35 8.93 3.50 8.66 6.08 3.03 4.55

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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3.2.2 Stress scenarios based on the p− µ− σ parameterization

Using the previous estimates (p̂, µ̂, σ̂), risk managers and business experts can define the
triplet (p, µ, σ) for the different matrix cells. For that, they must assess the confidence in
estimated values with respect to the number of observations. For the frequency parameter,
we use the value of n, which has been already reported in Table 8 on page 31. For the
severity parameters µ̂ and σ̂, we use the value of n1, which is much smaller than n. Using
the data given in Table 41 on page 103, we have built the confidence measure in Table 17.
We confirm that the confidence measure in µ̂ and σ̂ is lower than the confidence measure in
p̂. In particular, there are many matrix cells, where the number n1 of observations is lower
than 200. This explains why Tables 15 and 16 contain a lot of missing values. Therefore,
except for a few matrix cells, the estimated values µ̂ and σ̂ must be challenged by risk
managers and business experts. Again, they can use risk coherency principles20 Cinvestor and
Cfund to build their own figures of p, µ and σ.

Table 17: Confidence in estimated values µ̂ and σ̂ with respect to the number n1 of obser-
vations

(1) (2) (3) (4) (5) (6) (7)
Auto-consumption • • • • • • • • • • • • ◦ ◦ ◦
Central bank ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Corporate • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Corporate pension fund ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Employee savings plan • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Institutional • • • • ◦ • • • • ◦ ◦ ◦ ◦
Insurance • • ◦ • • • • ◦ ◦ ◦ ◦
Other • • ◦ • • • • ◦ ◦ ◦
Retail • • • • • • • • • • • • • • • • • •
Sovereign • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
Third-party distributor • • • • • • • • • • • • • • • •

◦ ◦ ◦ 0− 10, ◦ ◦ 11− 50, ◦ 51− 200, • 201− 1 000, • • 1 001− 10 000, • • • +10 000

Once the triplet (p, µ, σ) is defined for each matrix cell, we compute stress scenarios using
the following formula:

S (T ; p, µ, σ) = B−1
(

1− 1

pT
;
µ2 (1− µ)

σ2
− µ, µ (1− µ)

2

σ2
− (1− µ)

)

where B−1 (α; a, b) is the α-quantile of the beta distribution with parameters a and b. The
parametric stress scenario S (T ; p, µ, σ) depends on the return time T and the three parame-
ters of the zero-inflated model. An example is provided in Figure 16. For each plot, we indi-
cate the triplet (p, µ, σ). For instance, the first plot corresponds to the triplet (2%, 1%, 2%),
meaning that the daily redemption frequency is 2%, the expected redemption severity is 1%
and the redemption volatility is 2%. In particular, these plots illustrate the high impact
of σ, which is the key parameter when computing parametric stress scenarios. The reason
is that the parameters p and µ determine the mean E [R ], whereas the uncertainty around
this number is mainly driven by the parameter σ. The redemption volatility controls then
the shape of the probability distribution of the redemption rate (both the skewness and the
kurtosis), implying that σ has a major impact on the stress scenario S (T ) when T is large.

20They are defined on page 30.
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Figure 16: Parametric stress scenarios S (T ; p, µ, σ) in %
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4 Behavioral modeling

In this section, we go beyond the zero-inflated model by considering the behavior of each
investor. In particular, we show that the redemption rate depends on the liability structure
of the mutual fund. Moreover, the behavior of investors may be correlated, in particular in
a stress period. In this case, the modeling of spillover effects is important to define stress
scenarios.

4.1 The individual-based model

The individual-based model and the zero-inflated model are highly connected. Indeed, the
zero-inflated model can be seen as a special case of the individual-based model when we
summarize the behavior of all unitholders by the behavior of a single client.

4.1.1 Definition

Let TNA (t) be the assets under management of an investment fund composed of n clients:

TNA (t) =

n∑
i=1

TNAi (t)

where TNAi (t) is the net asset of the individual i. The redemption rate of the fund is equal
to the redemption flows divided by the total net assets:

R =

∑n
i=1 TNAi ·R i

TNA

=

n∑
i=1

ωi · R i
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where ωi represents the weight of the client i in the fund:

ωi =
TNAi

TNA

Since we have R i = Ei · R ?
i , we obtain:

R =

n∑
i=1

ωi · Ei · R ?
i

Generally, we assume that the clients are homogenous, meaning that Ei and R ?
i are iid

random variables. If we denote by p̃ and G̃ the individual redemption probability and the
individual severity distribution. The individual-based model is then characterized by the

4-tuple
(
n, ω, p̃, G̃

)
, where n is the number of clients and ω = (ω1, . . . , ωn) is the vector of

weights. Like the zero-inflated model, we consider a µ̃− σ̃ parameterization of G̃, meaning
that the model is denoted by IM (n, ω, p̃, µ̃, σ̃).

Remark 7 When the individual severity distribution G̃ is no specified, we assume that it

is a beta distribution B
(
ã, b̃
)

, whose parameters ã and b̃ are calibrated with respect to the

severity mean µ̃ and the severity volatility σ̃ using the method of moments. In a similar
way, we assume that the vector of weights is equally-weighted when it is not specified. In
this case, the individual-based model is denoted by IM (n, p̃, µ̃, σ̃).

Figure 17: Histogram of the redemption rate in % (p̃ = 50%, µ̃ = 50%, σ̃ = 10%)

In Figure 17, we report the histogram of the redemption rate R in the case p̃ = 50%,
µ̃ = 50% and σ̃ = 10%. In the case n = 1, we obtain a singular distribution. Indeed,
there is a probability of 50% that there is no redemption. The singularity decreases with
respect to the number n of investors, because the probability to have a redemption increases.
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This is normal since the redemption frequency of a mutual fund depends on the number of
unitholders. This explains that the redemption frequency is larger for a retail fund than for
an institutional fund.

4.1.2 Statistical analysis

The skewness effect The singularity of the distribution function F at the point R = 0
is entirely explained by the two parameters p̃ and n as shown in Appendix A.4.1 on page
93, because we have:

Pr {R = 0} = (1− p̃)n

The fact that the probability distribution is not continuous has an impact on the skewness
and the kurtosis. In Table 18, we have reported the probability Pr {R = 0}. If there is a
few investors in the fund, the probability to observe no redemption in the fund is high. For
instance, if p̃ = 5% and n = 10, we have Pr {R = 0} = 59.87%. If p̃ = 1% and n = 10,
we have Pr {R = 0} = 90.44%. How to interpret these results? Since p̃ is the individual
redemption probability, 1/p̃ is the return time of a redemption at the investor level. For
example, p̃ = 5% (resp. p̃ = 1%) means that investors redeem every 20 days (resp. 100
days) on average. At the fund level, the return time to observe a redemption is equal to

(1− Pr {R = 0})−1. For instance, in the case p̃ = 5% and n = 10, we observe a redemption
two days per week in the fund on average21. This analysis may help to distinguish active
and passive investors. In the case of passive investors when the redemption event occurs
once a year or less, p̃ is less than 40 bps. In the case of active investors that redeem once a
month, p̃ is greater than 5%. Therefore, the skewness effect depends if the fund has active
investors or not, and if the fund is granular or not.

Table 18: Probability to observe no redemption Pr {R = 0} in %

p Number n of investors
(in %) 1 2 5 10 50 100 1000 10000

0.01 99.99 99.98 99.95 99.90 99.50 99.00 90.48 36.79
0.02 99.98 99.96 99.90 99.80 99.00 98.02 81.87 13.53
0.05 99.95 99.90 99.75 99.50 97.53 95.12 60.65 0.67
0.10 99.90 99.80 99.50 99.00 95.12 90.48 36.77 0.00
0.20 99.80 99.60 99.00 98.02 90.47 81.86 13.51 0.00
0.50 99.50 99.00 97.52 95.11 77.83 60.58 0.67 0.00
1.00 99.00 98.01 95.10 90.44 60.50 36.60 0.00 0.00
2.00 98.00 96.04 90.39 81.71 36.42 13.26 0.00 0.00
5.00 95.00 90.25 77.38 59.87 7.69 0.59 0.00 0.00

10.00 90.00 81.00 59.05 34.87 0.52 0.00 0.00 0.00
25.00 75.00 56.25 23.73 5.63 0.00 0.00 0.00 0.00
50.00 50.00 25.00 3.13 0.10 0.00 0.00 0.00 0.00

The mean effect The mean shape is easy to understand since it is the product of the
redemption probability and the mean of the redemption severity:

E [R ] = p̃µ̃

Curiously, it depends neither on the number of investors in the fund, nor on the liability
structure (see Figure 18). Since µ̃ ∈ [0, 1], we notice that E [R ] ≤ p̃, meaning that we must

21The exact value is equal to 1/ (1− 59.87%) = 2.4919.
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observe very low values of the redemption mean. And we verify this property if we consider
the results22 given in Table 4 on page 28. If we consider all investor and fund categories,
the mean is equal to 22 bps. The largest value is observed for the sovereign/money market
category and is equal to 1.91%.

Figure 18: Mean of the redemption rate R in %

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

The volatility effect By assuming that the liability weights are equal (ωi = 1/n), the
volatility of the redemption rate is equal to:

σ2 (R ) =
p̃
(
σ̃2 + (1− p̃) µ̃2

)
n

Globally, we observe that σ2 (R ) is an increasing function of p̃, µ̃ and σ̃ as shown in Figure
19. When the redemption probability increases, we observe a convexity shape because we
have:

σ2 (R ) =
p̃
(
σ̃2 + µ̃2

)
n

− p̃2µ̃2

n

However, this is not realistic since p̃ ≤ 20% in practice. Another interesting property is
that σ2 (R ) tends to zero when the number of investors in the fund increases (Figure 20).
If we compute the volatility of the redemption rate, we obtain the figures given in Table 48
on page 110. We observe that σ (R ) � E [R ], implying that R is a high-skewed random
variable. This challenges the use of the SD (c) measure presented on page 26.

Correspondence between zero-inflated and individual-based models We notice
that the zero-inflated model ZI (p, µ, σ) is a special case of the individual-based model by

22Another way to compute the empirical mean of R is to calculate the product of the aggregate redemption
frequency p (Table 14 on page 46) and the aggregate severity mean (Table 15 on page 46).
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Figure 19: Volatility of the redemption rate R in % (n = 10)
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Figure 20: Volatility of the redemption rate R in % (p = 10%, µ = 50%, σ = 30%)
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considering only one unitholder. Therefore, it is obvious that the zero-inflated model can
not be seen as an explanatory model. It is a reduced-form model or a parametric model
that can fit the data, but the interpretation of the p−µ−σ parameterization is not obvious,
because ZI (p, µ, σ) is an aggregate population model.

In this paragraph, we would like to find the relationships between the parameters of the
zero-inflated model and those of the individual-based model, such that the two models are
statistically equivalent:

ZI (p, µ, σ) ≡ IM (n, ω, p̃, µ̃, σ̃)

There are different approaches. A first one is to minimize the Kolmogorov-Smirnov statistics
between ZI (p, µ, σ) and IM (n, ω, p̃, µ̃, σ̃). Another approach consists in matching their
moments. We consider the second approach because we obtain analytical formulas, whereas
the solution of the first approach can only be numerical. In Appendix A.5 on page 95, we
show that:

p = 1− (1− p̃)n

and

µ =
p̃

1− (1− p̃)n
µ̃

whereas the parameter σ satisfies the following relationship:

σ2 =

(
p̃H (ω)

1− (1− p̃)n
)
σ̃2 +(

p̃ ((1− p̃)− (1− p̃)n)H (ω)− p̃2 (1− p̃)n (1−H (ω))

(1− (1− p̃)n)
2

)
µ̃2

whereH (ω) =
∑n
i=1 ω

2
i is the Herfindahl index. It is interesting to notice that p is a function

of n and p̃, µ is a function of n, p̃ and µ̃, but σ does not only depends on the parameters n,
p̃, µ̃ and σ̃:  p = ϕ1 (n, p̃)

µ = ϕ2 (n, p̃, µ̃)
σ = ϕ3 (n, p̃, µ̃, σ̃,H (ω))

Indeed, the aggregate severity volatility also depends on the Herfindahl index of the fund
liability structure.

Remark 8 The previous relationships can be inverted in order to define the parameters of
the individual-based model with respect to the parameters of the zero-inflated model: p̃ = ϕ′1 (p;n)

µ̃ = ϕ′2 (p, µ;n)
σ̃ = ϕ′3 (p, µ, σ;n,H (ω))

However, we notice that there are two degrees of freedom – n and H (ω) – that must be fixed.

In Tables 19 and 20, we report some examples of calibration when n is equal to 10
and ωi is equal to 10%. For instance, if the parameters of the individual-based model are
p̃ = 1.00%, µ̃ = 50% and σ̃ = 10%, we obtain p = 9.56%, µ = 5.23% and σ = 1.48% for the
zero-inflated model. If we know the weights of the investors in the investment fund, we can
therefore calibrate the zero-inflated model from the individual-based model (Table 19), but
also the individual-based model from the zero-inflated model (Table 20).
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Table 19: Calibration of the zero-inflated model from the individual-based model

Parameter IM (n, p̃, µ̃, σ̃) ZI (p, µ, σ)
set p̃ µ̃ σ̃ p µ σ

#1 0.20% 50.00% 10.00% 1.98% 5.05% 1.11%
#2 1.00% 50.00% 10.00% 9.56% 5.23% 1.48%
#3 1.00% 30.00% 20.00% 9.56% 3.14% 2.14%

Table 20: Calibration of the individual-based model from the zero-inflated model

Parameter ZI (p, µ, σ) IM (n, p̃, µ̃, σ̃)
set p µ σ p̃ µ̃ σ̃

#1 5.00% 2.00% 5.00% 0.51% 19.55% 49.34%
#2 10.00% 2.00% 5.00% 1.05% 19.08% 48.67%
#3 10.00% 5.00% 10.00% 1.05% 47.71% 97.14%

4.1.3 On the importance of the liability structure

We notice that the variance of the redemption rate depends on the Herfindahl index:

H (ω) =

n∑
i=1

ω2
i

This implies that the liability structure ω is an important parameter to understand the
probability distribution of the redemption rate.

The arithmetics of the Herfindahl index We know that the Herfindahl index is
bounded:

1

n
≤ H (ω) ≤ 1

H (ω) is equal to one when one investor holds 100% of the investment fund (∃i : ωi = 1),
whereas the lower bound is reached for an equally-weighted liability structure (ωi = n−1).
Therefore, H (ω) is a measure of concentration. A related statistic is the “effective number
of unitholders”:

N (ω) =
1

H (ω)

N (ω) indicates how many equivalent investors hold the investment fund. For instance, we
consider two funds with the following liability structures ω(1) = (25%, 25%, 25%, 25%) and
ω(2) = (42%, 17%, 15%, 13%, 9%, 3%, 1%). Since we have N

(
ω(1)

)
= 4 and N

(
ω(2)

)
= 3.94,

we may consider that the first fund is not more concentrated than the second fund even if
the second fund has 7 unitholders.

We assume that the liability weights follow a geometric series with ωi ∝ qi and 0 < q < 1.
We have23:

N (ω) =
1− q2

(1− q)2

23Because we have:

H (ω) =
(1− q)2

q2

∞∑
i=1

q2i =
(1− q)2

q2
q2

(1− q2)
=

(1− q)2

1− q2
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As shown in Figure 21, we have an infinite number of unitholders, but a finite number of
effective unitholders. For example, if q ≤ 0.98, then N (ω) < 100.

Figure 21: Effective number of unitholders with a geometric liability structure ωi ∝ qi
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Approximation of the probability distribution F̃ (x | ω) We recall that the uncondi-
tional probability distribution of the redemption rate is given by F (x) = Pr {R ≤ x}. Since
the redemption rate depends on the liability structure ω in the individual-based model
IM (n, ω, p̃, µ̃, σ̃), we note F̃ (x | ω) the associated probability distribution:

F̃ (x | ω) = Pr

{
n∑
i=1

ωi · Ei · R ?
i ≤ x

}

We now consider the model IM (N (ω) , p̃, µ̃, σ̃) and define F̃ (x | H) as follows:

F̃ (x | H) = Pr

 1

N (ω)

N (ω)∑
i=1

Ei · R ?
i ≤ x


= Pr

H (ω)

H(ω)−1∑
i=1

Ei · R ?
i ≤ x


The issue is to know under which conditions we can approximate F̃ (x | ω) by F̃ (x | H).

Let us consider some Monte Carlo experimentations. We assume that the liability weights
are geometric distributed: ωi ∝ qi. In Figure 22, we compare the two probability distribu-
tions F̃ (x | ω) and F̃ (x | H) for several sets of parameters24 (p̃, µ̃, σ̃). The weights ωi for

24We recall that G̃ is the beta distribution by default.
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q = 0.95 are given in Figure 42 on page 110. We notice that the approximation of F̃ (x | ω)
by F̃ (x | H) is good and satisfies the Kolmogorov-Smirnov test at the 99% confidence level.
This is not the case if we assume that q = 0.90 or q = 0.50 (see Figures 43 and 44 on page
111).

Figure 22: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.95 and H (ω)
−1

= 38)
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To better understand these results, we assume that p̃ = 0.3, µ̃ = 0.5 and σ̃ = 0.4. When
q is equal to 0.50, the effective number of unitholders is low and is equal to 3. In this case,
the probability distribution F̃ (x | H) is far from the probability distribution F̃ (x | ω) as
shown in Figure 23. In fact, this case corresponds to an investment fund which is highly
concentrated. The risk is then to observe redemptions from the largest unitholders. In
particular, we notice that F̃ (x | H) presents some steps. The reason is that the redemption
rate can be explained by the redemption of one unitholder, the redemption of two unitholders
or the redemption of three unitholders. If we assume that q is equal to 0.90, the effective
number of unitholders is larger and becomes 38. In this case, the probability distribution
F̃ (x | H) is close to the probability distribution F̃ (x | ω), because the step effects disappear
(see Figure 24). To summarize, the approximation of F̃ (x | ω) by F̃ (x | H) cannot be good

when the effective number of unitholders (or H (ω)
−1

) is low.

Remark 9 In many cases, we don’t know the comprehensive liability structure ω, but only
the largest weights. In Appendix A.6 on page 96, we derive an upper bound H+

m (ω) of the
Herfindahl index H (ω) from the m largest weights. Therefore, we can deduce a lower bound
of the effective number of unitholders:

N (ω) > N−m (ω) =
1

H+
m (ω)

An example is provided in Table 21 when we assume that ωi ∝ qi. When the fund is
highly concentrated, we obtain a good approximation of N (ω) with the 10th or 20th largest
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Figure 23: The case H (ω)
−1

= 3
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Figure 24: The case H (ω)
−1

= 18
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unitholders. Otherwise, N (ω) is underestimated. However, this is not a real issue because
we can think that generated stress scenarios will be overestimated. Indeed, using a lower
value N (ω) increases σ (R ) as shown in Figure 20 on page 52, implying that the redemption
risk is generally overestimated.

Table 21: Lower bound N−m (ω) of the effective number of unitholders

m q = 0.50 q = 0.90 q = 0.95 q = 0.97 q = 0.99 q = 0.995
5 3 14 24 37 104 204

10 3 17 28 42 109 209
20 3 19 34 50 119 219
50 3 19 39 63 145 248
∞ 3 19 39 66 199 399

Stress scenarios based on the largest unitholders The previous results show that
the main risk in a concentrated fund comes from the behavior of the largest unitholders. It
justifies the use of stress scenarios based on the order statistics ωk:n:

minωi = ω1:n ≤ · · · ≤ ωk:n ≤ ωk+1:n ≤ · · · ≤ ωn:n = maxωi

Then, we can define the stress scenario that corresponds to the full redemption of the m
largest unitholders:

S (m) =

m∑
k=1

ωn−k+1:n

An example is given in Table 22 when the liability structure is defined by ωi ∝ qi. Of course,
these stress scenarios S (m) make sense only if the fund presents some liability concentration.
Otherwise, they are not informative.

Table 22: Stress scenarios S (m) when ωi ∝ qi

m q = 0.50 q = 0.90 q = 0.95 q = 0.97 q = 0.99 q = 0.995
1 50.0% 10.0% 5.0% 3.0% 1.0% 0.5%
2 75.0% 19.0% 9.8% 5.9% 2.0% 1.0%
5 96.9% 41.0% 22.6% 14.1% 4.9% 2.5%

10 99.9% 65.1% 40.1% 26.3% 9.6% 4.9%

4.1.4 Calibration of stress scenarios

Using collective and mutual funds The calibration of the individual-based model is
much more complicated than the calibration of the zero-inflated model. The reason is that
it depends on the liability structure of the funds, which are not necessarily the same for the
different funds. Let us consider the case of a single fund f . We can estimate the parameters
p̃, µ̃ and σ̂ using the quadratic criterion:

{p̃?, µ̃?, σ̃?} = arg min$p̃

(
p̂(f) − 1 + (1− p̃)H

−1
(f)

)2
+$µ̃

(
p̂(f)µ̂(f) − p̃µ̃

)2
+

$σ̃

(
p̂(f)

(
σ̂2
(f) +

(
1− p̂(f)

)
µ̂2
(f)

)
− p̃

(
σ̃2 + (1− p̃) µ̃2

)
H(f)

)2
(26)
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where p̂(f), µ̂(f) and σ̂(f) are the empirical estimates of the parameters p, µ and σ, and H(f)

is the Herfindahl index associated with the fund. In practice, the liability structure changes
every day, meaning that the Herfindahl index is time-varying. Therefore, we can use the
average of Herfindahl indices. The weights $p̃, $µ̃ and $σ̃ indicate the relative importance
of each moment condition. If we consider several funds, the previous criterion becomes:

{p̃?, µ̃?, σ̃?} = arg min$p̃

∑
f

$(f)

(
p̂(f) − 1 + (1− p̃)H

−1
(f)

)2
+

$µ̃

∑
f

$(f)

(
p̂(f)µ̂(f) − p̃µ̃

)2
+

$σ̃

∑
f

$(f)

(
p̂(f)

(
σ̂2
(f) +

(
1− p̂(f)

)
µ̂2
(f)

)
− p̃

(
σ̃2 + (1− p̃) µ̃2

)
H(f)

)2
(27)

where $(f) is the relative weight of the fund f .

In practice, the estimates p̃?, µ̃? and σ̃? are very sensitive to the Herfindahl index be-
cause of the first and third moment conditions. To illustrate this point, we consider the
institutional category and we assume that there is only one fund. On page 46, we found
that p̂(f) = 8.23%, µ̂(f) = 3.23% and σ̂(f) = 10.86%. If H(f) = 5, we obtain p̃? = 1.70%,
µ̃? = 15.61% and σ̃? = 53.31%. If H(f) = 20, we obtain p̃? = 0.43%, µ̃? = 62.04% and
σ̃? = 212.48%. In the case of the retail category, we found that p̂(f) = 45.61%, µ̂(f) = 0.33%
and σ̂(f) = 2.88%. If H(f) = 1 000, we obtain p̃? = 0.06%, µ̃? = 247% and σ̃? = 2 489%. If
H(f) = 10 000, we obtain p̃? = 0.01%, µ̃? = 2 472% and σ̃? = 24 891%. These results are not
realistic since µ̃? > 1 and σ̃? > 1.

Using mandates and dedicated funds Collective investment and mutual funds are
pooled investment vehicles, meaning that they are held by several investors. We now consider
another type of funds with a single unitholder. They correspond to mandates and funds that
are dedicated to a unique investor. In this case, the Herfindahl index is equal to one, and
the solution of Problem (26) corresponds to the parameter set of the zero-inflated model:{

p̃? = p̂(f), µ̃
? = µ̂(f), σ̃

? = σ̂(f)
}

In our database, we can separate the observations between collective and mutual funds
on one side and mandates and dedicated funds on the other side. In Tables 23, 24 and 25,
we have estimated the parameters p̃, µ̃ and σ̃ by only considering mandates and dedicated
funds. These results highly differ than those obtained for collective and mutual funds (Tables
14, 15 and 16 on page 46). First, we can calibrate a smaller number of cells. Indeed, we
recall that the estimates are not calculated if the number of observations is less than 200.
Second, the magnitude of the estimates is very different. If we consider all fund and investor
categories, we obtain p̃ = 3.34%, µ̃ = 2.13% and σ̃ = 10.27%, whereas we have previously
found p = 31.11%, µ = 0.72% and σ = 4.55%. As expected, we verify that p̃� p and σ̃ � σ̃
because of the following reasons:

• the redemption probability is larger in a collective fund than in a dedicated fund
because they are several investors;

• the volatility of the redemption severity is smaller in a collective fund than in a ded-
icated fund because the behavior of the different investors is averaged, implying that
the dispersion of redemption is reduced.
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Table 23: Estimated value of p̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank 0.13 0.21 0.73 2.99 0.49
Corporate 0.49 1.14 0.13 0.57 0.71
Corporate pension fund 2.16 1.40 1.60 3.06 0.41 0.47 1.57
Institutional 1.47 1.35 0.41 2.13 1.65 0.40 0.00 1.46
Insurance 2.09 2.12 1.52 0.59 0.13 1.93
Sovereign 0.23 0.44 0.35 0.16 0.03 0.32
Third-party distributor 12.71 8.07 3.46 25.40 11.68 7.17 14.22
Total 3.95 2.63 1.73 5.82 2.92 0.68 7.46 3.34

Table 24: Estimated value of µ̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank
Corporate
Corporate pension fund 4.39 2.94 4.11
Institutional 3.88 4.05 3.29 4.00
Insurance 3.46 4.23
Sovereign
Third-party distributor 0.77 1.52 0.44 0.77
Total 1.89 2.47 1.48 2.64 3.91 2.13

Table 25: Estimated value of σ̃ in %

(1) (2) (3) (4) (5) (6) (7) (8)
Central bank
Corporate
Corporate pension fund 15.37 10.65 14.53
Institutional 16.42 13.88 12.30 14.64
Insurance 13.01 14.08
Sovereign
Third-party distributor 5.28 5.84 3.29 4.65
Total 9.61 10.35 8.29 10.39 15.06 10.27

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Curiously, we do not observe that µ̃ ≈ µ. One explanation may be that investors in mandates
are not the same as investors in collective funds. Indeed, we may consider that they are
more sophisticated and bigger when they are able to put in place a mandate or a dedicated
fund. For instance, they can be more active.

The results obtained with data from mandates and dedicated funds are more realistic
than those obtained with data from collective and mutual funds. The drawback is that they
are based on a smaller number of observations and there are many cells where we don’t
have enough observations for computing the estimates. Therefore, these estimates must be
completed by expert judgements.
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Computing the stress scenarios Once we have estimated the parameters p̃, µ̃ and σ̃,
we can compute the stress scenarios using the Monte Carlo method. Nevertheless, we face
an issue here, because the stress scenario is not unique to an investor category. Indeed, it
depends on the liability structure of the fund. While the individual-based model is more
realistic and relevant than the zero-inflated model, then it appears to be limited from a
practical point of view. Nevertheless, it is useful to understand the importance of the
liability structure on the redemption rate.

4.2 Correlation risk

4.2.1 Specification of the model

We now consider an extension of the previous model by introducing correlations between
the investors. We obtain the same expression of the redemption rate:

R =

n∑
i=1

ωi · Ei · R ?
i

However, the random variables (E1, . . . , En,R ?
1, . . . ,R ?

n) are not necessarily independent. We
discuss three different correlation patterns:

1. We can assume that Ei and Ej are correlated. This is the simplest and most un-
derstandable case. Indeed, we generally observe long periods with low redemption
frequencies followed by short periods with high redemption frequencies, in particular
when there is a crisis or a panic.

2. We can assume that the redemption severities R ?
i and R ?

j are correlated. For example,
it would mean that high (resp. low) redemptions are observed at the same time. Nev-
ertheless, this severity correlation is different from the previous frequency correlation.
Indeed, the severities are independent from the number of redemptions, implying that
the severity correlation only concerns the unitholders that have already decided to
redeem.

3. We can assume that Ei and R ?
i are correlated. We notice that we can write the

redemption rate for a given category as follows:

R =

n∑
i=1

ωi · R i

where R i = Ei·R ?
i is the individual redemption rate for the ith investor. The breakdown

between the binary variable Ei and the continuous variable R ?
i helps us to model

the “clumping-at-zero” pattern. But there is no reason that the value taken by the
redemption severity R ?

i depends whether Ei takes the value 0 or 1, because R ?
i is

observed only if Ei = 1.

Finally, only the first two correlation patterns are relevant from a financial point of view,
because the third correlation model has no statistical meaning. Nevertheless, it is obvious
that the first correlation model is more appropriate because the second correlation model
confuses low-severity and high-severity regimes. During a liquidity crisis, both the redemp-
tion frequency and the redemption severity increase (Coval and Stafford, 2007; Duarte and
Eisenbach, 2013; Kacperczyk and Schnabl, 2013; Roncalli and Weisang, 2015a; Schmidt et
al., 2016). The first effect may be obtained by stressing the parameter p̃ or by consider-
ing a high-frequency regime deduced from the first correlation model, but the second effect
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can only be obtained by stressing the parameter µ̃ and cannot be explained by the second
correlation model. Therefore, we only consider the first correlation pattern by modeling
the random vector (E1, . . . , En) with a copula decomposition. We continue to assume that
Ei ∼ B (p̃) are identically distributed, but the dependence function of (E1, . . . , En) is given
by the copula function C (u1, . . . , un). The individual-based model is then a special case of
this copula-based model when the copula function is the product copula C⊥.

In what follows, we consider the Clayton copula25:

C(θc) (u1, . . . , un) =
(
u−θc1 + · · ·+ u−θcn − n+ 1

)−1/θc
or the Normal copula:

C(θc) (u1, . . . , un) = Φ
(
Φ−1 (u1) + · · ·+ Φ−1 (un) ; Cn (θc)

)
The Clayton parameter satisfies θc ≥ 0 whereas the Normal parameter θc lies in the range
[−1, 1]. These two copula families are very interesting since they are positively ordered with
respect to the concordance stochastic ordering. For the Clayton copula, we have:

C(0) = C⊥ ≺ C(θc) ≺ C+ = C(∞)

meaning that the product copula is reached when θc = 0 and the upper Fréchet bound
corresponds to the limiting case θc → ∞. For the Normal copula, we restrict our analysis
to θc ∈ [0, 1] because there is no sense to obtain negative correlations. Therefore, we have:

C(0) = C⊥ ≺ C(θc) ≺ C+ = C(1)

The Normal parameter θc is easy to interpret because it corresponds to the Pearson
linear correlation between two Gaussian random variables. The interpretation of the Clayton
copula θc is more tricky. Nevertheless, we can compute the associated Kendall’s tau and
Spearman’s rho rank correlations26. Their expressions are given in Table 26. Therefore, we
can deduce the Pearson correlation ρ.

Table 26: Relationship between the copula parameter θc, the Kendall’s tau τ , the Spearman’s
rho % and the Pearson correlation ρ

τ % ρ

Clayton
θc

θc + 2
sin

(
πθc

2θc + 4

)
sin

(
πθc

2θc + 4

)
Normal

2

π
arcsin (θc)

6

π
arcsin

(
θc
2

)
θc

The previous formulas can be used to map the copula parameter space into the Kendall,
Spearman or Pearson correlation space. Some numeric values are given in Table 27. For
example, the Clayton copula θc = 2 corresponds to a Kendall’s tau of 50%, a Spearman’s rho
of 69% and a Pearson correlation of 70.7%. The following analyses will present the results
with respect to the Pearson correlation, which is the most readable and known parameter.

25We use the notations of Roncalli (2020, Chapter 11).
26For the Clayton copula, we calculate an approximation of the Spearman’s rho:

% ≈
6

π
arcsin

(
1

2
sin

(
πθc

2θc + 4

))
≈ sin

(
πθc

2θc + 4

)
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Table 27: Mapping of the copula parameter space

Clayton copula Normal copula
θc τ % ρ θc τ % ρ
0.00 0.00% 0.00% 0.00% 0.00 0.00% 0.00% 0.00%
1.00 33.33% 48.26% 50.00% 0.20 12.82% 19.13% 20.00%
2.00 50.00% 69.02% 70.71% 0.50 33.33% 48.26% 50.00%
5.00 71.43% 89.25% 90.10% 0.75 53.99% 73.41% 75.00%

10.00 83.33% 96.26% 96.59% 0.90 71.29% 89.15% 90.00%
50.00 96.15% 99.80% 99.82% 0.99 90.99% 98.90% 99.00%

Remark 10 We denote the copula-based model by CM (n, ω, p̃, µ̃, σ̃, ρ) (or CM (n, p̃, µ̃, σ̃, ρ)
when the vector of weights are equally-weighted). We have the following equivalence:

IM (n, ω, p̃, µ̃, σ̃) = CM (n, ω, p̃, µ̃, σ̃, 0)

4.2.2 Statistical analysis

The skewness effect In Appendix A.7.1 on page 97, we show that:

Pr {R = 0} = C(θc) (1− p̃, . . . , 1− p̃)

Since C⊥≺ C(θc)≺ C+, we obtain the following bounds27:

(1− p̃)n ≤ Pr {R = 0} ≤ 1− p̃

We notice that the probability to observe zero redemptions converges to zero only when the
number n of unitholders tends to∞ and the copula is the product copula. By assuming that
the redemption frequency p̃ is equal to 10%, we obtain the results given in Figure 45 on page
112 and we verify the previous statistical property. In Figure 25, we show the relationship
between the Pearson correlation ρ and the probability Pr {R = 0}. As expected, it is an
increasing function. We notice that the introduction of the correlation is very important
to understand the empirical results we have calculated in Table 14 on page 46 and some
unrealistic values we have obtained in Table 18 on page 50. For instance, the fact that
Pr {R = 0} is equal to 54.39% for the retail category can only be explained by a significant
frequency correlation since the number n of unitholders is high for this category.

By construction, the frequency correlation modifies the probability distribution of the
redemption frequency F , which is defined as the proportion of unitholders that redeem:

F =
1

n

n∑
i=1

1 {Ei = 1}

F is a random variable, whose range is between 0 and 1. F depends on the frequency
parameter p̃, the number n of unitholders and the copula function C(θc) (or the Pearson

27Because we have:

C⊥ (1− p̃, . . . , 1− p̃) =
n∏
i=1

(1− p̃) = (1− p̃)n

and:
C+ (1− p̃, . . . , 1− p̃) = min (1− p̃, . . . , 1− p̃) = 1− p̃
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Figure 25: Probability to observe no redemption Pr {R = 0} in % with respect to the fre-
quency correlation ρ (p̃ = 10%)

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Figure 26: Redemption frequencies in % with respect to the frequency correlation ρ (p̃ =
20%, n = 1 000)
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correlation ρ). When C(θc) is the product copula C⊥, the redemption events are independent
and we obtain:

F ∼ B (n, p̃)

n

because the sum of independent Bernoulli random variables is a binomial random variable.
Therefore, we obtain the following approximation when n is sufficiently large:

B (n, p̃)

n
≈ N (np̃, np̃ (1− p̃))

n

= N
(
p̃,
p̃ (1− p̃)

n

)
When the copula C(θc) corresponds to the upper Fréchet bound C+, the redemption fre-
quency follows the Bernoulli distribution and does not depend on the number of unitholders:

F ∼ B (p̃)

We have represented these two extreme cases in Figure 26 when p̃ = 20% and n = 1 000.
We have also reported the probability distribution of F when the Pearson correlation of the
copula function is equal to 25% and 50%. We notice that the skewness risk increases with
the frequency correlation. Therefore, the parameter ρ will have a high impact on the stress
testing results. In particular, when the frequency correlation is high, the risk is to observe
a large proportion of redemptions even if the number of unitholders is large. In this case,
the diversification effect across unitholders is limited. An illustration is provided in Figure
46 on page 112 that shows the probability to observe 100% of redemptions28 when n is set
to 20.

The mean effect In Appendix A.7.3 on page 98, we show that the frequency correlation
has no impact on the average redemption rate since we obtain the same expression as
previously:

E [R ] = p̃µ̃

Therefore, the redemption frequency changes the shape of the probability distribution of R ,
but not its mean.

The volatility effect The volatility of the redemption rate is equal to:

σ2 (R ) =
(
p̃σ̃2 +

(
p̃− C̆(θc) (p̃, p̃)

)
µ̃2
)
H (ω) +

(
C̆(θc) (p̃, p̃)− p̃2

)
µ̃2

where C̆(θc) is the survival copula associated to C(θc). Since we have C>≺ C(θc) ≺ C+, we
obtain the following inequalities:

p̃
(
σ̃2 + (1− p̃) µ̃2

)
H (ω) ≤ σ2 (R ) ≤ p̃σ̃2H (ω) + p̃ (1− p̃) µ̃2

If we consider the equally-weighted case and assume that n tends to infinity, we obtain:

0 ≤ σ2 (R ) =
(
C̆(θc) (p̃, p̃)− p̃2

)
µ̃2 ≤ p̃ (1− p̃) µ̃2

This implies that the volatility risk is not equal to zero for an infinitely fine-grained liability
structure if the frequency correlation is different from zero.

28It corresponds to the statistic Pr {F = 1}.
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Figure 27: Volatility of the redemption rate R in % with respect to the number n of unithold-
ers (p̃ = 10%, µ̃ = 50%, σ̃ = 30%)
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Figure 28: Volatility of the redemption rate R in % with respect to the frequency correlation
(p̃ = 10%, µ̃ = 50%, σ̃ = 10%)
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The impact of the frequency correlation is illustrated in Figures 27 and 28. We notice
that the decrease of the volatility risk highly depends on the correlation parameter ρ. These
figures confirm that the volatility risk is minimum when the frequency correlation is equal
to zero. The consequence is that the frequency correlation is a key parameter when build-
ing stress testing scenarios. This is perfectly normal since ρ can been seen as a parameter
that controls spillover effects and the magnitude of redemption contagion. All these results
corroborate the previous intuition that the individual-based model without redemption cor-
relation may be not appropriate for building a robust stress testing program.

The shape effect The impact of the frequency correlation on the skewness and the volatil-
ity can then change dramatically the shape of the probability distribution of the redemption
rate. In Figure 17 on page 49, we have already studied the histogram of the redemption
rate in the case p̃ = 50%, µ̃ = 50% and σ̃ = 10%. Let us reproduce the same exercise by
assuming that the frequency correlation is equal to 50%. The results are given in Figure
29. The shape of the probability distributions is completely different except in the case of a
single unitholder29. To better illustrate the impact of the frequency correlation, we report
in Figure 30 the histogram of the redemption rate by fixing n = 10. In the case of a per-
fect correlation of 100% and an equally-weighted liability structure, we obtain two different
cases:

1. there is zero redemption with a probability 1− p̃;

2. there are n redemptions with a probability p̃, and the redemption severity R ? is the
average of the individual redemption severities:

R ? =
1

n

n∑
i=1

R ?
i

It follows that the probability distribution of the redemption rate is equal to:

F (x) = 1 {x ≥ 0} · (1− p̃) + 1 {x > 0} · p̃ · Ḡ (x)

We retrieve the zero-inflated model ZI
(
p̃, µ̃, n−1/2σ̃

)
or the individual-based model with

a single unitholder IM
(
1, p̃, µ̃, n−1/2σ̃

)
. The only difference is the severity distribution

Ḡ, whose variance is divided by a factor n. Spillover and contagion risks come then from
the herd behavior of unitholders. Instead of having n different investors, we have a unique
investor in the fund, because the decision to redeem by one investor induces the decision to
redeem by all the other remaining investors.

4.2.3 Evidence of the correlation risk

Correlation risk within the same investor category In order to illustrate that re-
demption frequencies are correlated, we build the time series of the frequency rate F t for a
given category30:

F t =

n∑
i=1

ωi,t · 1 {Ei,t = 1} =

n∑
i=1

ωi,tEi,t

29Other illustrations are provided in Appendix C on page 113. Figures 47, 48 and 49 correspond to the
cases ρ = 25%, ρ = 75% and ρ = 90%.

30We can use an equally-weighted scheme ωi,t = 1/n.
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Figure 29: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 50%)

Figure 30: Histogram of the redemption rate in % with respect to the frequency correlation
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, n = 10)
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where Ei,t is the redemption indicator for the investor i at time t. Using the sample
(F 1, . . . ,F T ), we compute the empirical mean F and the standard deviation σ̂ (F ). Then,
the copula parameter θc can be calibrated by solving the following nonlinear equation31:

C(θc)

(
F ,F

)
=
σ̂2 (F )− F

(
H (ω)− F

)
1−H (ω)

The copula parameter θc can be transformed into the Kendall, Spearman or Pearson corre-
lation using the standard formulas given in Table 26 on page 62. For instance, if C(θc) is
the Clayton copula, the Pearson correlation is equal to:

ρ = sin

(
πθc

2θc + 4

)
An example is provided in Table 28 when the fund liability structure is equally-weighted
and has 20 unitholders. For instance, if the empirical mean F and the standard deviation
σ̂ (F ) are equal to 25% and 20%, the calibrated Pearson correlation is equal to 44.5%.

Table 28: Calibrated Pearson correlation (Clayton copula, H (ω) = 1/20)

σ̂ (F )
F

10.0% 20.0% 25.0% 30.0% 40.0%

10.0% 39.1% 5.1% 1.1%
20.0% 93.9% 58.7% 44.5% 34.7% 23.5%
30.0% 100.0% 91.5% 82.3% 72.8% 57.7%
40.0% 100.0% 98.7% 95.6% 87.4%

Remark 11 At first sight, calibrating the frequency correlation seems to be an easy task.
However, it is very sensitive to the different parameters F , σ̂ (F ) and H (ω). Moreover, it
depends on the copula specification. For instance, we obtain the results given in Table 49 on
page 114 when the dependence function is the Normal copula. We observe that the Pearson
correlations calibrated with the Clayton copula are different from those calibrated with the
Normal copula.

Remark 12 Another way to illustrate the frequency correlation is to split a given investor
category into two subsamples S1 and S2 and calculate the time series of the redemption
frequency for the two subsamples Sk (k = 1, 2):

F k,t =
1∑

i∈Sk ωi,t

∑
i∈Sk

ωi,tEi,t

Then, we can calculate the Pearson correlation ρ (F 1,F 2) and calibrate the associated copula
parameter θc using Equation (58) on page 101.

Correlation risk between investor categories The correlation risk is present within
a given investor category, but it may also concern two different investor categories. In
order to distinguish them, we use the classical statistical jargon of inter-class and intra-
class correlations. In Table 29, we report the intra-class Spearman correlation32 for four

31See Equation (56) on page 100.
32The correlations of retail/insurance and institutional/insurance for balanced funds and the correlations

of retail/third-party distributor and retail/insurance for money market funds are not significant at the
confidence level of 95%.
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Table 29: Intra-class Spearman correlation

Category #1 Category #2 Balanced Bond Equity
Money
Market

Retail Third-party distributor 53.0% 52.9% 52.1% 3.3%
Retail Institutional 10.4% 23.2% 22.0% −6.5%
Retail Insurance 3.0% 18.8% 31.6% −12.3%
Third-party distributor Institutional 13.5% 48.0% 54.1% 24.0%
Third-party distributor Insurance 23.1% 21.5% 22.8% 39.2%
Institutional Insurance 2.5% 16.2% 16.4% 29.8%

Average 17.6% 30.1% 33.2% 12.9%

investor categories (retail, third-party distributor, institutional and insurance) and four
fund categories (balanced, bond, equity and money market). We observe a high inter-class
correlation between retail investors and third-party distributors except for money market
funds. We notice that equity and bond funds present very similar frequency correlations. On
average, it is equal to 30%. For balanced and money market funds, we obtain lower figures
less than 20%. These results are coherent with the academic research, since redemption
runs and contagions in bond and equity funds have been extensively studied and illustrated
(Lakonishok et al., 1992; Wermers, 1999; Sias, 2004; Wylie, 2005; Coval and Stafford, 2007;
Shleifer and Vishny, 2011; Cai et al., 2019).

Figure 31: Dependogram of redemption frequencies between retail investors and third-party
distributors
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Remark 13 Another way to illustrate the intra-class correlation is to report the dependo-
gram (or empirical copula) of redemption frequencies. An example is provided in Figure 31
for retail investors and third-party distributors. We observe that these dependogram does
not correspond to the product copula 33.

33Examples of dependogram with the Normal copula and different correlations are provided in Figure 50
on page 115.
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4.2.4 Computing the stress scenarios

The parameters of the copula-based model is made up by the parameters of the individual-
based model (p̃, µ̃ and σ̃) and the copula parameter θc (or the associated frequency correla-
tion). Once these parameters are estimated for a given investor/fund category, we transform
the µ̃ − σ̃ parameterization into the a − b parameterization of the beta distribution and
compute the risk measures M, Q (α), C (α) and S (T ) by using the following Monte Carlo
algorithm:

1. we set k ←− 1;

2. we generate34 (u1, . . . , un) ∼ C(θc);

3. we compute the redemption events (E1, . . . , En) such that:

Ei = 1 {ui ≥ 1− p̃}

4. we simulate the redemption severities (R ?
1, . . . ,R ?

n) from the beta distribution35 B (a, b);

5. we compute the redemption rate for the kth simulation iteration:

R (k) =

n∑
i=1

ωiEiR ?
i

6. if k is equal to nS , we return the simulated sample
(

R (1), . . . ,R (nS)

)
, otherwise we set

k ←− k + 1 and go back to step 2.

Figure 32 shows the relationship between the correlation frequency36 and C (99%) for dif-
ferent parameter sets when the liability structure has 20 equally-weighted unitholders. The
impact of the correlation risk is not negligible in some cases. This is particularly true when
the frequency correlation is close to 100%, but its impact is also significant when the fre-
quency correlation is larger than 20%. On average, we observe that the risk measure C (99%)
increases by 15%, 20% and 35% when the frequency correlation is respectively equal to 20%,
30% and 50% compared the independent case.

Remark 14 The algorithm to simulate the copula-based model CM (n, ω, p̃, µ̃, σ̃, ρ) can be
used to simulate the individual-based model IM (n, ω, p̃, µ̃, σ̃) by setting C(θc) = C⊥. This is
equivalent to replace step 2 and simulate n independent uniform random numbers (u1, . . . , un).

4.3 Time aggregation risk

In the case of daily redemptions, the correlation risk only concerns the cross-correlation
between investors for a given market day. When we consider fire sales or liquidity crisis,
the one-day study period is not adapted and must be extended to a weekly or monthly
basis. In this case, we may face time aggregation risk, meaning that redemption flows for
the subsequent market days may depend on the current redemption flows.

34Clayton and Normal copulas are easy to simulate using the method of transformation (Roncalli, 2020,
page 803).

35Generally, the generation of beta random numbers is present in mathematical programming languages
(Matlab, Python). Otherwise, we can use the method of rejection sampling (Roncalli, 2020, pages 886-887).

36It corresponds to the Pearson correlation of the Clayton copula.
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Figure 32: Conditional value-at-risk C (99%) with respect to the frequency correlation
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4.3.1 Analysis of non-daily redemptions

We recall that the total net assets at time t+ 1 can be decomposed as follows:

TNA (t+ 1) = (1 +R (t+ 1)) · TNA (t) + F+ (t+ 1)−F− (t+ 1)

By assuming that F+ (t+ 1) = 0, we obtain:

TNA (t+ 1) ≈ (1 +R (t+ 1)− R (t+ 1)) · TNA (t)

This formula is valid on a daily basis. If we consider a period of nh market days (e.g. a
weekly period), we have:

TNA (t+ nh) ≈ TNA (t)

nh∏
h=1

(1 +R (t+ h)− R (t+ h))

Therefore, it is not obvious to decompose the difference TNA (t+ nh) − TNA (t) into a
“performance” effect and a “redemption” effect since the two effects are related. Indeed, the
mathematical definition of the nh-day redemption rate is:

R (t; t+ nh) =

∑nh

h=1 F− (t+ h)

TNA (t)

whereas the fund return over the period [t, t+ nh] is given by the compound formula:

R (t; t+ h) =

nh∏
h=1

(1 +R (t+ h))− 1

Because of the cross-products (Brinson et al., 1991), we cannot separate the two effects:

TNA (t+ nh) 6= (1 +R (t; t+ nh)− R (t; t+ nh)) · TNA (t)
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4.3.2 The autocorrelation risk

In the case where the performance effect is negligible — R (t+ h)� R (t+ h), we have:

R (t, t+ nh) ≈ 1−
nh∏
h=1

(1− R (t+ h)) (28)

We can then calculate the probability distribution of R (t, t+ nh) by the Monte Carlo
method. A first solution is to consider that the redemption rates are time-independent.
A second solution is to consider that redemption rates are auto-correlated:

R (t) = ρtimeR (t− 1) + ε (t) (29)

where ρtime is the autocorrelation parameter and ε (t) is a random variable such that R (t) ∈
[0, 1]. Such modeling is complex because of the specification of ε (t). However, this approach
can be approximated by considering a time-series copula representation:

(R (t+ 1) , . . . ,R (t+ nn)) ∼ C
(
F̃ (x) , . . . , F̃ (x) ; Σtime (nh)

)
(30)

where F̃ is the probability distribution of R (t) defined by the individual-based (or copula-
based) model, C is the Normal copula, whose parameters are given by the Toeplitz cor-

relation matrix37 Σtime (nh) such that Σtime (nh)i,j = ρ
|i−j|
time . To calculate the probability

distribution of R (t, t+ nh), we first simulate the individual-based (or copula-based) model
in order to estimate the probability distribution F̃ (x) of daily redemptions. Then, we gen-
erate the sample of the time-series (R (t+ 1) , . . . ,R (t+ nn)) by using the method of the
empirical quantile function (Roncalli, 2020, pages 806-809). Finally, we calculate the re-
demption rate R (t, t+ nh) using Equation (28). An example is provided in Figure 33 when
the correlation between investors is equal to zero38. We have also measured the impact of
the autocorrelation value ρtime on the value-at-risk and the conditional value-at-risk. Re-
sults are given in Tables 30 and 31 for six different individual-based models IM (n, p̃, µ̃, σ̃).
When the value of the risk measure is small, we notice that the impact of ρtime is high.
For instance, when n = 500, p̃ = 1%, µ̃ = 25% and σ̃ = 10%, the value-at-risk Q (99%) is
equal to 1.9% in the independent case. This figure increases respectively by +9% and +19%
when ρtime is equal to 25% and 50%. We also notice that the impact on the conditional
value-at-risk is close to that on the value-at-risk.

Remark 15 The compound approach defined by Equation (28) certainly overestimates stress
scenarios. Indeed, we implicitly assume that the redemptions rates R (t+ h) are identically
distributed, meaning that there is no time effect on the individual redemption behaviour.
However, we can think that an investor that redeems at time t + 1 will not redeem at time
t + 2 and t + 3. In practice, we observe that redemptions of a given investor are mutually
exclusive during a short period of time. This property is not verified by Equation (28). At
time t + h, we notice IS (t+ h) the set of investors that have redeemed some units before

37 For instance, in the case of a weekly period, the Toeplitz correlation matrix is equal to:

Σtime (5) =


1 ρtime ρ2time ρ3time ρ4time

ρtime 1 ρtime ρ2time ρ3time
ρ2time ρtime 1 ρtime ρ2time
ρ3time ρ2time ρtime 1 ρtime

ρ4time ρ3time ρ2time ρtime 1


38The same example with a correlation of 50% between investors is given in Figure 52 on page 116.
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Figure 33: Histogram of the weekly redemption rate in % with respect to the autocorrelation
ρtime (p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 0%, n = 10)

Table 30: Impact of the autocorrelation ρtime on the value-at-risk Q (99%)

n p̃ µ̃ σ̃
ρtime

0% 25% 50% 75% 100%
10 000 0.1% 25% 10% 0.2% +6% +14% +24% +36%

500 1.0% 25% 10% 1.9% +9% +19% +33% +50%
50 2.0% 50% 10% 10.5% +12% +29% +49% +79%

100 5.0% 50% 30% 18.2% +8% +18% +29% +45%
10 20.0% 50% 30% 65.8% +6% +13% +21% +28%
10 50.0% 50% 30% 90.1% +2% +4% +6% +8%

Table 31: Impact of the autocorrelation ρtime on the conditional value-at-risk C (99%)

n p̃ µ̃ σ̃
ρtime

0% 25% 50% 75% 100%
10 000 0.1% 25% 10% 0.2% +6% +16% +27% +41%

500 1.0% 25% 10% 2.0% +9% +21% +37% +56%
50 2.0% 50% 10% 11.4% +13% +32% +54% +84%

100 5.0% 50% 30% 19.2% +9% +20% +32% +50%
10 20.0% 50% 30% 68.8% +6% +13% +21% +28%
10 50.0% 50% 30% 91.3% +2% +4% +6% +7%
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t+ h. We have IS (t+ 1) = {1, . . . , n}. The mutually exclusive property implies that39:

i ∈ IS (t+ h)⇒ Ei (t+ 1) = . . . = Ei (t+ nh) = 0

It follows that:

R (t+ h) =
∑

i/∈IS(t+h)

ωi (t+ h) · Ei (t+ h) · R ?
i (t+ h)

and:

ωi (t+ h+ 1) =
ωi (t+ h)∑

i/∈IS(t+h)
ωi (t+ h)

Because ωi (t+ h− 1) 6= ωi (t+ h) and IS (t+ h− 1) 6= IS (t+ h), it is obvious that
R (t+ h− 1) 6= R (t+ h). Therefore, the redemption decisions taken in the recent past
(e.g. two or three days ago) have an impact on the future redemptions for the next days.
This is a limit of the compound approach. The solution would be to develop a comprehensive
individual-based model, whose random variables are replaced by stochastic processes. Never-
theless, the complexity of such model is not worth it with respect to the large uncertainty of
stress testing exercises.

4.3.3 The sell-herding behavior risk

Herding risk is related to momentum trading. According to Grinblatt et al. (1995), herding
behavior corresponds to the situation where investors buy and sell the same securities at
the same time. Herding risk happens during good and bad times, and is highly documented
in economic research (Wermers, 1999; O’Neal, 2004; Ivković and Weisbenner, 2009; Ferreira
et al., 2012; Lou, 2012; Cashman et al., 2014; Chen and Qin, 2017; Goldstein et al., 2017;
Choi et al., 2019; Dötz and Weth, 2019). However, we generally notice that sell herding may
have more impact on asset prices than buy herding. Therefore, the sell-herding behavior
risk may be associated to a price destabilizing or spillover effect. In the case of redemption
risk, the spillover mechanism corresponds to two related effects:

• A first spillover effect is that the unconditional probability of redemption is not equal
to the conditional probability of the redemption given the returns of the fund during
the recent past period:

Pr {R (t+ h) ≤ x} 6= Pr {R (t+ h) ≤ x | (R (t+ 1) , . . . , R (t+ h− 1))}

• A second spillover effect is that the unconditional probability of return is not equal to
the conditional probability of the return given the redemptions of the fund during the
recent past period:

Pr {R (t+ h) ≤ x} 6= Pr {R (t+ h) ≤ x | (R (t+ 1) , . . . ,R (t+ h− 1))}

This implies that the transmission of a negative shock on the redemption rate R (t+ 1)
may also impact the redemption rates {R (t+ 2) ,R (t+ 3) , . . .} because of the feedback

39For instance, if the investor has done a redemption at time t+ 1, the probability that he will perform a
new redemption at time t+ 2 is very small, meaning that:

Ei (t+ 1) = 1⇒ Ei (t+ 2) = . . . = Ei (t+ nh) = 0
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Figure 34: Spillover between fund redemptions and fund returns

R (t+ 1) R (t+ 1) R (t+ 2) R (t+ 2)

loop on the fund performance. An illustration is provided in Figure 34. A large negative
redemption R (t+ 1) may induce a negative abnormal performance R (t+ 1), and this neg-
ative performance may encourage the remaining investors of the fund to redeem, because
negative returns accelerate redemption flows. This type of behavior is generally observed in
the case of fire sales and less liquid markets.

As explained in the introduction, an integrated model that combines liability risk and
asset risk is too ambitious and too complex. Moreover, this means modeling the policy
reaction function of other investors and asset managers. Nevertheless, if we want to take
into account sell herding, spillover or fire sales, we must build an econometric model. For
example, the simplest way is to consider the linear dynamic model:{

R (t) = φ1R (t) + u1 (t)
R (t+ 1) = R + φ2R (t) + u2 (t+ 1)

We obtain an AR(1) process:

R (t) = R + φR (t− 1) + u (t)

where φ = φ1φ2 and u (t) = u2 (t) + φ2u1 (t− 1) is a white noise process. It follows that:

E [R (t+ h)] =
1

1− φ1φ2
R

Therefore, spillover scenarios can be estimated by applying a scaling factor to the initial
shock40.

4.3.4 Empirical results

In order to illustrate the time dependency between redemptions, we build the time series
of the redemption rate R (j,k) (t), the redemption frequency F (j,k) (t) and the redemption
severities R ?

(j,k) (t) for each classification matrix cell (j, k), which is defined by a fund cate-

gory FC(j) and an investor category IC(k). For that, we calculate R (f,k) (t) the redemption
rate of the fund f for the investor category IC(k) at time t. Then, we estimate the daily
redemption rate R (j,k) (t) as the average of the redemption rates of all funds that belong to
the fund category FC(j):

R (j,k) (t) =
1∣∣S(j,k) (t)

∣∣ ∑
f∈S(j,k)(t)

R (f,k) (t) (31)

where41 S(j,k) (t) =
{
f : f ∈ FC(j),TNA(f,k) (t) > 0

}
. We also estimate the daily redemp-

tion frequency as follows:

F (j,k) (t) =
1∣∣S(j,k) (t)

∣∣ ∑
f∈S(j,k)(t)

1
{

R (f,k) (t) > 0
}

(32)

40The previous analysis can be extended to more sophisticated process, e.g. VAR (p) processes.
41We only consider funds which have unitholders that belong to the investor category IC(k). This is

equivalent to impose that the assets under management held by the investor category IC(k) are strictly
positive: TNA(f,k) > 0.
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whereas the daily redemption severity is given by the following formula:

R ?
(j,k) (t) =

1∣∣∣S?(j,k) (t)
∣∣∣

∑
f∈S?

(j,k)
(t)

R (f,k) (t) (33)

where S?(j,k) (t) =
{
f : f ∈ FC(j),TNA(f,k) > 0,R (f,k) (t) > 0

}
.

Table 32: Autocorrelation of the redemption rate in %

Balanced Bond Equity Money market
Institutional 25.9∗∗ −2.2 −1.5 24.2∗∗

Insurance −1.5 9.9 5.4 17.8∗∗

Retail 1.9 −2.1 9.8 11.7∗∗

Third-party distributor 2.7 7.4 5.5 23.2∗∗

The computation of R (j,k) (t), F (j,k) (t) and R ?
(j,k) (t) does make sense only if there is

enough observations
∣∣S(j,k) (t)

∣∣ and
∣∣∣S?(j,k) (t)

∣∣∣ at time t. This is why we focus on the most

representative investor categories (retail, third-party distributor, institutional and insur-
ance) and fund categories (balanced, bond, equity and money market). In Table 32, we
report the maximum between the autocorrelation ρ (R (t) ,R (t− 1)) of order one and the
autocorrelation ρ (R (t) ,R (t− 2)) of order two. Moreover, we indicate with the symbol ∗∗

the matrix cells where the p-value of the autocorrelation is lower than 5%. Except for money
market funds and the institutional/balanced matrix cell, redemptions are not significantly
autocorrelated. If we consider redemption frequencies and severities, we observe more au-
tocorrelation (see Tables 50 and 51 on page 116). However, for bond and equity funds, the
results show that the autocorrelation is significant and high for the redemption frequency,
but low for the redemption severity.

5 Factor-based liquidity stress testing

The last section of this article is dedicated to the factors that may explain a redemption
stress. First, we investigate whether it is due to a redemption frequency shock or a redemp-
tion severity shock. Second, we study how market risk may explain extreme redemption
rates, and we focus on three factors: stock returns, bond returns and volatility levels.

5.1 Where does the stress come from?

We may wonder whether the time variation of redemption rates is explained by the time
variation of redemption frequencies or redemption severities. Using the time series built in
Section 4.3.4 on page 76, we consider three linear regression models: R (t) = β0 + β1F (t) + u (t)

R (t) = β0 + β1R ? (t) + u (t)
R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

In the first model, we explain the redemption rate using the redemption frequency. In the
second model, the explanatory variable is the redemption severity. Finally, the third model
combines the two previous models. For each classification matrix cell (j, k), we have reported
the centered coefficient of determination R2

c in Tables 33, 34 and 35.
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Table 33: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + u (t)

Balanced Bond Equity Money market
Institutional 2.4 36.2 53.4 17.2
Insurance 0.9 11.6 10.8 17.8
Retail 37.2 34.5 14.7 18.4
Third-party distributor 11.5 31.6 17.7 11.5

Table 34: Coefficient of determination R2
c in % — R (t) = β0 + β1R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 87.2 74.8 44.5 87.5
Insurance 99.2 84.0 83.3 90.1
Retail 77.6 88.4 98.1 80.8
Third-party distributor 93.1 91.5 92.1 95.0

Table 35: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 88.2 84.7 81.7 93.3
Insurance 99.3 86.2 86.4 94.9
Retail 92.5 95.4 99.3 92.3
Third-party distributor 97.0 96.3 95.7 97.3

If we consider the first linear regression model, we notice that R2
c is greater than 50% only

for the institutional/equity category. R2
c takes a value around 35% for the retail/balanced,

retail/bond and institutional/bond categories, otherwise it is less than 20%. Results for
the second linear regression are better. This indicates that the redemption severity is a
better explanatory variable than the redemption frequency. The only exception is the in-
stitutional/equity category. The combination of the two variables allows us to improve the
explanatory power of the model, but we also notice that the redemption severity is the
primary factor. The matrix cell with the highest R2

c is retail/equity, whereas the matrix
cell with the lowest R2

c is institutional/equity. The scatter plot between R (t), F (t) and
R ? (t) for these two extreme cases are reported in Figures 35 and 36. For the retail/equity
category, we verify that the redemption severity explains the redemption rate. For the in-
stitutional/equity category, the redemption severity is not able to explain the high values of
the redemption rate.

The previous results are very interesting since the redemption severity is the primary
factor for explaining the redemption shocks. Therefore, a high variation of the redemption
rate is generally due to an increase of the redemption severity. Nevertheless, there are
some exceptions where stress scenarios are also explained by an increase in the redemption
frequency.

Remark 16 We have used the coefficient R2
c to show the power explanation of the two

variables F (t) and R ? (t) without considering the effect of the constant. For some matrix
cells, we notice that the constant may be important (see Tables 52, 53 and 54 on page 116).
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Figure 35: Relationship between R (t), F (t) and R ? (t) (retail/equity)
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Figure 36: Relationship between R (t), F (t) and R ? (t) (institutional/equity)
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5.2 What market risk factors matter in stress testing?

5.2.1 The flow-performance relationship

Numerous academic research papers suggest that investor flows depend on past performance.
According to Sirri and Tufano (1998) and Huang et al. (2007), there is an asymmetry
concerning the flow-performance relationship: equity mutual funds with good performance
gain a lot of money inflows, while equity mutual funds with poor performance suffer smaller
outflows. However, this asymmetry concerns relative performance. Indeed, according to
Ivković and Weisbenner (2009), “inflows are related only to relative performance” while
“outflows are related only to absolute fund performance”. Therefore, these authors suggest
that investors sell the asset class when this one has a bad performance. In the case of
corporate bonds, Goldstein et al. (2017) find that relative performance also matters in
terms of explaining outflows. In order to better understand these results, we consider the
following analytical model42:{

Rf (t) = αf (t) + βf (t)Rmkt (t) + ε (t)
R f (t) = γf + δfαf (t− 1) + ϕfRf (t− 1) + η (t)

where Rf (t) is the return of the fund f , Rmkt (t) is the return of the market risk factor
and R f (t) is the redemption rate of the fund f . ε (t) and η (t) are two independent white
noise processes. Using the first equation, we can estimate the relative performance of the
fund, which is measured by its alpha component αf (t). The second equation states that the
redemption rate R f (t) of the fund depends on the past relative performance αf (t− 1) and
the past absolute performance Rf (t− 1). Then, we can test two assumptions: H1 : δf < 0
and H2 : ϕf < 0. Accepting H1 implies that outflows depend on the relative performance,
while acceptingH2 implies that outflows depend on the absolute performance. In both cases,
the value of the coefficient is negative, because we expect that a negative performance will
increase the redemption rate. The previous framework can be extended to take into account
a more sophisticated model for determining the relative performance43 αf (t) or to consider
lagged variables (Bellando and Tran-Dieu, 2011; Ferreira et al., 2012; Lou, 2012; Cashman
et al., 2014; Barber et al., 2016; Fricke and Fricke, 2017). More generally, we have:

R f (t) = γf +

p∑
h=1

(
φ
(h)
f R f (t− h) + δ

(h)
f αf (t− h) + ϕ

(h)
f Rf (t− h)

)
+ η (t) (34)

Even if this type of flow-performance relationship is interesting to understand the investor
behavior, it is however not adapted in the case of a stress testing program for two reasons.
The first reason is that Equation (34) is calibrated using low frequency data, e.g. quarterly
or monthly data. Therefore, the goal of Equation (34) is to describe long-term behavior
of investors, whereas stress testing of liabilities concerns short-term periods. The second
reason is the inadequacy of this approach with macro stress testing approaches developed
by regulators and institutional bodies.

5.2.2 The macro stress testing approach

If we consider stress testing programs developed in the banking sector (Roncalli, 2020, pages
893-922), we distinguish historical, probabilistic and macroeconomic approaches. While the
first two methods have been developed in the previous sections, we focus on the third method,
which is the approach used by the regulators (Board of Governors of the Federal Reserve

42See Arora et al. (2019).
43For instance, we can use the three-factor Fama-French model or the four-factor Carhart model.
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System, 2017; EBA, 2020a,b; ECB, 2019; Ong, 2014). The macroeconomic approach consists
in defining stress scenarios by a set of risk factors corresponding to some exogenous shocks.
In this article, we focus on three market risk factors:

• the performance of the bond market;

• the performance of the stock market;

• market volatility.

Therefore, we assume that there is a linear relationship between the redemption rate and
these factors:

R (t) = β0 + β1Fbond (t) + β2Fstock (t) + β3Fvol (t) + u (t) (35)

where Fbond (t) and Fstock (t) are the h-day total returns of the FTSE World Broad Investment-
Grade Bond index and the MSCI World index, Fvol (t) is the difference of the VIX index
between t− h and t, and h is the time horizon.

In Table 36, we report the coefficient of determination R2
c for the one-day time horizon.

These figures are disappointing since the impact of the market risk factors are very low44.
For instance, the highest R-squared is reached for the third-party distributor/money market
category, but it is equal to 4.4%. If we consider a longer time horizon, results do not improve
and we always have R2

c � 5% (see Tables 55 and 56 on page 117).

Table 36: Coefficient of determination R2
c in % — Equation (35), one-day time horizon

Balanced Bond Equity Money market
Institutional 0.3 0.8 1.6 1.9
Insurance 0.1 0.1 0.6 0.8
Retail 0.5 3.1 1.4 0.6
Third-party distributor 0.7 1.5 1.3 4.4

Remark 17 The previous results suggest that redemption rates do not depend on market
risk factors on a short-term basis. However, fund managers generally have the feeling that
redemption rates increase when there is a stress on market returns. Nevertheless, we know
that returns are more or less independent from one day to another. Therefore, we consider
another approach using market sentiment. For that, we compute the average redemption rate
when the VIX index is above 30, and calculate its relative variation with respect to the entire
period. Results are given in Table 37. We observe an impact in particular for bond/equity
funds and institutional/third-party distributor investors.

Table 37: Relative variation of the redemption rate R (t) when VIX ≥ 30

Balanced Bond Equity Money market
Institutional +17.3% +54.7% +74.3% +64.7%
Insurance −63.4% −1.1% −14.2% +75.7%
Retail +6.1% +21.5% +13.8% −4.5%
Third-party distributor +37.6% +43.6% +49.5% +22.7%

44Nevertheless, we verify that β2 is negative for equity funds, even though the relationship between
redemption rate and stock returns is not convincing as shown in Figure 53 on page 118.
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6 Conclusion

Liquidity stress testing is a recent topic in asset management, which has given rise to numer-
ous publications from regulators (AMF, 2017; BaFin, 2017; ESMA, 2019; FSB, 2017; IOSCO,
2015, 2018), investment management associations (AFG, 2015; EFAMA, 2020) and affiliated
researchers from central banks and international bodies (Arora et al., 2019; Baranova et al.,
2017; Bouveret, 2017; Fricke and Fricke, 2017; Gourdel et al., 2018). On the academic side,
few studies specifically concern liquidity stress testing in asset management45. Therefore,
we observe a gap between general concepts and specific measurement models. As such, the
purpose of our study is to propose several analytical approaches in order to implement LST
practical programs.

Besides the historical approach that considers non-parametric risk measures, we have
developed a frequency-severity model that is useful when building parametric risk measures
of liquidity stress testing. This statistical approach can be seen as a reduced-form model
based on three parameters: the redemption frequency, the expected redemption severity
and the redemption uncertainty. Like the historical approach, the frequency-severity model
requires some expert judgements to correct some data biases. Nevertheless, both historical
and analytical approaches are simple enough to verify properties of risk ordering coherency
between fund and investor categories.

We have also developed an individual-based behavioral model, which is an extension of
the frequency-severity model. We have shown that redemption risk depends on the fund
liability structure, and is related to the Herfindahl index of assets under management held
by unitholders. Even if this model is hard to implement because it requires knowing the
comprehensive liability structure, it allows us to justify liquidity stress testing based on
the largest fund holders. Moreover, this model shows the importance of cross-correlation
between unitholders of a same investor category, but also of several investor categories.
Nevertheless, the individual-based behavioral model is flexible enough that it can easily
take into account dependencies between investors by incorporating a copula model. Again,
the issue with this extended individual-based behavioral model lies in the knowledge of the
liability structure.

The production of stress scenarios can be obtained by considering a risk measure applied
to the redemption rate. For the historical approach, we can use a value-at-risk or a condi-
tional value-at-risk figure, which is estimated with non-parametric statistical methods. For
the frequency-severity and individual-based behavioral models, the estimation of the VaR
or CVaR is based on analytical formulas. Moreover, these models may produce parametric
stress scenarios for a given return time. Another issue concerns the choice of data between
gross or net redemption rates for calibrating these stress scenarios. For some categories, net
redemption rates may be used to proxy gross redemption rates, because they are very close
in stress periods. However, we also demonstrate that it is better to use gross redemption
rates for some investor or fund categories (e.g. retail investors or money market funds).

The design of macro stress testing programs is more complicated than expected. Since
the flow-performance relationship is extensively documented by academic research, it is
valid at low frequencies, typically on a quarterly or annual basis. In this case, we may
observe inflows towards the best fund managers. However, this relationship mainly concerns
relative performance, whereas macro stress testing programs deal with absolute performance.
Indeed, relative performance is a key parameter when we want to analyze the idiosyncratic
liability liquidity risk at the fund level. Nevertheless, the liquidity risk in asset management

45Because data on liabilities are not publicly available. However, we can cite Christoffersen and Xu
(2017) and Darolles et al. (2018), who specifically study asset management flows with respect to the liability
structure of the investment fund.
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primarily involves systemic periods of liquidity shortage that impact a given asset class.
Our empirical results are mixed since drawing a relationship between redemption rates and
market risk factors in stress periods is not obvious because there are lead/lag effects and
liquidity stress periods never look the same. For instance, the redemption stress scenario on
money market funds during the covid-19 crisis and the first quarter of 2020 is very different
from the redemption stress scenario during the Lehman Brothers’ bankruptcy in September
and October 2008. Indeed, we observe a significant lag of one/two months in the case of the
covid-19 crisis. In a similar way, the liquidity stress transmission to equity funds has not
been immediate and has been delayed by several weeks.

The current interest in liquidity stress testing is related to the Financial Stability Board’s
tasks on systemic risk (FSB, 2010, 2015) and shadow banking supervision (FSB, 2017, 2018).
As explained by Blanqué and Mortier (2019b), “regulation of asset managers has been
lagging behind that of banks since the global financial crisis”. The implementation of the
liquidity coverage ratio (LCR) and the net stable funding ratio (NSFR), the use of liquidity
and high-quality liquid assets (HQLA) buffers and the definition of regulatory monitoring
tools date back to 2010 for the banking industry46 (BCBS, 2010, 2013). The regulatory
framework on liquidity stress testing proposed by ESMA (2019) is an important step for the
development of liquidity measurement in the asset management industry. In this paper, we
develop an analytical framework and give some answers. However, it is still early days and
much remains to be done.

46The LCR became a minimum requirement for BCBS member countries in January 2015.
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Appendix

A Mathematical results

A.1 Granularity and the X-statistic

We consider n funds whose redemption rate is equal to p. The assets under management
of each fund are set to $1. The maximum redemption rate of n funds is equal to the
mathematical expectation of n Bernoulli random variables:

p (max) = E [max (B1 (p) , . . . ,Bn (p))]

= 1− (1− p)n

whereas the redemption rate of the sum of n funds is equal to the expected frequency of a
Binomial random variable:

p (sum) =
E [B (n, p)]

n
= p

In Table 38, we report the value taken by the ratio p (max) /p (sum). For example, this ratio
is equal to 3.71 if p = 5% and n = 4. To understand this ratio, we can consider a large fund
whose redemption probability is p. This fund is split into n funds of the same size. The ratio
indicates the multiplication factor to obtain the maximum of the redemption rates among
the n funds.

Table 38: Value of the ratio p (max) /p (sum)

n
Probability p

1 bp 10 bps 1% 5% 10% 20% 50%
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 2.00 2.00 1.99 1.95 1.90 1.80 1.50
3 3.00 3.00 2.97 2.85 2.71 2.44 1.75
4 4.00 3.99 3.94 3.71 3.44 2.95 1.88
5 5.00 4.99 4.90 4.52 4.10 3.36 1.94

10 10.00 9.96 9.56 8.03 6.51 4.46 2.00
50 49.88 48.79 39.50 18.46 9.95 5.00 2.00

100 99.51 95.21 63.40 19.88 10.00 5.00 2.00

A.2 Statistical moments of zero-inflated probability distribution

A.2.1 General formulas

A zero-inflated random variable Z can be written as the product of a Bernoulli random
variables X ∼ B (p) and a positive random variable Y :

Z = XY

Let µ′m (Z) for the m-th moment of Z. Using the previous relationship, we deduce that:

µ′m (Z) = E [Zm]

= E [XmY m]

= E [Xm]E [Y m]

= pµ′m (Y ) (36)
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because X and Y are independent by definition, and Xm = X, implying that Xm follows
a Bernoulli distribution B (p). From Equation (36), we can compute the m-th centered
moment µm (Z). For that, we recall that:

µ1 = µ′1

µ2 = µ′2 − µ2
1

µ3 = µ′3 − 3µ′2µ1 + 2µ3
1

µ4 = µ′4 − 4µ′3µ1 + 6µ′2µ
2
1 − 3µ4

1

We deduce the expression of the second moment:

µ′2 = µ2 + µ2
1

For the third moment, we have:

µ′3 = µ3 + 3µ′2µ1 − 2µ3
1

= µ3 + 3
(
µ2 + µ2

1

)
µ1 − 2µ3

1

= µ3 + 3µ2µ1 + µ3
1

= γ1µ
3/2
2 + 3µ2µ1 + µ3

1

where γ1 is the skewness coefficient. For the fourth moment, it follows that:

µ′4 = µ4 + 4µ′3µ1 − 6µ′2µ
2
1 + 3µ4

1

= µ4 + 4
(
γ1µ

3/2
2 + 3µ2µ1 + µ3

1

)
µ1 − 6

(
µ2 + µ2

1

)
µ2
1 + 3µ4

1

= µ4 + 4γ1µ
3/2
2 µ1 + 12µ2µ

2
1 + 4µ4

1 − 6µ2µ
2
1 − 6µ4

1 + 3µ4
1

= µ4 + 4γ1µ
3/2
2 µ1 + 6µ2µ

2
1 + µ4

1

= (γ2 + 3)µ2
2 + 4γ1µ

3/2
2 µ1 + 6µ2µ

2
1 + µ4

1

where γ2 is the excess kurtosis coefficient. We can then compute the moments of Z. For the
mean, we have:

µ1 (Z) = µ′1 (Z)

= pµ1 (Y ) (37)

We deduce that the variance of Z is equal to:

µ2 (Z) = µ′2 (Z)− µ2
1 (Z)

= pµ′2 (Y )− p2µ2
1 (Y )

= pµ2 (Y ) + p (1− p)µ2
1 (Y ) (38)

For the third moment, we have:

µ3 (Z) = µ′3 (Z)− 3µ′2 (Z)µ1 (Z) + 2µ3
1 (Z)

= pµ′3 (Y )− 3p2µ′2 (Y )µ1 (Y ) + 2p3µ3
1 (Y )

= p
(
γ1 (Y )µ

3/2
2 (Y ) + 3µ2 (Y )µ1 (Y ) + µ3

1 (Y )
)
−

3p2
(
µ2 (Y ) + µ2

1 (Y )
)
µ1 (Y ) + 2p3µ3

1 (Y )

= pγ1 (Y )µ
3/2
2 (Y ) + 3p (1− p)µ2 (Y )µ1 (Y ) + p (1− p) (1− 2p)µ3

1 (Y )
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It follows that the skewness coefficient is equal to:

γ1 (Z) =
µ3 (Z)

µ
3/2
2 (Z)

=
ϑ1 (Z)

(pµ2 (Y ) + p (1− p)µ2
1 (Y ))

3/2
(39)

where:

ϑ1 (Z) = pγ1 (Y )µ
3/2
2 (Y ) + 3p (1− p)µ2 (Y )µ1 (Y ) + p (1− p) (1− 2p)µ3

1 (Y )

For the fourth moment, we have:

µ4 (Z) = µ′4 (Z)− 4µ′3 (Z)µ1 (Z) + 6µ′2 (Z)µ2
1 (Z)− 3µ4

1 (Z)

= pµ′4 (Y )− 4p2µ′3 (Y )µ1 (Y ) + 6p3µ′2 (Y )µ2
1 (Y )− 3p4µ4

1 (Y )

= p (γ2 (Y ) + 3)µ2
2 (Y ) + 4pγ1 (Y )µ

3/2
2 (Y )µ1 (Y ) + 6pµ2 (Y )µ2

1 (Y ) + pµ4
1 (Y )−

4p2γ1 (Y )µ
3/2
2 (Y )µ1 (Y )− 12p2µ2 (Y )µ2

1 (Y )− 4p2µ4
1 (Y ) +

6p3µ2 (Y )µ2
1 (Y ) + 6p3µ4

1 (Y )− 3p4µ4
1 (Y )

= p (γ2 (Y ) + 3)µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p)2 µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 3p+ 3p2

)
µ4
1 (Y ) (40)

We deduce that the excess kurtosis coefficient is equal to:

γ2 (Z) =
µ4 (Z)

µ2
2 (Z)

− 3

=
ϑ2 (Z)

(pµ2 (Y ) + p (1− p)µ2
1 (Y ))

2 (41)

where:

ϑ2 (Z) = p (γ2 (Y ) + 3)µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p)2 µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 3p+ 3p2

)
µ4
1 (Y )−

3p2µ2
2 (Y )− 6p2 (1− p)µ2 (Y )µ2

1 (Y )− 3p2 (1− p)2 µ4
1 (Y )

= (pγ2 (Y ) + 3p (1− p))µ2
2 (Y ) + 4p (1− p) γ1 (Y )µ

3/2
2 (Y )µ1 (Y ) +

6p (1− p) (1− 2p)µ2 (Y )µ2
1 (Y ) + p (1− p)

(
1− 6p+ 6p2

)
µ4
1 (Y )

We can deduce the following properties:

1. The skewness of Z is equal to zero if and only if:

(a) the skewness of Y is equal to zero and the frequency probability p is equal to one;

(b) the frequency probability p is equal to zero, meaning that Z is always equal to
zero.

2. The excess kurtosis of Z is equal to zero if and only if:

(a) the kurtosis of Y is equal to 3 and the frequency probability p is equal to one;
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(b) the frequency probability p is equal to zero, meaning that Z is always equal to
zero.

In other cases, the skewness and excess kurtosis coefficients of Z are different from zero even
if the random variable Y is not skewed and has not fat tails.

Remark 18 The previous results seem to be contradictory with the properties given in Equa-
tion (17) on page 36. In fact, the limit case p → 0+ is not equal to p = 0, because there is
a singularity at the point p = 0.

A.2.2 Application to the beta distribution

We assume that Y ∼ B (a, b). Since we have:

µ1 (Y ) =
a

a+ b

we deduce that:
µ1 (Z) = p

a

a+ b

For the second moment, we have:

µ2 (Y ) =
ab

(a+ b)
2

(a+ b+ 1)

and:

µ2 (Z) = p
ab

(a+ b)
2

(a+ b+ 1)
+ p (1− p)

(
a

a+ b

)2

= p
ab+ (1− p) a2 (a+ b+ 1)

(a+ b)
2

(a+ b+ 1)

This formula has been already found by Ospina and Ferrari (2010). The skewness and excess
kurtosis coefficients of the beta distribution are equal to:

γ1 (Y ) =
2 (b− a)

√
a+ b+ 1

(a+ b+ 2)
√
ab

and:

γ2 (Y ) =
6 (a− b)2 (a+ b+ 1)

ab (a+ b+ 2) (a+ b+ 3)
− 6

(a+ b+ 3)

We plug these different expressions into the general formulas47 to obtain γ1 (Z) and γ2 (Z).

A.3 Maximum likelihood of the zero-inflated model

We consider a sample {x1, . . . , xn} of n observations, and we assume that X follows a
zero-inflated model, whose frequency and probability distributions are p and G (x; θ). The
log-likelihood of the ith observation is equal to:

`i (p, θ) = ln Pr {X = xi}
= ln f (xi)

= 1 {xi = 0} · ln (1− p) + 1 {xi > 0} · ln (pg (xi; θ))

= 1 {xi = 0} · ln (1− p) + 1 {xi > 0} · ln p+ 1 {xi > 0} · ln g (xi; θ)

47The formulas are not reported here because they don’t have a lot of interest.
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We deduce that the log-likelihood function is equal to:

` (p, θ) =

n∑
i=1

`i (p, θ)

= n0 ln (1− p) + (n− n0) ln p+
∑
xi>0

ln g (xi)

where n0 is the number of observations xi that are equal to zero. The maximum likelihood

estimator
(
p̂, θ̂
)

is defined as follows:{
p̂, θ̂
}

= arg max ` (p, θ)

and satisfies the first-order conditions: ∂p`
(
p̂; θ̂
)

= 0

∂θ`
(
p̂; θ̂
)

= 0

We deduce that:

∂p`
(
p̂; θ̂
)

= 0⇔ − n0
1− p̂

+
n− n0
p̂

= 0

⇔ p̂ =
n− n0
n

(42)

The concentrated log-likelihood function becomes:

` (p̂, θ) = n0 lnn0 + (n− n0) ln (n− n0)− n lnn+
∑
xi>0

ln g (xi)

Therefore, the ML estimator θ̂ corresponds to the ML estimator of θ when considering only
the observations xi that are strictly positive:

θ̂ = arg max ` (p̂, θ)

= arg max
∑
xi>0

ln g (xi) (43)

Remark 19 In the case of the zero-inflated beta model, we have θ = (a, b) and:{
â, b̂
}

= arg max
∑
xi>0

(
(a− 1) lnxi + (b− 1) ln (1− xi)− lnB (a, b)

)
(44)

A.4 Statistical properties of the individual-based model

We define the random variable Z̃ as the sum of products of two random variables:

Z̃ =

n∑
i=1

ωiX̃iỸi

where X̃i ∼ B (p̃) and Ỹi are iid random variables. Moreover, we assume that ωi > 0 and∑n
i=1 ωi = 1.

92



Liquidity Stress Testing in Asset Management

A.4.1 Computation of Pr
{
Z̃ = 0

}
This case corresponds to the situation where no client redeems:

Pr
{
Z̃ = 0

}
= Pr

{
n∑
i=1

ωiX̃iỸi = 0

}
= Pr

{
X̃1 = 0, . . . , X̃n = 0

}
=

n∏
i=1

Pr
{
X̃i = 0

}
= (1− p̃)n (45)

A.4.2 Statistical moments

First moment For the mean, we have:

E
[
Z̃
]

= E

[
n∑
i=1

ωiX̃iỸi

]

=

n∑
i=1

ωiE
[
X̃i

]
E
[
Ỹi

]
We deduce that:

µ1

(
Z̃
)

= p̃µ1

(
Ỹ
)

(46)

Second moment Since we have E
[
X̃2
i

]
= p̃ and E

[
Ỹ 2
i

]
= µ′2

(
Ỹ
)

, it follows that:

E
[
Z̃2
]

= E

( n∑
i=1

ωiX̃iỸi

)2


= E

 n∑
i=1

ω2
i X̃

2
i Ỹ

2
i + 2

∑
j>i

ωiωjX̃iX̃j ỸiỸj


= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj

We notice that:

1 =

n∑
i=1

ωi

=

(
n∑
i=1

ωi

)2

=

n∑
i=1

ω2
i + 2

∑
j>i

ωiωj
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We deduce that:

µ2

(
Z̃
)

= E
[
Z̃2
]
− E2

[
Z̃
]

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj − p̃2µ2
1

(
Ỹ
)

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2p̃2µ2

1

(
Ỹ
)∑
j>i

ωiωj −

p̃2µ2
1

(
Ỹ
) n∑

i=1

ω2
i + 2

∑
j>i

ωiωj


Therefore, the variance of Z̃ is equal to:

µ2

(
Z̃
)

=
(
p̃µ′2

(
Ỹ
)
− p̃2µ2

1

(
Ỹ
)) n∑

i=1

ω2
i

= p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
)) n∑

i=1

ω2
i (47)

Remark 20 In the equally-weighted case, we obtain:

µ2

(
Z̃
)

=
p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
))

n

Application to the beta severity distribution If we assume that Ỹi ∼ B
(
ã, b̃
)

, we

have:

µ1

(
Ỹ
)

=
ã

ã+ b̃

and:

µ2

(
Ỹ
)

=
ãb̃(

ã+ b̃
)2 (

ã+ b̃+ 1
)

We deduce that:

µ1

(
Z̃
)

= p̃
ã

ã+ b̃

and:

µ2

(
Z̃
)

=
p̃

n

 ãb̃(
ã+ b̃

)2 (
ã+ b̃+ 1

) + (1− p̃) ã2(
ã+ b̃

)2


= p̃
ã

n

 b̃+ (1− p̃) ã
(
ã+ b̃+ 1

)
(
ã+ b̃

)2 (
ã+ b̃+ 1

)
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A.5 Moment matching between the zero-inflated model and the
individual-based model

In order to calibrate the probability p, we match the redemption probability Pr {R > 0}.
Using the results in Appendix A.4.1 on page 93, we obtain:

p = 1− Pr {R = 0}
= 1− (1− p̃)n

For the first moment, we have:
E [R ] = pµ = p̃µ̃

We deduce that:

µ =
p̃

1− (1− p̃)n
µ̃

For the second moment, we have:

σ2 (R ) = pσ2 + p (1− p)µ2 = p̃
(
σ̃2 + (1− p̃) µ̃2

) n∑
i=1

ω2
i

It follows that:

σ2 =
p̃
(
σ̃2 + (1− p̃) µ̃2

)∑n
i=1 ω

2
i − p (1− p)µ2

p

=
p̃
(
σ̃2 + (1− p̃) µ̃2

)∑n
i=1 ω

2
i

1− (1− p̃)n
− (1− p̃)np̃2

(1− (1− p̃)n)
2 µ̃

2

=

(
p̃H (ω)

1− (1− p̃)n
)
σ̃2 +(

p̃ ((1− p̃)− (1− p̃)n)H (ω)− p̃2 (1− p̃)n (1−H (ω))

(1− (1− p̃)n)
2

)
µ̃2

where H (ω) =
∑n
i=1 ω

2
i is the Herfindahl index.

Remark 21 If we consider the equally-weighted case ωi = n−1, we have H (ω) = n−1 and:

σ2 =
1

n

(
p̃

1− (1− p̃)n
)
σ̃2 +

1

n

(
p̃ ((1− p̃)− (1− p̃)n)− p̃2 (1− p̃)n (n− 1)

(1− (1− p̃)n)
2

)
µ̃2

When p̃ 6= 0, the limit cases are:
lim
n→∞

p = 1

and:
lim
n→∞

µ = p̃µ̃

For the parameter σ, we obtain:

lim
n→∞

σ2 = p̃
(
σ̃2 + (1− p̃) µ̃2

)
H (ω)

For an infinitely fine-grained liability structure, we have:

lim
n→∞

σ2 = 0
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A.6 Upper bound of the Herfindahl index under partial informa-
tion

Let πk be a probability distribution, meaning that πk ≥ 0 and
∑n
k=1 πk = 1. The Herfindahl

index is equal to:

H =

n∑
k=1

π2
k

=

n∑
k=1

π2
k:n

=

n∑
k=1

π2
n−k+1:n

where:

0 ≤ minπk = π1:n ≤ π2:n ≤ · · · ≤ πk:n ≤ πk+1:n ≤ · · · ≤ πn:n = maxπk

We have:

H =

m∑
k=1

π2
n−k+1:n +

n∑
k=m+1

π2
n−k+1:n

where k = 1 : m denotes the largest contributions that are known, meaning that we don’t
know the values taken by {π1:n, . . . , πn−m:n}. Since we have πn−k:n ≤ πn−k+1:n, we deduce
that:

n∑
k=m+1

π2
n−k+1:n ≤

(
1−

∑m
k=1 πn−k+1:n

πn−m+1:n

)
π2
n−m+1:n

=

(
1−

m∑
k=1

πn−k+1:n

)
πn−m+1:n

and48:

H ≤ H+
m =

m∑
k=1

π2
n−k+1:n +

(
1−

m∑
k=1

πn−k+1:n

)
πn−m+1:n (48)

An example is given in Table 39. The Herfindahl index is equal to 17.96%. Using the first
three largest values, we obtain an estimate of 20.50%.

Table 39: Example of partial Herfindahl index computation

m 1 2 3 4 5 6 7 8
πm (in %) 30.00 20.00 15.00 10.00 9.00 7.00 5.00 4.00
H+
m (in %) 30.00 23.00 20.50 18.75 18.50 18.18 18.00 17.96

A.7 Correlated redemptions with copula functions

We define the random variable Z̃ as previously:

Z̃ =

n∑
i=1

ωiX̃iỸi

48We verify that H+
n = H.
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where Ỹi are iid random variables. We assume that X̃i ∼ B (p̃) are identically distributed,
but not independent. We note C (u1, . . . , un) the copula function of the random vector(
X̃1, . . . , X̃n

)
and B (x) the cumulative distribution function of the Bernoulli random vari-

able B (p̃). This means that B (0) = 1− p̃ and B (1) = 1.

In practice we use the Clayton copula:

C(θc) (u1, . . . , un) =
(
u−θc1 + · · ·+ u−θcn − n+ 1

)−1/θc
or the Normal copula49:

C(θc) (u1, . . . , un) = Φ
(
Φ−1 (u1) + · · ·+ Φ−1 (un) ; Cn (θc)

)
The Clayton parameter satisfies θc ≥ 0 whereas the Normal parameter θc lies in the range
[−1, 1]. Moreover, we notice that the expressions of the bivariate copula functions are:

C(θc) (u1, u2) = C(θc) (u1, u2, 1, . . . , 1) =
(
u−θc1 + u−θc2 − 1

)−1/θc
and:

C(θc) (u1, u2) = C(θc) (u1, u2, 1, . . . , 1) = Φ
(
Φ−1 (u1) + Φ−1 (u2) ; C2 (θc)

)
A.7.1 Joint probability of two X̃i’s

We consider the bivariate case. The probability mass function is described by the following
contingency table:

X̃2 = 0 X̃1 = 1

X̃1 = 0 π0,0 π0,1 π0 = 1− p̃
X̃1 = 1 π1,0 π1,1 π1 = p̃

π0 = 1− p̃ π1 = p̃ 1

(49)

Since we have Pr
{
X̃1 ≤ u1, X̃2 ≤ u2

}
= C(θc) (B (u1) ,B (u2)), we deduce that:

C(θc) (B (0) ,B (0)) = C(θc) (1− p̃, 1− p̃)
C(θc) (B (0) ,B (1)) = C(θc) (1− p̃, 1) = 1− p̃
C(θc) (B (1) ,B (0)) = C(θc) (1, 1− p̃) = 1− p̃
C(θc) (B (1) ,B (1)) = C(θc) (1, 1) = 1

and:

X̃2 = 0 X̃1 = 1

X̃1 = 0 C(θc) (1− p̃, 1− p̃) 1− p̃−C(θc) (1− p̃, 1− p̃) 1− p̃
X̃1 = 1 1− p̃−C(θc) (1− p̃, 1− p̃) C(θc) (1− p̃, 1− p̃) + 2p̃− 1 p̃

1− p̃ p̃ 1

(50)

In the case where C(θc) = C⊥, X̃1 and X̃2 are independent, we retrieve the results obtained
for the individual-based model:

X̃2 = 0 X̃1 = 1

X̃1 = 0 (1− p̃)2 (1− p̃) p̃ 1− p̃
X̃1 = 1 (1− p̃) p̃ p̃2 p̃

1− p̃ p̃ 1

(51)

49The Normal copula depends on the correlation matrix Σ. Here, we assume a uniform redemption
correlation, implying that Σ is the constant correlation matrix Cn (θc) where θc is the pairwise correlation.
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because C⊥ (u1, u2) = u1u2. In the case where C(θc) = C+, X̃1 and X̃2 are perfectly
dependent and we obtain the following contingency table:

X̃2 = 0 X̃1 = 1

X̃1 = 0 1− p̃ 0 1− p̃
X̃1 = 1 0 p̃ p̃

1− p̃ p̃ 1

(52)

because C+ (u1, u2) = min (u1, u2). The contingency tables (51) and (52) represent the two
extremes cases.

Remark 22 If we use a radially symmetric copula (Nelsen, 2006) such that:

C(θc) (u1, u2) = u1 + u2 − 1 + C(θc) (1− u1, 1− u2)

the contingency table (50) becomes:

X̃2 = 0 X̃1 = 1

X̃1 = 0 1− 2p̃+ C(θc) (p̃, p̃) p̃−C(θc) (p̃, p̃) 1− p̃
X̃1 = 1 p−C(θc) (p̃, p̃) C(θc) (p̃, p̃) p̃

1− p̃ p̃ 1

In the general case, we obtain a similar contingency table by replacing the copula function
C(θc) (u1, u2) by its corresponding survival function C̆(θc) (u1, u2) because we have (Nelsen,
2006):

C̆(θc) (u1, u2) = u1 + u2 − 1 + C(θc) (1− u1, 1− u2)

A.7.2 Computation of Pr
{
Z̃ = 0

}
This case corresponds to the situation where no client redeems:

Pr
{
Z̃ = 0

}
= Pr

{
n∑
i=1

ωiX̃iỸi = 0

}
= Pr

{
X̃1 = 0, . . . , X̃n = 0

}
= C(θc) (1− p̃, . . . , 1− p̃) (53)

In the case where C(θc) = C⊥, we retrieve the result Pr
{
Z̃ = 0

}
= (1− p̃)n. In the case

where C(θc) = C+, we obtain Pr
{
Z̃ = 0

}
= 1− p̃.

A.7.3 Statistical moments

First moment For the mean, we have:

E
[
Z̃
]

= E

[
n∑
i=1

ωiX̃iỸi

]

=

n∑
i=1

ωiE
[
X̃i

]
E
[
Ỹi

]
We deduce that:

µ1

(
Z̃
)

= p̃µ1

(
Ỹ
)

(54)
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Second moment Using the contingency table (50), we have:

E
[
X̃1X̃2

]
= C(θc) (1− p̃, 1− p̃) + 2p̃− 1

= C̆(θc) (p̃, p̃)

It follows that:

E
[
Z̃2
]

= E

( n∑
i=1

ωiX̃iỸi

)2


= E

 n∑
i=1

ω2
i X̃

2
i Ỹ

2
i + 2

∑
j>i

ωiωjX̃iX̃j ỸiỸj


= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)∑
j>i

ωiωj

and

µ2

(
Z̃
)

= E
[
Z̃2
]
− E2

[
Z̃
]

= p̃µ′2

(
Ỹ
) n∑
i=1

ω2
i + 2C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)∑
j>i

ωiωj − p̃2µ2
1

(
Ỹ
)

= p̃
(
µ2

(
Ỹ
)

+ µ2
1

(
Ỹ
))
H (ω) + C̆(θc) (p̃, p̃)µ2

1

(
Ỹ
)

(1−H (ω))− p̃2µ2
1

(
Ỹ
)

= p̃µ2

(
Ỹ
)
H (ω) +

(
p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))− p̃2

)
µ2
1

(
Ỹ
)

=
(
p̃µ2

(
Ỹ
)

+
(
p̃− C̆(θc) (p̃, p̃)

)
µ2
1

(
Ỹ
))
H (ω) +

(
C̆(θc) (p̃, p̃)− p̃2

)
µ2
1

(
Ỹ
)

(55)

In the case where C(θc) = C⊥, we have C̆(θc) (p̃, p̃) = p̃2. Therefore, we retrieve the result
found in Equation (47) on page 94:

µ2

(
Z̃
)

= p̃
(
µ2

(
Ỹ
)

+ (1− p̃)µ2
1

(
Ỹ
))
H (ω)

In the case where C(θc) = C+, we have C̆(θc) (p̃, p̃) = p̃ and we obtain:

µ2

(
Z̃
)

= p̃µ2

(
Ỹ
)
H (ω) + p̃ (1− p̃)µ2

1

(
Ỹ
)

A.8 Statistical moments of the redemption frequency

We recall that X̃i ∼ B (p̃), meaning that E
[
X̃i

]
= E

[
X̃2
i

]
= p̃. The weighted redemption

frequency is defined as follows:

F =

n∑
i=1

ωiX̃i

We have:

E [F ] = E

[
n∑
i=1

ωiX̃i

]
= p̃
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and:

E
[
F 2
]

= E

( n∑
i=1

ωiX̃i

)2


= E

 n∑
i=1

ω2
i X̃

2
i + 2

∑
j>i

ωiωjX̃iX̃j


= p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))

We deduce that:

µ2 (F ) = p̃H (ω) + C̆(θc) (p̃, p̃) (1−H (ω))− p̃2

Remark 23 We notice that the expected value and the volatility of the redemption frequency
are related in the following way:

µ2 (F ) = E [F ] (H (ω)− E [F ]) + C̆ (E [F ] ,E [F ]) (1−H (ω)) (56)

A.9 Pearson correlation between two redemption frequencies

We consider two redemption frequencies F 1 and F 2. The redemption frequency F k is
associated to the liability structure (ωk,1, . . . , ωk,nk

) and corresponds to an investor category,
whose redemption probability is p̃k and frequency correlation is characterized by the copula
function C(θk) (k = 1, 2). We also assume that the redemption correlation between the two
investor categories is defined by the copula function C(θ12). It follows that we have three
copula functions:

• C(θ1) is the copula function that defines the frequency correlation between the investors
of the first category;

• C(θ2) is the copula function that defines the frequency correlation between the investors
of the second category;

• C(θ12) is the copula function that defines the frequency correlation between the in-
vestors of the first category and those of the second category.

In the case where the two categories are the same, we have C(θ1) = C(θ2) = C(θ12) = C(θc).

To compute the covariance between F 1 and F 2, we calculate the mathematical expecta-
tion of the cross product:

E [F 1F 2] = E

( n1∑
i=1

ω1,iX̃1,i

) n2∑
j=1

ω2,jX̃2,j


= E

 n1∑
i=1

n2∑
j=1

ω1,iω2,jX̃1,iX̃2,j


= E

[
X̃1,iX̃2,j

] n1∑
i=1

n2∑
j=1

ω1,iω2,j


= C̆(θ12) (p̃1, p̃2)
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because
∑n1

i=1

∑n2

j=1 ω1,iω2,j = 1. We deduce the expression of the Pearson correlation:

ρ (F 1,F 2) =
C̆(θ12) (p̃1, p̃2)− p̃1p̃2√

µ2 (F 1)µ2 (F 2)
(57)

where:
µ2 (F k) = p̃k (H (ωk)− p̃k) + C̆(θk) (p̃k, p̃k) (1−H (ωk)) k = 1, 2

Remark 24 The Pearson correlation ρ (F 1,F 2) is equal to zero if only if 50 C(θk) is the

product copula C⊥.

Remark 25 In the case where the two investor categories are the same and the liability
structures are equally-weighted, we have p̃1 = p̃2 = p̃ and C(θ1) = C(θ2) = C(θ12) = C(θc),
and we obtain:

ρ (F 1,F 2) =
C̆(θc) (p̃, p̃)− p̃2√
µ2 (F 1)µ2 (F 2)

(58)

where:

µ2 (F k) = C̆(θc) (p̃, p̃)− p̃2 +
p̃− C̆(θc) (p̃, p̃)

nk
k = 1, 2

The limiting case nk → ∞ is equal to ρ (F 1,F 2) = 1. This is normal since F 1 and F 2

converges to p̃ when the liability structure is infinitely fine-grained.

B Data

50We recall that C(θk)
is the Clayton or the Normal copula. In the general case, this property does not

hold.
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Table 40: Breakdown of the liability dataset by investor and fund categories

Total number n
Balanced Bond

Enhanced
Equity

Money
Other Structured Total

of observations Treasury Market
Auto-consumption 22 762 46 651 3 784 46 678 6 175 34 064 0 160 114
Central bank 2 791 7 400 0 4 730 602 0 0 15 523
Corporate 10 780 13 457 2 305 6 962 7 812 6 164 0 47 480
Corporate pension fund 14 827 24 429 427 17 975 3 029 5 474 427 66 588
Employee savings plan 9 894 4 240 1 349 19 145 3 232 0 5 279 43 139
Institutional 50 813 95 013 3 961 76 057 9 542 31 973 241 267 600
Insurance 10 577 45 494 3 303 23 145 12 633 6 528 0 101 680
Other 27 938 29 817 5 816 4 898 9 347 18 717 0 96 533
Retail 140 023 86 937 7 531 99 624 15 418 31 370 83 496 464 399
Sovereign 7 291 12 788 854 14 183 3 471 5 308 0 43 895
Third-party distributor 63 792 86 716 5 247 123 004 11 160 15 407 5 126 310 452
Total 361 488 452 942 34 577 436 401 82 421 155 005 94 569 1 617 403

Total number n1 Balanced Bond
Enhanced

Equity
Money

Other Structured Total
of redemptions Treasury Market
Auto-consumption 3 744 8 796 1 135 11 871 3 040 883 0 29 469
Central bank 4 16 0 38 18 0 0 76
Corporate 324 484 144 159 3 110 20 0 4 241
Corporate pension fund 460 513 17 447 213 17 2 1 669
Employee savings plan 264 120 40 519 74 0 145 1 162
Institutional 1 973 3 098 74 3 422 2 754 229 0 11 550
Insurance 568 1 562 114 1 596 2 409 61 0 6 310
Other 1 145 926 219 805 2 009 278 0 5 382
Retail 54 095 36 018 3 932 67 862 6 882 5 030 22 783 196 602
Sovereign 494 118 9 381 521 2 0 1 525
Third-party distributor 19 837 29 140 2 277 54 689 7 127 4 569 334 117 973
Total 82 908 80 791 7 961 141 789 28 157 11 089 23 264 375 959

Source: Amundi Cube Database (2020) and authors’ calculation.
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Table 41: Breakdown of the liability dataset by investor and fund categories (without mandates and dedicated mutual funds)

Total number n
Balanced Bond

Enhanced
Equity

Money
Other Structured Total

of observations Treasury Market
Auto-consumption 16 147 43 189 3 783 43 737 6 008 13 793 0 126 657
Central bank 1 281 580 0 476 0 0 0 2 337
Corporate 1 862 6 542 2 305 5 468 7 812 4 235 0 28 224
Corporate pension fund 2 344 8 650 427 9 031 2 670 1 277 0 24 399
Employee savings plan 9 894 4 240 1 349 19 145 3 232 0 5 279 43 139
Institutional 6 858 36 792 3 716 41 104 8 329 16 029 0 112 828
Insurance 3 436 13 011 3 303 21 832 8 543 5 750 0 55 875
Other 7 577 12 751 5 428 4 155 9 333 11 788 0 51 032
Retail 115 394 77 879 6 692 95 393 14 798 27 834 83 118 421 108
Sovereign 2 969 2 261 854 3 405 2 853 1 746 0 14 088
Third-party distributor 55 696 75 591 4 929 114 171 10 732 13 483 5 126 279 728
Total 223 458 281 486 32 786 357 917 74 310 95 935 93 523 1 159 415

Total number n1 Balanced Bond
Enhanced

Equity
Money

Other Structured Total
of redemptions Treasury Market
Auto-consumption 3 492 8 385 1 135 11 137 3 040 881 0 28 070
Central bank 2 2 0 7 0 0 0 11
Corporate 280 405 144 157 3 110 9 0 4 105
Corporate pension fund 190 292 17 304 202 0 0 1 005
Employee savings plan 264 120 40 519 74 0 145 1 162
Institutional 1 328 2 312 73 2 677 2 734 166 0 9 290
Insurance 419 874 114 1 576 2 385 60 0 5 428
Other 733 493 200 804 2 008 262 0 4 500
Retail 51 454 35 079 3 932 67 250 6 770 4 875 22 707 192 067
Sovereign 484 72 9 343 520 1 0 1 429
Third-party distributor 18 808 28 242 2 266 52 445 7 077 4 431 334 113 603
Total 77 454 76 276 7 930 137 219 27 920 10 685 23 186 360 670

Source: Amundi Cube Database (2020) and authors’ calculation.
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C Additional results

Figure 37: Third-party distributor
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Figure 38: Relationship between the stress scenario of the big fund and the stress scenario
of n equivalent small funds
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Figure 39: Relationship between the confidence level α of F−1 (α) and the confidence level
αG of G−1 (αG)
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Figure 40: Stress scenario S (T ) in % (p = 5%)
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Figure 41: Stress scenario S (T ) in % (p = 50%)
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Table 42: Estimated value of a (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.02 0.05 0.03 0.03 0.09 0.06 0.04
Central bank
Corporate 0.00 0.04 0.21 0.14
Corporate pension fund 0.01 0.01 0.21 0.04
Employee savings plan 0.14 0.04 0.04
Institutional 0.01 0.04 0.06 0.10 0.05
Insurance 0.01 0.02 0.02 0.12 0.05
Other 0.05 0.05 0.01 0.05 0.01 0.03
Retail 0.01 0.01 0.01 0.01 0.05 0.01 0.00 0.01
Sovereign 0.05 0.02 0.11 0.04
Third-party distributor 0.01 0.03 0.02 0.02 0.07 0.01 0.02 0.02
Total 0.01 0.02 0.02 0.01 0.07 0.02 0.00 0.02

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 43: Estimated value of b (method of moments)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 1.23 2.86 1.20 2.25 2.81 2.23 2.28
Central bank
Corporate 0.78 1.62 5.34 3.61
Corporate pension fund 0.41 0.50 2.69 1.09
Employee savings plan 10.89 1.84 1.73
Institutional 1.21 1.52 2.13 2.15 1.60
Insurance 0.78 0.91 1.07 3.58 1.91
Other 5.58 1.84 1.04 1.35 1.17 1.23
Retail 3.29 3.56 2.98 4.11 2.39 3.07 1.11 3.00
Sovereign 86.69 0.83 0.90 0.87
Third-party distributor 3.83 4.21 1.44 5.22 5.14 1.48 1.43 3.89
Total 2.68 2.80 1.01 2.89 2.58 1.60 0.97 2.43

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 44: Estimated value of a (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 0.20 0.26 0.26 0.23 0.32 0.25 0.24
Central bank
Corporate 0.23 0.19 0.39 0.30
Corporate pension fund 0.13 0.13 0.37 0.16
Employee savings plan 1.03 0.52 0.57
Institutional 0.22 0.19 0.21 0.28 0.22
Insurance 0.14 0.15 0.17 0.28 0.19
Other 0.26 0.21 0.27 0.25 0.28 0.23
Retail 0.31 0.30 0.26 0.33 0.27 0.27 0.36 0.29
Sovereign 0.68 0.17 0.31 0.19
Third-party distributor 0.40 0.28 0.24 0.30 0.34 0.27 0.26 0.30
Total 0.29 0.25 0.23 0.27 0.29 0.24 0.32 0.25

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 45: Estimated value of b (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 6.53 11.36 17.89 15.80 7.50 8.40 10.51
Central bank
Corporate 26.32 6.03 8.96 6.55
Corporate pension fund 1.66 3.12 4.14 2.70
Employee savings plan 74.62 24.41 30.29
Institutional 16.24 4.94 5.65 4.64 5.04
Insurance 3.56 5.42 5.26 7.14 5.46
Other 28.00 7.99 31.90 4.82 43.34 6.72
Retail 56.99 82.20 51.08 116.86 10.51 48.15 309.26 65.57
Sovereign 1225.65 4.84 2.06 2.92
Third-party distributor 111.38 39.19 15.23 64.70 21.61 36.15 12.11 47.77
Total 44.28 26.79 15.16 44.67 7.80 20.02 206.39 26.76

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 46: Estimated value of µ in % (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 2.92 2.23 1.45 1.43 4.08 2.91 2.20
Central bank
Corporate 0.87 3.10 4.12 4.43
Corporate pension fund 7.47 4.03 8.29 5.58
Employee savings plan 1.36 2.07 1.85
Institutional 1.32 3.78 3.55 5.77 4.11
Insurance 3.78 2.62 3.08 3.80 3.44
Other 0.93 2.56 0.83 4.99 0.64 3.26
Retail 0.54 0.36 0.51 0.28 2.47 0.56 0.12 0.44
Sovereign 0.06 3.47 13.01 6.08
Third-party distributor 0.36 0.72 1.55 0.46 1.55 0.75 2.13 0.62
Total 0.66 0.92 1.46 0.59 3.53 1.16 0.15 0.92

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Table 47: Estimated value of σ in % (method of maximum likelihood)

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 6.05 4.16 2.74 2.88 6.66 5.41 4.28
Central bank
Corporate 1.77 6.45 6.18 7.34
Corporate pension fund 15.74 9.53 11.74 11.68
Employee savings plan 1.32 2.80 2.39
Institutional 2.73 7.70 7.06 9.59 7.94
Insurance 8.80 6.23 6.82 6.58 7.07
Other 1.78 5.21 1.58 8.84 1.20 6.30
Retail 0.96 0.65 0.99 0.48 4.52 1.06 0.19 0.81
Sovereign 0.07 7.46 18.33 11.79
Third-party distributor 0.56 1.33 3.04 0.83 2.58 1.41 3.95 1.12
Total 1.20 1.80 2.97 1.13 6.13 2.33 0.27 1.81

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total
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Table 48: Volatility of the redemption rate in %

(1) (2) (3) (4) (5) (6) (7) (8)
Auto-consumption 3.47 3.11 5.42 3.06 6.45 2.40 3.41
Central bank 0.33 1.25 2.29 1.23
Corporate 2.16 2.45 3.43 3.07 5.08 2.22 3.57
Corporate pension fund 3.02 1.92 1.03 2.53 4.09 0.00 2.53
Employee savings plan 0.57 0.41 2.75 1.42 0.59 2.65 1.45
Institutional 2.42 2.58 7.07 2.45 6.89 1.87 3.24
Insurance 3.05 2.79 1.49 2.77 4.53 1.89 3.02
Other 1.15 1.90 4.79 3.22 5.70 1.01 3.26
Retail 1.88 1.74 2.55 1.76 5.18 1.36 1.38 1.95
Sovereign 0.10 0.45 1.66 3.19 10.07 2.39 4.94
Third-party distributor 1.57 2.15 5.22 1.76 3.88 3.37 1.80 2.17
Total 1.96 2.29 4.45 2.18 5.48 2.05 1.51 2.56

(1) = balanced, (2) = bond, (3) = enhanced treasury, (4) = equity, (5) = money market, (6) = other, (7)

= structured, (8) = total

Figure 42: Liability weights in the case of the geometric liability structure ωi ∝ qi
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Figure 43: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.9 and H (ω)
−1

= 18))
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Figure 44: Comparison of F̃ (x | ω) and F̃ (x | H) (q = 0.5 and H (ω)
−1

= 3))
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Figure 45: Probability to observe no redemption Pr {R = 0} in % with respect to the number
n of unitholders (p̃ = 10%)
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Figure 46: Probability to observe 100% of redemptions Pr {F = 1} in % (n = 20)
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Figure 47: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 25%)

Figure 48: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 75%)
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Figure 49: Histogram of the redemption rate in % with respect to the number n of unitholders
(p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 90%)

Table 49: Calibrated Pearson correlation (Normal copula, H (ω) = 1/20)

σ̂ (F )
F

10.0% 20.0% 25.0% 30.0% 40.0%

10.0%
20.0% 39.88% 24.58%
30.0% 50.00% 42.83% 38.88% 35.70% 31.70%
40.0% 50.00% 49.20% 47.77% 45.30%
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Figure 50: Dependogram of the bivariate Normal copula
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Figure 51: Dependogram of redemption rate frequencies for equity funds
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Figure 52: Histogram of the weekly redemption rate in % with respect to the autocorrelation
ρtime (p̃ = 50%, µ̃ = 50%, σ̃ = 10%, ρ = 50%, n = 10)

Table 50: Autocorrelation of the redemption frequency in %

Balanced Bond Equity Money market
Institutional 26.3∗∗ 12.9∗∗ 3.8 33.9∗∗

Insurance 39.8∗∗ 10.5∗∗ 1.8 16.9∗∗

Retail 7.9 9.8 25.2∗∗ −0.1
Third-party distributor 15.0∗∗ 32.5∗∗ 42.4∗∗ 13.9∗∗

Table 51: Autocorrelation of the redemption severity in %

Balanced Bond Equity Money market
Institutional 16.9∗∗ 2.0 6.1 21.4∗∗

Insurance −1.1 8.4 8.5 18.3∗∗

Retail 13.5∗∗ 3.1 10.1∗∗ 12.5∗∗

Third-party distributor 1.6 13.4∗∗ 9.9∗∗ 21.3∗∗

Table 52: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + u (t)

Balanced Bond Equity Money market
Institutional 9.2 45.2 59.1 55.1
Insurance 2.8 18.4 22.2 53.3
Retail 68.2 61.9 60.1 55.2
Third-party distributor 51.8 66.4 54.2 64.7
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Table 53: Coefficient of determination R2
c in % — R (t) = β0 + β1R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 88.1 78.3 51.3 93.2
Insurance 99.2 85.3 85.4 94.4
Retail 88.6 93.2 99.1 89.4
Third-party distributor 96.3 95.9 95.6 98.0

Table 54: Coefficient of determination R2
c in % — R (t) = β0 + β1F (t) + β2R ? (t) + u (t)

Balanced Bond Equity Money market
Institutional 89.0 86.8 84.0 96.4
Insurance 99.3 87.2 88.2 97.1
Retail 96.2 97.3 99.7 95.7
Third-party distributor 98.4 98.2 97.6 98.9

Table 55: Coefficient of determination R2
c in % — Equation (35), one-week time horizon

Balanced Bond Equity Money market
Institutional 0.3 0.7 1.0 1.4
Insurance 0.2 0.5 1.4 2.3
Retail 0.8 2.3 0.6 0.3
Third-party distributor 0.8 0.8 1.2 3.8

Table 56: Coefficient of determination R2
c in % — Equation (35), two-week time horizon

Balanced Bond Equity Money market
Institutional 1.3 0.7 2.8 2.8
Insurance 0.1 0.3 1.5 5.1
Retail 2.3 2.0 0.8 0.9
Third-party distributor 1.1 2.1 1.5 3.7
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Figure 53: Relationship between redemption rate and two-week stock returns (equity cate-
gory)
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Part 2. Modeling the Asset Liquidity Risk∗
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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
liability liquidity risk (or funding liquidity) modeling, the second dimension focuses on
asset liquidity risk (or market liquidity) modeling, and the third dimension considers the
asset-liability management of the liquidity gap risk (or asset-liability matching). The
purpose of this research is to propose a methodological and practical framework in order
to perform liquidity stress testing programs, which comply with regulatory guidelines
(ESMA, 2019, 2020) and are useful for fund managers. The review of the academic
literature and professional research studies shows that there is a lack of standardized
and analytical models. The aim of this research project is then to fill the gap with the
goal of developing mathematical and statistical approaches, and providing appropriate
answers.

In this second article focused on asset liquidity risk modeling, we propose a market
impact model to estimate transaction costs. After presenting a toy model that helps
to understand the main concepts of asset liquidity, we consider a two-regime model,
which is based on the power-law property of price impact. Then, we define several
asset liquidity measures such as liquidity cost, liquidation ratio and shortfall or time
to liquidation in order to assess the different dimensions of asset liquidity. Finally,
we apply this asset liquidity framework to stocks and bonds and discuss the issues of
calibrating the transaction cost model.

Keywords: Asset liquidity, stress testing, bid-ask spread, market impact, transaction cost,
participation rate, power law, liquidation cost, liquidation ratio, liquidation shortfall, time
to liquidation.

JEL classification: C02, G32.
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1 Introduction

Since September 2020, the European Securities and Markets Authority (ESMA) has required
asset managers to adopt a liquidity stress testing (LST) policy for their investment funds
(ESMA, 2020). More precisely, each asset manager must assess the liquidity risk factors
across their funds in order to ensure that stress testing is tailored to the liquidity risk profile
of each fund. The issue of liquidity stress testing is that the analysis should include both
sides of the equation: liability (or funding) liquidity and asset (or market) liquidity. This
issue is not specific to the asset management industry, because it is a general problem faced
by financial firms including the banking industry:

“A liquidity stress test is the process of assessing the impact of an adverse sce-
nario on institution’s cash flows as well as on the availability of funding sources,
and on market prices of liquid assets” (BCBS, 2017, page 60).

However, the main difference between the asset management and banking sectors is that
banks have a longer experience than asset managers, both in the field of stress testing
and liquidity management (BCBS, 2013b). Another difference is that the methodology for
computing the liquidity coverage ratio and the monitoring tools are precise, comprehensive
and very detailed by the regulator (BCBS, 2013a). This is not the case for the redemption
coverage ratio, since the regulatory text only contains guidelines and no methodological
aspects. Certainly, these differences can be explained by the lack of maturity of this topic
in the asset management industry.

The aim of this research is to provide a methodological support for managing liquidity risk
of investment funds. Since it is a huge project, we have divided it into three dimensions: (1)
liability liquidity risk modeling, (2) asset liquidity risk measurement and (3) asset-liability
liquidity risk management. This article only covers the second dimension and proposes a
framework for assessing the liquidity of a portfolio given a redemption scenario1.

Assessing the asset liquidity risk is equivalent to measuring the transaction cost of liqui-
dating a portfolio. This means estimating the bid-ask spread component, the price impact of
the transaction, the time to liquidation, the implementation shortfall, etc. This also implies
defining a liquidation policy. Contrary to the liability liquidity risk where the academic
literature is poor and not helpful, there are many quantitative works on the aspects of as-
set liquidity risk. This is particularly true for the modeling of transaction costs, much less
for liquidation policies. The challenge is then to use the most interesting studies that are
relevant from a professional point of view, and to cast them into a practical stress testing
framework. This means simplifying and defining a few appropriate parameters that are
useful to assess the asset liquidity risk.

This paper is organized as follows. Section Two deals with transaction cost modeling. A
toy model will be useful to define the concepts of price impact and liquidation policies. Then,
we consider a two-regime transaction cost model based on the power-law property of the price
impact. In Section Three, we present the asset liquidity measures such as the liquidation
ratio, the time to liquidation or the implementation shortfall. The implementation of a stress
testing framework is developed in Section Four. In particular, we consider an approach that
distinguishes invariant parameters and risk parameters that are impacted by a stress regime.
We also discuss the portfolio distortion that may be induced by a liquidation policy, which
does not correspond to the proportional rule. Finally, Section Five applies the analytical
framework to stocks and bonds, and Section Six offers some concluding remarks.

1The liability liquidity risk is studied in Roncalli et al. (2020), whereas the asset-liability management
tools are presented in Roncalli et al. (2021)
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2 Transaction cost modeling

In this section, we develop a transaction cost model that incorporates both the bid-ask
spread and the market impact. For that, we first define these two concepts and explain the
difference between real and nominal variables. Then, we present a toy model that allows
to understand the main characteristics of a transaction cost function. Using the power-law
property of price impact, we derive the square-root-linear model and show how this model
can be calibrated.

2.1 Definition

2.1.1 Unit transaction cost

In what follows, we break down the unit transaction cost into two parts:

ccc (x) = s + πππ (x) (1)

where s does not depend on the trade size and represents half of the bid-ask spread of the
security, and πππ (x) depends on the trade size x and represents the price impact (or PI) of
the trade. The trade size x is an invariant variable and is the ratio between the number of
traded shares q (sold or purchased) and the daily trading volume v:

x =
q

v
(2)

It is also called the participation rate.

Remark 1 If we express the quantities in nominal terms, we have:

x =
Q

V
=
q · P
v · P

=
q

v

where P is the security price that is observed for the current date, and Q = q · P and
V = v · P are the nominal values of q and v (expressed in USD or EUR). In the sequel,
lowercase symbols generally represent quantities or numbers of shares whereas uppercase
symbols are reserved for nominal values. For example, the unit transaction cost CCC (Q,V ) is
defined by:

CCC (Q,V ) = ccc

(
Q

V

)
= ccc

( q
v

)
(3)

2.1.2 Total transaction cost

The total transaction cost of the trade is the product of the unit transaction cost and the
order size expressed in dollars:

T C (q) = q · P · ccc (x) = Q · ccc (x) (4)

where P is the price of the security. Again, we can break down T C (q) into two components:

T C (q) = BAS (q) + PI (q) (5)

where BAS (q) = Q · s is the trading cost due to the bid-ask spread and PI (q) = Q · πππ (x)
is the trading cost due to the market impact.

Remark 2 By construction, we have:

T C (Q,V ) = Q ·CCC (Q,V ) (6)
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2.1.3 Trading limit

The previous framework only assumes that x ≥ 0. However, this is not realistic since we
cannot trade any values of x in practice. From a theoretical point of view, we have q ≤ v,
meaning that x ≤ 1 and x is a participation rate. From a practical point of view, q is an
ex-post quantity whereas v is an ex-ante quantity, implying that x is a relative trading size
and can be larger than one. Nevertheless, it is highly unlikely that the fund manager will
trade a quantity larger than the ex-ante daily trading volume. It is more likely that the
asset manager’s trading policy imposes a trading limit x+ beyond which the fund manager
cannot trade:

0 ≤ x ≤ x+ < 1 (7)

This is equivalent to say that the unit transaction cost becomes infinite when the trade size
is larger than the trading limit. It follows that the unit transaction cost may be designed in
the following way:

ccc (x) =

{
s + πππ (x) if x ∈ [0, x+]
+∞ if x > x+

(8)

In this case, the concept of total transaction cost (or trading cost) only makes sense if the
trade size x is lower than the trading limit x+. Therefore, we will see later that the trading
(or liquidation) cost must be completed by liquidation measures such as liquidation ratio or
liquidation time.

Remark 3 The trading limit x+ is expressed in %. For instance, it is generally set at
10% for equity trading desks. This means that the trader can sell any volume up to 10% of
the average daily volume without any permissions. Above the 10% trading limit, the trader
must inform the risk manager and obtain authorization to execute its sell order. This trading
limit x+ can be expressed as a maximum number of shares q+. The advantage of this trading
policy is that it does not depend on the daily volume, which is time-varying. Another option
is to express the trading limit in nominal terms. Let Q+ be the nominal trading limit. We
have the following relationship:

x+ =
q+

v
=
Q+

V
(9)

2.2 A toy model of transaction cost

Let us consider a simple model where the unit transaction cost has the functional form
given in Figure 1. In this toy model, we assume that the unit transaction cost corresponds
to the bid-ask spread if the selling amount x is lower than a threshold x̃. Beyond this normal
market size, the transaction cost includes a market impact. This market impact is linear and
is an increasing function of x. Moreover, we generally assume that market impact becomes
infinite if the selling amount is larger than x+, which is known as the maximum trading size
or the trading limit. It follows that the unit transaction cost may be parameterized by this
function:

ccc′ (x) =

 s if x ≤ x̃
s + α (x− x̃) if x̃ ≤ x ≤ x+
+∞ if x > x+

(10)

It depends on four parameters: the bid-ask spread s , the slope α of the market impact and
two thresholds: the normal size x̃ and the maximum trading size x+. For example, we obtain
Figure 1 with the following set of parameters: s = 2 bps, α = 2%, x̃ = 2% and x+ = 8%.
The unit transaction cost is equal to 2 bps for small orders and reaches 14 bps when the
trade size equals to the trading limit that is equal to 8%.
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Figure 1: Simple modeling of unitary transaction costs
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For each security i, the unit transaction cost is then defined by the 4-tuple
(

si, αi, x̃i, x+i
)

where si is a security-specific parameter and αi is a model parameter. This means that αi is
the same for all securities that belong to the same liquidity bucket LBj . For instance, LBj
may group all large cap US stocks. x̃i and x+i may be security-specific parameters, but they
are generally considered as model parameters in order to simplify the calibration of the unit
transaction cost.

The previous approach may be simplified by considering that the market impact begins
at x = x̃ = 0. In this case, the unit transaction cost becomes:

ccc′′ (x) =

{
s + αx if x ≤ x+
+∞ if x > x+

(11)

The interest of this parametrization is to reduce the number of parameters since this unit
transaction cost function is then defined by the triplet

(
si, αi, x+i

)
for each security i. An

example is provided in Figure 29 on page 199.

Remark 4 The parameterization ccc′′ (x) allows us to use the traditional mean-variance frame-
work based on QP optimization (Chen et al., 2019). This explains the practitioners’ great in-
terest in the function ccc′′ (x) because it is highly tractable and is compatible with the Markowitz
approach with low computational complexity2.

Remark 5 In Appendix B.1 on page 191, we show how to transform the function ccc′ (x) into
the function ccc′′ (x), and vice versa. However, the right issue is to estimate ĉcc′′ (x) or more
precisely the slope α̂ of the market impact. In this case, we use Equations (61) and (62) on
page 192 to transform α̂ into α for the functions ccc′ (x) and ccc′′ (x).

2Nevertheless, this parameterization is less frequent than the simple approach that only considers the
bid-ask spread (Scherer, 2007): ccc′′′ (x) = s.
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2.3 The power-law model of price impact

2.3.1 General formula for the market impact

The previous trading cost model is useful for portfolio optimization, but price impact is
certainly too simple from a trading or risk management perspective. Nevertheless, price
impact has been extensively studied by academics3, and it is now well-accepted that market
impact is power-law:

πππ (x) := πππ (x; γ) = ϕγσx
γ (12)

where γ > 0 is a scalar, σ is the daily volatility of the security4 and ϕγ is a scaling factor5. In
particular, Equation (12) is valid under a no-arbitrage condition (Jusselin and Rosenbaum,
2020). Empirical studies showed that γ ∈ [0.3, 0.7]. For example, the seminal paper of Loeb
(1983) has been extensively used by Torre (1997) to develop the MSCI Barra market impact
model, which considers that γ = 0.5. Almgren et al. (2005) concluded that γ = 3/5 is a better
figure than γ = 1/2. On the contrary, Engle et al. (2012) found that γ ≈ 0.43 for NYSE stocks
and γ ≈ 0.37 for NASDAQ stocks, while Frazzini et al. (2018) estimated that the average
exponent is equal to 0.35 for developed equity markets. Bacry et al. (2015) confirmed a
square root temporary impact in the daily participation and observed a power-law pattern
with an exponent between 0.5 and 0.8. However, the results obtained by academics are
generally valid for small values of x. For instance, the median value of x is equal to 0.6% in
Almgren et al. (2005), Tóth et al. (2011) have used trades6, which are smaller than 0.01%,
Zarinelli et al. (2015) have considered a database of seven million metaorders, implying that
data with small values of x dominate data with large values of x, etc.

Even though there is an academic consensus7 that γ ≈ 0.5, this assumption is not
satisfactory from a practical point of view when we have to sell or buy a large order (x �
0.5%). Some academics have also exhibited that γ is an increasing function of x. For
instance, Moro et al. (2009) found that γ is equal to 0.64 for LSE stocks when there is a
low fraction of market orders, but γ is equal to 0.72 when there is a high fraction of market
orders. Similarly, Cont et al. (2014) estimated that γ is equal to 1 when we aggregate trades
and consider order flow imbalance instead of single trade sizes. Breen et al. (2002) used
a linear regression model for estimating the price impact. We also recall that the seminal
paper of Kyle (1985) assumes that γ = 1. In fact, these two concepts of transaction cost are
not necessarily exclusive:

“Empirically, both a linear model and a square root model explain transaction
costs well. A square-root model explains transaction costs for orders in the 90th
to 99th percentiles better than a linear model; a linear model explains transaction
costs for the largest 1% of orders slightly better than the square-root model”
(Kyle and Obizhaeva, 2016, page 1347).

This finding is shared by Boussema et al. (2002) and D’Hondt and Giraud (2008), who
observed that market impact increases significantly when trade size is greater than 1% or
turnover is lower than 0.03%.

3See for instance the survey articles of Bouchaud (2010) and Kyle and Obizhaeva (2018).
4The daily volatility is equal to the annualized volatility divided by the factor

√
260. In the sequel, we use

the symbol σ to name both the daily and annualized volatilities. When the volatility is used in a transaction
cost formula, it corresponds to a daily volatility. In the text, the volatility is always expressed on an annual
basis.

5The value of ϕγ depends on the value taken by the exponent γ.
6See Figure 1 in Tóth et al. (2011).
7For instance, the square-root model is used by Gârleanu and Pedersen (2013), Frazzini et al. (2018) and

Briere et al. (2020).
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Remark 6 According to Bucci et al. (2019), the relationship between trade size and market
impact is close to a square-root function for intermediate trading volumes (i.e. when 0.1% ≤
x ≤ 10%), but shows an approximate linear behavior for smaller trading volumes (i.e. when
0.001% ≤ x ≤ 0.1%). These different results demonstrate that there is no consensus on a
unique functional form for computing the price impact.

Figure 2: Convexity measure of the power-law model
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In Figure 2, we report the power function y = xγ and its first and second derivatives for
three exponents γ. We deduce that the concavity is larger for low values of γ and x. When
x is equal to 1, the power function converges to the same value y = 1 whatever the value of
γ. It follows that the choice of γ primarily impacts small trading sizes.

2.3.2 Special cases

From Equation (12), we deduce the two previous competing approaches of Loeb (1983) and
Kyle (1985), and also the constant (or bid-ask spread) model:

• The square-root model (γ = 1/2):

πππ (x; 1/2) ≈ ϕ1/2σ
√
x (13)

Generally, we assume that the scaling factor ϕ1/2 is close to one, implying that the
multiplicative factor is equal to the daily volatility.

• The linear model (γ = 1):

πππ (x; 1) ≈ ϕ1σx (14)
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In this case, the scaling factor ϕ1 may be calibrated with respect to ϕ1/2 by considering
that the two price impact functions coincide at a threshold x̃. We deduce that8:

πππ (x; 1) ≈ ϕ1/2σ
x√
x̃

(15)

• The constant model (γ = 0):
πππ (x; 0) ≈ ϕ0σ (16)

By assuming that ϕ0 = 0, we obtain the bid-ask spread model:

ccc (x) = s

In Tables 1 and 2, we have reported the values taken by the price impact function πππ (x)
for different values of the annualized volatility σ and trade size x. We assume that ϕ1/2 = 1
and x̃ = 1%. It follows that ϕ1 = 10. Results must be read as follows: a trade size of 0.50%
has a price impact of 4.4 bps when the asset volatility is 10% in the case of the square-root
model, whereas the price impact becomes 3.1 bps if we consider the linear model.

Table 1: Price impact in bps when γ = 1/2 (square-root model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.1 0.1 0.2 0.4 0.6 0.9 1.4 2.0 2.4
5% 0.3 0.7 1.0 2.2 3.1 4.4 6.9 9.8 12.0

10% 0.6 1.4 2.0 4.4 6.2 8.8 13.9 19.6 24.0
15% 0.9 2.1 2.9 6.6 9.3 13.2 20.8 29.4 36.0
20% 1.2 2.8 3.9 8.8 12.4 17.5 27.7 39.2 48.0
25% 1.6 3.5 4.9 11.0 15.5 21.9 34.7 49.0 60.0
30% 1.9 4.2 5.9 13.2 18.6 26.3 41.6 58.8 72.1
50% 3.1 6.9 9.8 21.9 31.0 43.9 69.3 98.1 120.1

Table 2: Price impact in bps when γ = 1 (linear model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.0 0.0 0.1 0.3 0.6 1.2 3.1 6.2 9.3
5% 0.0 0.2 0.3 1.6 3.1 6.2 15.5 31.0 46.5

10% 0.1 0.3 0.6 3.1 6.2 12.4 31.0 62.0 93.0
15% 0.1 0.5 0.9 4.7 9.3 18.6 46.5 93.0 139.5
20% 0.1 0.6 1.2 6.2 12.4 24.8 62.0 124.0 186.1
25% 0.2 0.8 1.6 7.8 15.5 31.0 77.5 155.0 232.6
30% 0.2 0.9 1.9 9.3 18.6 37.2 93.0 186.1 279.1
50% 0.3 1.6 3.1 15.5 31.0 62.0 155.0 310.1 465.1

Figure 3 shows the differences between the two models when the annualized volatility is
set to 10%. First, we notice that the concavity of the square-root model is mainly located

8We have:

πππ (x̃; 1) = πππ (x̃; 1/2) ⇔ ϕ1σx̃ = ϕ1/2σ
√
x̃

⇔ ϕ1 =
ϕ1/2√
x̃
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Figure 3: Square-root model versus linear model (σ = 10%)
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for small values of x, since the trading cost function πππ (x; 1/2) may be approximated by
a piecewise linear function with only three or four knots. Second, the square-root model
implies higher trading costs than the linear model when trade sizes are small, and we verify
that πππ (x; 1/2) ≥ πππ (x; 1) when x ≤ x̃ = 1%. For large trade sizes, it is the linear model that
produces higher trading costs compared to the square-root model9: πππ (x; 1)� πππ (x; 1/2).

2.4 A two-regime transaction cost model

2.4.1 General formula

In the toy model, we distinguish two market impact regimes. The first one corresponds to
small trading sizes — x ∈ [0, x̃], which generate a low price impact. In the second regime,
trading sizes are larger — x ∈ [x̃, x+], and the price impact has a significant contribution
to the transaction cost. The research studies on the power-law model also show that there
may be several regimes of market impact depending on the value of γ. Therefore, we can
generalize the toy model where the two regimes correspond to two power functions:

πππ (x) =

 ϕ1σx
γ1 if x ≤ x̃

ϕ2σx
γ2 if x̃ ≤ x ≤ x+

+∞ if x > x+
(17)

where γ1 and γ2 are the exponents of the two market impact regimes. Moreover, the scalars
ϕ1 and ϕ2 are related since the cost function πππ (x) is continuous. This implies that ϕ2 =
ϕ1x̃

γ1−γ2 . In this case, the price impact model is defined by the 5-tuple (ϕ1, γ1, γ2, x̃, x
+)

since ϕ2 is computed from these parameters. An alternative approach is to define the model

9This large difference between square-root and linear models has been already observed by Frazzini et al.
(2018).
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by the parameter set (γ1, γ2, x̃, x
+,πππ (x̃)). Here, we fix the market impact at the inflection

point, and we have ϕ1 = σ−1x̃−γ1 · πππ (x̃) and ϕ2 = ϕ1x̃
γ1−γ2 .

Remark 7 Another parameterization of the two-regime model may be:

πππ (x) =

 ϕ1σx
γ1 if x ≤ x̃

πππ (x̃) + ϕ2σ (x− x̃)
γ2 if x̃ < x ≤ x+

+∞ if x > x+
(18)

where πππ (x̃) = ϕ1σx̃
γ1 . This model is defined by the parameter set (ϕ1, γ1, ϕ2, γ2, x̃, x

+).

Remark 8 The model of Bucci et al. (2019) is obtained with the two parameterizations by
setting γ1 = 1, x̃ = 0.1% and γ2 = 1/2.

In Figure 4, we report three examples of the two-regime model. The first two examples
correspond to the first parameterization, whereas the last example uses the second parame-
terization. In this last case, we observe a step effect due to the high concavity10 applied to
the small values of x− x̃. Therefore, it is better to use the first parameterization.

Figure 4: Two-regime model (annualized volatility σ = 10%)
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Remark 9 One of the questions which emerges with the calibration of the two-regime model
is the effective difference between the two regimes. In particular, we have the choice between
γ1 > γ2 and γ2 > γ1. In other words, we have the choice to decrease or increase the convexity
beyond the inflection point x̃. The “small size effect” described by Bucci et al. (2019) is not
really an issue, because the impact is so small. Indeed, the order of magnitude of the price
impact for x ≤ 0.1% is one or two basis points in the power-law model11. The significant

10This step effect has been illustrated in Figure 2 on page 127.
11For instance, we have πππ (0.01%) = 0.62 bps and πππ (0.1%) = 1.92 bps when σ = 10% and γ = 0.5.
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issue is more to have a coherent approach when the trading size is close to the trading limit
x+. An example is provided in Figure 5 when the annualized volatility σ is 10% and ϕ1 = 1.
We recall that πππ (x) =∞ when x > x+ because of the order execution policy imposed by the
asset manager. Therefore, it is obvious that the right choice is γ2 > γ1, implying that the
convexity must increase. Otherwise, it is not consistent to impose a low convexity below x+

and an infinite convexity beyond x+.

Figure 5: Two-regime model (σ = 10%, ϕ1 = 1)
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2.4.2 The square-root-linear model

From the two-regime model, we can define the square-root-linear (SQRL) model which has
been suggested by Kyle and Obizhaeva (2016):

πππ (x) =


ϕ1σ
√
x if x ≤ x̃

ϕ1σ
x√
x̃

if x̃ ≤ x ≤ x+

+∞ if x > x+
(19)

In this case, we assume that the square-root model is valid for small trade sizes (x ≤ x̃),
whereas the linear model is better for large trade sizes (x̃ ≤ x̃ ≤ x+). However, beyond
the threshold value x+, we consider that trading costs are prohibitive and infinite. As for
the toy model, the value x+ may be interpreted as a trading limit. We have represented
the SQRL model in Figure 6 for the previous parameters (σ = 10% and ϕ1 = 1) when the
inflection point x̃ is equal to 1%.

In Table 3, we report the price impact of this model for several values of the annualized
volatility σ. We can compare these figures with those given in Tables 1 and 2 on page 128.
Let us consider the case when the volatility is equal to 20%, which corresponds to the typical
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Figure 6: Square-root-linear model (σ = 10%)
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volatility observed for single stocks. We observe that there is an acceleration of the price
impact beyond the inflection point. For instance, the price impact is equal to 24.8 bps for
x = 2%, 62.0 bps for x = 5%, etc.

Table 3: Price impact in bps (square-root-linear model)

x 0.01% 0.05% 0.10% 0.50% 1% 2% 5% 10% 15%

σ

1% 0.1 0.1 0.2 0.4 0.6 1.2 3.1 6.2 9.3
5% 0.3 0.7 1.0 2.2 3.1 6.2 15.5 31.0 46.5

10% 0.6 1.4 2.0 4.4 6.2 12.4 31.0 62.0 93.0
15% 0.9 2.1 2.9 6.6 9.3 18.6 46.5 93.0 139.5
20% 1.2 2.8 3.9 8.8 12.4 24.8 62.0 124.0 186.1
25% 1.6 3.5 4.9 11.0 15.5 31.0 77.5 155.0 232.6
30% 1.9 4.2 5.9 13.2 18.6 37.2 93.0 186.1 279.1
50% 3.1 6.9 9.8 21.9 31.0 62.0 155.0 310.1 465.1

Remark 10 The SQRL model and more generally the two-regime model can be used as an
incentive trading model, since trades are penalized when they are larger than x̃. In this case,
x+ is a hard threshold limit while x̃ can be considered as a soft threshold limit. Indeed, the
asset manager does not explicitly prohibit the fund manager from trading between x̃ and x+,
but he is clearly not encouraged to trade, because the transaction costs are high12. This is
particularly true if the asset manager has a centralized trading desk and ex-ante trading costs
are charged to the fund manager.

12For instance, the price impact is equal to 35.1 bps for x = 2% and 138.7 bps for x = 5% when we use a
two-regime model with the following parameters: σ = 20%, ϕ1 = 1, γ1 = 1/2, γ2 = 3/2 and x̃ = 1%.
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3 Asset liquidity measures

Since liquidity is a multi-faceted concept, we must use several measures in order to encom-
pass the different dimensions (Roncalli, 2020, page 347). If we focus on asset liquidity, we
generally distinguish two types of measurement. The first category assesses the liquidity
risk profile and includes the liquidation ratio, the time to liquidation and the liquidation
shortfall. The second category concerns liquidity costs such as transaction costs and effective
costs. The main difference between the two categories is that the first one focuses on the
volume, while the second one mixes both volume and price dimensions.

3.1 Redemption scenario

In Roncalli et al. (2020), we have developed several methods and tools in order to define a
redemption shock R for a given investment fund. This redemption shock is expressed as a
percentage of the fund’s total net asset TNA. Therefore, we can deduce the stress liability
outflow:

F− (t) := R = R · TNA (t)

The asset structure of the fund is given by the vector ω = (ω1, . . . , ωn) where ωi is the number
of shares of security i and n is the number of assets that make up the asset portfolio. By
construction, we have:

TNA (t) =

n∑
i=1

ωi · Pi (t)

where Pi (t) is the current price of security i. The redemption shock R must be translated
into the redemption scenario q = (q1, . . . , qn), where qi is the number of shares of security i
that must be sold. After the sell order, we must have the following equality13:

TNA
(
t+
)

:= TNA (t)−F− (t) =

n∑
i=1

(ωi − qi) · Pi (t) (20)

where t+ means t+ dt and dt is a small time step. Generally, we assume that the portfolio
composition remains the same, meaning that:

qi · Pi (t)

qj · Pj (t)
=
ωi · Pi (t)

ωj · Pj (t)

It follows that the solution is simple and is equal to the proportional rule:

qi = R · ωi (21)

It is called the vertical slicing approach (or pro-rata liquidation). Nevertheless, since ωi− qi
must be a natural number, qi must also be a natural number. Therefore, due to round-off
errors, the final redemption shock may not match the proportional rule.

Remark 11 In Section 4.3 on page 152, we discuss the construction of the redemption
scenario in more detail, in particular how to manage the distortion of the portfolio allocation
weights.

13We notice that the dollar value of the redemption is equal to
∑n
i=1 qi · Pi (t).
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3.2 Liquidity risk profile

We first consider volume-related liquidity measures. One of the most popular measures is
the liquidation ratio LR (q;h), which measures the proportion of a portfolio q that can be
liquidated after h trading days. This statistic depends on the size of each exposure qi and
the liquidation policy, which is defined by the trading limit q+i . Another interesting statistic
is the liquidation time (or time to liquidation) LT (q; p), which is the inverse function of
the liquidity ratio. It indicates the number of required trading days in order to liquidate a
proportion p of the portfolio.

3.2.1 Liquidation ratio

For each security that makes up the portfolio, we recall that q+i denotes the maximum
number of shares that can be sold during a trading day for the asset i. The number of
shares qi (h) liquidated after h trading days is defined as follows:

qi (h) = min

(qi − h−1∑
k=0

qi (k)

)+

, q+i

 (22)

where qi (0) = 0. The liquidation ratio LR (q;h) is then the proportion of the redemption
scenario q that is liquidated after h trading days:

LR (q;h) =

∑n
i=1

∑h
k=1 qi (k) · Pi∑n
i=1 qi · Pi

(23)

By definition, LR (q;h) is between 0 and 1. For instance, LR (q; 1) = 50% means that we
can fulfill 50% of the redemption on the first trading day, LR (q; 5) = 80% means that we
can fulfill 80% of the redemption after five trading days, etc.

We consider a portfolio, which is made up of 5 assets. The redemption scenario is defined
below by the number of shares qi that have to be sold:

Asset 1 2 3 4 5
qi 4 351 2 005 755 175 18
q+i 1 000 1 000 200 200 200
Pi 89 102 67 119 589

We also indicate the trading limit q+i and the current price Pi of each asset. In Table 4, we
report the number of liquidated shares qi (h) and the liquidation ratio LR (q;h). After the
first trading day, we have liquidated 1 000 shares of Asset #1 because of the trading policy
that imposes a trading limit of 1 000. We notice that we need 5 trading days in order to sell
4 351 shares of Asset #1. If we consider the liquidation ratio, we obtain LR (q; 1) = 35%,
LR (q; 2) = 65.34%, etc.

Remark 12 The liquidation period h+ = inf {h : LR (q;h) = 1} indicates how many trading
days we need to liquidate the redemption scenario q. In the previous example, h+ is equal
to 5, meaning that the liquidation of this redemption scenario requires five trading days.

We can break down the liquidation ratio as follows:

LR (q;h) =
1∑n

i=1 qi · Pi

h∑
k=1

n∑
i=1

LAi,k (q)
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Table 4: Number of liquidated shares qi (h)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LR (q;h)
1 1 000 1 000 200 175 18 35.00%
2 1 000 1 000 200 0 0 65.34%
3 1 000 5 200 0 0 80.61%
4 1 000 0 155 0 0 95.36%
5 351 0 0 0 0 100.00%

Total 4 351 2 005 755 175 18

where LAi,k (q) = qi (k) · Pi is the liquidation amount for security i and trading day k. It
follows that:

LR (q;h) =

h∑
k=1

n∑
i=1

LCi,k (q) =

h∑
k=1

LCk (q)

where LCi,k (q) is the liquidation contribution for security i and trading day k:

LCi,k (q) =
LAi,k (q)∑n
i=1 qi · Pi

and LCk (q) =
∑n
i=1 LCi,k (q) is the liquidation contribution for trading day k. Another

useful decomposition is to consider the break-down by security:

LR (q;h) =

n∑
i=1

qi · Pi∑n
i=1 qi · Pi

∑h
k=1 LAi,k (q)

qi · Pi

=

n∑
i=1

wi · LR (qi;h)

=

n∑
i=1

LCi (q;h)

where wi is the relative weight of security i in portfolio q and LR (qi;h) is the liquidation
ratio applied to the selling order qi:

LR (qi;h) =

∑h
k=1 LAi,k (q)

qi · Pi

LCi (q;h) = wi · LR (qi;h) is the liquidation contribution of asset i.

We consider the previous example. Table 5 shows the values taken by the liquidation
contribution LCi,h (q). For instance, LC1,2 (q) = 15.14% means that the liquidation of 1 000
shares of the second asset during the first trading day represents 15.14% of the redemption
scenario. The sum of each row h corresponds to the liquidation contribution LCh (q). For
instance, we have 13.21% + 15.14% + 1.99% + 3.09% + 1.57% = 35.00%. The sum of

each column corresponds to the weights wi because we have14 wi =
∑h+

k=1 LCi,k (q). The
weights wi and the liquidation ratios LR (qi;h) are given in Table 6. We observe that the

14This result comes from the following identity:

h+∑
k=1

LCi,k (q) =
h+∑
k=1

LAi,k (q)∑n
j=1 qj · Pj

=

h+∑
k=1

qi (k) · Pi∑n
j=1 qj · Pj

=
qi · Pi∑n
j=1 qj · Pj

= wi
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Table 5: Liquidation contribution LCi,h (q) by trading day

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LCh (q)
1 13.21% 15.14% 1.99% 3.09% 1.57% 35.00%
2 13.21% 15.14% 1.99% 0.00% 0.00% 30.34%
3 13.21% 0.08% 1.99% 0.00% 0.00% 15.27%
4 13.21% 0.00% 1.54% 0.00% 0.00% 14.75%
5 4.64% 0.00% 0.00% 0.00% 0.00% 4.64%

Total 57.47% 30.35% 7.51% 3.09% 1.57% 100.00%

Table 6: Weight wi and liquidation ratio LR (qi;h) of the assets

Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
LR (qi; 1) 22.98% 49.88% 26.49% 100.00% 100.00%
LR (qi; 2) 45.97% 99.75% 52.98% 100.00% 100.00%
LR (qi; 3) 68.95% 100.00% 79.47% 100.00% 100.00%
LR (qi; 4) 91.93% 100.00% 100.00% 100.00% 100.00%
LR (qi; 5) 100.00% 100.00% 100.00% 100.00% 100.00%

wi 57.47% 30.35% 7.51% 3.09% 1.57%

Table 7: Liquidation contribution LCi (q;h) by asset

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 LR (q;h)
1 13.21% 15.14% 1.99% 3.09% 1.57% 35.00%
2 26.42% 30.28% 3.98% 3.09% 1.57% 65.34%
3 39.63% 30.35% 5.97% 3.09% 1.57% 80.61%
4 52.84% 30.35% 7.51% 3.09% 1.57% 95.36%
5 57.47% 30.35% 7.51% 3.09% 1.57% 100.00%

assets are respectively liquidated in five, three, three, four, one and one trading days. If
we multiply the weights wi by the liquidation ratios LR (qi;h), we obtain the liquidation
contribution LCi (q;h) by asset. If we sum the elements of each row, we obtain the liquidity
ratio LR (q;h).

As explained by Roncalli and Weisang (2015a), the liquidation ratio will depend on three
factors: the liquidity of the portfolio to sell, the amount to sell and the liquidation policy.
They illustrated the impact of these factors using several index portfolios. For instance, we
report in Figure 7 the example of the EUROSTOXX 50 index portfolio. We notice that the
liquidation ratio is different if we consider a selling order of $1, $10 or $50 bn. It is also
different if the trading limit is equal to 10% or 30% of the average daily volume15 (ADV).
In Figure 8, we compare the liquidation ratio for different index portfolios when the trading
limit is set to 10% of ADV. We notice that the liquidity profile is better for the S&P 500
Index and a size of $50 bn than for the EUROSTOXX 50 Index and a size of $10 bn. We
also observe that liquidating $1 bn of the MSCI INDIA Index is approximately equivalent to
liquidating $10 bn of the EUROSTOXX 50 Index. Of course, these results may differ from
one period to another, because the liquidity is time-varying. Nevertheless, we observe that
the liquidity of the portfolio is different depending on whether we consider small cap stocks
or large cap stocks. The liquidity ratio also decreases with the amount to sell. Finally, the
liquidity ratio also depends on the trading constraints or the liquidation policy.

15Roncalli and Weisang (2015a) used the three-month average daily volume computed by Bloomberg.
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Figure 7: Liquidation ratio (in %) of the EUROSTOX 50 index portfolio

Source: Roncalli and Weisang (2015a, Figure 15, page 50), data as of April 30, 2015.

Figure 8: Comparing the liquidation ratio (in %) between equity index portfolios

Source: Roncalli and Weisang (2015a, Figure 5, page 28), data as of April 30, 2015.
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3.2.2 Time to liquidation

The liquidation time is the inverse function of the liquidation ratio:

LT (q; p) = LR−1 (q; p)

= inf {h : LR (q;h) ≥ p}

For instance, LT (q; 75%) = 8 means that we need 8 trading days to fulfill 75% of the
redemption. The liquidation time is a step function because LT (q; p) is an integer. If we
consider the previous example, we have LR (q; 0) = 0, LR (q; 1) = 35%, LR (q; 2) = 65.34%,
etc. We deduce that LT (q; p) = 0 if p < 35%, LT (q; p) = 1 if 35% ≤ p < 65.34%, etc.

In Table 8, we report some figures of liquidation time that were calculated by Roncalli
and Weisang (2015a). The size of the equity index portfolio is set to $10 bn, and two
liquidation policies are tested (10% and 30% of the average daily volume). In the case of the
S&P 500 Index, liquidating 90% of a $10 bn equity index portfolio takes two trading days
with a trading limit of 10% of the ADV and one trading day with a trading limit of 30% of
the ADV. In the case of the MSCI EMU Small Cap Index, these liquidation times becomes
74 and 25 trading days.

Table 8: Time to liquidation (size = $10 bn)

Index S&P 500 ES 50 DAX NASDAQ
MSCI MSCI MSCI
EM INDIA EMU SC

p (in %) 10% of ADV
50 1 5 11 2 3 37 21
75 1 7 17 3 5 71 43
90 2 10 23 3 9 110 74
99 2 15 29 5 17 156 455

p (in %) 30% of ADV
50 1 2 4 1 1 13 7
75 1 3 6 1 2 24 15
90 1 4 8 1 3 37 25
99 1 5 10 2 6 52 152

Source: Roncalli and Weisang (2015a, Tables 6 and 7, page 26), data as of April 30, 2015.

Remark 13 The liquidation risk profile of the redemption scenario q can be defined by the
function h 7→ LR (q;h) or the function p 7→ LT (q; p). As shown by Roncalli and Weisang
(2015a), it depends on the asset liquidity, the liquidation policy and the portfolio composition.

3.2.3 Liquidation shortfall

The liquidation shortfall LS (q) is defined as the remaining redemption that cannot be
fulfilled after one trading day:

LS (q) = 1− LR (q; 1) (24)

For instance, it is equal to 65% for the previous example described on page 134. The
liquidation shortfall is an increasing function of the order size. An illustration is given in
Figure 9 by considering three different liquidation policies.
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Figure 9: Liquidation shortfall with respect to the portfolio notional
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3.3 Liquidity cost

We now turn to liquidity measures that incorporate the price (or cost) dimension. Generally,
we measure the liquidity cost by the transaction cost. However, in a liquidity stress testing
program, this measure is merely theoretical since it is based on the transaction cost model.
Therefore, it can be completed by the ex-post liquidity cost, which is also called the effective
cost.

3.3.1 Transaction cost

We define the transaction cost of the redemption scenario q = (q1, . . . , qn) as the product of
the unit costs and the dollar volumes:

T C (q) =

n∑
i=1

qi · Pi · ccci (xi) =

n∑
i=1

Qi · ccci (xi) (25)

where Qi = qi · Pi is the nominal volume (expressed in $), xi = v−1i qi is the participation
rate when selling security i and ccci (x) is the unit transaction cost associated with security i.
We can then break down the liquidity cost into two parts16:

T C (q) = BAS (q) + PI (q)

where the bid-ask spread component is equal to:

BAS (q) =

n∑
i=1

Qi · si

16We have:
ccci (x) = si + πππi (x)
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and the market impact cost is given by:

PI (q) =

n∑
i=1

Qi · πππi (xi)

The previous analysis assumes that we can sell the portfolio q instantaneously or during
the same day. However, Equation (25) is only valid if the volumes qi are less than the trading
limits q+i = x+i · vi. Otherwise, we have:

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · ccci
(
qi (h)

vi

)
(26)

In this case, the bid-ask spread component has the same expression, but the market impact
component is different. Indeed, we have17:

BAS (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · si

=

n∑
i=1

Qi · si (27)

but:

PI (q) = T C (q)− BAS (q) 6=
n∑
i=1

Qi · πππi (xi) (28)

Remark 14 We assume that qi ≤ q+i . We have qi (1) = qi and qi (h) = 0 for h > 1. We
obtain:

T C (q) =

n∑
i=1

qi (1) · Pi · ccci
(
qi (1)

vi

)

=

n∑
i=1

qi · Pi · ccci (xi)

We retrieve the expression given in Equation (25).

Remark 15 Since the transaction cost is measured in dollars, it may be useful to express
it as a percentage of the redemption value:

T Cr (q) =
T C (q)∑n
i=1 qi · Pi

An alternative measure is to compare the total transaction cost with the bid-ask spread com-
ponent:

T Cs (q) =
T C (q)

BAS (q)

17Because of the following identity:

h+∑
h=1

1 {qi (h) > 0} · qi (h) = qi
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We consider the previous example. We recall the characteristics of the redemption port-
folio:

Asset 1 2 3 4 5
qi 4 351 2 005 755 175 18
q+i 1 000 1 000 200 200 200

Pi (in $) 89 102 67 119 589

πππi (x) SQRL model with ϕ1 = 1, x̃ = 5% and x+ = 10%
σi (in %) 25 20 18 30 20

si (in bps) 4 4 5 5 5
vi 10 000 10 000 2 000 2 000 2 000

We also indicate the transaction cost function. It is given by the SQRL model with ϕ1 = 1,
x̃ = 5% and x+ = 10%. For each asset i, we also indicate the annualized volatility σi, the
value of the bid-ask spread si and the daily volume vi.

The value of the redemption portfolio is equal to $673 761. The total transaction cost
is equal to T C (q) = $4 373.55 with the following breakdown: BAS (q) = $277.71 and
PI (q) = $4 095.85. These figures represent respectively 64.9, 4.1 and 60.8 bps of the
portfolio value. We deduce that the price impact explains 93.7% of the transaction cost.
The contribution of each asset is respectively equal to 34.6%, 30.5% and 16.6%, 16.0% and
2.4%. More results can be found in Tables 37–41 on page 200.

3.3.2 Implementation shortfall and effective cost

The previous analysis assumes that the transaction cost is calculated with a model. There-
fore, Equation (26) defines an ex-ante transaction cost. In practice, this ex-ante transaction
cost will differ from the effective transaction cost. In order to define the latter, we must
reintroduce the time index t in the analysis. The current value of the redemption scenario
is equal to:

Vmid (q) =

n∑
i=1

qi (t) · Pmid
i (t)

where qi (t) and Pmid
i (t) are the number of shares to sell and the mid-price for the security

i at the current time t. The value of the liquidated portfolio is equal to:

Vliquidated (q) =

n∑
i=1

∑
tk≥t

qi (tk) · P bid
i (tk)

where qi (tk) and P bid
i (tk) are the number of shares that were sold and the bid price for the

security i at the execution time tk. The effective cost is then the difference between V mid (t)
and V liquidated (t):

IS (q) = max
(
Vmid (q)− Vliquidated (q) , 0

)
(29)

The effective cost18 IS (q) is called by Perold (1988) the implementation shortfall, which
measures the difference in price between the time a portfolio manager makes an invest-
ment decision and the actual traded price. Therefore, Vmid (q) is the benchmark price,
Vliquidated (q) is the traded price and IS (q) is the total amount of slippage.

18Since Vliquidated (q) can be higher than Vmid (q), IS (q) is floored at zero. This situation occurs when
execution times tk are very different than the current time t and market prices have gone up — Pbid

i (tk) ≥
Pmid
i (t).
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4 Implementing the stress testing framework

In this section, we detail the general approach for implementing the liquidity stress testing
program on the asset side. We will see that it is based on three steps. First, we have to
correctly define the asset liquidity buckets (or asset liquidity classes). Each asset liquidity
bucket is associated with a unique unit transaction cost function and a given liquidation
policy. Second, we have to calibrate the parameters of the transaction cost function that
are related to a given liquidity bucket. Third, we must define the appropriate estimation
method of the security-specific parameters. Nevertheless, before presenting the three-step
approach, we must understand how stress testing impacts transaction costs. Does stress
testing modify the conventional transaction cost function? Does stress testing change the
liquidation policy? What parameters are impacted? This analysis will help to justify the
three-step approach of asset liquidity stress testing. Finally, the last part of this section
is dedicated to an issue that generally occurs when implementing the LST program. This
concerns the distortion of the redemption scenario on the asset side. In this article, we only
present general considerations, but this issue will be extensively studied in our third article
dedicated to liquidity stress testing in asset management (Roncalli et al., 2021).

4.1 How does stress testing impact transaction costs?

If we consider the two-regime model, we have:

ccc
( q
v

)
=


s + ϕ1σ

( q
v

)γ1
if q ≤ x̃ · v

s + ϕ1x̃
γ1−γ2σ

( q
v

)γ2
if x̃ · v ≤ q ≤ x+ · v

+∞ if q > x+ · v

The parameters of the transaction cost model are s , ϕ1, σ, γ1, γ2, x̃ and x+. The question
is whether we need two sets of parameters:

1.
(

snormal, ϕnormal
1 , σnormal, γnormal

1 , γnormal
2 , x̃normal, x+normal

)
for normal periods;

2.
(

sstress, ϕstress
1 , σstress, γstress1 , γstress2 , x̃stress, x+stressl

)
for stress periods.

This is equivalent having two different transaction cost functions: cccnormal (x) and cccstress (x).
This is not satisfactory because this means that we need to calibrate many parameters in
the stress period. Moreover, we do not distinguish between parameters that are related to
the security and parameters that are related to the liquidity bucket. Clearly, we can assume
that the parameters (ϕ1, γ1, γ2, x̃, x

+) are the same for all the assets belonging to the same
liquidity bucket. They can change, but at a low frequency, for instance because of the annual
calibration exercise or a change to the liquidation policy. The other parameters s and σ are
defined at the security level and can change daily19. Therefore, the unit transaction cost
function must be written as cccx (x; si,t, σi,t) because si,t and σi,t change with the security and
the time. We notice that this transaction cost function uses the participation ratio x, which
is the ratio between the order size q and the daily volume v. However, v is another related-
security parameter since it changes every day. This is not equivalent to selling 1 000 shares
in the market if the daily volume is 10 000 or 20 000. It follows that the unit transaction
cost function must be written as cccq (q; si,t, σi,t, vi,t) because si,t, σi,t and vi,t change with
the security and the time. The q-approach to the unit transaction cost ccc (q; si,t, σi,t, vi,t)
differs then from the x-approach to the unit transaction cost ccc (x; si,t, σi,t) because it has an
additional parameter, which is the daily volume.

19Indeed, the spread and the volatility of the security change every day because of market conditions.
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Figure 10: The x-approach of the unit transaction cost
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Figure 11: The q-approach of the unit transaction cost
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Figure 12: Impact of security-specific parameters in the x-approach
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Figure 13: Impact of security-specific parameters in the q-approach
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At first sight, it seems that introducing the volume is a subtle distinction. For instance,
we have reported in Figures 10 and 11 the functions cccx (x; si,t, σi,t) and cccq (q; si,t, σi,t, vi,t)
when the price impact is given by the SQRL model20, the security-related parameters are
equal to si,t = 4 bps, σi,t = 10% and vi,t = 100 000, and the liquidation policy is set
to x+ = 10%. The two figures have exactly the same shape and we have the following
correspondence:

cccq (q; si,t, σi,t, vi,t) := cccx

(
x =

q

vi,t
; si,t, σi,t

)
Let us now see the impact of changing the parameters si,t, σi,t and vi,t. In a stress period, we
generally observe an increase in the bid-ask spread and the asset volatility, and a reduction
in the daily volume that is traded in the market. In the top panel in Figures 12 and 13,
we show the difference between the two unit transaction costs when the bid-ask spread
increases from 4 bps to 7 bps. We observe that the functions cccx and cccq are both shifted up,
but they are the same. In the bottom/left panel, we report the impact when the volatility
in the stress period is twice the volatility in the normal period21. We notice that the higher
volatility has shifted the trading cost upward and it has also changed the shape of the unit
transaction cost function. But again, the two functions cccx and cccq are the same using the
equivalence relationship q = x · vi,t. We now consider the impact of the volume. Generally,
the daily volume is reduced in stress periods. In the bottom/right panel in Figures 12 and
13, we assume that the daily volume is equal to vi,t = 100 000 in the normal period and
vi,t = 70 000 in the stress period. Contrary to the parameters si,t and σi,t, we observe that
the two functions cccx and cccq are not equivalent in this case. Indeed, vi,t has no impact on cccx
whereas it completely changes the shape of cccq because the inflection point q̃ and the trading
limit q+ are different. It follows that the invariance with respect to x does not imply the
invariance with respect to q.

In the case of a liquidity stress program, we have to consider the combination of the three
effects. Results are reported in Figure 14. We recall that the normal period is defined by
si,t = 4 bps, σi,t = 10% and vi,t = 100 000, while the stress period is defined by si,t = 7 bps,
σi,t = 20% and vi,t = 70 000. During the stress period, the transaction cost is higher because
the spread is larger, the volatility has shifted the trading cost upward and the lower volume
has moved the inflection point to the left. This is the primary effect. For instance, selling
40 000 shares of the security costs 16.40 bps during the normal period and 38.70 bps during
the stress period (see Table 9). The secondary effect is on the liquidation profile, because
the trading limit q+ expressed as a number of shares is reduced in the stress period even if
the liquidation policy does not change. This is because the liquidation policy is defined in
terms of the maximum participation rate x+. For instance, 100 000 shares of the security
can be sold in one trading day in the normal period. This is no longer true in the stress
period, and the position is liquidated in two trading days (see Table 9). It follows that the
stress testing program has a negative, non-linear impact both on the transaction cost and
the liquidation profile. In Table 9, we have ccc (40 000) = 38.70 bps, ccc (80 000) = 57.39 bps
and ccc (100 000) = 53.53 bps. We observe that ccc (q) is not necessarily an increasing function
of q because of the liquidation policy. Indeed, in the last case, 70 000 shares are sold at 62.47
bps during the first trading day and 30 000 shares are sold at 32.68 bps during the second
trading day. The relative cost of selling 100 000 shares is lower than the relative cost of
selling 70 000 shares, because the price impact is not at its maximum during the second day.
In Figure 30 on page 199, we report the two functions, the relative (or unit) transaction cost
ccc (q) and the total transaction cost T C (q), by assuming that the price is equal to $1. We
notice that the maximum relative cost is equal to 62.47 bps and is reached when the number

20We assume that ϕ1 = 1 and x̃ = 5%.
21The annualized volatility σi,t increases from 10% to 20%.
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Figure 14: Comparing the unit transaction cost in the normal and stress periods
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of shares is a multiple of 70 000, which is the trading limit. Therefore, ccc (q) is not increasing
because of the averaging effect. Of course, this is not the case for the total transaction cost,
which is an increasing function of q.

Table 9: Computation of the unit transaction cost

Normal Stress Normal Stress Normal Stress Normal Stress

q 10 000 40 000 80 000 100 000

q (h)
10 000 10 000 40 000 40 000 80 000 70 000 100 000 70 000

10 000 30 000

s 4.00 7.00 4.00 7.00 4.00 7.00 4.00 7.00
7.00 7.00

πππ (q (h))
6.20 14.82 12.40 31.70 22.19 55.47 27.74 55.47

14.82 25.68

ccc (q (h))
10.20 21.82 16.40 38.70 26.19 62.47 31.74 62.47

21.82 32.68

ccc (q) 10.20 21.82 16.40 38.70 26.19 57.39 31.74 53.53

Remark 16 The previous analysis shows that we do not need a new transaction cost func-
tion for the stress period, because there is no reason for the functional form to change and
the impact of the security-specific parameters are sufficient to implement the asset liquidity
stress testing program.
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4.2 A three-step approach

As explained above, implementing an asset liquidity stress testing program involves three
steps. In the first step, we define liquidity buckets. The second step corresponds to the
estimation of the transaction cost function for a given liquidity bucket. Finally, the third
step consists in calibrating the security-specific parameters.

4.2.1 Liquidity bucketing

Table 10: An example of classification matrix of liquidity buckets

Level 1 Level 2 Level 3 Level 4 HQLA Class

Equity

Large cap
DM

Region
1

EM 1

Small cap
DM

Region
2

EM 2

Derivatives
Futures

Turnover
1

Options 2
Private 5

Fixed-income

Sovereign
DM

Region
1/2

EM 2/3
Municipal 2

Inflation-linked
DM

Region
1/2

EM 2/3

Corporate
IG

Currency
3

HY 4

Securitization

ABS

US/Non-US 2/3/4
CLO

CMBS
RMBS

Derivatives

Caps/floors

Turnover 1/2/3
Futures
Options
Swaps

CDS
Single-name

Turnover
3

Multi-name 2

Currency
G10 1

Others 1/2/3

Commodity
Agriculture

Grain & Oilseed 4
Livestock 4

Soft 4

Energy
Electricity 2

Gas 2
Oil 2

Metal
Gold 1

Industrial 2/4
Precious 2

Classification matrix A liquidity bucket is a set of homogenous securities such that they
share the same functional form of the unit transaction cost22. For instance, we may consider
that equities and bonds correspond to two liquidity buckets, meaning that we need two dif-
ferent functions. But we can also split equities between large cap and small cap equities.

22Most of the time, they also share the same liquidation policy.
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An example of matrix classification is provided in Table 10. There are several levels depend-
ing on the requirements of the asset manager and the confidence level on the calibration.
Generally, Level 2 is sufficiently granular and enough to implement a liquidity stress testing
program. For instance, it is extensively used by external providers of LST solutions (MSCI
LiquidityMetrics, Bloomberg Liquidity Assessment (LQA), StateStreet Liquidity Risk Solu-
tion, etc.). Nevertheless, the asset manager may wish to go beyond Level 2 and adopt Level
3 for some buckets. For example, it could make sense to distinguish the functional form for
DM and EM sovereign bonds. Level 4 is the ultimate level and differentiates securities by
region, currency or turnover23. For example, if we consider the DM large cap stocks, we may
split this category by region, e.g., North America, Eurozone, Japan and Europe-ex-EMU.
In the case of corporate IG bonds, one generally splits these securities by currency, e.g.,
USD IG bonds, EUR IG bonds, GBP IG bonds, etc. For derivatives, one may build two
categories depending on the turnover value, e.g., the most liquid contacts and the other
derivative products.

HQLA classes In this article, we focus on the transaction cost. The asset-liability man-
agement will be studied in the third part of our comprehensive research project on liquidity
risk in asset management (Roncalli et al., 2021). Nevertheless, we notice that the asset man-
ager must develop two asset liquidity classification matrices: liquidity buckets and HQLA
classes. The term HQLA refers to the liquidity coverage ratio (LCR) introduced in the Basel
III framework (BCBS, 2010, 2013a). An asset is considered to be a high-quality liquid asset
if it can be easily converted into cash. Therefore, the concept of HQLA is related to asset
quality and asset liquidity. It is obvious that the LST regulation is inspired by the liquidity
management regulation developed by the Basel Committee on Banking Supervision. For
instance, the redemption coverage ratio (RCR) for asset managers is related to the liquidity
coverage ratio for banks. According to ESMA (2020), the redemption coverage ratio is “a
measurement of the ability of a fund’s assets to meet funding obligations arising from the
liabilities side of the balance sheet, such as a redemption shock”. In Roncalli et al. (2021),
we will see that it is helpful to define another asset liquidity classification matrix that is
complementary to the previous liquidity buckets. This new classification matrix uses HQLA
classes, whose goal is to group assets by their relative liquidity risk. For instance, such asset
liquidity classification matrix is already used in the US with the Rule 22e-4(b) (Roncalli et
al., 2020, page 5), which considers four classes: (1) highly liquid investments, (2) moder-
ately liquid investments, (3) less liquid investments and (4) illiquid investments. Here is an
example based on five HQLA classes24:

• Tier 1: Sovereign bonds (EUR, USD, GBP, AUD, JPY, SEK, CAD and domestic
currency of the asset manager), large cap equities, specified currency pairs25, bond
futures, equity index futures, etc.

• Tier 2: Other IG sovereign bonds, municipal bonds, small cap equities, other IG
currency pairs, multi-name CDS, commodity futures (energy, precious metals, non-
ferrous metals), equity options, etc.

23The turnover is defined as “the gross value of all new deals entered into during a given period and is
measured in terms of the nominal or notional amount of the contracts. It provides a measure of market
activity and can also be seen as a rough proxy for market liquidity” (Bank for International Settlements,
2014).

24It is derived from the liquidity period buckets defined in the Basel III capital requirements for market
risk (BCBS, 2019).

25They correspond to the 20 most liquid currencies: USD, EUR, JPY, GBP, AUD, CAD, CHF, MXN,
CNY, NZD, RUB, HKD, SGD, TRY, KRW, SEK, ZAR, INR, NOK and BRL.
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• Tier 3: IG corporate bonds, HY sovereign bonds, HY currency pairs, single-name
CDS, etc.

• Tier 4: HY corporate bonds, other commodity futures, etc.

• Tier 5: Private equities, real estate, etc.

For derivatives on interest rates, we can map them with respect to sovereign bonds. For
instance, interest rate swaps on EUR, USD, GBP, AUD, JPY, SEK and CAD are assigned
to Tier 1, interest rate swaps on IG currencies are assigned to Tier 2, interest rate swaps on
HY currencies are assigned to Tier 3, etc. For securitization products, the best approach is
to classify them with respect to their external credit rating.

4.2.2 Defining the unit transaction cost function

We consider that the two-regime model is the appropriate function to estimate the trans-
action cost of a redemption scenario. Nevertheless, we introduce some slight modifications,
because the power-law model has been mainly investigated in the stock market. These
modifications are necessary when we consider fixed-income products and derivatives.

The econometric model We assume that Security i belongs the jth liquidity bucket LBj
and rewrite the two-regime model as follows26:

ccci (qi; si,t, σi,t, vi,t) = β
(s)
j si,t + β

(πππ)
j σi,tπππ

?
j (qi; vi,t) (30)

where:

πππ?j (qi; vi,t) =



(
qi
vi,t

)γ1,j
if qi ≤ q̃i,t(

q̃i,t
vi,t

)γ1,j ( qi
q̃i,t

)γ2,j
if q̃i,t ≤ qi ≤ q+i,t

+∞ if qi > q+i,t

(31)

The total transaction cost of selling qi shares is then equal to27:

T C (qi) = αiqi +Qiccci (qi; si,t, σi,t, vi,t)

Compared to the conventional two-regime model, we notice the introduction of two new

parameters: αi and β
(s)
j . For some securities (e.g., derivatives), we have to pay a fixed

cost for each share, which motivates the addition of the term αiqi. The introduction of the

scaling factor β
(s)
j is motivated because quoted bid-ask spreads are not always available for

some liquidity buckets LBj . In this case, we can use an empirical model for computing si,t.
From a theoretical point of view, we should have β

(s)
j = 1. This is the case for equities for

instance, but not necessarily the case for some fixed-income securities. The reason is that

asset managers do not necessarily face the same bid-ask spread costs. Therefore, β
(s)
j may

be less or greater than one.

26We have the following relationship: β
(πππ)
j = ϕ1. We also recall that σi,t corresponds to the daily volatility

in the transaction cost formula.
27In the case of a redemption scenario q = (q1, . . . , qn), we obtain:

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · (αiqi (h) + qi (h)Piccci (qi; si,t, σi,t, vi,t))
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The model parameters The calibration of the functional form consists in estimating at

least four parameters: β
(s)
j , β

(πππ)
j , γ1,j and γ2,j . We can use the method of non-linear least

squares. But we generally prefer to consider a two-stage approach by first determining the
exponents γ1,j and γ2,j and then running a linear regression in order to obtain the OLS

estimates of β
(s)
j and β

(πππ)
j .

Remark 17 The parameters q̃i,t and q+i,t are particular. From a theoretical point of view,

they are equal to q̃i,t = x̃jvi,t and q+i,t = x+j vi,t, meaning that we have two other parameters x̃j
and x+j that are related to LBj. Nevertheless, for some liquidity buckets, the asset manager

may choose to define the trading limit q+i,t at the security level, meaning that we have q+i,t =

x+i vi,t. For instance, if we consider the category of DM sovereign bonds, trading limits may
be fixed by country and maturity. Therefore, the liquidation policy may be different if we
consider 10Y US, German, French and UK government bonds. When the inflection point
x̃j (or x̃i) is difficult to estimate, it can be a fraction of the trading limit x+j (or x+i ). The

most frequent cases are x̃j = x+j /2 (or x̃i = x+i /2), and x̃j = x+j (or x̃i = x+i ) if we prefer
to consider only one regime.

The security-specific parameters They correspond to the bid-ask spread si,t, the
volatility σi,t and the daily volume vi,t. Contrary to the model parameters, these parame-
ters28 depend on the time t. They are the key elements of the stress testing program, since
their values will differ in normal and stress regimes.

Concerning the parameter si,t, we can consider an average of the bid-ask spread observed
during a normal period (e.g., the last month) or we can use the daily quoted bid-ask spread
in the case of stocks. For some fixed-income securities (e.g., corporate bonds, securitization
products, etc.), quoted bid-ask spreads are not always available. In this case, we can use a
statistical model that depends on the characteristics of the security. A simple model may
distinguish bid-ask spreads by credit ratings29. A more sophisticated model may use intrinsic
bond features such as maturity, notional outstanding, coupon value, credit rating, industrial
sector, etc. (Ben Slimane and de Jong, 2017; Jurksas, 2018; Feldhütter and Poulsen, 2018;
Guo et al., 2019).

The parameter σi,t measures the volatility of the asset i at time t. In the normal regime,
σi,t is measured with the historical volatility. We can consider a long-term volatility using
a study period of three months, or we can consider a short-term estimator such as the
exponentially weighted moving average (EWMA) volatility, the two-week empirical volatility
or the GARCH volatility. In this last case, the volatility rapidly changes on a daily basis,
and we can observe jumps in the transaction cost for the same securities from one day to
the next. Therefore, we think that it is better to use a long-term estimator, in particular
because the stress regime will incorporate these abnormal high-volatility regimes. For some
securities, the daily volatility is not the most appropriate measure for measuring their risk.
Therefore, it may be convenient to define σi,t as a function of the security characteristics.
For instance, we show in Appendix B.3 on page 196 that the main component of a corporate
bond’s volatility is the duration-times-spread (or DTS) of the bond30.

The third security-specific parameter is the daily volume vi,t. As for the volatility, we
can use a short-term or a long-term measure. For instance, we can use the daily volume

28In some cases, they also include q̃i,t and q+i,t.
29In this case, we assume that the bid-ask spread decreases with the credit quality, implying that the

bid-ask spread of AAA-rated bonds is less than the bid-ask spread of BBB-rated bonds. Generally, credit
ratings are grouped in order to form three or four categories.

30See Section 5.2.3 on page 168.
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of the previous day. However, there is a consensus to use a longer period and to consider
the three-month average daily volume. Again, we can alternatively use a statistical model
when the data of daily volumes are not available. For instance, it can be a function of the
outstanding amount for bonds, the turnover for derivatives, etc.

The trading limit q+i,t has a particular status because it may be either a security-specific
parameter or a model parameter. When it is a security-specific parameter, the asset manager
defines q+i,t at a low frequency, for instance every year or when there is a market change for

trading the security i. However, the most frequent case is to consider q+i,t as a model

parameter: q+i,t = x+j vi,t. In this situation, the asset manager generally uses the traditional

rule of thumb x+j = LR+
j where LR+

j is the liquidation policy ratio of the liquidity bucket
LBj . A typical value is 10% in the case of the stock market.

4.2.3 Calibration of the risk parameters in the stress regime

According to Roncalli (2020), there are three main approaches to generate a stress scenario:
historical, macro-economic and probabilistic. However, in the case of asset management,
the first two categories are more relevant, because asset managers do not have the same
experience as banks in this domain, and data on transaction costs under stress periods are
scarce. In this case, it is better to implement the probabilistic approach using the method
of multiplicative factors.

As explained previously, the values of the security-specific parameters allow to distinguish
the normal period and the stress period. The model parameters do not change, meaning
that we use the same unit transaction cost function whatever the study period. It follows
that the risk parameters are the bid-ask spread, the volatility and the volume. Therefore,
asset liquidity stress testing leads to stressing the values of these three parameters.

Historical stress scenarios The underlying idea of historical stress testing is to define
the triple (sstressi , σstress

i , vstressi ) from the sample {(si,t, σi,t, vi,t) , t ∈ T stress} where T stress is
the stress period and then to compute the stress transaction cost function:

cccstressi (qi) := ccci
(
qi; sstressi , σstress

i , vstressi

)
(32)

For instance, we can consider the empirical mean or the empirical quantile31 at the confidence
level α (e.g., α = 99%). Since this method seems to be very simple, we face a drawback
because the triple (sstressi , σstress

i , vstressi ) does not necessarily occur at the same trading day.
A more coherent approach consists in computing the trading cost for all days that make up
the stress period and taking the supremum:

cccstressi (qi) := sup
t∈T stress

ccci (qi; si,t, σi,t, vi,t) (33)

Remark 18 An alternative approach is to implement the worst-case scenario. The un-
derlying idea is to consider one stress period or several stress periods and to consider the
worst-case value: swcs

i = maxt∈T stress si,t, σwcs
i = maxt∈T stress σi,t and vwcs

i = mint∈T stress vi,t.
By construction, we verify the relationship cccwcs

i (qi) ≥ cccstressi (qi).

Remark 19 According to ESMA (2020, page 12, §31), “historical scenarios for LST could
include the 2008-2010 global financial crisis or the 2010-2012 European debt crisis”.

31For the volume, we consider the empirical quantile 1− α.
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Conditional stress scenarios In the case of macro-economic (or conditional) stress test-
ing, the goal is to estimate the relationship between risk parameters and risk factors that
define a stress scenario, and then deduce the stress value of these risk parameters (Roncalli,
2020, page 909). Let pi be a parameter (si, σi or vi). First, we consider the linear factor
model:

pi,t = β0 +

m∑
k=1

βkFk,t + εi,t (34)

where εi,t ∼ N
(
0, σ2

εi

)
and (F1,t, . . . ,Fm,t) is the set of risk factors at time t. Then, the esti-

mates
(
β̂0, β̂1, . . . , β̂m

)
are deduced from the method of ordinary least squares or the quantile

regression. Finally, we translate the stress scenario on the risk factors (F stress
1 , . . . ,F stress

m )
into a stress scenario on the risk parameter:

pstressi = β̂0 +

m∑
k=1

β̂kF stress
k (35)

Remark 20 From a practical point of view, pooling the data for the same liquidity class
offers a more robust basis for estimating the coefficients (β0, β1, . . . , βm). This is why the
estimation may use the panel data analysis with fixed effects instead of the classic linear
regression.

Remark 21 Concerning risk factors, we can use those provided by the “Dodd-Frank Act
stress testing” (DFAST) that was developed by the Board of Governors of the Federal Reserve
System (Board of Governors of the Federal Reserve System, 2017). They concern activity,
interest rates, inflation and market prices of financial assets.

The method of multiplicative factors Conditional stress testing is the appropriate
approach for dealing with hypothetical stress scenarios. Nevertheless, it is not obvious to find
an empirical relationship between the risk factors (F1,t, . . . ,Fm,t) and the risk parameters
(si,t, σi,t, vi,t). This is why it is better to use the method of multiplicative factors to generate
hypothetical scenarios. This approach assumes that there is a relationship between the stress
parameter and its normal value:

pstressi = mpp
normal
i (36)

where mp is the multiplicative factor. Therefore, defining the hypothetical stress scenario is
equivalent to applying the multiplicative factors to the current values of the risk parameters:(

sstressi , σstress
i , vstressi

)
:= (mssi,t,mσσi,t,mvvi,t) (37)

In this approach, the hypothetical stress scenario is determined by the triple (ms,mσ,mv).

4.3 Measuring the portfolio distortion

If we consider the proportional rule q ∝ ω (vertical slicing approach), the portfolio distortion
is equal to zero, but we may face high liquidation costs because of some illiquid securities.
On the contrary, we can concentrate the liquidation on the most liquid securities (waterfall
approach), but there is a risk of a high portfolio distortion. Therefore, we have a trade-off
between the liquidation cost and the portfolio distortion.
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In Appendix B.2.3 on page 195, we show that the optimal portfolio liquidation can be
obtained using the following optimization problem:

q? (λ) = arg min
1

2
σ2 (q | ω) + λc (q | ω) (38)

s.t.

{
1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

where σ (q | ω) is the tracking error due to the redemption and c (q | ω) is the liquidation cost.
The portfolio distortion is then measured by the tracking error between the portfolio before
the redemption and the portfolio after the redemption. Using the optimization problem, we
can find liquidation portfolios that induce a lower transaction cost than the proportional
rule for the same redemption amount R. The downside is that they also generate a tracking
error. Let us illustrate this trade-off with the following example32:

Asset 1 2 3 4 5
ωi 20 000 20 000 18 000 9 000 8 000

Pi (in $) 80 100 130 120 90
σi (in %) 30 30 30 15 15

si (in bps) 10 10 10 5 5
vi 10 000 10 000 10 000 20 000 20 000

The transaction cost function is given by the SQRL model with ϕ1 = 1, x̃ = 5% and
x+ = 10%. In Figure 15, we report the efficient frontier of liquidation. We notice that the
proportional rule implies a transaction cost of 88 bps. In order to reduce this cost, we must
accept a tracking error risk. For instance, if we reduce the transaction cost to 70 bps, the
liquidation has generated 22 bps of tracking error risk.

Therefore, managing the asset liquidity risk is not only a question of transaction cost,
but also a question of portfolio management. Indeed, the fund manager may choose to
change the portfolio allocation in a stress period by selling the most liquid assets in order
to fulfill the redemptions. The fund manager may also choose to maintain an exposure on
some assets in the event of a liquidity crisis. In these situations, the proportional rule is
not optimal and depends on the investment constraints. For instance, the definition of the
optimal liquidation policy is not the same for active managers and passive managers. This
is why liquidity stress testing on the asset side is not only a top-down approach, but must
also be completed by a bottom-up approach.

Remark 22 The liquidation tracking error is the right measure for assessing the portfolio
distortion in the case of an equity portfolio:

D (q | ω) = σ (q | ω)

=

√
(w (ω)− w (ω − q))>Σ (w (ω)− w (ω − q))

where w (ω) is the vector of portfolio weights before the redemption, w (ω − q) is the vector
of portfolio weights after the redemption and Σ is the covariance matrix of stock returns.

32The correlation matrix of asset returns is equal to:

ρ =


100%
10% 100%
40% 70% 100%
50% 40% 80% 100%
30% 30% 50% 50% 100%
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Figure 15: Optimal portfolio liquidation

0 10 20 30 40 50 60 70 80 90 100

50

60

70

80

90

For a bond portfolio, it can be replaced by the liquidation active risk, which measures the
active risk due to the redemption:

D (q | ω) = AR (q | ω)

The active risk can be measured with respect to the modified duration (MD) or the duration-
times-spread (DTS). We can also use a hybrid approach by considering the average of the
MD and DTS active risks:

AR (q | ω) =
1

2

nSector∑
j=1

 ∑
i∈Sectorj

(wi (ω − q)− wi (ω)) MDi

2

+

1

2

nSector∑
j=1

 ∑
i∈Sectorj

(wi (ω − q)− wi (ω)) DTSi

2

where nSector is the number of sectors, MDi is the modified duration of Bond i and DTSi is
the duration-times-spread of Bond i.

5 Application to stock and bond markets

The accuracy of the model and the calibration is an issue. Indeed, we may wonder which
accuracy we must target for a liquidity stress testing exercise, given that there are multiple
unknowns in a liquidity crisis. In particular, the LST model may be different from the
proprietary pre-trade model and less precise because of two main reasons. First, in a liquidity
stress testing exercise, we are more interested in the global figures at the fund manager level,
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the asset class level and the asset manager level, and less interested in the figures at the
portfolio (or security) level. Second, the model must be simple in order to identify the stress
parameters. This is why the LST market impact model used by the risk department may be
less accurate than the pre-trade model used by the trading desk, because the challenges are
very different. The framework presented above is not complex enough for order execution33,
but it is sufficiently flexible and accurate to give the right order of magnitude for liquidity
stress testing purposes.

In our analytical framework, we recall that the backbone of the LST exercise on the asset
side is given by Equations (30) and (31) on page 149, and Equation (32) on page 151:

1. for each liquidity bucket LBj , we have to estimate the parameters β
(s)
j , β

(πππ)
j , γ1,j and

γ2,j of the unit transaction cost model;

2. for each security i, we have to define the bid-ask spread si,t, the volatility σi,t and the
daily volume vi,t;

3. we also have to specify the inflection point q̃i,t = x̃jvi,t:

(a) we generally estimate x̃j at the level of the liquidity bucket;

(b) if q̃i,t = q+i,t, there is only one regime, implying that the parameters γ2,j and x̃j
vanish;

4. we then have to specify the trading limit q+i,t for each security; except for large cap

equities and some sovereign bonds, we use the proportional rule q+i,t = x+j vi,t, where

x+j is the maximum trading limit of the liquidity bucket LBj defined by the asset
manager’s risk department;

5. finally, we have to specify how the three security parameters are stressed: sstressi , σstress
i

and vstressi .

It is obvious that the key challenge of the LST calibration is data availability. Since
the LST model may include a lot of parameters, we suggest proceeding step by step. For
instance, as a first step, we may calibrate the model for all global equities. Then, we may
distinguish between large cap and small cap equities. Next, we may consider an LST model
region by region (e.g., US, Eurozone, UK, Japan, etc.), and so on. In the early stages, we
may also use expert judgement in order to fix some parameters, for instance γ2,j , x̃j , etc.
Some parameters are also difficult to observe. For instance, the bid-ask spread si,t and the
trading volume vi,t are not available for many bonds. This is why we use a model or an
approximation formula. For example, we can replace the trading volume vi,t by the notional
outstanding amount ni. The volume-based participation rate xi = v−1i,t qi is then replaced by

the outstanding-based participation rate yi = n−1i qi, implying that we have to calibrate the

scaling factor β
(πππ)
j in order to take into account this new parameterization. We can also use

the rule Vi,t = ξM i,t where ξ is the proportionality factor between volume and outstanding
amount. Moreover, the volatility parameter is not always pertinent in the case of bonds,
and it may be better to use the duration-times-spread (DTS).

Remark 23 In this section, we remove the reference to the liquidity bucket LBj in order to

reduce the amount of notation when it is possible. This concerns the four parameters β
(s)
j ,

33Nevertheless, Curato et al. (2017) tested different pre-trade order models and concluded that “a fully
satisfactory and practical model of market impact [...] seems to be still lacking”. As such, pre-trade models
are not yet completely accurate, except perhaps for large cap equities.
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β
(πππ)
j , γ1,j and γ2,j. Moreover, we consider the calibration of the single-regime model as a

first step:

ccci (qi; si,t, σi,t, vi,t) = β(s)si,t + β(πππ)σi,t

(
qi
vi,t

)γ1
= β(s)si,t + β(πππ)σi,tx

γ1
i,t (39)

The second regime is calibrated during the second step as shown in Section 5.3 on page
170. We also assume that the annualized volatility is scaled by the factor 1/

√
260 in order to

represent a daily volatility measure. This helps to understand the magnitude of the parameter
β(πππ). By default, we can then consider that β(πππ) ≈ 1.

5.1 The case of stocks

5.1.1 Large cap equities

We consider the dataset described in Appendix C.1 on page 197. We filter the data in
order to keep only the stocks that belong to the MSCI USA and MSCI Europe indices. For
each observation i, we have the transaction cost ccci, the (end-of-day) bid-ask spread si, the
participation rate xi and the daily volatility σi. We first test a highly constrained statistical
model:

ccci = si + σi
√
xi + εi (40)

where εi ∼ N
(
0, σ2

ε

)
. We obtain R2 = 53.47% and R2

c = 15.87%. Since we observe a
large discrepancy between R2 and R2

c , we must be careful about the interpretation of the
statistical models. This means that the average cost c̄cc explains a significant part of the
trading cost, implying that the dispersion of trading costs is not very large.

In order to improve the explanatory power of the transaction cost function, we consider
two alternative models:

ccci = β(s)si + β(πππ)σi
√
xi + εi (41)

and:
ccci = β(s)si + β(πππ)σix

γ1
i + εi (42)

Model (41) can be seen as a special case of Model (42) when the exponent γ1 is set to 1/2.
Using the method of non-linear least squares, we estimate the parameters, and the results
are reported in Tables 11 and 12. We notice that the assumptions (H1) β(s) = 1 and (H2)
β(πππ) = 1 are both rejected. When the estimation of γ1 is not constrained, its optimal value
is equal to 0.5873, which is a little bit higher than 0.5. Nevertheless, we observe that the
explanatory powers are very close for the constrained and unconstrained models. The fact
that β(πππ) is larger for the unconstrained model (0.2970 versus 0.1898) indicates a bias in our
dataset. The model tends to overfit the lowest values of xi and not the highest value of xi,
which are certainly not sufficiently represented in the dataset.

Table 11: Non-linear least squares estimation of Model (41)

Parameter Estimate Stderr t-student p-value

β(s) 1.4465 0.0014 1049.9020 0.0000
β(πππ) 0.1898 0.0030 62.7720 0.0000
γ1 0.5000 0.0053 93.5817 0.0000

R2 = 98.41% R2
c = 97.12%
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Table 12: Non-linear least squares estimation of Model (42)

Parameter Estimate Stderr t-student p-value

β(s) 1.4468 0.0012 1213.2593 0.0000
β(πππ) 0.2970 0.0039 76.0394 0.0000
γ1 0.5873 0.0044 132.7093 0.0000

R2 = 98.81% R2
c = 97.84%

Figure 16: Histogram of estimated parameters

Table 13: Descriptive statistics of the estimates

Parameter Mean Median Min. Q (10%) Q (25%) Q (75%) Q (90%) Max.

β(s) 1.256 1.234 0.992 1.001 1.082 1.443 1.487 1.558
β(πππ) 0.434 0.448 −0.209 0.330 0.391 0.500 0.510 0.527
γ1 0.531 0.525 0.368 0.446 0.488 0.563 0.597 1.676
R2
c 0.557 0.681 0.000 0.000 0.094 0.916 0.961 0.992
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The figures taken by R2 and R2
c are extremely high and not realistic. This confirms that

there is a bias in our dataset. To better understand this issue, we estimate Model (42) for
each stock. Results are reported in Figure 16 and Table 13. On average, R2

c is equal to 55.7%,
which is far from the previous result. We observe that the model presents a high explanatory
power for some stocks and a low explanatory power for other stocks (bottom/right panel in
Figure 16). These results highlight the heterogeneity of the database. Therefore, estimating
a transaction cost model is not easy when mixing small and large values of transaction
costs and participation rates. Finally, we propose the following benchmark formula for the
transaction cost model:

ccci (qi; si,t, σi,t, vi,t) = 1.25 · si,t + 0.40 · σi,t
√
xi,t (43)

The price impact of this function is reported in Figure 17 in the case where the annualized
volatility of the stock return is equal to 30%.

Figure 17: Estimated price impact (in bps)
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Remark 24 We notice sensitivity of the results when we filter the data with respect to the
participation rate. For instance, we obtain:

ccci (qi; si,t, σi,t, vi,t) = 1.51 · si,t + 0.56 · σi,tx0.78i,t

when we only consider the observations with a participation rate larger than 0.5%.

5.1.2 Small cap equities

In this analysis, we consider all the stocks that belong to the MSCI USA, MSCI Europe,
MSCI USA Small Cap and MSCI Europe Small cap indices. This means that the dataset
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Figure 18: Relationship between the market capitalization and the parameter β(s)
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Figure 19: Relationship between the market capitalization and the parameter β(πππ)
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Figure 20: Ratio of the parameters β(s) and β(πππ) with respect to the values of the large cap
class

corresponds to large cap and small cap stocks. We run the linear regression (41) for the
different stocks and estimate the parameters β(s) and β(πππ). In Figures 18 and 19, we report
the scatterplot between the market capitalization34 and these parameters. On average,
the estimate of β(s) is higher when the market capitalization is low than when the market
capitalization is high. In a similar way, we observe more dispersion of the estimate β(πππ) for
small cap stocks. In order to verify that small cap stocks are riskier than large cap stocks,
we split the stock universe into three buckets according to market capitalization35. In Figure
20, we plot the ratio of the estimates β(s) and β(πππ) with the values obtained for the large
cap class. We notice that the two parameters are larger for small cap stocks, especially if
we consider the 99% quantile. To take into account this additional risk, we propose the
following benchmark formula for small cap stocks:

ccci (qi; si,t, σi,t, vi,t) = 1.40 · si,t + 0.50 · σi,t
√
xi,t (44)

If we compare this function with Equation (43), we notice that the parameter β(s) is equal
to 1.40 instead of 1.25, implying an additional fixed transaction cost of +12% for small cap
stocks. For the parameter β(πππ), the value is equal to 0.50 instead of 0.40, implying that the
price impact is 25% higher for small cap stocks.

Remark 25 A conservative approach consists in using the highest values of β(πππ). For in-
stance, we can define β(πππ) = 0.50 for large cap stocks and β(πππ) = 0.75 for small cap stocks.
In this case, the price impact is 50% higher for small cap stocks.

34In order to obtain an easy-to-read graph, the x-axis corresponds to the logarithm of the market capital-
ization, which is expressed in billions of US dollars.

35We use the following classification: +$10 bn for large caps, $2 – $10 bn for mid caps and −$2 bn for
small caps.
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5.2 The case of bonds

5.2.1 Defining the participation rate

The key variable of the transaction cost formula is the participation rate:

x =
q

v
=
Q

V

where q is the number of shares to trade and v is the daily trading volume (expressed in
number of shares). We can also formulate the participation rate with the nominal values
Q and V expressed in USD or EUR. In the case of bonds, the daily trading volume is
not observed. Moreover, this statistic is not always relevant because some bonds are traded
infrequently. To illustrate this phenomenon, we can use the zero-trading days statistic, which
is defined as the ratio between the number of days with zero trades and the total number
of trading days within the period. For instance, Hotchkiss and Jostova (2017) report that
79.4% of US IG bonds and 84.1% of US HY bonds are not traded monthly between January
1995 to December 1999. Dick-Nielsen et al. (2012) find that the median number of zero-
trading days was equal to 60.7% on a quarterly basis from Q4 2004 to Q2 2009 in the US
corporate bond market.

The turnover is a measure related to the trading volume. It is the ratio between the
nominal trading volume V and the market capitalization M of the security, or between the
trading volume v and the number of issued shares36 n :

τ =
V

M
=
v

n

In the case of bonds, M and n correspond to the outstanding amount and the number of
issued bonds. It follows that V = τM and:

x =
Q

τM
=

q

τn

We deduce that the volume-based participation rate x is related to the outstanding-based
participation rate y:

y =
q

n
The scaling factor between y and x is then exactly equal to the daily turnover ratio τ .

According to SIFMA (2021a), the daily turnover ratio is equal to 0.36% for US corporate
bonds in 2019. This figure is relatively stable since it is in the range 0.30%−0.36% between
2005 and 2019, except in 2008 where we observe a turnover of 0.26%. However, it was
highest before 2005. For instance, it was equal to 0.44% in 2002. If we make the distinction
between IG and HY bonds, it seems that the turnover ratio is greater for the latter. For
instance, we obtain a turnover ratio of 0.27% for US IG bonds and 0.65% for HY bonds.
In the case of US treasury securities, the five-year average daily turnover figure is 4.6% for
bills, 1.2% for TIPS and 3.5% for notes and bonds (SIFMA, 2021b).

In the case of European bonds, statistics are only available for government bonds. We
can classify the countries into three categories (AFME, 2020):

• The daily turnover ratio is above 1% and close to 1.5% for Germany, Spain and UK.

• The daily turnover ratio is between 0.5% and 1.0% for Belgium, France, Ireland, Italy,
Netherlands, and Portugal.

36The market capitalization is equal to the number of shares times the price: M = nP .
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• The daily turnover ratio is lower than 0.5% for Denmark and Greece.

These different figures show that the turnover ratio cannot be considered as constant. There-
fore, the single-regime transaction cost function becomes:

ccci (qi; si,t, σi,t, vi,t) = β(s)si,t + β(πππ)σi,t

(
qi

τ i,tni

)γ1
= β(s)si,t + β

(πππ)
i,t σi,ty

γ1
i (45)

where yi = n−1i qi is the outstanding-based participation rate and β
(πππ)
i,t is the scaling factor

of the price impact:

β
(πππ)
i,t =

β(πππ)

τ γ1i,t
(46)

Since the turnover ratio is time-varying and depends on the security, it follows that β
(πππ)
i,t

depends on the time t and the security i. Equation (45) for bonds is then less attractive
than Equation (39) for equities. However, we can make two assumptions:

1. the turnover ratio τ i,t is stable on long-run periods;

2. the turnover ratio τ i,t computed at the security level is not representative of its trading
activity.

We notice that turnover ratios are generally computed for a group of bonds, for instance
all German government bonds or all US corporate IG bonds. The reason lies again in the
fact that the daily turnover of a given bond may be equal to zero very often because of the
zero-trading days effect. Nevertheless, if one bond is not traded at all for a given period
(e.g., a day or a week), it does not mean that it is perfectly illiquid during this period. This
may be due to a very low supply or demand during this period. In a bullish market, if no
investors want to sell some bonds because there is strong demand and low supply, these
investors are rational to keep their bonds. Since buy-and-hold strategies dominate in bond
markets, trading a bond is a signal that the bond is not priced fairly. In this framework,
the fundamental price of a bond must change in order to observe a trading activity on this
bond. The situation in the stock market is different because the computation of the fair
price uses a more short-term window and buy-and-hold strategies do not dominate.

Therefore, we can assume that the turnover ratio is equal for the same family of bonds,
implying that:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ)σi,ty
γ1
i (47)

This equation is similar to Equation (39) for equities. Nevertheless, there is a difference
between the two scaling coefficients β(πππ) and β̃(πππ). The last one is more sensitive because
we have:

β̃(πππ) =
β(πππ)

τ γ1

The underlying idea is then to consider more granular liquidity buckets LBj for the bond
asset class than the equity asset class in order to be sure that the securities belonging to
the same liquidity bucket have a similar turnover ratio τ . In Figure 21, we report the
relationship between τ and β̃(πππ) for several values of the exponent γ1. When γ1 is low, the
impact of τ on β̃(πππ) is very low, meaning that we can consider β̃(πππ) as a constant. However,
when γ1 is high (greater than 0.25), the turnover may have a high impact and β̃(πππ) cannot
be assumed to be a constant. In the first case, the estimation of β(s) and β̃(πππ) is robust.
In the second case, the estimation of β̃(πππ) only makes sense if the turnover is comparable
between the securities of the liquidity bucket LBj .
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Figure 21: Relationship between the turnover τ and the scaling factor β̃(πππ)
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Remark 26 In Table 14, we report the values of the outstanding-based participation rate
with respect to the volume-based participation rate x and the daily turnover τ . For example,
if x = 30% and τ = 4%, we obtain a participation rate of 1.2%. While volume-based
participation rates are expressed in %, we conclude that outstanding-based participation rates
are better expressed in bps.

Table 14: Outstanding-based participation rate (in bps) with respect to x and τ

τ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

0.5 0.005 0.025 0.05 0.25 0.5 2.5 5 10 15
1.0 0.010 0.050 0.10 0.50 1.0 5.0 10 20 30
2.0 0.020 0.100 0.20 1.00 2.0 10.0 20 40 60
4.0 0.040 0.200 0.40 2.00 4.0 20.0 40 80 120

5.2.2 Sovereign bonds

We consider a dataset of sovereign bond trades, whose description is given in Appendix
C.2 on page 197. For each observation i, we have the transaction cost ccci, the spread si,
the outstanding-based participation rate yi and the daily volatility σi. We run a two-stage
regression model: {

ln (ccci − si)− lnσi = cγ + γ1 ln yi + ui if ccci > si
ccci = cβ + β(s)si +D(πππ)

i β̃(πππ)σiy
γ1
i + vi

(48)
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Table 15: Two-stage estimation of the sovereign bond transaction cost model

Parameter Estimate Stderr t-student p-value
cγ 0.3004 0.0500 6.0096 0.0000
γ1 0.2037 0.0046 44.6050 0.0000
cβ 0.0002 0.0000 15.7270 0.0000
β(s) 0.9099 0.0109 83.3412 0.0000

β̃(πππ) 2.1521 0.0153 140.6059 0.0000

R2 = 39.87% R2
c = 28.94%

where cγ and cβ are two intercepts, and ui and vi are two residuals. Since the transaction cost

can be lower than the bid-ask spread37, we introduce the dummy variable D(πππ)
i = 1 {ccci > si}.

We estimate the exponent γ1 using the first linear regression model. Then, we estimate the
parameters β(s) and β̃(πππ) using the second linear regression by considering the OLS estimate
of γ1. Results are given in Table 15. We obtain γ1 = 0.2037 � 0.5, which is lower than
the standard value for equities. We also obtain β(s) = 0.9099 and β̃(πππ) = 2.1521. Curiously,
the value of β(s) is less than one. One possible explanation is that we use trades from a
big asset manager that may have a power to negotiate and the capacity to trade inside the
bid-ask spreads when the participation rate is low. Nevertheless, the explanatory power of
the model is relatively good. Indeed, we obtain R2 = 39.87% and R2

c = 28.94%.

Another approach for calibrating the model is to consider a grid-search process. In this
case, we estimate the linear regression:

ccci = cβ + β(s)si +D(πππ)
i β̃(πππ)σiy

γ1
i + vi

by considering several values of γ1. The optimal model corresponds then to the linear
regression that maximizes the coefficient of determination R2

c . Figure 22 illustrates the grid
search process. The optimal solution is reached for γ1 = 0.0925, and we obtain the results
given in Table 16. The explanatory power is close to the one calibrated with the two-stage
approach (30.56% versus 28.94%). However, the two calibrated models differ if we compare
the parameters γ1 and β̃(πππ). In order to understand the differences, we draw the estimated
price impact function in Figure 23 when the annualized volatility of the sovereign bond is
equal to 4.36%, which is the median volatility of our dataset. We conclude that the two
estimated functions are in fact very close38.

Table 16: Grid-search estimation of the sovereign bond transaction cost model

Parameter Estimate Stderr t-student p-value
γ1 0.0925
cβ 0.0000 0.0000 0.9309 0.3519
β(s) 0.9556 0.0107 89.4426 0.0000

β̃(πππ) 0.8482 0.0057 149.2147 0.0000

R2 = 41.24% R2
c = 30.56%

37We recall that the bond market is not an electronic market. Bid-ask spreads are generally declarative
and not computed with quoted bid and ask prices.

38See Figure 31 on page 201 for a logarithmic scale. We note that the grid-search estimate is more
conservative for very low participation rates.
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Figure 22: Parameter estimation using the grid-search approach
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Figure 23: Estimated price impact (in bps)
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Figure 24: Estimated price impact (in bps) with respect to the volume-based participation
rate
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In order to better understand the transaction cost function, we consider the parameteriza-
tion with respect to the volume-based participation rate by using the following relationship:

x =
y

τ

Results are given in Figure 24 for different assumptions of the daily turnover τ . Again, it is
very difficult to prefer one of the two estimated models. Therefore, we perform an implicit
analysis. Using the estimates of the parameters, we can compute the implied scaling factor:

β̂(πππ) = τ γ1 β̃(πππ)

for a given value of the daily turnover. We can also compute the implied turnover:

τ̂ =

(
β(πππ)

β̃(πππ)

) 1
γ1

for a given scaling factor β(πππ). If we analyze the results reported in Table 17, it is obvious
that the two-stage estimated model is more realistic than the grid-search estimated model.
Indeed, when β(πππ) is set to 0.80, the implicit turnover τ̂ is respectively equal to 0.78% and
53.13%. This second figure is not realistic if we compare it to the empirical statistics of
daily turnover.

The previous model can be easily improved by considering more liquidity buckets. For
instance, if we calibrate39 the model by issuer or currency, we obtain the results reported in
Tables 18 and 19. We observe that γ1 ∈ [0.05, 0.29]. We also notice that β(s) < 1 in most
cases, except for Italy, Spain and the US. Moreover, we observe a large dispersion of the
parameter β̃(πππ). In a similar way, we can propose a parameterization of β̃(πππ):

β̃(πππ) = f (F1, . . . ,Fm)

39We use the two-stage estimation approach.
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Table 17: Implicit analysis

β(πππ) 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

τ̂ (in %)
Two-stage 0.03 0.08 0.19 0.40 0.78 1.38 2.32 3.71

Grid-search 0.03 0.33 2.37 12.54 53.13 189.81 592.91 1661.42
τ (in %) 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.50

β̂(πππ) Two-stage 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.91
Grid-search 0.51 0.52 0.53 0.54 0.54 0.55 0.55 0.58

where {F1, . . . ,Fm} are a set of bond characteristics (Ben Slimane and de Jong, 2017). For
instance, if we assume that the parameters γ1 and β(s) are the same for all the bonds, we
observe that β̃(πππ) is an increasing function of the credit spread, the duration and the issue
date (or the age of the bond).

Table 18: Two-stage estimation of the sovereign bond transaction cost model by issuer

Issuer γ1 cβ β(s) β̃(πππ) R2 (in %) R2
c (in %)

Austria 0.2255 −0.0002 0.8599 3.1385 54.1 48.4
Belgium 0.2482 −0.0000 0.8097 3.3974 44.0 32.5
EM 0.0519 0.0010 0.6828 0.4473 74.9 47.4
Finland 0.2894 0.0000 0.7002 4.0287 46.3 31.8
France 0.2138 0.0000 0.8794 3.0087 40.1 29.7
Germany 0.2415 0.0001 0.9811 2.7007 51.6 38.7
Ireland 0.2098 0.0001 0.5403 2.4097 43.9 26.7
Italy 0.1744 −0.0004 2.7385 1.9030 31.3 22.3
Japan 0.0657 0.0001 0.4700 0.6407 79.5 56.4
Netherlands 0.2320 −0.0000 0.7640 3.7709 46.9 34.2
Portugal 0.2318 0.0001 0.9250 3.0248 49.6 33.0
Spain 0.2185 0.0000 1.2547 2.0758 40.9 26.7
United Kingdom 0.2194 0.0003 0.6837 2.3367 51.2 30.3
USA 0.1252 0.0001 1.0626 1.2866 53.8 40.9

Table 19: Two-stage estimation of the sovereign bond transaction cost model by currency

Currency γ1 cβ β(s) β̃(πππ) R2 (in %) R2
c (in %)

EUR 0.2262 0.0000 1.0233 2.9122 35.2 25.7
GBP 0.2117 0.0002 1.3602 2.0878 48.8 30.2
JPY 0.0834 0.0001 0.4811 0.8553 75.6 50.9
USD 0.1408 0.0004 0.8430 1.0121 61.5 46.9

Remark 27 If we perform the linear regression without the intercept cβ, we obtain the re-
sults reported in Tables 42 and 43 on page 201. We notice that the impact on the coefficients
β(s) and β̃(πππ) is weak.

The choice of the value of γ1 is not obvious. Finally, we decide to fix its value at 0.25.
Based on the results given in Table 20, β(s) = 1.00 seems to be a good choice. If we consider
the results given in Tables 42 and 43, β(s) = 1.25 is more appropriate. We have used end-of-
day bid-ask spreads, which are generally lower than intra-day bisk-ask spreads. Therefore,
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Table 20: Estimation of the sovereign bond transaction cost model when γ1 is set to 0.25

Parameter Estimate Stderr t-student p-value
γ1 0.2500
β(s) 1.0068 0.0103 97.9041 0.0000

β̃(πππ) 3.1365 0.0214 146.6939 0.0000

R2 = 38.35% R2
c = 27.15%

to reflect this risk, it may be more prudent to assume that β(s) = 1.25. Finally, we propose
the following benchmark formula for computing the transaction cost for sovereign bonds:

ccci (qi; si,t, σi,t, ni) = 1.25 · si,t + 3.00 · σi,ty0.25i (49)

If we compare this expression with Equation (43), we notice that the coefficient of the bid-
ask spread is the same and the price impact exponent is lower (0.25 versus 0.50 for stocks),
implying a lower liquidity risk.

5.2.3 Corporate bonds

We estimate Model (48) by using a dataset of corporate bond trades, whose description is
given in Appendix C.3 on page 197. Results are given in Table 21. We notice that all the
estimates are significant at the 99% confidence level and the explanatory power is relatively
high since we have R2 = 64.77% and R2

c = 41.66%.

Table 21: Two-stage estimation of the corporate bond transaction cost model with the
volatility risk measure

Parameter Estimate Stderr t-student p-value
cγ 0.3652 0.0338 10.8119 0.0000
γ1 0.1168 0.0045 26.1322 0.0000
cβ 0.0008 0.0000 77.4368 0.0000
β(s) 0.7623 0.0042 183.1617 0.0000

β̃(πππ) 0.9770 0.0044 224.1741 0.0000

R2 = 64.77% R2
c = 41.66%

The previous model’s good results should be considered cautiously because of two rea-
sons. The first one is that the explanatory power depends on the maturity of the bonds. For
instance, if we focus on short-term corporate bonds when the time-to-maturity is less than
two years, we obtain R2

c = 18.86%, which is low compared to the previous figure of 41.66%.
The second reason is that the volatility data is not always available. This is particularly
true when the age of corporate bonds is very low. On average, we do not have the value of
the historical volatility for 20.95% of observations. Moreover, we recall that the asset risk is
measured by the daily volatility σi in the model. However, we know that the price volatility
is not a good measure for measuring the risk of a bond when the bond is traded at a very
low frequency. This is why we observe a poor explanatory power when we consider bonds
that present a high ratio of zero-trading days or a low turnover. This is the case of some EM
corporate bonds or some mid-cap issuers. Therefore, we propose replacing the transaction
cost function (47) with the following function:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ)Ri,tyγ1i (50)
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where Ri,t is a better risk measure than the bond return volatility.

Table 22: Two-stage estimation of the corporate bond transaction cost model with the DTS
risk measure

Parameter Estimate Stderr t-student p-value
cγ −3.4023 0.0309 −109.9488 0.0000
γ1 0.0796 0.0041 19.5020 0.0000
cβ 0.0005 0.0000 55.7256 0.0000
β(s) 0.7153 0.0034 207.4743 0.0000

β̃(πππ) 0.0356 0.0001 300.5100 0.0000

R2 = 68.64% R2
c = 46.45%

In Appendix B.3 on page 196, we show that the corporate bond risk is a function of
the duration-times-spread or DTS. Therefore, we consider the following transaction cost
function:

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ) DTSi,t y
γ1
i (51)

Using our dataset of bond rates, we estimate the parameters by using the two-stage method:{
ln (ccci − si)− ln DTSi = cγ + γ1 ln yi + ui if ccci > si
ccci = cβ + β(s)si +D(πππ)

i β̃(πππ) DTSi y
γ1
i + vi

(52)

Results are given in Table 22. We notice that the results are a little bit better since the
explanatory power R2

c is equal to 46.45% instead of 41.66%, and all estimated coefficients are
significant at the 99% confidence level. Moreover, if we focus on corporate bonds where the
time-to-maturity is less than two years, we obtain R2

c = 38.21% or an absolute improvement
of 20%! Nevertheless, the value of γ1 is equal to 0.0796, which is a low value. This result is
disappointing because the model does not depend on the participation rate when γ1 ≈ 0:

lim
γ1→0

ccci (qi; si,t, σi,t, ni) = β(s)si,t + β̃(πππ) DTSi,t

This type of model is not useful and realistic when performing liquidity stress testing since
the liquidity cost does not depend on the trade size!

The asset manager that provided the data uses a trading/dealing desk with specialized
bond traders in order to minimize trading impacts and transaction costs. In particular, we
observe that bond traders may be very active. For example, they may decide to not sell
or buy the bond if the transaction cost is high. In this case, with the agreement of the
fund manager, they can exchange the bond of an issuer with another bond of the same
issuer40, a bond of another issuer or a basket of bonds in order to reduce the transaction
cost. More generally, they execute a sell or buy order of a bond with a high participation
rate only if the trading impact is limited, implying that these big trades are opportunistic
and not systematic contrary to small and medium trades. In a similar way, bond traders
may know the inventory or the axis of the brokers and market markers. They can offer to
fund managers to initiate a trade because the trade impact will be limited or even because
the transaction cost is negative! We conclude that the behavior of bond traders is different
depending on whether the trade is small/medium or large.

Since the goal of bond traders is to limit sensitivity to high participation rates, it is
normal that we obtain a low value for the coefficient γ1. We decide to force the coefficient

40With other characteristics such as the maturity.
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Table 23: Estimation of the corporate bond transaction cost model when γ1 is set to 0.25

Parameter Estimate Stderr t-student p-value
γ1 0.2500
β(s) 0.8979 0.0028 323.2676 0.0000

β̃(πππ) 0.1131 0.0004 293.5226 0.0000

R2 = 66.24% R2
c = 42.35%

γ1 and to use the standard value of 0.25 that has been chosen for the sovereign bond model.
Based on the results reported in Table 23, we finally propose the following benchmark
formula to compute the transaction cost for corporate bonds:

ccci (qi; si,t, σi,t, ni) = 1.50 · si,t + 0.125 ·DTSi,t y
0.25
i (53)

If we compare this expression with Equation (49), we notice that the coefficient of the bid-ask
spread is larger (1.50 versus 1.25 for sovereign bonds), because of the larger uncertainty on
the quoted spreads in the corporate bond universe. Concerning the price impact exponent,
we use the same value.

Remark 28 In order to compare sovereign and corporate bonds, we can transform Equa-
tion (49) by considering the relationship between the DTS and the daily volatility. In our
sample41, the average ratio is equal to 30.3. We deduce that the equivalent transaction cost
formula based on the DTS measure for sovereign bonds is equal to:

ccci (qi; si,t, σi,t, ni) = 1.25 · si,t + 0.10 ·DTSi,t y
0.25
i (54)

We notice that the price impact is +25% higher for corporate bonds compared to sovereign
bonds.

5.3 Extension to the two-regime model

As explained in Section 2.1.3 on page 124, the asset manager generally imposes a trading
limit, because it is not possible to have a 100% participation rate. In Figure 25, we have
reported the estimated price impact for corporate bonds42. Panel (a) corresponds to the
estimated raw function. From a mathematical point of view, the price impact is defined even
if the participation rate is larger than 100%. In the case of stocks, a 150% volume-based
participation rate is plausible, but it corresponds to a very big trade. In the case of bonds,
a 150% outstanding-based participation rate is impossible, because this trade size is larger
than the issued size! As such, imposing a trading limit is a first modification to obtain a
realistic transaction cost function. However, as explained in Section 2.4 on page 129, this
is not sufficient. For instance, we use a trading limit of 300 bps in Panel (b). Beyond this
trading limit, the price impact is infinite. But if we trade exactly 300 bps, the price impact
is equal to 34 bps, and we obtain a concave price impact before this limit. It is better to
introduce a second regime (see Equation 17 on page 129), implying the following function

41Figure 32 on page 202 reports the relationship between the volatility and the duration-times-spread of
sovereign bonds.

42we recall that β̃(πππ) = 0.125 and γ1 = 0.25 for corporate bonds.
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for the price impact:

πππ (y) =


β̃(πππ) DTS yγ1 if y ≤ ỹ(
β̃(πππ) ỹ

γ1

ỹγ2

)
DTS yγ2 if ỹ ≤ y ≤ y+

+∞ if y > y+

In Panel (c), the inflection point ỹ and the power γ2 are set to 200 bps and 1. We have two
areas. The grey area indicates that the trading is prohibitive beyond 300 bps. The red area
indicates that the trading is penalized between 200 bps and 300 bps, because trading costs
are no longer concave, but convex. Of course, we can use a larger value of γ2 to penalize
this area of participation rates (for example γ2 = 2). Finally, we obtain the final transaction
cost function in Panel (d).

Figure 25: From the single-regime model to the two-regime model (corporate bonds)

The issue of using a two-regime model is the calibration of the second regime. However,
as said previously, it is unrealistic to believe that we can estimate the inflection point and
the parameter γ2 from data. Indeed, asset managers do not experience sufficient big trades
and do not have enough data to calibrate the second regime. We are in an uncertain area,
and it is better that these values are given by experts. For instance, we can use γ2 = 1 or
γ2 = 2 to force the convexity of the second regime. The inflection point can be equal to 3/4
or 2/3 of the trading limit.

5.4 Stress testing of security-specific parameters

In this section, we conduct a stress testing program in order to define the transaction cost
function in a stress regime. We first define the methodological framework based on the
extreme value theory (EVT). Then, we apply the EVT approach to the security-specific
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parameters. Finally, we give the transaction cost function in the case of a LST program for
equity funds.

5.4.1 Methodological aspects

Following Roncalli (2020, Chapters 12 and 14), we consider the extreme value theory for
performing stress testing. We summarize this framework below and provide the main re-
sults43.

The block maxima (BM) approach We note X ∼ F a continuous random variable
and Xi:n the ith order statistic in the sample44 {X1, . . . , Xn}. The maximum order statistic
is defined by Xn:n = max (X1, . . . , Xn). We can show that Fn:n (x) = F (x)

n
. If there

exist two constants an and bn and a non-degenerate distribution function G such that
limn→∞Fn:n (anx+ bn) = G (x), the Fisher-Tippett theorem tells us that G can only be a
Gumbel, Fréchet or Weibull probability distribution. In practice, these three distributions
are replaced by the GEV distribution GEV (µ, σ, ξ):

G (x;µ, σ, ξ) = exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ)

defined on the support ∆ =
{
x : 1 + ξσ−1 (x− µ) > 0

}
. The parameters θ = (µ, σ, ξ) can

be calibrated by maximizing the log-likelihood function45:

θ̂ = arg max
∑
t

−1

2
lnσ2 −

(
1 + ξ

ξ

)
ln

(
1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ
where xt is the observed maximum for the tth block maxima period46. By assuming that
the length of the block maxima period is equal to nBM trading days, the stress scenario
associated with the random variable X for a given return time T is equal to:

S (T ) = G−1
(
α; µ̂, σ̂, ξ̂

)
where:

α = 1− nBM

T
and G−1 is the quantile function:

G−1 (α;µ, σ, ξ) = µ− σ

ξ

(
1− (− lnα)

−ξ
)

Finally, we obtain:

S (T ) = µ̂− σ̂

ξ̂

(
1−

(
− ln

(
1− nBM

T

))−ξ̂)
(55)

43See Roncalli (2020, pages 753-777 and 904-909) for a detailed presentation of extreme value theory and
its application to stress testing and scenario analysis.

44We assume that the random variables are iid.
45We recall that the probability density function of the GEV distribution is equal to:

g (x;µ, σ, ξ) =
1

σ

(
1 + ξ

(
x− µ
σ

))−(1+ξ)/ξ

exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

46The block maxima approach consists of dividing the observation period into non-overlapping periods of
fixed size and computing the maximum of each period.
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The peak over threshold (POT) approach In this approach, we are interested in
estimating the distribution of exceedance over a certain threshold u:

Fu(x) = Pr {X − u ≤ x | X > u}

where 0 ≤ x < x0 − u and x0 = sup {x ∈ R : F(x) < 1}. We notice that:

Fu(x) =
F(u+ x)− F(u)

1− F(u)

For very large u, Fu(x) follows a generalized Pareto distribution GPD (σ, ξ):

Fu(x) ≈ H (x;σ, ξ)

= 1−
(

1 +
ξx

σ

)−1/ξ
defined on the support ∆ =

{
x : 1 + ξσ−1x > 0

}
.

Remark 29 In fact, there is a strong link between the block maxima approach and the peak
over threshold method. Suppose that Xn:n ∼ GEV (µ, σ, ξ). Using the fact that Fn:n (x) =
F (x)

n
, we can show that (Roncalli, 2020, page 774):

Fu(x) ≈ 1−
(

1 +
ξx

σ + ξ (u− µ)

)−1/ξ
= H (x;σ + ξ (u− µ) , ξ)

Therefore, we obtain a duality between GEV and GPD distribution functions.

The parameters θ = (σ, ξ) are estimated by the method of maximum likelihood47 once
the threshold u0 is found. To determine u0, we use the mean residual life plot, which consists
in plotting u against the empirical mean ê (u) of the excess:

ê (u) =

∑n
i=1 (xi − u)

+∑n
i=1 1 {xi > u}

For any value u ≥ u0, we must verify that the mean residual life is a linear function of u
since we have:

E [X − u | X > u] =
σ + ξu

1− ξ
The threshold u0 is then found graphically.

To compute the stress scenario S (T ), we recall that:

Fu(x) =
F(u+ x)− F(u)

1− F(u)
≈ H (x)

where H ∼ GPD (σ, ξ). We deduce that:

F (x) = F (u) + (1− F (u)) · Fu (x− u)

≈ F (u) + (1− F (u)) ·H (x− u)

47The probability density function of the GPD distribution is equal to:

h (x;σ, ξ) =
1

σ

(
1 +

ξx

σ

)−(1+ξ)/ξ
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We consider a sample of size n. We note n′ as the number of observations whose value xi is
larger than the threshold u0. The non-parametric estimate of F (u0) is then equal to:

F̂ (u0) = 1− n′

n

Therefore, we obtain the following semi-parametric estimate of F (x) for x larger than u0:

F̂ (x) = F̂ (u0) +
(

1− F̂ (u0)
)
· Ĥ (x− u0)

=

(
1− n′

n

)
+
n′

n

1−

(
1 +

ξ̂ (x− u0)

σ̂

)−1/ξ̂
= 1− n′

n

(
1 +

ξ̂ (x− u0)

σ̂

)−1/ξ̂
We can interpret F̂ (x) as the historical estimate of the probability distribution tail that is
improved by the extreme value theory. We have48:

F̂−1 (α) = u0 +
σ̂

ξ̂

(( n
n′

(1− α)
)−ξ̂
− 1

)
We recall that the stress scenario of the random variable X associated with the return time
T is equal to S (T ) = F̂−1 (α) where α = 1− T −1. Finally, we deduce that:

S (T ) = u0 +
σ̂

ξ̂

(( n

n′T

)−ξ̂
− 1

)
(56)

5.4.2 Application to asset liquidity

We assume that the current date t is not a stress period. Let pi,t be a security-specific
parameter observed at time t. We would like to compute its stress value pstressi,t+h for a given
time horizon h. As explained in Section 4.2.3 on page 151, we can use a multiplicative shock:

pstressi,t+h = mp · pi,t
where mp is the multiplier factor. Depending on the nature of the parameter, we can also
use an additive shock:

pstressi,t+h = pi,t + ∆p

where ∆p is the additive factor. For instance, we can assume that a multiplicative shock
is relevant for the trading volume, but an additive shock is more appropriate for the credit

spread. Using a sample {pi,1, . . . , pi,T } of the parameter p, we compute mt =
pi,t+h
pi,t

or mt =

pi,t+h − pi,t. Then, we apply the previous EVT framework to the time series {m1, . . . ,mT }
and estimate the stress scenario mp or ∆p for a given return time T and a holding period
h. We notice that two periods are used to define the stress scenario. The time horizon h
indicates the frequency of the stress scenario. It is different to compute a daily, weekly or
monthly stress. The return time T indicates the severity of the stress scenario. If T is set
to one year, we observe this stress scenario every year on average. Again, it is different to
compute a stress with a return time of one year, two years or five years. In some sense, h
corresponds to the holding period whereas T measures the occurrence probability.

48The quantile function of the GPD distribution is equal to:

H−1 (α;σ, ξ) =
σ

ξ

(
(1− α)−ξ − 1

)
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Market risk We consider the VIX index from January 1990 to February 2021. We have
a sample of 7 850 observations. In Figure 26, we report the histogram of the VIX index and
the multiplicative factor mσ for three time horizons (one day, one week and one month).
The estimates of the GEV and GPD distributions are reported in Table 24. Using Equations
55 and 55, we deduce the stress scenarios associated with mσ and ∆σ for three time horizons
(1D, 1W and 1M) and five return times (6M, 1Y, 2Y, 5Y, 10Y and 50Y) in Tables 25 and
26.

Figure 26: Empirical distribution of the multiplicative factor mσ

Table 24: EVT estimates of the VIX index

GEV GPD

µ̂ σ̂ ξ̂ u0 σ̂ ξ̂

mσ

1D 1.103 0.049 0.299 1.229 0.096 0.138
1W 1.157 0.101 0.229 1.460 0.203 0.243
1M 1.138 0.185 0.238 1.960 0.425 0.410

∆σ

1D 1.739 1.036 0.424 4.943 2.560 0.238
1W 2.568 1.821 0.322 2.950 2.022 0.291
1M 2.277 3.179 0.201 16.830 11.522 0.008

How should we interpret these results? For example, the multiplicative weekly stress
scenario is equal to 1.50 if we consider a return time of one year and the BM/GEV approach.
For the additive scenario, we obtain a figure of 9.66%. This means that the volatility can
be multiplied by 1.50 or increased by 9.66% in one week, and we observe this event (or
an equivalent more severe event) every year. If we average the historical, BM/GEV and
POT/GPD approaches, the 2Y weekly stress scenario is respectively ×1.80 (multiplicative
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stress) and +17% (additive stress). If we focus on the monthly stress scenario, these figures
become ×2.66 and +29%.

Table 25: Multiplicative stress scenarios of the volatility

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.23 1.25 1.32 1.43 1.50 1.57
BM/GEV 1.20 1.22 1.29 1.37 1.51 1.65 2.09

POT/GPD 1.23 1.25 1.33 1.41 1.52 1.62 1.90

1W
Historical 1.46 1.51 1.70 1.89 2.26 2.56
BM/GEV 1.34 1.38 1.50 1.64 1.86 2.06 2.66

POT/GPD 1.46 1.51 1.68 1.87 2.18 2.47 3.35

1M
Historical 1.96 2.05 2.44 2.99 4.23 5.08
BM/GEV 1.47 1.55 1.78 2.04 2.46 2.83 3.99

POT/GPD 1.96 2.08 2.45 2.96 3.88 4.86 8.53

Table 26: Additive stress scenarios of the volatility

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 4.94 5.50 7.72 10.77 14.15 18.22
BM/GEV 3.91 4.51 6.42 8.94 13.59 18.50 37.34

POT/GPD 4.93 5.58 7.12 8.42 9.85 10.74 12.31

1W
Historical 9.49 10.88 14.50 20.43 24.56 27.97
BM/GEV 6.08 6.97 9.66 12.95 18.53 23.96 42.34

POT/GPD 9.57 10.65 13.92 17.92 24.61 30.99 51.86

1M
Historical 16.83 19.04 27.22 35.62 46.59 61.40
BM/GEV 7.84 9.13 12.74 16.80 23.03 28.54 44.68

POT/GPD 16.64 19.67 27.70 35.77 46.51 54.70 73.88

Trading volume Dealing with volatility is relatively simple thanks to the availability of
the VIX. In the case of the trading volume, we face more difficulties because there is not a
standard index that measures the market depth. This means that we must use the trading
volume of the stocks. From a robustness point of view, it is obvious that computing a stress
for each stock is not relevant. Therefore, given the times series of vi,t for several stocks, we
would like to compute a synthetic stress scenario that is valid for all stocks. The first idea
is to compute the multipliers for each stock and to pool all the data. The second idea is to
compute the multipliers for each date and to average the data by date. For the BM/GEV
approach, we compute the maximum for each block and each stock, and then we average
the maxima by block.

We consider the 30-day average daily volume of the stocks that make up49 the EuroStoxx
50 Index from January 2010 to December 2020. At each date, we compute the multiplica-
tive factor of the trading volume50. Then, we apply the previous pooling and averaging

49Since the composition changes from one month to another, we have 73 stocks during the period. Nev-
ertheless, at each date, we only consider the 50 stocks that are valid at the first trading day of the month.

50In fact, it is a reductive factor since the risk is not that daily volumes increase, but that they decrease.
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approaches to these data51. Results are given in Table 27. If we average the historical,
BM/GEV and POT/GPD approaches, the 2Y weekly and monthly stress scenarios are re-
spectively ×0.75 and ×0.48. This means that the daily volume is approximately reduced by
25% if we consider a one-week holding period and 50% if we consider a one-month holding
period.

Table 27: Multiplicative stress scenarios of the trading volume

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

Historical 0.93 0.93 0.91 0.88 0.84 0.80 0.71
BM/GEV Pooling 0.94 0.94 0.92 0.90 0.87 0.85 0.80

1W POT/GPD Pooling 0.95 0.94 0.91 0.88 0.84 0.80 0.70
BM/GEV Averaging 0.94 0.94 0.93 0.92 0.91 0.90 0.89

POT/GPD Averaging 0.93 0.92 0.92 0.91 0.91 0.90 0.89
Historical 0.79 0.77 0.72 0.67 0.61 0.55 0.48
BM/GEV Pooling 0.86 0.85 0.81 0.78 0.74 0.71 0.65

1W POT/GPD Pooling 0.87 0.83 0.75 0.68 0.61 0.56 0.47
BM/GEV Averaging 0.87 0.86 0.84 0.82 0.79 0.77 0.73

POT/GPD Averaging 0.82 0.81 0.79 0.78 0.76 0.75 0.72
Historical 0.50 0.48 0.41 0.36 0.31 0.29 0.26
BM/GEV Pooling 0.72 0.69 0.62 0.56 0.50 0.46 0.39

1M POT/GPD Pooling 0.40 0.38 0.36 0.33 0.31 0.29 0.26
BM/GEV Averaging 0.75 0.73 0.68 0.63 0.58 0.55 0.49

POT/GPD Averaging 0.62 0.60 0.57 0.54 0.50 0.48 0.42

Bid-ask spread We have seen that stress scenarios of the daily volume are more difficult
to compute than stress scenarios of the volatility. This issue is even more important with
bid-ask spreads because of the data quality. Ideally, we would like to obtain the weighted
average bid-ask spread adjusted by the volume for each stock and each trading day. However,
this information is not easily available or is expensive. This is why databases of asset
managers and trading platforms generally report the end-of-day bid-ask spread. However,
unlike the closing price, which corresponds to the security’s end-of-day transaction price
observed during a regular market trading period, there is no standard definition of the bid
and ask end-of-day prices. In particular, it is not obvious that the end-of-day bid-ask spread
corresponds to the last bid-ask spread observed during the regular market trading period.
Rather, our experience shows that the end-of-day bid-ask spread may be impacted by after-
hours trading orders. It seems that this synchronization bias between regular trading and
after-hours trading only impacts bid-ask spreads and not closing prices.

To illustrate this issue, we report the end-of-day bid-ask spread of the BNP Paribas
stock between January 2010 and December 2020 in Figure 27. During this period, the
stock’s median bid-ask spread is equal to 1.22 bps. This value is relatively low, however, we
observe many trading days where the bid-ask spread is larger than 20 bps52. Therefore, the
bid-ask spread may jump from 2 bps to 80 bps in one day. It is obvious that these extreme
variations are not realistic and no institutional investor has paid a bid-ask spread of 80
bps for the BNP Paribas stock during the period. These extreme points are not unusual

51We can also transform these stress scenarios on the trading volume into stress scenarios on the partici-
pation rate using the following formula: mx = 1

mv
. Results are reported in Table 44 on page 204.

52These observations correspond to the red bars in 27

177



Liquidity Stress Testing in Asset Management

Figure 27: Historical bid-ask spread of BNP Paribas (in bps)
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as illustrated by the figures reported in Table 28. For the 50 stocks of the Eurostoxx 50
Index, we have computed the frequency at which the bid-ask spread is negative, the daily
multiplicative factor is greater than 5 or 10, and the absolute variation is greater than 25
and 100 bps. We consider two well-known data providers, FactSet and Bloomberg, that are
extensively used by equity portfolio managers. These results illustrate that reported bid
and ask end-of-day prices may deviate substantially from the closing price because of the
synchronization bias between regular and after-hours trading.

Table 28: Statistics of daily multiplicative and additive factors for the Eurostoxx 50 stocks
(2010 – 2020)

Frequency Factset Bloomberg
Pr {s < 0} 0.01% 0.24%
Pr {ms > 10} 0.77% 0.62%
Pr {ms > 5} 3.49% 3.12%
Pr {|∆s | > 100 bps} 0.63% 0.44%
Pr {|∆s | > 25 bps} 4.52% 3.05%

There are different ways to fix the previous problem. For example, we can consider a
ten-day moving average of daily bid-ask spreads for each stock. Or we can calculate the
weighted average of the bid-ask spreads for a given universe of stocks for each trading day.
The first case corresponds to a time-series average, whereas the second case corresponds
to a cross-section average. In both cases, the underlying idea is to apply a denoising filter
in order to estimate the average trend. A variant of the second method is to consider the
median bid-ask spread, and we apply this approach to the stocks of the Eurostoxx 50 Index
from January 2010 to December 2020. As in the case of the daily volume, we only consider
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the 50 stocks that are in the index at each trading day. The empirical distributions of ms
and ∆s are given in Figures 35 and 36 on page 203. Using these data, we calibrate the GEV
and GPD models, and we obtain the stress scenarios that are reported in Tables 29 and
30. If we average the historical, BM/GEV and POT/GPD approaches, the 2Y weekly stress
scenario is respectively ×3 (multiplicative stress) and +6.5 bps (additive stress).

Table 29: Multiplicative stress scenarios of the bid-ask spread

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.66 1.73 1.93 2.40 2.75 7.11
BM/GEV 1.63 1.70 1.92 2.19 2.64 3.08 4.56

POT/GPD 1.65 1.71 1.94 2.32 3.24 4.49 11.70

1W
Historical 1.74 1.88 2.58 3.49 6.78 9.76
BM/GEV 1.67 1.76 2.05 2.41 3.07 3.75 6.27

POT/GPD 1.81 1.93 2.41 3.22 5.20 7.92 23.78

1M
Historical 2.54 2.92 5.12 6.65 9.62 9.98
BM/GEV 1.75 1.86 2.18 2.58 3.25 3.90 6.12

POT/GPD 2.40 2.64 3.52 4.85 7.72 11.21 27.90

Table 30: Additive stress scenarios of the bid-ask spread

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

1D
Historical 1.67 1.82 2.93 6.46 10.94 18.14
BM/GEV 1.42 1.63 2.28 3.14 4.71 6.37 12.70

POT/GPD 1.77 2.04 3.07 4.76 8.78 14.17 44.13

1W
Historical 1.98 2.37 5.19 10.10 12.36 19.11
BM/GEV 1.48 1.70 2.40 3.33 5.08 6.94 14.17

POT/GPD 2.19 2.57 3.91 6.00 10.63 16.43 45.46

1M
Historical 3.36 3.98 7.90 10.60 16.04 21.36
BM/GEV 1.51 1.77 2.62 3.82 6.20 8.91 20.46

POT/GPD 2.99 3.57 5.73 9.23 17.33 27.95 84.86

5.4.3 Definition of the stress transaction cost function

If we assume that x+ = 10%, x̃ =
2

3
x+ and γ2 = 1, the transaction cost function for large

cap stocks is equal to:

ccc (q; s , σ, v) =

 1.25 · s + 0.40 · σ
√
x if x ≤ 6.66%

1.25 · s + 1.55 · σx if 6.66% ≤ x ≤ 10%
+∞ if x > 10%

(57)

We consider the following stress scenario53:

• ∆s = 8 bps

• ∆σ = 20%

53This stress scenario is approximatively the 2Y weekly stress scenario.
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• mv = 0.75

We deduce that the transaction cost function in the stress regime becomes:

ccc (q; s , σ, v) =


1.25 · (s + 8 bps) + 0.40 ·

(
σ +

20%√
260

)√
4

3
x if x ≤ 5%

1.25 · (s + 8 bps) + 1.55 ·
(
σ +

20%√
260

)
4

3
x if 5% ≤ x ≤ 7.5%

+∞ if x > 7.5%

Table 31: Stress testing computation

x Case
Annualized volatility Liquidation

10% 15% 20% 25% 30% 35% 40% LT LS LS
ccc (q; s , σ, v) (in bps) one-day two-day

0.00%
Normal 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1 0% 0%
Stress 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1 0% 0%

0.01%
Normal 5.2 5.4 5.5 5.6 5.7 5.9 6.0 1 0% 0%
Stress 15.9 16.0 16.1 16.3 16.4 16.6 16.7 1 0% 0%

0.05%
Normal 5.6 5.8 6.1 6.4 6.7 6.9 7.2 1 0% 0%
Stress 16.9 17.2 17.6 17.9 18.2 18.5 18.8 1 0% 0%

0.10%
Normal 5.8 6.2 6.6 7.0 7.4 7.7 8.1 1 0% 0%
Stress 17.7 18.2 18.6 19.1 19.5 20.0 20.4 1 0% 0%

0.50%
Normal 6.8 7.6 8.5 9.4 10.3 11.1 12.0 1 0% 0%
Stress 21.1 22.1 23.1 24.1 25.1 26.1 27.2 1 0% 0%

1.00%
Normal 7.5 8.7 10.0 11.2 12.4 13.7 14.9 1 0% 0%
Stress 23.6 25.0 26.5 27.9 29.3 30.8 32.2 1 0% 0%

5.00%
Normal 10.5 13.3 16.1 18.9 21.6 24.4 27.2 1 0% 0%
Stress 34.2 37.4 40.6 43.8 47.0 50.2 53.4 1 0% 0%

7.50%
Normal 12.2 15.8 19.4 23.0 26.6 30.2 33.8 1 0% 0%
Stress 43.8 48.6 53.4 58.2 63.0 67.8 72.6 1 0% 0%

10.00%
Normal 14.6 19.4 24.2 29.0 33.8 38.6 43.4 1 0% 0%
Stress 40.0 44.2 48.4 52.5 56.7 60.9 65.0 2 2.5% 0%

20.00%
Normal 14.6 19.4 24.2 29.0 33.8 38.6 43.4 2 10% 0%
Stress 41.4 45.8 50.2 54.6 59.0 63.4 67.8 3 12.5% 5.5%

In Table 31, we have reported an example of stress testing applied to single stocks. For
each value of σ and x, we report the unit cost ccc (q; s , σ, v) in bps for the normal and stress
regimes. For instance, if the annualized volatility is equal to 30% and the liquidation of the
exposure on the single stock represents 0.05% of the normal daily volume, the transaction
cost is equal to 6.7 bps in the normal period. In the stress period, it increases to 18.2
bps, which is an increase of 171%. We have also reported the liquidation time, the one-day
liquidation shortfall and the two-day liquidation shortfall. Let us consider a 10% liquidation.
Because of the liquidity policy, we can liquidate 7.5% the first day and 2.5% the second day
during the stress period, whereas we can liquidate the full exposure during the normal
period. Therefore, the liquidation time, which is normally equal to one day, takes two days
in the stress period. If we consider a 20% liquidation, the (one-day) liquidation shortfall is
equal to 12.5% and the time-to-liquidation is equal to three days.
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6 Conclusion and discussion

Liquidity stress testing is a recent topic in asset management, which has given rise to numer-
ous publications from regulators (AMF, 2017; BaFin, 2017; ESMA, 2019, 2020; FSB, 2017;
IOSCO, 2015, 2018). In particular, LST has been mandatory in Europe since September
2020. However, contrary to banks, asset managers have less experience conducting a liquid-
ity stress testing program at the global portfolio level. Moreover, this topic has not been
extensively studied by the academic research. Therefore, we are in a trial-and-error period
where standard models are not really established, and asset managers use very different
approaches to assess liquidity stress tests. The aim of this research project is to propose
a simple LST approach that may become a benchmark for asset managers. In a previous
paper, we have already developed a framework for modeling the liability liquidity risk (Ron-
calli et al., 2020). In a forthcoming paper, we will propose several tools for managing the
asset-liability liquidity gap. In this paper, we focus on measuring the asset liquidity risk.

Contrary to the first and third parts of this project, there is a large body of academic
literature that has studied the estimation of transaction costs. In particular, we assume that
price impact verifies the power-law property. This means that there is a concave relationship
between the participation rate and the transaction cost. This model is appealing because (1)
it has been proposed by the academic research in the case of stocks, (2) it is simple and (3) it
is suitable for stress testing purposes. The first reason is important, because the model must
be approved by the regulators. The fact that this model has academic roots is therefore a
key element in terms of robustness and independent validation. The second reason is critical,
because a complex transaction cost model with many parameters and variables may be not
an industrial solution. This is particularly true if the calibration requires a large amount of
data. In the case of our model, we have three parameters (spread sensitivity, price impact
sensitivity and price impact exponent) and three explanatory variables (bid-ask spread,
volatility risk and participation rate). If the asset manager does not have enough data,
it can always use some internal experts to set the value of these parameters. Moreover,
we have seen that this model can also be applied to bonds with some minor corrections.
For instance, in the case of corporate bonds, it is better to use the DTS instead of the
volatility in order to measure the market risk. Finally, the third reason is convenient when
we perform stress testing programs. When applied to liquidity in asset management, they
can concern the liability side and/or the asset side (Brunnermeier and Pedersen, 2009). For
instance, the asset manager can assume that the liquidity crisis is due to funding issues. In
this case, the stress scenario could be a severe redemption scenario. But it can also assume
that the liquidity crisis is due to market issues. In this case, the stress scenario could be a
market liquidity crisis with a substantial reduction in trading volumes and an increase in
volatility risk. Therefore, it is important that a stress scenario of market liquidity risk could
be implemented, and not only a stress scenario of funding liquidity risk. Our transaction
cost model has three variables that can be stressed: the spread, the market risk and the
trading volume (or the market depth). We think that these three transmission channels are
enough to represent a market liquidity crisis. Nevertheless, the high concavity of the price
impact function when the exponent is smaller than 1/2 is not always relevant when we also
impose trading policy limits. Therefore, we propose an extension of the previous model by
considering two regimes with two power-law models where the second exponent takes a larger
value than the first exponent. In this case, the transaction cost function has two additional
parameters: the exponent of the second regime and the inflection point that separates the
first and second regimes. Therefore, we can obtain a price impact which is more convex in
the second regime when the participation rate is high. In terms of calibration, we propose
using expert estimates, implying no more data analysis.
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Table 32: Impact of size on the market impact

Size Stocks Bonds
Unit Total Average Unit Total Average
cost cost cost cost cost cost

×1 ×1.0 ×1.0 +0% ×1.0 ×1.0 +0%
×2 ×1.4 ×2.8 +41% ×1.2 ×2.4 +19%
×3 ×1.7 ×5.2 +73% ×1.3 ×3.9 +32%
×4 ×2.0 ×8.0 +100% ×1.4 ×5.7 +41%
×5 ×2.2 ×11 +124% ×1.5 ×7.5 +50%
×10 ×3.2 ×32 +216% ×1.8 ×18 +78%

We have proposed some formulas for large cap stocks, small cap stocks, sovereign bonds
and corporate bonds54. This is an especially challenging exercise. Indeed, the calibrated
formulas highly depend on the data55. Because we use a small sample on a particular period
and this sample is specific to an asset manager, the data are not representative of the industry
as a whole. Moreover, in the case of bonds, we have decided to exclude opportunistic trades
with a negative transaction cost. This is why these calibrated formulas must be adjusted
and validated by the asset manager before using them. On page 198, we have reported the
values of the unit transaction cost. These tables can be used as a preliminary pricing grid
that can be modified. For instance, the asset manager generally knows its average price
impact, and can then change the values of βs , βπππ and γ1 in order to retrieve its average
cost. This pricing grid can also be modified by the trading desk cell by cell in order to avoid
some unrealistic values56. One of the difficulties is to maintain some coherency properties
between the different cells of the pricing grid. In the case of the power-law model, if we
multiply the size by α, the unit cost is multiplied by αγ1 while the total cost is multiplied
by α1+γ1 . In Table 32, we have reported the impact of the size on the price impact when
we consider our benchmark formulas57. For example, we notice that if we multiply the size
of the trade by 5, the average cost due to the price impact increases by 124% for stocks
and 50% for bonds. Quantifying these size effects is essential in a liquidity stress testing
program because the risk in a stress period is mainly related to the size issue. And it is not
always obvious to obtain a pricing grid that satisfies some basic coherency properties.

As explained in the introduction, our motivation is to propose a framework that can help
asset managers to implement liquidity stress testing, which is a relative new topic for this
industry. We are aware that it is challenging, and the final model can appear too simple to
describe the transaction cost function of any stocks and bonds. This is true. For instance,
it is not precise enough to calibrate swing prices. However, we reiterate that the goal is
not to build a pre-trade system, but to implement a liquidity stress testing program from
an industrial viewpoint. In a liquidity crisis, there are so many unknowns and uncertainties
that a sophisticated model does not necessarily enable redemption issues to be managed
better. An LST model must be sufficiently realistic and pragmatic in order to give the
magnitude order of the stress severity and compare the different outcomes. We think that
the model proposed here has some appealing properties to become a benchmark for asset
managers. However, the road to obtain the same standardization that we encounter in the
banking regulation of market, credit or counterparty risk is long. More research in this area
from academics and professionals is needed.

54These formulas correspond to Equations (43), (44), (49) and (53).
55For example, using Reuters bid-ask spreads instead of Bloomberg bid-ask spreads dramatically changes

the parameter βs for sovereign and corporate bonds.
56For instance, a price impact of 198 bps may be considered too high when the outstanding-based partic-

ipation rate is set to 100 bps and the DTS of the corporate bond is equal to 5 000 bps.
57We recall that γ1 is equal to 0.5 for stocks and 0.25 for bonds.
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Appendix

A Glossary

Bid-ask spread

The bid-ask spread corresponds to the difference between the ask price and the bid price of
a security divided by its mid-point price. It is a component of the liquidity cost, since the
unit transaction cost depends on the half bid-ask spread. In this article, we use the term
bid-ask spread in place of half bid-ask spread, and we denote it by s .

Break-even redemption scenario

The break-even redemption scenario is the maximum amount expressed in dollars that can
be liquidated in one day:

Rbreak−even = sup {R : LS (R) = 0}
= inf {R : LR (R; 1) = 1}

HQLA class

The term HQLA refers to high-quality liquid asset. An HQLA class groups all the securities
that present the same ability to be converted into cash. An HQLA class is different than
a liquidity bucket, because this latter classification is used to define the unit transaction
cost function. For instance, it does not make sense that a bond and a stock share the same
transaction cost function. However, they can belong to the same HQLA class if they have
the same conversion property into cash.

Implementation shortfall

The implementation shortfall measures the total amount of slippage, that is the difference
in price between the time a portfolio manager makes an investment decision and the actual
traded price. Its mathematical expression is:

IS (q) = max
(
Vmid (q)− Vliquidated (q) , 0

)
where Vmid (q) is the current value of the redemption scenario and Vliquidated (q) is the value
of the liquidated portfolio.

Liquidation policy

See trading limit.

Liquidation ratio

The liquidation ratio LR (q;h) is the proportion of the redemption trade that is liquidated
after h trading days. We generally focus on daily and weekly liquidation ratios LR (q; 1)
and LR (q; 5). The liquidation ratio is also used to define the liquidation time (or time to
liquidation), which is an important measure for managing the liquidity risk. We also use
the notation LR (R;h) where R is the dollar amount of the redemption scenario.
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Liquidation shortfall

The liquidation shortfall is defined as the residual redemption that cannot be fulfilled after
one trading day. It is expressed as a percentage of the redemption value. If it is equal to
0%, this means that we can liquidate the redemption in one trading day. More generally,
its mathematical expression is:

LS (q) = 1− LR (q; 1)

where LR (q;h) is the liquidation ratio. If the redemption scenario is expressed in dollars,
we have:

LS (R) = 1− LR (R; 1)

Liquidation time

See time to liquidation.

Liquidity bucket

A liquidity bucket defines a set of securities that share the same liquidity properties. There-
fore, the securities have the same functional form of the unit transaction cost. Examples of
liquidity buckets are large cap DM stocks, small cap stocks, sovereign bonds, corporate IG
bonds, HY USD bonds, HY EUR bonds, EM bonds, energy commodities, soft commodities,
metal commodities, agricultural commodities, G10 currencies, EM currencies, REITS, etc.
The jth liquidity bucket is denoted by LBj .

Market impact

See price impact.

Outstanding-based participation rate

The outstanding-based participation rate is a normalization of the trade size:

y =
q

n
where q is the number of shares that have been sold and n is the number of issued shares. The
outstanding-based participation rate is a modification of the (volume-based) participation
rate, because the trading volume cannot always be computed for some securities, for example
bonds.

Participation rate

The participation rate is a normalization of the trade size:

x =
q

v

where q is the number of shares that have been sold and v is the trading volume. The
participation rate is used to define the unit transaction cost function ccc (x).

Price impact (unit)

The (unit) price impact π (q) is the part of the unit transaction cost function which is not
explained by the bid-ask spread.
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Price impact (total)

The price impact (or market impact) PI (q) is the part of the transaction cost due to the
trade size:

PI (q) = T C (q)− BAS (q)

We generally expect that it is an increasing function of the redemption size.

Pro-rata liquidation

The pro-rata liquidation uses the proportional rule, implying that each asset is liquidated
such that the structure of the portfolio is the same before and after the liquidation.

Redemption scenario

A redemption scenario q is defined by the vector (q1, . . . , qn) where qi is the number of shares
of security i to sell. This scenario can be expressed in dollars:

Q := (Q1, . . . , Qn) = (q1P1, . . . , qnPn)

where Pi is the price of security i. The redemption scenario may also be defined by its dollar
value R:

R = V (q) =

n∑
i=1

qiPi

If we consider a portfolio defined by its weights w = (w1, . . . , wn), we have:

wi =
qiPi
R

Time to liquidation

The time to liquidation is the inverse function of the liquidation ratio. It indicates the
minimum number of days that it is necessary to liquidate the proportion p of the redemption.
It is denoted by the function LT (q; p) or LT (R; p).

Trading limit

The trading limit q+ is the maximum number of shares that can be sold in one trading day.
It can be expressed using the maximum participation rate:

x+ =
q+

v

where v is the daily volume.

Transaction cost

The transaction cost of a redemption is made up of two components: the bid-ask spread
cost and the price impact cost. It is denoted by T C (q).
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Unit transaction cost

The unit transaction cost function ccc (x) is the percentage cost associated with the partici-
pation rate x for selling one share. It has two components:

ccc (x) = s + πππ (x)

where s is the half bid-ask spread and πππ (x) is the price impact. The total transaction cost
of selling q shares is then:

T C (q) = q · P · ccc (x) = Q · ccc (x)

where P is the security price and Q = q · P is the nominal selling volume expressed in $.

Valuation function

The valuation function V (ω) gives the dollar value of the portfolio ω = (ω1, . . . , ωn), which
is expressed in number of shares:

V (ω) =

n∑
i=1

ωiPi

The dollar value of the redemption is equal to R = V (q) =
∑n
i=1 qiPi, whereas the dollar

value of the portfolio becomes V (ω − q) =
∑n
i=1 (ωi − qi)Pi after the liquidation of the

redemption scenario.

Vertical slicing

See pro-rata liquidation.

Volume-based participation rate

See participation rate.

Waterfall liquidation

In this approach, the portfolio is liquidate by selling the most liquid assets first.

190



Liquidity Stress Testing in Asset Management

B Mathematical results

B.1 Relationship between the two unit cost functions in the toy
model

We note:

ccc′ (x) =

 s ′ if x ≤ x̃
s ′ + α′ (x− x̃) if x̃ ≤ x < x+

+∞ if x ≥ x+
(58)

and:

ccc′′ (x) =

{
s ′′ + α′′x if x < x+

+∞ if x ≥ x+ (59)

If we assume that ccc′ (0) = ccc′′ (0) and ccc′ (x+) = ccc′′ (x+), we have the following relationships:

α′ = α′′
(

x+

x+ − x̃

)
and:

α′′ = α′
(
x+ − x̃
x+

)
However, most of the time, we do not know the two analytical functions. Let us assume
that the true model is given by ccc′ (x), whereas we estimate the approximated model ĉcc′′ (x),
which is defined by:

ĉcc′′ (x) =

{
ŝ ′′ + α̂′′x if x < x+

+∞ if x ≥ x+ (60)

The least square estimates ŝ ′′ and α̂′′ are equal to:

ŝ ′′ = c̄cc′ (x)− α̂′′x̄

and:

α̂′′ =

∫ x+

0
(x− x̄) (ccc′ (x)− c̄cc′ (x)) dx∫ x+

0
(x− x̄)

2
dx

where x̄ and c̄cc′ (x) are given by the mean value theorem:

x̄ =

∫ x+

0
xdx

x+
=
x+

2

and:

c̄cc′ (x) =

∫ x+

0
ccc′ (x) dx

x+
= s′ + α′

(x+ − x̃)
2

2x+

We deduce that the least square estimates are:

α̂′′ = α′

(
1 + 2

(
x̃

x+

)3

− 3

(
x̃

x+

)2
)

and:

ŝ′′ = s′ − α′x̃
(

1− x̃

x+

)2
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because we have: ∫ x+

0

(x− x̄)
2

dx =

∫ x+

0

(
x− x+

2

)2

dx

=
1

3

[(
x− x+

2

)3
]x+

0

=
2

3

(
x+

2

)3

and58:

(∗) =

∫ x+

0

(x− x̄) (ccc′ (x)− c̄′ (x)) dx

=

∫ x̃

0

(
x− x+

2

)(
s′ − s′ − α′ (x

+ − x̃)
2

2x+

)
dx+

∫ x+

x̃

(
x− x+

2

)(
s′ + α′ (x− x̃)− s′ − α′ (x

+ − x̃)
2

2x+

)
dx

= α′
∫ x+

x̃

(
x− x+

2

)
(x− x̃) dx− α′ (x

+ − x̃)
2

2x+

∫ x+

0

(
x− x+

2

)
dx

= α′
∫ x+

x̃

(
x2 −

(
2x̃+ x+

2

)
x+

x̃x+

2

)
dx

= α′
[
x3

3
−
(

2x̃+ x+

4

)
x2 +

x̃x+

2
x

]x+

x̃

= α′
(

1

12

(
x+
)3

+
1

6
x̃3 − 1

4
x̃2x+

)

In Figure 28, we illustrate how to transform one form of cost function into another form.
In practice, we do not know the models ccc′ (x) and ccc′′ (x). In fact, we estimate ĉcc′′ (x). The
right issue is then to transform ĉcc′′ (x) into ccc′ (x) or even ccc′′ (x). If we consider that the true
model is ccc′ (x), we have the following relationships:

α′ = α̂′′
(x+)

3(
(x+)

3
+ 2x̃3 − 3x̃2x+

) (61)

and:

α′′ = α̂′′
(x+)

2
(x+ − x̃)(

(x+)
3

+ 2x̃3 − 3x̃2x+
) (62)

If the true model is ccc′′ (x), we have α′′ = α̂′′.

Remark 30 In Figure 28, the parameters are equal to s ′ = 2 bps, α′ = 2%, x̃ = 2% and
x+ = 8%. We find that α′′ = 1.5%, while the OLS estimation gives ŝ ′′ = −0.25 bps and
α̂′′ = 1.6875%.

58We have: ∫ x+

0

(
x−

x+

2

)
dx = 0
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Figure 28: Equivalence of cost models
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B.2 Analytics of portfolio distortion

B.2.1 Portfolio weights

We recall that the asset structure of the fund is given by the portfolio ω = (ω1, . . . , ωn),
where ωi is the number of shares of security i. The portfolio weights are then equal to
w (ω) = (w1 (ω) , . . . , wn (ω)) where:

wi (ω) =
ωiPi∑n
j=1 ωjPj

(63)

and Pi is the current price of security i. Let q = (q1, . . . , qn) be the redemption scenario. It
follows that the redemption weights are given by:

wi (q) =
qiPi∑n
j=1 qjPj

(64)

After the liquidation of q, the new asset structure is equal to ω − q, and the new weights of
the portfolio become:

wi (ω − q) =
(ωi − qi)Pi∑n
j=1 (ωj − qj)Pj

(65)

We note V (ω) =
∑n
j=1 ωjPj and V (ω − q) =

∑n
j=1 (ωj − qj)Pj the dollar value of the

portfolios before and after the liquidation. We notice that V (ω)−V (ω − q) is exactly equal
to the dollar value R of the redemption:

R = V (ω)− V (ω − q) =

n∑
j=1

qjPj = V (q)
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We have:

wi (ω − q) =
ωiPi

V (ω)− R
− qiPi

V (ω)− R

=
V (ω)

V (ω)− R
wi (ω)− R

V (ω)− R
wi (q)

The new weights wi (ω − q) are a non-linear function of the portfolio weights wi (ω), the
redemption weights wi (q) and the redemption value R. Except in the case59 where qi ∝ ωi,
computing the new weights is not straightforward because they depend on R. From a
theoretical point of view, we have 0 ≤ qi ≤ ωi because the maximum we can sell is the
number of shares in the portfolio. One problem is that the weights wi (ω − q) are continuous
whereas the number of shares qi is an integer. This is why we prefer to consider the fuzzy
constraint −ε ≤ qi ≤ ωi + ε, where ε is typically equal to 1/2. Since

∑n
i=1 wi (ω − q) = 1, we

deduce that:

−ε ≤ qi ≤ ωi + ε⇔ −εi ≤ wi (ω − q) ≤ min

(
V (ω)

V (ω)− R
wi (ω) + εi, 1

)
where:

εi =
εPi

V (ω)− R

We note the two bounds w−i (ω − q) and w+
i (ω − q).

Remark 31 From Equation (65), we deduce that:

qi =
V (ω) (wi (ω)− wi (ω − q)) + Rwi (ω − q)

Pi

We can then compute qi thanks to the previous equation when we know the portfolios weights
wi (ω) and wi (ω − q).

B.2.2 Liquidation tracking error

We assume that the asset returns are normally distributed: R = (R1, . . . , Rn) ∼ N (0,Σ).
The random return of the portfolio ω is then equal to:

R (ω) =

∑n
i=1 ωiPiRi∑n
j=1 ωjPj

=

n∑
i=1

wi (ω)Ri

= wi (ω)
>
R

We conclude that:
R (ω) ∼ N

(
0, w (ω)

>
Σw (ω)

)
If we consider the portfolio ω − q, we have R (ω − q) = w (ω − q)>R and:(

R (ω)
R (ω − q)

)
∼ N

((
0
0

)
,

(
w (ω)

>
Σw (ω) w (ω)

>
Σw (ω − q)

w (ω − q)>Σw (ω) w (ω − q)>Σw (ω − q)

))
59We have wi (ω − q) = wi (ω).
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Let e be the tracking error between the portfolios before and after the redemption. We have:

e = R (ω − q)−R (ω)

= (w (ω)− w (ω − q))>R

The standard deviation of e is called the “liquidation tracking error” and is denoted by
σ (q | ω):

σ (q | ω) =

√
(w (ω)− w (ω − q))>Σ (w (ω)− w (ω − q))

This is our measure of the portfolio distortion D (q | ω).

Remark 32 In the case where the redemption scenario does not modify the asset structure,
we have qi = R ωi and:

w (ω − q) =
(ωi − qi)Pi∑n
j=1 (ωj − qj)Pj

=
(ωi − R ωi)Pi∑n
j=1 (ωj − R ωj)Pj

=
(1− R )ωiPi∑n
j=1 (1− R )ωjPj

= wi

We conclude that the portfolio distortion is equal to zero.

B.2.3 Optimal portfolio liquidation

Let c (q | ω) be the cost of liquidating the redemption scenario q. The problem of optimal
portfolio liquidation is:

q? = arg min
q

c (q | ω) (66)

s.t.

 σ (q | ω) ≤ D+

1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

where D+ ≥ 0 is the maximum portfolio distortion. If D+ = 0, the optimal solution is
q? ∝ ω. If D+ =∞, the distortion constraint vanishes, and the solution corresponds to the
redemption scenario that presents the lower liquidating cost.

We can rewrite the previous problem as follows:

q? (λ) = arg min
1

2
σ2 (q | ω) + λc (q | ω) (67)

s.t.

{
1>nw (ω − q) = 1
w− (ω − q) ≤ w (ω − q) ≤ w+ (ω − q)

This optimization problem is close to the γ-problem of mean-variance optimization (Roncalli,
2013). Nevertheless, this is not a QP problem, meaning that it is more complex to solve nu-
merically. The underlying idea is then to write q as a function of w (q) with qi = wi (q)R/Pi
and minimizing the objective function (67) with respect to w (q). Given a dollar value R of
redemption, the set of optimal portfolio liquidations is given by {q? (λ) , λ ∈ [0,∞)} and the
efficient frontier corresponds to the parametric curve (σ (q? (λ) | ω) , c (q? (λ) | ω)).
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B.3 Modeling the market risk of corporate bonds

Let si (t) be the credit spread of the ith bond issuer. Following Roncalli (2013, pages 223-
227), we assume that the credit spread follows a general diffusion process:

dsi (t) = σs
i si (t) dWi (t) (68)

where Wi (t) is a standard Brownian motion and σs
i is a volatility parameter. We note

Bi (t,Di) the zero-coupon bond price with maturity (or duration) Di of the ith issuer. If we
assume that the recovery date is equal to zero, we have:

d lnBi (t,Di) = −Di dr (t)−Di dsi (t)

where r (t) is the risk-free interest rate. If we assume that the credit spread is not correlated
with the risk-free interest rate, we deduce that:

σ2 (d lnBi (t,Di)) = D2
i σ

2 (dr (t)) +D2
i σ

2 (dsi (t))

= D2
i σ

2 (dr (t)) +D2
i (σs

i )
2
s2i (t) dt (69)

We deduce that the volatility of a bond has two parts: an interest rate component and a
credit spread component.

If the credit risk component is sufficiently large with respect to the interest rate compo-
nent, we obtain:

σ (d lnBi (t,Di)) ≈ σs
i ·Di · si (t)

= σs
i ·DTSi (t) (70)

where DTSi (t) is the duration-times-spread (or DTS) measure (Ben Dor et al., 2007).
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C Data

We consider the asset liquidity data provided by Amundi Asset Management. The database
is called “Amundi Liquidity Lab” and contains the trades made by Amundi, but also other
information such as order books for equities and the price quotations for bonds60. We
filter the data in order to obtain a dataset with all the available characteristics, which are
representative of normal trading. For instance, we exclude bond trades that are initiated by
the counterparty. We also exclude equity trades that are made by an index fund manager
when the transaction concerns a basket of stocks that replicate the index. Indeed, in this
case, the transaction cost is generally related to the index, and does not necessarily reflect
the transaction cost of each component. Finally, we use a subset of the data.

C.1 Equities

We use a sample of trades for the stocks that belong to the MSCI USA, MSCI Europe,
MSCI USA Small Cap and MSCI Europe Small Cap indices. We also complete this database
with pre-trade transaction costs computed by the BECS system (Citigroup, 2020) when we
observe few observations for a given stock. Finally, we have a sample of 149 896 trades.

C.2 Sovereign bonds

We use a sample of 196 286 trades from January 2018 to December 2020 with the following
split by currency:

Currency EUR USD GBP JPY AUD CAD DKK
# of trades 129 904 34 965 7 354 6 831 4 277 3 586 1 409
Currency SEK MXN PLN MYR SGD ZAR Other

# of trades 915 882 794 592 581 458 3 738

and the following split by the issuer’s country:

Country IT FR US DE ES BE GB
# of trades 31 870 23 033 20 798 19 587 16 668 8 961 7 646

Country JP NL AT AU CA PT Other
# of trades 6 874 6 663 6 619 4 383 3 950 3 900 35 334

C.3 Corporate bonds

We use a sample of 258 153 trades from January 2018 to December 2020 with the following
split by currency:

Currency EUR USD GBP SGD AUD CAD CNH Other
# of trades 204 724 46 620 5 791 307 194 138 128 251

and the following split by the issuer’s country:

Country US FR NL GB DE IT LU
# of trades 49 410 48 257 34 782 21 710 16 358 16 037 12 150

Country ES SE IE MX AT BE Other
# of trades 11 797 5 857 4 775 3 799 3 289 3 173 27 709

60For each trade, we have at least three price quotations by three different banks and brokers.
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D Price impact of the benchmark formulas

Table 33: Price impact (in bps) for large cap stocks

σ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

10 0.2 0.6 0.8 1.8 2 6 8 11 14
20 0.5 1.1 1.6 3.5 5 11 16 22 27
30 0.7 1.7 2.4 5.3 7 17 24 33 41
40 1.0 2.2 3.1 7.0 10 22 31 44 54
50 1.2 2.8 3.9 8.8 12 28 39 55 68
60 1.5 3.3 4.7 10.5 15 33 47 67 82

Table 34: Price impact (in bps) for small cap stocks

σ x (in %)
(in %) 0.01 0.05 0.10 0.50 1 5 10 20 30

10 0.3 0.7 1.0 2.2 3 7 10 14 17
20 0.6 1.4 2.0 4.4 6 14 20 28 34
30 0.9 2.1 2.9 6.6 9 21 29 42 51
40 1.2 2.8 3.9 8.8 12 28 39 55 68
50 1.6 3.5 4.9 11.0 16 35 49 69 85
60 1.9 4.2 5.9 13.2 19 42 59 83 102

Table 35: Price impact (in bps) for sovereign bonds

σ y (in bps)
(in %) 0.01 0.10 1 2.5 5 10 20 50 100

1 0.6 1.0 1.9 2.3 2.8 3 4 5 6
2 1.2 2.1 3.7 4.7 5.6 7 8 10 12
3 1.8 3.1 5.6 7.0 8.3 10 12 15 18
5 2.9 5.2 9.3 11.7 13.9 17 20 25 29

10 5.9 10.5 18.6 23.4 27.8 33 39 49 59
15 8.8 15.7 27.9 35.1 41.7 50 59 74 88
20 11.8 20.9 37.2 46.8 55.6 66 79 99 118

Table 36: Price impact (in bps) for corporate bonds

DTS y (in bps)
(in bps) 0.01 0.10 1 2.5 5 10 20 50 100

50 0.2 0.4 0.6 0.8 0.9 1 1 2 2
100 0.4 0.7 1.3 1.6 1.9 2 3 3 4
250 1.0 1.8 3.1 3.9 4.7 6 7 8 10
500 2.0 3.5 6.3 7.9 9.3 11 13 17 20

1 000 4.0 7.0 12.5 15.7 18.7 22 26 33 40
2 500 9.9 17.6 31.3 39.3 46.7 56 66 83 99
5 000 19.8 35.1 62.5 78.6 93.5 111 132 166 198

E Additional results
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Figure 29: Linear modeling of unit transaction costs
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Figure 30: Comparing unit and total transaction costs in normal and stress periods
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Table 37: Participation rate xi (h) (in %)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
1 10.00% 10.00% 10.00% 8.75% 0.90%
2 10.00% 10.00% 10.00%
3 10.00% 0.05% 10.00%
4 10.00% 7.75%
5 3.51%

Table 38: Notional Qi (h) (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5
1 89 000 102 000 13 400 20 825 10 602
2 89 000 102 000 13 400
3 89 000 510 13 400
4 89 000 10 385
5 31 239

Table 39: Bid-ask spread cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 35.60 40.80 6.70 10.41 5.30 98.81
2 35.60 40.80 6.70 83.10
3 35.60 6.70 42.50
4 35.60 5.19 40.79
5 12.50 12.50

Total 154.90 81.80 25.29 10.41 5.30 277.71

Table 40: Price impact cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 617.10 565.79 66.90 151.62 12.48 1 413.89
2 617.10 565.79 66.90 1 249.80
3 617.10 0.14 66.90 684.14
4 617.10 40.18 657.28
5 90.74 90.74

Total 2 559.16 1 131.73 240.87 151.62 12.48 4 095.85

Table 41: Transaction cost (in $)

h Asset #1 Asset #2 Asset #3 Asset #4 Asset #5 Total
1 652.70 606.59 73.60 162.03 17.78 1 512.70
2 652.70 606.59 73.60 1 332.90
3 652.70 0.35 73.60 726.65
4 652.70 45.37 698.08
5 103.24 103.24

Total 2 714.05 1 213.53 266.16 162.03 17.78 4 373.55
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Figure 31: Estimated price impact (in bps) — logarithmic scale
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Table 42: Two-stage estimation of the sovereign bond transaction cost model without the
intercept by issuer

Issuer γ1 β(s) β̃(πππ) R2 (in %) R2
c (in %)

Austria 0.2255 0.8023 3.0845 53.9 48.2
Belgium 0.2482 0.7789 3.3738 44.0 32.5
EM 0.0519 0.9158 0.4746 73.6 44.7
Finland 0.2894 0.7114 4.0416 46.3 31.8
France 0.2138 0.8942 3.0148 40.1 29.7
Germany 0.2415 1.0413 2.7838 51.5 38.5
Ireland 0.2098 0.6600 2.4977 43.8 26.4
Italy 0.1744 2.4706 1.7640 31.0 22.0
Japan 0.0657 0.5635 0.7315 78.0 53.4
Netherlands 0.2320 0.7219 3.7355 46.9 34.2
Portugal 0.2318 0.9693 3.0639 49.6 33.0
Spain 0.2185 1.3000 2.0990 40.8 26.7
United Kingdom 0.2194 0.9739 2.6262 49.9 28.5
USA 0.1252 1.1055 1.3395 53.6 40.7

Table 43: Two-stage estimation of the sovereign bond transaction cost model without the
intercept by currency

Currency γ1 β(s) β̃(πππ) R2 (in %) R2
c (in %)

EUR 0.2262 1.0428 2.9347 35.2 25.7
GBP 0.2117 1.5328 2.2890 48.3 29.5
JPY 0.0834 0.5744 0.9771 74.2 48.2
USD 0.1408 0.9502 1.0906 60.4 45.4
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Figure 32: Relationship between volatility and duration-times-spread (sovereign bonds)
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Figure 33: Empirical distribution of the additive factor ∆σ
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Figure 34: Empirical distribution of the multiplicative factor mv

Figure 35: Empirical distribution of the multiplicative factor ms
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Figure 36: Empirical distribution of the additive factor ∆s

Table 44: Stress scenarios of the participation rate

T (in years) 0.385 1/2 1 2 5 10 50
α (in %) 99.00 99.23 99.62 99.81 99.92 99.96 99.99

Empirical 1.26 1.30 1.39 1.49 1.64 1.81 2.07
BM/GEV Pooling 1.16 1.18 1.23 1.28 1.35 1.40 1.53

1W POT/GPD Pooling 1.15 1.20 1.33 1.46 1.64 1.78 2.12
BM/GEV Averaging 1.14 1.16 1.19 1.22 1.27 1.30 1.37

POT/GPD Averaging 1.23 1.24 1.26 1.28 1.31 1.34 1.39
Empirical 1.99 2.10 2.45 2.81 3.27 3.49 3.79
BM/GEV Pooling 1.39 1.45 1.61 1.78 1.99 2.15 2.55

1M POT/GPD Pooling 2.53 2.60 2.80 2.99 3.25 3.45 3.90
BM/GEV Averaging 1.34 1.38 1.48 1.58 1.71 1.81 2.04

POT/GPD Averaging 1.62 1.65 1.75 1.85 1.98 2.10 2.38
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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
the modeling of the liability liquidity risk (or funding liquidity), the second dimension is
dedicated to the modeling of the asset liquidity risk (or market liquidity), whereas the
third dimension considers the management of the asset-liability liquidity risk (or asset-
liability matching). The purpose of this research is to propose a methodological and
practical framework in order to perform liquidity stress testing programs, which comply
with regulatory guidelines (ESMA, 2019a, 2020a) and are useful for fund managers. The
review of the academic literature and professional research studies shows that there is
a lack of standardized and analytical models. The aim of this research project is then
to fill the gap with the goal of developing mathematical and statistical approaches, and
providing appropriate answers.

In this third and last research paper focused on managing the asset-liability liquidity
risk, we explore the ALM tools that can be put in place to control the liquidity gap.
These ALM tools can be split into three categories: measurement tools, management
tools and monitoring tools. In terms of measurement tools, we focus on the computation
of the redemption coverage ratio (RCR), which is the central instrument of liquidity
stress testing programs. We also study the redemption liquidation policy and the
different implementation methodologies, and we show how reverse stress testing can be
developed. In terms of liquidity management tools, we study the calibration of liquidity
buffers, the pros and cons of special arrangements (redemption suspensions, gates, side
pockets and in-kind redemptions) and the effectiveness of swing pricing. In terms of
liquidity monitoring tools, we compare the macro- and micro-approaches to liquidity
monitoring in order to identify the transmission channels of liquidity risk.

Keywords: asset-liability management, liquidity risk, liquidity management tool (LMT),
stress testing, redemption coverage ratio, liquidity buffer, swing pricing.
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Liquidity Stress Testing in Asset Management

1 Introduction

The guidelines on liquidity stress testing in UCITS and AIFs produced by ESMA (2020a)
are rooted in the banking regulation defined by the Basel Committee on Banking Super-
vision (BCBS, 2010, 2013). For instance, the redemption coverage ratio, which is the key
instrument of LST programs, is a copy-paste of the liquidity coverage ratio (LCR) in the
Basel III Accord. According to BCBS (2008), liquidity risk management in the banking
industry must be structured around three pillars: measurement, management and monitor-
ing. Beyond the redemption coverage ratio, which is typically a measurement tool, ESMA
(2020a) adopt a similar approach by mixing the three Ms.

Liquidity risk is an important topic for the banking sector because it concerns systemic
risk. We face similar issues for the asset management industry because it can generate
big market risks. Since liquidity risk is an ALM risk (Roncalli, 2020, Chapter 7), it con-
cerns both liabilities and assets. As mentioned by Brunnermeier and Pedersen (2009), the
interconnectedness between funding liquidity and market liquidity amplifies the liquidity
risk. This is obvious in stress periods, but this is even the case in normal periods when
we consider the asset management industry. The reason is that redeeming investors impose
negative externalities on the remaining investors:

“Strategic interaction is a key determinant of investors’ behavior in financial
markets and institutions. When choosing their investment strategy, investors
have to consider, not only the expected fundamentals of the investment, but also
the expected behavior of other investors, which could have a first-order effect on
investment returns. Particularly interesting are situations with payoff comple-
mentarities, where investors’ incentives to take a certain action increase if they
expect that more investors will take such an action. Payoff complementarities
are expected to generate a multiplier effect, by which they amplify the impact
that shocks to fundamentals have on investors’ behavior. Such amplification is
often referred to as financial fragility” (Chen et al., 2010, page 239).

This financial fragility has been documented in several asset classes (Bouveret and Yu,
2021; Chernenko and Sunderam, 2020; Fricke and Fricke, 2021; Fricke and Wilke, 2020;
Rohleder et al., 2017; Goldstein et al., 2017). The negative externalities and their major
impact when considering stress periods explain that financial regulators have recently paid
more attention to liquidity management in the asset management industry (AMF, 2017;
BaFin, 2017; EFAMA, 2020; ESRB, 2017), while the regulation of asset managers in terms
of liquidity management was light in the 2000s. Nevertheless, introducing more stringent
regulations in the asset management industry is not a new concept and dates back to the
roadmap of the Financial Stability Board (FSB) when it was created in April 2009 after the
2008 Global Financial Crisis to monitor the stability of the financial system and manage
systemic risk (Roncalli, 2020, page 453).

However, the lack of maturity and benchmarking is an obstacle for the development
of liquidity stress testing in the asset management industry. One of the big challenges
for regulators is standardizing models and practices. In the case of the banking industry,
the Basel Committee has been successful in proposing statistical frameworks for market and
credit risks. This is not the case in the asset management industry, where academic research
is relatively invisible on the liability side. As such, most solutions are in-house and not
published, implying limited distribution of best practices and, generally simplistic and naive
methods being developed. Against this backdrop, it is not surprising that mathematical and
statistical models are completely absent from regulatory publications, especially in the case
of the ESMA guidelines on liquidity stress testing in asset management.
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This paper completes a research project that began in April 2020 and was organized into
three streams. The first stream covered the liability side and funding liquidity modeling.
In Roncalli et al. (2021a), we introduced two statistical approaches that can be used to
define a redemption shock scenario. The first one is the historical approach and considers
non-parametric risk measures such as the historical or conditional value-at-risk. The second
approach deals with frequency-severity models, which produces parametric risk measures and
stress scenarios. Three of these probabilistic models are particularly interesting: the zero-
inflated (or population-based) statistical model, the behavioral (or individual-based) model
and the factor-based model. The second stream focused on the asset side and transaction
cost modeling. In Roncalli et al. (2021b), we proposed a two-regime model to estimate ex-
ante transaction costs and market impacts. This model is an extension of the square-root
model and considers trading limits in order to comply with the practices of asset managers.
Based on proprietary and industry data, we were able to perform the calibration for large cap
stocks, small cap stocks, sovereign bonds and corporate bonds. Moreover, we have detailed
the analytics of liquidation rate, time to liquidation and liquidation shortfall to assess the
liquidity risk profile of investment funds. The third stream corresponds to this research
paper. The aim is to combine liability and asset risks in order to define the ALM tools.
Therefore, this paper extensively mixes the previous models. For instance, a stress scenario
may originate from the liabilities or the assets or both. Synthetic measures such as the
funding gap or funding ratio are essential for asset-liability management. These measures
are particularly exploited for the purpose of defining appropriate liquidation policies and
the management tools that can be put in place. Besides traditional management methods,
asset managers are paying more and more attention to liquidity buffers. The widespread use
of cash buffers for the purpose of liquidity stress testing may have some significant impacts
in terms of reducing or increasing systemic risk. The recent debate on cash buffering versus
cash hoarding and the “dash for cash” episode during the Covid-19 crisis in March 2020
demonstrate that the liquidity issue in asset management remains as before. This implies
that asset managers must continue to develop the required tools and adopt more responsive
tools. This is especially true for monitoring tools that must use higher frequency data.

The rest of the paper is organized as follows. Section 2 presents the liquidity measure-
ment tools. We introduce the redemption coverage ratio (RCR) and the two computational
approaches (time to liquidation and high-quality liquid assets). We also focus on the redemp-
tion liquidation policy and the differences between vertical and horizontal slicing. Compared
to banks, reverse stress testing (RST) is more complex because two dimensions can be cho-
sen, implying that we can define a liability or an asset RST scenario. Section 3 is dedicated
to liquidity managements tools (LMTs). Besides swing pricing and special arrangements (re-
demption suspensions, gates, side pockets and in-kind redemptions), we extensively study
the set-up of a liquidity buffer. We propose an optimization model that considers the costs
and benefits of implementing a cash buffer and derive the optimal solution that depends
on the risk premium of assets, the tracking error risk and the liquidation gain. Using the
square-root transaction cost model, we obtain analytical formulas and test the impact of the
different parameters. The liquidity monitoring tools are discussed in Section 4. We distin-
guish the macro-economic and micro-economic approaches. The macro-economic approach
helps to define overall liquidity and is related to central bank liquidity and the economic
outlook. This approach is extensively used by financial regulators and international bodies.
In a liquidity stress testing framework, it must be complemented by a micro-economic ap-
proach that considers the daily liquidity at the asset class, security and issuer levels. Data
collection from order books, market infrastructure and the trading desk of the asset manager
is the key to successfully building a suitable monitoring system. Finally, Section 5 concludes
the paper.

209



Liquidity Stress Testing in Asset Management

2 Liquidity measurement tools

Among the three Ms, measurement is certainly the most important and difficult step of
liquidity stress testing programs. Indeed, it encompasses two sources of uncertainty: liability
risk and asset risk. As shown by Roncalli et al. (2021a), there are two main approaches for
measuring the liability risk. We can use an historical approach or a frequency-severity
framework. For this latter, we also have the choice between three models: the zero-inflated
statistical model, the behavioral model or the factor-based model. On the asset risk side,
things are simpler since we generally consider the power-law model as a standard approach.
However, calibrating the parameters remains a fragile exercise that is highly dependent on
the historical data of the asset manager (Roncalli et al., 2021b).

As explained in the introduction, benchmarking will be a key factor for improving these
measures. Nevertheless, there is certainly another issue that is even more detrimental. In-
deed, the definition of the concepts is not always precise, and the regulators of the asset
management industry are less prolific than the regulators of the banking industry. How-
ever, the devil is in the details. This is why we define the different measurement concepts
more precisely in this section. First, we present the redemption coverage ratio and the two
approaches for computing it. Then, we focus on the redemption liquidation policy, which
must specify the appropriate decision in the case of a liquidity crisis. Finally, the regula-
tion requires that the asset manager defines reverse stress testing scenarios and explores
circumstances that might cause them to occur.

2.1 Redemption coverage ratio

According to ESMA (2020a), the redemption coverage ratio (RCR) is “a measurement of
the ability of a fund’s assets to meet funding obligations arising from the liabilities side of
the balance sheet, such as a redemption shock”. Except for this definition1, there are no
other references to this concept in the ESMA guidelines. Therefore, we must explore other
resources to clarify it, but they are few in number (Bouveret, 2017; IMF, 2017; ESMA,
2020b).

The redemption coverage ratio was introduced by Bouveret (2017), who defines it as
follows:

RCR =
Liquid assets

Net outflows
(1)

where net outflows and liquid assets correspond respectively to redemption shocks and the
amount of the portfolio that can be liquidated over a given time horizon. There are two
possible cases:

• if the RCR is above 1, then the fund’s portfolio is sufficiently liquid to cope with the
redemption scenario;

• if the RCR is below 1, then the liquidity profile of the fund may be worsened when
the redemption scenario occurs.

In this second case, the outcome will depend largely on the market liquidity conditions.
Indeed, there is a pricing risk on the NAV because the fund will have to sell illiquid assets in
an illiquid market. The amount of additional assets to be sold is called the liquidity shortfall
(LS):

LS = max (0,Net outflows− Liquid assets) (2)

1It can be found on page 7 of the ESMA guidelines (ESMA, 2020a).
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In order to compare the liquidity profile of several funds, the measure LS is expressed as a
percentage of the fund’s total net assets (TNA).

Remark 1 The RCR and LS measures refer to banking ALM concepts. Indeed, asset-
liability management is based on two risk measures: the funding ratio and the funding gap
(Roncalli, 2020, Chapter 7, page 376). When the ALM is applied to liquidity risk, we refer
to liquidity ratio and liquidity gap. It is obvious that the redemption coverage ratio is related
to the liquidity (coverage) ratio, while the liquidity shortfall is equivalent to the liquidity gap.

The International Monetary Fund has used the redemption coverage ratio in the case of
its financial sector assessment program (FSAP) for two countries: Luxembourg in 2017 and
the United States in 2020. These two FSAP exercises showed that a significant proportion
of the funds would have enough liquid assets to meet redemption shocks. However, the IMF
found that the most vulnerable categories are HY and EM bond funds in Luxembourg (IMF,
2017) and HY and loan mutual funds in the US (IMF, 2020). In the case of Luxembourg
funds, Figure 1 shows that about 30 bond funds have an RCR below 1, and 50% of them
have a liquidity shortfall greater than 10%, which is the borrowing limit for UCITS funds.

Figure 1: LS and RCR for selected investment funds

Source: IMF (2017, Figure 19, page 59).

2.1.1 Time to liquidation approach

Mathematical framework We consider a fund, whose asset structure is given by the
vector ω = (ω1, . . . , ωn) where ωi is the number of shares of security i and n is the number
of securities that make up the asset portfolio. By construction, the fund’s total net assets
are equal to:

TNA =

n∑
i=1

ωi · Pi (3)

where Pi is the current price of security i. The mathematical expressions of Equations (1)
and (2) are:

RCR =
A
R

(4)
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and:

LS = max (0,R − A) (5)

where A is the ratio of liquid assets in the fund and R is the redemption shock expressed in
%. Following Roncalli et al. (2021b), the redemption shock expressed in dollars is equal to
R = R · TNA. Let q = (q1, . . . , qn) be a redemption portfolio and qi (h) be the number of
shares liquidated after h trading days2. The amount of liquid assets is equal to the amount
of assets that can be sold:

A (h) =

n∑
i=1

h∑
k=1

qi (k) · Pi (7)

By definition, we have A (h) = A (h) · TNA. We notice that asset liquidation requires a
parameter h to be defined, which is the time horizon. Therefore, it is better to define RCR
and LS measures as follows:

RCR (h) =
A (h)

R
=

A (h)

R
(8)

and:

LS (h) =
max (0,R− A (h))

TNA
= R ·max (0, 1− RCR (h)) (9)

Since h is a liquidation time horizon, the previous computation method is called the time
to liquidation (TTL) approach (Bouveret, 2017).

Relationship with the liquidation ratio As its name suggests, the time to liquidation
approach is related to the liquidation ratio. Following Roncalli et al. (2021b), the liquidation
ratio LR (q;h) is the proportion of the redemption scenario q that is liquidated after h
trading days:

LR (q;h) =

∑n
i=1

∑h
k=1 qi (k) · Pi∑n
i=1 qi · Pi

(10)

By definition, LR (q;h) is between 0 and 1 whereas RCR (h) ≥ 0. Using Equation (7), we
deduce that:

A (h) = LR (q;h) · V (q) (11)

where V (q) =
∑n
i=1 qi · Pi is the value function of the portfolio q. It follows that:

RCR (h) =
V (q)

R
· LR (q;h) (12)

The redemption coverage ratio can be seen as an extension of the concept of the liquida-
tion ratio when the liquidation portfolio q corresponds to the pool of liquid assets and the
redemption shock is defined without any reference to q. Roncalli et al. (2021b) define the
liquidation period h+ = {inf h : LR (q;h) = 1} as the number of trading days we need to
liquidate the portfolio q. We can then have three cases:

2We recall that qi (h) is equal to:

qi (h) = min

(qi − h−1∑
k=0

qi (k)

)+

, q+i

 (6)

where qi (0) = 0 and q+i denotes the maximum number of shares that can be sold during a trading day for
the asset i (Roncalli et al., 2021b, Section 3.2, page 14).
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1. The redemption coverage ratio is equal to the liquidation ratio if and only if the
redemption scenario is equal to the value of the liquidation portfolio:

RCR (h) = LR (q;h)⇔ R = V (q) (13)

Since LR (q;h) is an increasing function of h and LR (q;h+) = 1, we have:{
RCR (h) < 1 if h < h+

RCR (h) = 1 if h ≥ h+ (14)

2. If V (q) > R, we have RCR (h) > LR (q;h) and:

RCR (h) =
V (q)

R
> 1 ∀h ≥ h+ (15)

3. If V (q) < R, we have RCR (h) < LR (q;h) and:

RCR (h) < 1 ∀h ≥ 0 (16)

Equation (12) shows that the redemption coverage ratio is an increasing function of h. From
a risk management perspective, the RCR is below one if the value V (q) of liquid assets
is lower than the redemption shock R or if the time to liquidation is not acceptable. Let
h? = {inf h : RCR (h) > 1} be the number of trading days we need to absorb the redemption
shock. The shorter the period h? is, the better the liquidity profile. Indeed, if the period
h? is too long and even if RCR (h?) > 1, we cannot consider that the criterion is satisfied.
This is why the risk management department must define an acceptable time to liquidation
τh. In this case, the liquidity profile of the fund is appropriate if and only if RCR (τh) > 1.
By definition, τh depends on the asset class. In the case of public equities, τh is equal to
a few days, whereas τh may range from a few weeks to several months for private equities,
depending on the liquidity objective of the investment fund.

Similarly, the liquidity shortfall LS (h) can be seen as an extension of the liquidation
shortfall, which is defined as “the remaining redemption that cannot be fulfilled after one
trading day” (Roncalli et al., 2021b, Section 3.2.3, page 18):

LS (q) = 1− LR (q; 1) (17)

Indeed, we have:

LS (h) = R ·max

(
0, 1− V (q)

R
· LR (q;h)

)
(18)

In the case where V (q) = R, we obtain:

LS (h) = R ·max (0, 1− LR (q;h))

= R · (1− LR (q;h))

= R · LS (q;h) (19)

where LS (q;h) = 1−LR (q;h) is the generalized liquidation shortfall, that is the remaining
redemption that cannot be fulfilled after h trading days. While the liquidation shortfall is
calculated with one trading day, the liquidity shortfall can be calculated with h ≤ τh. In
the other cases, the liquidity shortfall is not equal to the product of the redemption rate R
and the generalized liquidation shortfall because we have:

LS (h) = R ·max

(
0, 1− V (q)

R
· (1− LS (q;h))

)
(20)
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Nevertheless, we always verify that:

0 ≤ LS (h) ≤ R (21)

By construction, the liquidity shortfall cannot exceed the redemption rate.

Portfolio distortion Since the asset structure of the fund is given by the portfolio ω =
(ω1, . . . , ωn), the portfolio weights are equal to w (ω) = (w1 (ω) , . . . , wn (ω)) where:

wi (ω) =
ωi · Pi∑n
j=1 ωj · Pj

(22)

Let q = (q1, . . . , qn) be the redemption scenario. It follows that the redemption weights are
given by:

wi (q) =
qi · Pi∑n
j=1 qj · Pj

(23)

After the liquidation of q, the new asset structure is equal to ω − q, and the new weights of
the portfolio become:

wi (ω − q) =
(ωi − qi) · Pi∑n
j=1 (ωj − qj) · Pj

(24)

Except in the case of the proportional rule qi ∝ ωi, there is no reason that wi (ω − q) =
wi (ω). In fact, we have3:

wi (ω − q) = wi (ω) + ∆wi (ω | q)

= wi (ω) +
V (q)

(V (ω)− V (q))
(wi (ω)− wi (q)) (25)

The previous analysis can be extended to the case h < h+. Indeed, it assumes that the
liquidation is fully executed. Again, we can have h+ � τh, meaning the redemption shock
cannot be perfectly absorbed. In this case, we can compute wi (q;h) and wi (ω − q;h) by

replacing qi with
∑h
k=1 qi (k).

Examples We consider a fund, whose asset structure ω is given in Table 1. The investment
universe is made up of 7 assets. We also indicate the current price Pi and the trading limit
q+i of each asset. The fund’s total net assets are equal to $141.734 mn. We assume that the
redemption shock is equal to 20% or $28.347 mn.

3The weight difference ∆wi (ω | q) is equal to:

∆wi (ω | q) = wi (ω − q)− wi (ω)

=
(ωi − qi) · Pi
V (ω)− V (q)

−
ωi · Pi
V (ω)

=
V (ω) · (ωi − qi) · Pi − (V (ω)− V (q)) · ωi · Pi

(V (ω)− V (q)) · V (ω)

=
V (q) · ωi · Pi − V (ω) · qi · Pi

(V (ω)− V (q)) · V (ω)

=
V (q) · wi (ω) · V (ω)− V (ω) · wi (q) · V (q)

(V (ω)− V (q)) · V (ω)

=
V (q)

(V (ω)− V (q))
(wi (ω)− wi (q))
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Table 1: Fund’s asset structure and liquidation policy

Asset 1 2 3 4 5 6 7
ωi 435 100 300 100 50 400 200 500 75 500 17 500 1 800

wi (ω) 27.32% 26.04% 17.35% 14.43% 8.90% 3.94% 2.02%
Pi 89 123 488 102 167 319 1 589
q+i 20 000 20 000 10 000 20 000 20 000 2 000 1 000

Example 1 (naive pro-rata liquidation) We first consider the pro-rata liquidation (also
called the proportional rule or the vertical slicing approach). In this case, the liquidation
portfolio is equal to q = R · ω = 0.20 · ω.

We first determine the number of liquidated shares qi (h) for h = 1, 2, . . . (see Table 12
on page 282) in order to compute the value of A (h) and the associated redemption coverage
ratio RCR (h). Results are given below in Table 2. We notice that RCR (1) = 52.53% and
LS (1) = 9.49%. If the time horizon τh to absorb the redemption shock is equal to one day,
then there are not enough liquid assets since the redemption coverage ratio is less than 1.
Indeed, we need a week (or five trading days) to perfectly absorb the redemption shock.
In this case, we have RCR (5) = 100% and LS (5) = 0%. In Table 2, we also verify that
RCR (h) = LR (q;h). Moreover, we notice the convergence of the portfolio weights after the
liquidation to the current portfolio weights (see Table 14 on page 282). Nevertheless, the
matching of the two portfolios ω − q and ω is only valid when h ≥ h+ = 5.

Table 2: Computation of the RCR (Example 1, naive pro-rata liquidation)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in $ mn) (in %) (in %)
1 52.53 14.892 52.53 9.49
2 76.51 21.689 76.51 4.70
3 91.51 25.939 91.51 1.70
4 97.80 27.722 97.80 0.44
5 100.00 28.347 100.00 0.00
6 100.00 28.347 100.00 0.00

In this example, we assume that q = R · ω, implying that V (q) = R. This scheme is not
optimal because we have demonstrated that RCR (h+) = 1 and RCR (τh) ≤ 1. The best
case is then obtained if τh = h+, implying the following constraints:

RCR (τh) = 1⇔
{
∀ i = 1, . . . , n : qi = R · ωi ≤ τh · q+i

}
(26)

If we set τh < h+, we necessarily have RCR (τh) < 1, meaning that there are not enough
liquid assets to fulfill the redemption scenario. Moreover, we are not sure that q = R · ω
is the optimal solution to maximize the redemption coverage ratio RCR (τh). Indeed, the
previous analysis suggests that V (q) > R is a better choice when it is possible. However,
this constraint is not always satisfied and is highly dependent on the value τh of the time
horizon. In fact, the optimal solution necessarily depends on τh and is given by the following
optimization problem:

q? (τh) = arg max RCR (τh)

s.t.

{
q ∝ ω
q ≥ 0n

(27)
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By construction, the solution is independent from the value R of the redemption shock since
we have:

arg max RCR (τh) := arg maxA (τh) (28)

We obtain a trivial combinatorial problem. Indeed, the solution must satisfy the following
set of constraints: {

q ∝ ω
qi ≤ min

(
τh · q+i , ωi

) (29)

We deduce that:
q? (τh) = ϕ (τh) · ω (30)

where:

ϕ (τh) = inf
i=1,...,n

min

(
τh ·

q+i
ωi
, 1

)
(31)

Moreover, we have:

A (τh) =

n∑
i=1

(
h∑
k=1

qi (k)

)
Pi

=

n∑
i=1

q?i (τh) · Pi

= ϕ (τh)

(
n∑
i=1

ωi · Pi

)
= ϕ (τh) · TNA (32)

We conclude that the redemption coverage rate is equal to the ratio between ϕ (τh) and R :

RCR (τh) =
ϕ (τh)

R
(33)

Example 2 (optimal pro-rata liquidation) We consider the optimal pro-rata liquida-
tion when the redemption shock R is equal to 20% and the time horizon τh varies from one
trading day to one trading week.

In Table 3, we indicate the optimal value ϕ (τh) for each time horizon τh. We also re-
port4 LR (q;h), A (h), RCR (h) and LS (h) for h ≤ τh. When τh = 1, the optimal liquidation
portfolio is equal to (20 000, 13 795, 2 317, 9 216, 3 470, 804). The redemption coverage ratio
is equal to 22.98%, implying a high liquidity shortfall representing 15.40% of the total net as-
sets. When τh = 2, the optimal portfolio q? becomes (40 000, 27 589, 4 633, 18 433, 6 941, 1 609).
The redemption coverage ratio is then equal to 45.97% whereas the liquidity shortfall rep-
resents 10.81% of the total net assets. In Exercise 1, the liquidation period h+ was equal
to five trading days, and we obtained RCR (5) = 100%. We notice that we achieve a bet-
ter redemption coverage ratio with the optimal pro-rata liquidation rule. Indeed, we have
RCR (5) = 114.92%.

Remark 2 Since the optimal portfolio q? (τh) does not depend on the redemption shock R,
A (τh) indicates the maximum redemption shock that can be absorbed, implying that:

R ≤ A (τh)⇒ RCR (τh) ≥ 1

4We don’t need to report the statistics for h ≥ τh because we have LR (q;h) = LR (q; τh), A (h) = A (τh),
RCR (h) = RCR (τh) and LS (h) = LS (τh).
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Table 3: Computation of the RCR (Example 2, optimal pro-rata liquidation)

τh
ϕ (τh)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in %) (in $ mn) (in %) (in %)
1 4.60 1 100.00 6.515 22.98 15.40

2 9.19
1 79.18 10.317 36.39 12.72
2 100.00 13.030 45.97 10.81

3 13.79
1 63.66 12.443 43.89 11.22
2 90.02 17.595 62.07 7.59
3 100.00 19.545 68.95 6.21

4 18.39

1 54.81 14.284 50.39 9.92
2 79.18 20.633 72.79 5.44
3 93.17 24.280 85.65 2.87
4 100.00 26.060 91.93 1.61

5 22.98

1 47.13 15.353 54.16 9.17
2 70.74 23.044 81.29 3.74
3 85.68 27.911 98.46 0.31
4 94.54 30.795 108.64 0.00
5 100.00 32.575 114.92 0.00

By definition, the maximum admissible redemption shock is equal to R (τh) = A (τh) or
R (τh) = ϕ (τh). For instance, the maximum admissible redemption shock is equal to $6.515
mn (or 4.60% of the TNA) when the time horizon is set to one trading day. Figure 2 shows
the evolution of R (τh) with respect to τh.

Figure 2: Maximum admissible redemption shock in % (Example 2, optimal pro-rata liqui-
dation)
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Example 3 (waterfall liquidation) We now consider the waterfall liquidation. In this
case, the fund manager liquidates assets in order of their liquidity starting from the most
liquid ones. The redemption shock is still equal to 20%.

Table 4: Computation of the RCR (Example 3, waterfall liquidation)

h
LR (q;h) A (h) RCR (h) LS (h)

(in %) (in $ mn) (in %) (in %)
1 11.80 16.727 59.01 8.20
2 23.38 33.136 116.90 0.00
3 34.06 48.274 170.30 0.00
4 44.21 62.661 221.05 0.00
5 52.53 74.459 262.67 0.00
6 57.55 81.572 287.76 0.00

Figure 3: Maximum admissible redemption shock in % (pro-rata vs. waterfall liquidation)
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In the waterfall approach, there are no constraints on the liquidation portfolio q, which
is equal to the fund’s portfolio ω. In this case, the redemption coverage ratio is entirely
determined by the trading limits q+ and the current portfolio ω. Every day, we sell q+i
shares of security i until there is nothing left – qi (h) = 0. Results are given in Table
4. Since there are no constraints on the asset structure of the portfolio ω − q, we obtain
higher values of the redemption coverage ratio compared to the naive or optimal pro-rata
liquidation approach. Indeed, we have RCR (1) = 59.01%, but RCR (2) = 116.90%. In this
example, we have RCR (τh) > 1 when τh ≥ 2. By construction, the waterfall approach will
always give higher redemption coverage ratios than the pro-rata approach. To illustrate this
property, we compare the maximum admissible redemption shock in Figure 3 for the two
approaches.
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2.1.2 High-quality liquid assets approach

Mathematical framework In the high-quality liquid assets (HQLA) method, the amount
of liquid assets is estimated by splitting securities by HQLA classes and applying liquidity
weights. We assume that we have m HQLA classes. Let ccfk denote the liquidity weight or
the cash conversion factor (CCF) of the kth HQLA class. The ratio of liquid assets in the
fund is defined by:

A =

n∑
i=1

wi (ω) · CCF`(i) (34)

where ` (i) indicates the HQLA class k of security i. We have:

A =

n∑
i=1

wi (ω) ·

(
m∑
k=1

1 {i ∈ k} · CCFk

)

=

m∑
k=1

(
n∑
i=1

1 {i ∈ k} · wi (ω)

)
· CCFk

=

m∑
k=1

wk · CCFk (35)

where wk is the weight of the kth HQLA class5. We deduce that:

RCR =

∑m
k=1 wk · CCFk

R
(37)

and:

LS = R ·max

(
0, 1−

∑m
k=1 wk · CCFk

R

)
(38)

Definition of HQLA classes The term HQLA refers to the liquidity coverage ratio
(LCR) introduced in the Basel III framework (BCBS, 2010, 2013). An asset is considered to
be a high-quality liquid asset if it can be easily converted into cash. Therefore, the concept
of HQLA is related to asset quality and asset liquidity. The first property indicates if the
asset can be sold without discount, while the second property indicates if the asset can be
easily and quickly sold (Roncalli, 2020). Thus, the LCR ratio measures whether or not the
bank has the necessary assets to face a one-month stressed period of outflows. The stock
of HQLA is computed by defining eligible assets and applying haircut values. For instance,
corporate debt securities rated above BBB− are eligible, implying that high yield bonds
are not. Then, a haircut of 15% (resp. 50%) is applied to corporate bonds rated AA− or
higher (resp. between A+ and BBB−). Since the time horizon of the LCR is one month, the
underlying idea is that (1) high yield bonds can be illiquid for one month, (2) investment
grade corporate bonds can be sold during the month but with a discount, (3) corporate

5We also have:

A = A · TNA

=
m∑
k=1

(wk · TNA) · CCFk

=
m∑
k=1

TNAk ·CCFk (36)

where TNAk is the dollar amount of the kth HQLA class.
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bonds rated AA− or higher can lose 15% of their value in the month and (4) corporate
bonds rated between A+ and BBB− can lose 50% of their value in the month.

In Table 5, we report the HQLA matrix given by Bouveret (2017) and IMF (2017), which
corresponds to the HQLA matrix of the Basel III Accord using the following rule:

CCFk = 1−Hk (39)

where Hk is the haircut value. By construction, the CCF value is equal to 100% for cash. For
equities, it is equal to 50%. Although common equity shares are highly liquid, we can face
a price drop before the liquidation. Therefore, this value of 50% mainly reflects a discount
risk. Sovereign bonds are assumed to be a perfect substitute for the cash if the credit rating
of the issuer is AA− or higher. Otherwise, the CCF is equal to 85% and 50% for other IG
sovereign bonds and 0% for HY sovereign bonds. In the case of corporate bonds, securities
rated below BBB− receive a CCF of 0%, while the CCF is respectively equal to 50% and
85% for BBB− to A+ and AA− to AAA. For securitization, the CCFs are the same as for
corporate bonds, except the category BBB− to BBB+ for which the CCF is set to zero.

Table 5: Cash conversion factors

Credit
Cash

Sovereign Corporate
Securitization Equities

Rating bonds bonds
AA− to AAA

100%

100% 85% 85%

50%
A− to A+ 85% 50% 50%

BBB− to BBB+ 50% 50% 0%
Below BBB− 0% 0% 0%

Source: Bouveret (2017, Table 6, page 14) and IMF (2017, Box 2, page 56).

Remark 3 ESMA (2019b, Exhibit 38, page 26) uses the same HQLA matrix, except for
securitization products. In this case, the CCFs are between 65% and 93% if the credit rating
of the structure is between AA- and AAA, and 0% otherwise.

As noticed by ESMA (2019b), “the HQLA approach is very attractive from an operational
point of view since it is easy to compute and interpret”. However, this approach has three
drawbacks. First, the HQLA matrix proposed by the IMF and ESMA is a copy/paste of the
HQLA matrix proposed by the Basel Committee, suggesting that the implicit time horizon
τh is one month or 21 trading days. However, the time horizon is never mentioned, implying
that there is a doubt about the IMF and ESMA’s true intentions. Second, the granularity of
the HQLA matrix is quite coarse. For instance, there is no distinction between large cap and
small cap stocks. In the case of sovereign bonds, the CCR only depends on the credit rating.
However, we know that some bonds are more liquid than others even if they belong to the
same category of credit rating. For example, sovereign bonds issued by France, Germany, the
UK and the US are more liquid than sovereign bonds issued by Belgium, Denmark, Finland,
Ireland, Japan, Netherlands and Sweden6. We observe the same issue with peripheral debt
securities (Greece, Italy, Portugal, Spain) and EM bonds. In the case of corporate bonds,
this problem is even more serious, because liquidity is not only an issuer-related question.
For instance, the maturity impacts the liquidity of the bonds issued by the same company.
The last drawback concerns the absence of the portfolio structure in the computation of
the RCR. Indeed, the RCR depends neither on the portfolio holdings nor on the portfolio

6This can be measured by the turnover ratio.
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concentration. Therefore, the HQLA method is a specific top-down approach, which only
focuses on asset classes. Two equity funds will have the same redemption coverage ratio
for the same redemption shock (top left-hand panel in Figure 4). For example, we have
RCR = 2.5 if R = 20%. The RCR is below one if the redemption shock is greater than 50%.
For a high yield fund, the RCR is equal to zero whatever the value of the redemption shock
(bottom right-hand panel in Figure 4). For a balanced fund, comprised of 50% IG bonds
and 50% public equities, we obtain the following bounds:

50%

R
≤ RCR ≤ 75%

R
(40)

Therefore, it is obvious that the HQLA method is a macro-economic approach, that can
make sense for regulators to monitor the liquidity risk at the industry level, but it is not
adapted for comparing the liquidity risk of two funds.

Figure 4: Redemption coverage ratio in % with the HQLA approach

Implementation of the HQLA approach Because of the previous comments, asset
managers that would like to implement the HQLA approach must take into account the
following considerations:

• The HQLA matrix must be more granular.

• The asset manager must use different time horizons.

• The calibration of the cash conversion factor mixes two factors7:

CCFk (τh) = LFk (τh) ·
(

1−DFk

(τh
2

))
(41)

7See Appendix B.1 on page 268 for the derivation of this result. A more conservative formula is
CCFk (τh) = LFk (τh) · (1−DFk (τh)).
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where LFk (τh) is the (pure) liquidity factor and DFk (τh) is the discount (or drawdown)
factor.

• The liquidity factor LFk (τh) is an increasing function of τh. It indicates the proportion
of the HQLA bucket that can be sold in τh trading days. By definition, we have
LFk (0) = 0 and LFk (∞) = 1.

• The drawdown factor DFk (τh) is an increasing function of τh. It indicates the loss
value of the HQLA bucket in a worst-case scenario of a price drop after τh trading
days. By definition, we have DFk (0) = 0 and DFk (∞) ≤ 1.

Concerning the HQLA classes, we can consider more granularity concerning the asset class.
For example, we can distinguish DM vs. EM equities, LC vs. SC equities, etc. Moreover, we
can introduce the specific risk factor of the fund, which encompasses two main dimensions:
the fund’s size and its portfolio structure. For instance, liquidating a fund of $100 mn is
different to liquidating a fund of $10 bn. Similarly, the liquidation of two funds with the
same size can differ because of the weight concentration difference. Indeed, liquidating a
S&P 500 index fund of $1 bn is different to liquidating an active fund of $1 bn that is
concentrated on 10 American stocks. Therefore, the cash conversion factor becomes:

CCFk,j (τh) = LFk (τh) ·
(

1−DFk

(τh
2

))
· (1− SFk (TNAj ,Hj)) (42)

where SFk ∈ [0, 1] is the specific risk factor associated to the fund j. This is a decreasing
function of the fund size TNAj and the Herfindahl index Hj of the portfolio. Concerning
the time horizon, τh can be one day, two days, one week, two weeks or one month. Finally,
the three functions LFk (τh), DFk (τh) and SFk (TNAj ,Hj) can be calibrated using standard
econometric procedures.

A basic specification of the liquidity factor is:

LFk (τh) = min (1.0, λk · τh) (43)

where λk is the selling intensity. For the drawdown factor, it is better to use a square root
function8:

DFk (τh) = min (MDDk, ηk ·
√
τh) (44)

where MDDk is the maximum drawdown and ηk is the loss intensity of the HQLA class. Let
us consider the example of a large cap equity fund, whose total net assets are equal to $1 bn.
The redemption shock is set to $400 mn. We assume that λk = 5% per day, ηk = 6.25% and
MDDk = 50%. Results are reported in Figure 5. We notice that the RCR depends on the
value of τh. For small values of τh (less than 10 days), the RCR is below 1. For large values
of τh (greater than 10 days), the RCR is above 1 because the liquidation factor overtakes
the drawdown factor. Finally, we observe that the CCF and RCR functions are increasing
and then decreasing with respect to the time horizon9. We now consider a second fund with
the same assets under management, which is invested in small cap stocks. In this case, we
assume that λk is reduced by a factor of two and ηk is increased by 20%. Results are given
in Figure 5. We verify that the small cap fund has a lower RCR than the large cap fund.

8This is what we observe when we compute the value-at-risk of equity indices. For instance, we have
reported the historical value-at-risk of the S&P 500 index in Figure 20 on page 284 for different confidence
levels α. We obtain a square-root shape. In risk management, the square-root-of-time rule is very popular
and is widely used for modeling drawdown functions (Roncalli, 2020, page 46).

9This is normal since we combine an increasing linear function with a decreasing square-root function.

222



Liquidity Stress Testing in Asset Management

Figure 5: Specification of the cash conversion factor
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Figure 6: Specification of the specific risk factor
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As explained previously, we should consider the specific risk of the fund. We propose the
following formula:

SFk (TNA,H) = min

ξsizek

(
TNA

TNA? − 1

)+

+ ξconcentrationk

(√
H
H?
− 1

)+

,SF+

 (45)

where TNA and H are the total net assets and the Herfindahl index of the fund, which is
computed as H =

∑n
i=1 w

2
i (ω). By definition, we have n−1 ≤ H ≤ 1. TNA? and H? are two

thresholds. Below these two limits, SFk (TNA,H) is equal to zero. ξsizek and ξconcentrationk are
two coefficients that control the importance of the size and concentration risks. Moreover,
SF+ indicates the maximum value that can be taken by the specific risk since we have the
following inequalities: {

0 ≤ SF+ ≤ 1
0 ≤ SFk (TNA,H) ≤ SF+ (46)

Figure 6 illustrates the specific risk of the fund when TNA? = $1 bn, H? = 1/100, ξsizek =
10%, ξconcentrationk = 25% and SF+ = 0.80. We have also reported the two components
SFsize

k (TNA) and SFconcentration
k (H):

SFk (TNA,H) = min
(
SFsize

k (TNA) + SFconcentration
k (H) ,SF+

)
(47)

It is better to use additive components than multiplicative components, because the specific
risk tends quickly to the cap value SF+ in this last case.

Example 4 We assume that λk = 5% per day, ηk = 6.25%, MDDk = 50%, TNA? = $1 bn,
H? = 1/100, ξsizek = 10%, ξconcentrationk = 25% and SF+ = 0.80. We consider four mutual
funds, whose TNA are respectively equal to $1, $5, $7 and $10 bn. The redemption shock is
equal to 40% of the total net assets.

Results are given in Table 6 with respect to the horizon time τh and the fund size. We
consider two concentration indices: H = 0.01 and H = 0.04. We notice the impact of the
fund size on the RCR. For instance, when τh is set to 10 days and the concentration index
is equal to 1%, RCR is respectively equal to 1.08, 0.65, 0.43 and 0.22 for a fund size of $1
bn, $5 bn, $7 bn, and $10 bn. Therefore, the RCR is above one only when the fund size is
$1 bn. If we increase the concentration index, the RCR can be below one even if the fund
size is small. For instance, when τh is set to 10 days and H is equal to 4%, RCR is equal to
0.81 for a fund size of $1 bn. To summarize, the redemption coverage ratio is an increasing
function of the time to liquidation τh, but a decreasing function of the concentration index
H and the fund size TNA.

Table 6: Computation of the RCR in the HQLA approach

τh H = 0.01 H = 0.04
$1 bn $5 bn $7 bn $10 bn $1 bn $5 bn $7 bn $10 bn

1 0.12 0.07 0.05 0.02 0.09 0.04 0.02 0.02
5 0.56 0.34 0.23 0.11 0.42 0.20 0.11 0.11

10 1.08 0.65 0.43 0.22 0.81 0.38 0.22 0.22
20 2.01 1.20 0.80 0.40 1.50 0.70 0.40 0.40
60 1.64 0.99 0.66 0.33 1.23 0.58 0.33 0.33
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2.2 Redemption liquidation policy

The previous analysis demonstrates that the redemption coverage ratio is highly dependent
on the redemption portfolio q = (q1, . . . , qn). Generally, the redemption shock is expressed
as a percentage. R represents the proportion of the fund size that can be redeemed. Then,
we can convert the redemption shock is nominal value by using the identity formula:

R = R · TNA (48)

For instance, if the redemption rate R is set to 10% and the fund size TNA is equal to $1 bn,
the redemption shock R is $100 mn. However, the computation of RCR requires defining
the liquidation policy or the portfolio q. Two main approaches are generally considered:
the pro-rata liquidation and the waterfall liquidation. The first one ensures that the asset
structure of the fund is the same before and after the liquidation. The second one minimizes
the time to liquidation. In practice, fund managers can mix the two schemes. In this case,
it is important to define the objective function in order to understand the trade-off between
portfolio distortion and liquidation time.

2.2.1 The standard approaches

Vertical slicing The pro-rata liquidation uses the proportional rule, implying that each
asset is liquidated such that the structure of the asset portfolio is the same before and after
the liquidation. This rule is also called the vertical slicing approach. From a mathematical
point of view, we have:

q = R · ω (49)

where ω is the fund’s asset portfolio (before the liquidation). In practice, qi is not necessarily
an integer and must be rounded10. For instance, if ω = (1000, 514, 17) and R = 10%, we
obtain q = (100, 51.4, 1.7). Since we cannot sell a fraction of an asset, we can choose
q = (100, 51, 2).

We recall that the tracking error due to the liquidation is equal to:

σ (ω | q) =

√
(w (ω − q)− w (ω))

>
Σ (w (ω − q)− w (ω))

=

√
∆w (ω | q)> Σ ∆w (ω | q) (50)

where Σ is the covariance matrix of asset returns, w (ω) is the weight vector of portfolio ω
(before liquidation) and w (ω − q) is the weight vector of portfolio ω− q (after liquidation).
The proportional rule ensures that the asset composition does not change because of the
redemption. Since the weights are the same — ∆w (ω | q) = 0n, the tracking error is equal
to zero:

σ (ω | q) = 0 (51)

This property is important because there is no portfolio distortion with the pro-rata liqui-
dation rule.

We have seen that the redemption coverage ratio is highly dependent on the time to
liquidation τh. In Roncalli et al. (2021b, Section 3.2.2, page 18), we have defined the
liquidation time as the inverse function of the liquidation ratio:

LT (q, p) = LR−1 (q; p) = inf {h : LR (q;h) ≥ p} (52)

10This is why the waterfall slicing approach is also called the near proportional rule.
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We now define the liquidity time (or time to liquidity) as follows:

TTL (p) = RCR−1 (p) = inf {h : RCR (h) ≥ p} (53)

It measures the required number of days to have a redemption coverage ratio larger than p.
As we have seen that RCR (h) and LS (h) are related to LR (q;h) and LS (q;h), TTL (p)
is also related to LT (q, p). In the case where the redemption portfolio satisfies R = V (q),
we verify that TTL (p) = LT (q, p) because we have RCR (h) = LR (q;h) and LS (h) =
LS (q;h). In the general case, we have:

TTL (p) = inf

{
h :

V (q)

R
· LR (q;h) ≥ p

}

=

 LT
(
q,

R
V (q)

· p
)

if p ≤ V (q)

R
+∞ otherwise

(54)

While vertical slicing is optimal to minimize the tracking risk, the liquidation of the
redemption portfolio can however take a lot of time. Indeed, the maximum we can liquidate
each day is bounded by the liquidation policy limit q+i . We have:

τh∑
h=1

qi (h) ≤ τh · q+i (55)

In the case of the pro-rata liquidation rule, we have qi = R · ωi. We deduce that the
redemption portfolio can be fully liquidated after TTL (1) =

⌊
τ+h
⌋

days where:

τ+h = R · sup
i=1,...,n

ωi

q+i
(56)

It may be difficult to sell some assets, because the value of q+i is low. Nevertheless, the re-
maining redemption value may be very small. This is why fund managers generally consider
in practice that the portfolio is liquidated when the proportion p is set to 99%.

Horizontal slicing Horizontal slicing is the technical term to define waterfall liquidation.
In this approach, the portfolio is liquidated by selling the most liquid assets first. Contrary
to vertical slicing, the fund manager accepts that the portfolio composition will be disturbed
and his investment strategy has te be modified, implying a tracking error risk:

σ (ω | q) > 0 (57)

It is obvious that the waterfall approach minimizes the liquidity risk when it is measured
by the liquidity shortfall. Let us illustrate this property with the example described in Table
1 on page 215. If we consider the naive pro-rata liquidation rule, we obtain the liquidity
times given in Figure 21 on page 285. We notice that they are very similar for p = 95%,
99% and 100%. We now assume that q+7 = 20, meaning that the seventh asset is not very
liquid. Therefore, we have a huge position on this asset (ω7 = 1 800) compared to the daily
liquidation limit. If we would like to liquidate the full exposure on this asset, it will take
90 trading days versus 2 trading days previously. The consequence of this illiquid exposure
is that the liquidity times are very different for p = 95%, 99% and 100% (see Figure 22
on page 285). For instance, the maximum liquidity time11 is respectively equal to 20, 46

11It is obtained by considering the case R = 100%.
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and 90 trading days for p = 95%, 99% and 100%. Previously, the maximum liquidity time
was equal to 18, 21 and 22 trading days when q+7 was equal to 1 000. Having some illiquid
assets in the portfolio may then dramatically increase the liquidity time when we choose
the pro-rata liquidation rule. We have also computed the liquidity time when we consider
the waterfall liquidation rule. Results are reported in Figures 23 and 24 on page 286. We
observe two phenomena. First, if we compare Figures 21 and 23, we notice the higher
convexity of the waterfall approach when we increase the redemption shock. Second, we
retrieve the similarity pattern for p = 95%, 99% and 100% except for very large redemption
shocks when we have illiquid assets. The reason is that the part of illiquid assets is much
lower than the remaining value of the portfolio. Figure 7 summarizes the two phenomena
by comparing the pro-rata and waterfall approaches when q+7 = 20.

Figure 7: Liquidity time in days (pro-rata versus waterfall liquidation, illiquid exposure,
p = 99%)
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In order to determine the proportion of non-liquidated assets in the case of the waterfall
approach, we consider an analysis in terms of weights. We recall that the portfolio weight
of Asset i is given by:

wi (ω) =
ωi · Pi
TNA

(58)

Since the number of required trading days to liquidate the exposure to Asset i is equal to:

τi (ω) =
ωi

q+i
(59)

the portfolio weight of Asset i that can be liquidated with a trading day is given by the
following formula:

ψi (ω) =
wi (ω)

τi (ω)
=
q+i · Pi
TNA

(60)
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Figure 8: Daily liquidation
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Using Equation (9) on page 212, we deduce that the liquidity shortfall of a full redemption
scenario under the waterfall approach is equal to12:

LS (h) = 1−
n∑
i=1

min (h · ψi (ω) , wi (ω)) (61)

The relative weight of the portfolio that can be liquidated at time h is then equal to W (h) =
LS (h− 1) − LS (h). W (h) is the daily liquidation expressed in %. In Figure 8, we have
reported the values taken by W (h) for the previous example. We notice that significant
liquidation occurs over the first 22 days. After this period, the amount liquidated decreases
substantially because it concerns illiquid assets.

Remark 4 We can use the previous analysis to determine the amount of “illiquid assets”
in the portfolio. For that, we choose a threshold w? below which the amount liquidated is too
small13:

h? = inf {h : W (h) ≤ w?} (62)

Alternatively, we can directly set the value of h? above which we assume it corresponds to
an illiquid time. The amount of illiquid assets is then equal to

∑
k≥h? W (h) or equivalently

LS (h? − 1) = 1 −
∑n
i=1 min ((h? − 1) · ψi (ω) , wi (ω)). In the previous example, it is equal

to 2.50% if w? = 1% and 1.52% if w? = 0.5%.

2.2.2 The mixing approach

So far, the analysis of the redemption coverage ratio and the redemption liquidation policy
has been focused on the trading limits and the daily amounts that can be liquidated. This

12We have LS (0) = 100%.
13w? is generally set to 0.5%.
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volume-based approach is not enough and may lead to misleading conclusions. Indeed, the
previous analysis completely omits the transaction costs. This is obviously the case of the
vertical slicing approach, where the fund manager is forced to sell exposures that are not
liquid. Therefore, no cost analysis is done in the pro-rata liquidation rule. This is also the
case in the above presentation of the horizontal slicing approach, since the liquidation policy
only considers the daily trading limits through the variable q+. Nevertheless, the practice of
the waterfall approach is a little bit different, because it is not limited to the liquidity depth.
Indeed, the ultimate goal of this approach is to liquidate the exposures at the lowest cost.
Therefore, it includes a cost analysis. However, as seen previously, the waterfall approach
implies a tracking risk that is not controlled. This is not acceptable in practice.

The optimal liquidation approach consists in defining a maximum acceptable level T R+

of tracking risk and to minimize the transaction cost T C (q) of the liquidation portfolio:

q? = arg min
q
T C (q) (63)

s.t.


T R (ω | q) ≤ T R+

LS (q;h) ≤ LS+
1>nw (ω − q) = 0
w (ω − q) ≥ 0n

In the case of an equity portfolio, the tracking risk is equal to the tracking error volatility:

T R (ω | q) = σ (ω | q) =

√
∆w (ω | q)>Σ∆w (ω | q) (64)

In the case of a bond portfolio, it is more difficult to define the tracking risk because the
volatility is not the right approach to measure the risk of fixed-income instruments (Roncalli,
2020). Moreover, there are several risk dimensions to take into account. For instance, Ben
Slimane (2021) considers three dimensions14: sectorial risk, duration risk and credit risk.
Following Ben Slimane (2021), we can define the tracking risk as the sum of three risk
measures:

T R (ω | q) = Rw (ω | q) +RMD (ω | q) +RDTS (ω | q) (65)

The weight risk measure Rw (ω | q) is the weight difference between Portfolio ω − q and
Portfolio ω within the sector s:

Rw (ω | q) =

nSector∑
s=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q)

∣∣∣∣∣∣ (66)

where nSector is the number of sectors and ∆wi (ω | q) = wi (ω − q) − wi (ω) is the weight
distortion of Bond i because of the liquidation. We define RMD (ω | q) as the modified
duration risk of ω − q with respect to ω within the sector s:

RMD (ω | q) =

nSector∑
s=1

nBucket∑
j=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q) ·MDi (Bucketj)

∣∣∣∣∣∣ (67)

where nBucket is the number of maturity buckets and MDi (Bucketj) is the modified duration
contribution of Bond i to the maturity bucket j. The rationale of this definition is to track

14In fact, Ben Slimane (2021) adds two liquidity components: the first one concerns the liquidity costs
whereas the second one concerns the liquidity depth (or the axis component of market makers).
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the difference in modified duration per bucket. Finally, we define the DTS risk measure
RDTS (ω | q) as the weighted DTS difference between ω − q and ω:

RDTS (ω | q) =

nSector∑
s=1

∣∣∣∣∣∣
∑

i∈Sector(s)

∆wi (ω | q) ·DTSi

∣∣∣∣∣∣ (68)

where DTSi is the duration-times-spread of Bond i. Regarding the transaction cost function,
we recall that it is defined as follows (Roncalli et al., 2021b, Equation (26), page 25):

T C (q) =

n∑
i=1

h+∑
h=1

1 {qi (h) > 0} · qi (h) · Pi · ccci
(
qi (h)

vi

)
(69)

where ccci (x) is the unit transaction cost function associated with Asset i. In Roncalli et al.
(2021b), ccci (x) follows a two-regime power-law model. We also notice that the optimization
problem (63) includes a constraint related to the liquidation shortfall. Without this con-
straint, the solution consists in liquidating each day an amount qi (h) much smaller than
the trading limit q+i in order to minimize the transaction costs due to the market impact.
Of course, the idea is not to indefinitely delay the liquidation. Therefore, this constraint is
very important to ensure that a significant portion of the redemption portfolio has been sold
before h. It follows that the optimization problem (63) can be tricky to solve from a nu-
merical point of view, in particular for bond funds. Nevertheless, it perfectly illustrates the
trade-off between the three risk dimensions: the transaction cost risk T C (q), the tracking
risk T R (ω | q) and the liquidation shortfall risk LS (q;h).

Once again, we consider the example described in Table 1 on page 215. We assume that
the volatility of the assets is respectively equal to15 20%, 18%, 15%, 15%, 22%, 30% and
35% whereas the bid-ask spread is equal to 5, 3, 5, 8, 12, 15 and 15 bps. The transaction cost
function corresponds to the SQRL model defined by Roncalli et al. (2021b) with ϕ1 = 0.4,
x̃ = 5% and x+ = 10%. We deduce that the daily volume vi of each asset is equal to
10× q+i . In Table 7, we define five liquidation portfolios where the redemption rate R is set
to 10%. Portfolio #1 satisfies the pro-rata liquidation rule. We verify that the tracking risk
(measured by the tracking error volatility) is equal to zero. The total transaction cost is
equal to 22.4 bps with the following break-down: 6.1 bps for the bid-ask spread component
and 16.2 bps for the market impact component. This is a low tracking error. However, if the
fund manager’s objective is to liquidate the redemption in one trading day, we notice that
the liquidation shortfall is equal to 23.5%. In Portfolio #2, the liquidation is concentrated
in the second and third assets. Because these assets are more liquid than the others, the
transaction cost is lower and equal to 20.4 bps. Nevertheless, this portfolio leads to a high
tracking error risk of 79.6 bps. Portfolio #3 is made up of the less liquid assets. Therefore,
it is normal to obtain a high transaction cost of 42.5 bps. Again, this portfolio presents a
high tracking risk since we have T R (ω | q) ≈ 2%! If the objective function is to fulfill the
redemption in one day, Portfolio #4 is a good candidate since we have LS (q; 1) = 0 and

15The correlation matrix of asset returns is given by:

ρ =



100%
10% 100%
40% 70% 100%
50% 40% 80% 100%
30% 30% 50% 50% 100%
30% 30% 50% 50% 70% 100%
30% 30% 50% 50% 70% 70% 100%
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the transaction cost is moderate16 (T C (q) = 25.6 bps). However, the tracking risk is high
and is equal to 35.4%. Portfolio #5 is a compromise between tracking risk and liquidity
shortfall17, because we have T R (ω | q) = 21.2 bps, T C (q) = 22.6 bps but LS (q; 1) = 9.4%.
If the objective is to find the optimal liquidation policy with the constraints LS (q; 1) ≤ 10%
and T R (ω | q) = 20%, Portfolio #5 is a good starting point.

Table 7: Comparison of five redemption portfolios

Liquidation portfolio #1 #2 #3 #4 #5
q1 43 510 0 0 20 000 29 404
q2 30 010 27 000 0 20 000 24 004
q3 5 040 22 238 0 10 000 8 016
q4 20 050 0 0 20 000 20 020
q5 7 550 0 34 315 18 044 13 846
q6 1 750 0 17 500 0 700
q7 180 0 1 800 0 72

T R (ω | q) (in bps) 0.0 79.6 201.0 35.4 21.2
T C (q) (in bps) 22.4 20.4 42.5 25.6 22.6
T Cs (q) (in bps) 6.1 4.5 13.8 6.6 6.4
T Cπππ (q) (in bps) 16.2 15.9 28.7 19.1 16.2
LS (q; 1) (in %) 23.5 48.2 60.7 0.0 9.4

2.3 Reverse stress testing

Reverse stress testing is a “fund-level stress test which starts from the identification of the
pre-defined outcome with regards to fund liquidity (e.g. the point at which the fund would no
longer be liquid enough to honor requests to redeem units) and then explores scenarios and
circumstances that might cause this to occur” (ESMA, 2020a, page 6). Following Roncalli
(2020), reverse stress testing consists in identifying stress scenarios that could bankrupt
the fund. Therefore, reverse stress testing can be viewed as an inverse problem. Indeed,
liquidity stress testing starts with a liability liquidity scenario and an asset liquidity scenario
in order to compute the redemption coverage ratio. The liability liquidity scenario is defined
by the redemption shock R (or the redemption rate R ), while the asset liquidity scenario is
given by the stressed trading limits q+ or the HQLA classification. Given a time horizon
τh, the outcome is RCR (τh). From a theoretical point of view, the bankruptcy of the fund
depends on whether the condition RCR (τh) ≥ 1 is satisfied or not. The underlying idea
is that the fund is not viable if RCR (τh) < 1. In practice, the fund can continue to exist
because it can use short-term borrowing or other liquidity management tools such as gates
or side pockets18. In fact, the fund’s survival depends on many parameters. However, we
can consider that a too small value of RCR (τh) is critical and can produce the collapse of
the fund. Let RCR− be the minimum acceptable level of the redemption coverage ratio.
Then, reverse stress testing consists in finding the liability liquidity scenario and/or the asset
liquidity scenario such that RCR (τh) = RCR−.

16It is a little bit higher than the transaction cost of the vertical slicing approach.
17Portfolio #5 is equal to 40% of Portfolio #1 and 60% of Portfolio #4.
18These different tools will be explored in the next section on page 234.
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2.3.1 The liability RST scenario

From a liability perspective, reverse stress testing consists in finding the redemption shock
above which the redemption coverage ratio is lower than the minimum acceptable level:

RCR (τh) ≤ RCR− =⇒


R ≥ RRST (τh) =

A (τh)

RCR−

or

R ≥ R RST (τh) =
A (τh)

RCR−

(70)

RRST (τh) (or R RST (τh)) is called the liability reverse stress testing scenario. At first sight,
computing the liability RST scenario seems to be easy since the calculation of A (τh) is
straightforward. However, it is a little bit more complicated since A (τh) depends on the
liquidation portfolio q. Therefore, we have to define q. This is the hard task of reverse
stress testing. Indeed, the underlying idea is to analyze each asset exposure individually
and decide the quantity of each asset that can be sold in the market during a stress period.

The simplest way to define q is to use the multiplicative approach with respect to the
portfolio ω:

qRST
i = αi · ωi (71)

where αi represents the proportion of the asset i than can be sold during a liquidity stress
event. In particular, αi = 0 indicates that the asset is illiquid during this period. αi also
depends on the size ωi. For instance, a large exposure on an asset can lead to a small value
of αi because it can be difficult to liquidate such exposure.

Table 8: Computation of the liability RST scenario

RRST (τh) (in $ mn) R RST (τh) (in %)
RCR− 25% 75% 50% 100% 25% 75% 50% 100%
τh = 1 25.1 12.6 8.4 6.3 17.7 8.9 5.9 4.4
τh = 2 46.2 23.1 15.4 11.5 32.6 16.3 10.9 8.1
τh = 3 63.2 31.6 21.1 15.8 44.6 22.3 14.9 11.1
τh = 4 80.1 40.1 26.7 20.0 56.5 28.3 18.8 14.4
τh ≥ 5 87.5 43.8 29.2 21.9 61.8 30.9 20.6 15.4

Let us consider again the example described in Table 1 on page 215. We assume that
the third, fifth, sixth and seventh assets are illiquid in a stress period. For the other assets,
we set α1 = 20%, α2 = 30% and α4 = 15%. Results are given in Table 8. For instance, if
the minimum acceptable level of the redemption coverage ratio is equal to 25%, we obtain
R RST (1) = 17.7%. This means that the fund may support a redemption shock below 17.7%,
whereas the RCR limit of 25% is broken if the fund experiences a redemption shock above
17.7%. If the minimum acceptable level is set to 100%, which is the regulatory requirement,
the liability RST scenario corresponds to R RST (1) = 4.4%.

Remark 5 We don’t always have a solution to Problem (70). Nevertheless, we notice that:

RCR (∞) =

∑n
i=1 q

RST
i · Pi∑n

i=1 ωi · Pi
=

n∑
i=1

αi · wi (ω) (72)

A condition to obtain a solution such that R ≤ TNA and R ≤ 1 is to impose the constraint
RCR− ≥

∑n
i=1 αi · wi (ω).
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2.3.2 The asset RST scenario

The asset RST scenario consists in finding the asset liquidity shock above which the redemp-
tion coverage ratio is lower than the minimum acceptable level. Contrary to the liability
RST scenario, for which the liquidity shock is measured by the redemption rate, it is not
easy to define what a liquidity shock is when we consider the asset side. For that, we recall
that the stress testing of the assets consists in defining three multiplicative (or additive)
shocks for the bid-ask spread, the volatility and the daily volume (Roncalli et al., 2021b,
Section 5.4, page 51). Let xi be the participation rate. We have:

xi =
qi
vi

(73)

where vi is the daily volume. The trading limit x+i (expressed in participation rate) is
supposed to be fixed, implying that it is the same in normal and stress periods. However,
the stress period generally faces a reduction in the daily volume, meaning that the trading
limit q+i (expressed in number of shares) is not the same:

q+i =

{
vi · x+i in a normal period
mv · vi · x+i in a stressed period

(74)

where mv < 1 is the multiplicative shock of the daily volume. The underlying idea of the
asset RST scenario is then to define the upper limit mRST

v below which the redemption
coverage ratio is lower than the minimum acceptable level:

RCR (τh) ≤ RCR− =⇒ mv ≤ mRST
v (τh) < 1 (75)

Nevertheless, the computation of mRST
v (τh) requires defining a liquidation portfolio. For

that, we can use the vertical slicing approach where qi = R ? · ωi and R ? is a standard
redemption rate19. As in the case of the liability RST problem, the solution may not exist
if RCR (τh) ≤ RCR− when mv is set to one.

Remark 6 In the liability RST problem, a low value of R RST indicates that the fund is
highly vulnerable. Indeed, this means that a small redemption shock may produce a funding
liquidity stress on the investment fund. In the asset RST problem, the fund is vulnerable if
the value of mRST

v is high. In this case, a slight deterioration of the market depth induces
a market liquidity stress on the investment fund even if it faces a small redemption. To
summarize, fund managers would prefer to have low values of R RST and high values of
mRST
v .

The computation of mRST
v for the previous example is reported in Figure 9. We first

notice that the solution cannot exist because there is no value of mv such that RCR (τh) ≤
RCR−. For instance, this is the case of τh ≤ 6 when R ? is set to 30% (bottom right-hand
panel). By construction, mRST

v (τh) is a decreasing function of τh. Indeed, the reverse stress
testing scenario is more severe for short time windows than for long time windows. We also
verify that mRST

v (τh) is an increasing function of RCR−, because the constraint is tighter.

Remark 7 Reverse stress testing does not reduce to the computation of R RST (τh) or mRST
v (τh).

This step must be completed by the economic analysis to understand what market or financial
scenario can imply R ≥ R RST (τh) or mv ≤ mRST

v (τh).

19A typical value of R ? is 10%. It is important to use a low value for R ? because the asset RST scenario
measures the liquidity stress from the asset perspective, not from the liability perspective.
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Figure 9: Computation of the asset RST scenario
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3 Liquidity management tools

Liquidity management tools are measures applied by fund managers in exceptional circum-
stances to control or limit dealing in fund units (ESMA, 2020a). According to Darpeix et
al. (2020), the main LMTs are anti-dilution levies, gates, liquidity buffers, redemption fees,
in-kind redemptions, redemption suspensions, short-term borrowing, side pockets and swing
pricing. They can be grouped into three categories (Table 9). First, we have liquidity buffers
that may or not be mandatory, and short-term borrowing. The underlying idea is to invest a
portion of assets in cash and to use it in the case of a liquidity stress. As such, this category
has an impact on the structure of the asset portfolio. Second, we have special arrangements
that include gates, in-kind redemptions, redemption suspensions and side pockets. The ob-
jective of this second group is to limit or delay the redemptions. Finally, we have swing
pricing mechanisms20, the purpose of which is clearly to protect the remaining investors.

Table 9: LMTs available to European corporate debt funds (June 2020)

AIF UCITS
Short-term borrowing 78% 91%

Gates 23% 73%
Special arrangements Side pockets 10% 10%

In-kind redemptions 34% 77%
Swing pricing 7% 57%
Anti-dilution levies 11% 17%

Source: ESMA (2020b, page 38).

20They include anti-dilution levies.
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3.1 Liquidity buffer and cash holding

As noticed by Yan (2006), cash is a critical component of mutual funds’ portfolios for three
reasons. First, cash is generally used to manage the inflows and outflows of the fund. For
instance, in the case of a subscription, the fund manager may decide to delay the investment
in order to find better investment opportunities later. In the case of a redemption, cash
can be used to liquidate a part of the portfolio without selling the risky assets. Second,
cash is important for the day-to-day management of the fund for paying management fees,
managing collateral risk, investing in derivatives, etc. Third, cash is a financial instrument
of market timing (Simutin, 2010, 2014). This explains that cash holding is an old practice
of mutual funds.

Since the 2008 Global Financial Crisis, the importance of cash management has increased
due to liquidity policies of asset managers, and liquidity (or cash) buffers have become a
central concept in liquidity risk management. Nevertheless, implementing a cash buffer has
a cost in terms of expected return. Therefore, cash buffer policies are increasingly integrated
into investment policies.

3.1.1 Definition

A liquidity buffer refers to the stock of cash instruments held by the fund manager in order
to manage the future redemptions of investors. This suggests the intentionality of the fund
manager to use the buffer only for liquidity purposes. Because it is difficult to know whether
cash is used for other purposes (e.g. tactical allocation, supply/demand imbalance), the cash
holding of the investment fund is considered as a measurement proxy of its liquidity buffer.
Chernenko and Sunderam (2016) go further and suggest that cash holding is “a good measure
of a fund’s liquidity transformation activities”.

Since we use a strict definition, we consider that a liquidity buffer corresponds to the
following instruments:

• Cash

– Cash at hand

– Deposits

• Cash equivalents

– Repurchase agreements (repo)

– Money market funds

– Short-term debt securities

Generally, we assume that short-term debt securities have a maturity less than one year.
We notice that cash and cash equivalents do not exactly coincide with liquid assets. Indeed,
liquid assets may include stocks and government bonds that can be liquidated the next day.
Therefore, our definition of the liquidity buffer is in fact the definition of a cash buffer.

3.1.2 Cost-benefit analysis

Maintaining a cash buffer has the advantage of reducing the cost of redemption liquidation
and mitigating funding risk. However, it also induces some costs in terms of return, tracking
error, beta exposure, etc. Since a cash buffer corresponds to a deleverage of the risky assets, it
may breach the fiduciary duties of the fund manager. Indeed, the investors pay management
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and performance fees in order to be fully exposed to a given asset class. Therefore, all these
dimensions make the cost-benefit analysis difficult and complex, and computing an “optimal”
level of cash buffer is a difficult task from a professional point of view.

Cash buffer analytics In what follows, we define the different concepts that are necessary
to conduct a cost-benefit analysis.

Cash-to-assets ratio We assume that a cash buffer is implemented in the fund, and
we note wcash as the cash-to-assets ratio:

wcash =
cash

TNA
(76)

wcash indicates the proportion of cash held for liquidity purposes, whereas wasset = 1−wcash

measures the risky exposure to the assets. Traditionally, the fund is fully exposed to the
assets, meaning that wcash = 0% and wasset = 100%. Implementing a cash buffer implies that
wcash > 0. Nevertheless, it is difficult to give an order of magnitude in terms of policies and
practices by asset managers. Using a sample of US funds regulated by the SEC, Chernenko
and Sunderam (2016) found that wcash is equal to 7.5% and 7.9% for equity and bond funds
on average. However, the dispersion is very high because σ (wcash) is approximately equal
to 8%. Moreover, this high dispersion is observed in both the cross section and the time
series. Using the percentile statistics, we can estimate that the common practice is to have
a cash buffer between 0% and 15%.

Mean-variance analysis In Appendix B.2 on page 269, we derive several statistics
by comparing a fund that is fully exposed to the assets and a fund that implements a cash
buffer. Let R be the random return of this latter. We have:

E [R] = µasset − wcash · (µasset − µcash) (77)

and:

σ (R) =
√
w2

cash · σ2
cash + w2

asset · σ2
asset + 2wcash · wasset · ρcash,asset · σcash · σasset (78)

where µcash and µasset are the expected returns of the cash and asset components, σcash and
σasset are the corresponding volatilities, and ρcash,asset is the correlation between the cash
and the assets. Since the volatility of the cash buffer is considerably lower than the volatility
of the assets, we deduce that:

σ (R) ≈ (1− wcash) · σasset (79)

We observe that both the expected return21 and the volatility decrease with the introduction
of the cash buffer. In conclusion, maintaining constant liquidity consists in taking less risk
with little impact on the Sharpe ratio of the fund. Indeed, we obtain:

SR (R) ≈ SR (Rasset)

where SR (Rasset) is the Sharpe ratio of the assets. Therefore, the implementation of a
cash buffer is equivalent to deleveraging the asset portfolio. This result is confirmed by the
portfolio’s beta, which is lower than one:

β (R | Rasset) ≈ 1− wcash ≤ 1 (80)

21Because we generally have µasset > µcash.
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Tracking error analysis In this analysis, we consider that the benchmark is the asset
portfolio (or the index of the corresponding asset class). On page 269, we show that the
expected excess return is equal to:

E [R | Rasset] = −wcash · (µasset − µcash) (81)

whereas the tracking error volatility σ (R | Rasset) is equal to:

σ (R | Rasset) ≈ wcash · σasset (82)

In a normal situation where µasset > µcash, the expected excess return is negative whereas
the tracking error volatility is proportional to the cash-to-assets ratio. An important result
is that the information ratio is the opposite of the Sharpe ratio of the assets:

IR (R | Rasset) ≈ −SR (Rasset) (83)

Again, this implies that the information ratio is generally negative.

Liquidation gain The previous analysis shows that there is a cost associated to the
cash buffer. Nevertheless, there are also some benefits. The most important is the liquidation
gain, which is related to the difference of the transaction costs without and with the cash
buffer:

LG (wcash) = T Cwithout − T Cwith (84)

where T Cwithout is the transaction cost without the cash buffer and T Cwith is the transaction
cost with the cash buffer. In Appendix B.2.5 on page 271, we show that:

LG (wcash) = T Casset (R )− T Ccash (R ) · 1 {R < wcash} −
T Casset ((R − wcash)) · 1 {R ≥ wcash} (85)

and:

E [LG (wcash)] =

∫ wcash

0

(T Casset (R )− T Ccash (R )) dF (R ) +∫ 1

wcash

(T Casset (R )− T Casset (R − wcash)) dF (R ) (86)

where T Casset (R ) and T Ccash (R ) are the asset and cash transaction cost functions, and
F (x) is the distribution function of the redemption rate R . Implementing a cash buffer has
two main effects on the liquidity gain:

• First, we sell cash instead of the assets if the redemption shock is lower than the cash
buffer and we have:

T Casset (R )� T Ccash (R ) (87)

• Second, we sell a lower proportion of risky assets if the redemption rate is greater than
the cash-to-assets ratio and we have:

T Casset (R )� T Casset (R − wcash) (88)

The expected liquidation gain is then made up of two terms which are positive:

E [LG (wcash)] = E [LGcash (wcash)] + E [LGasset (wcash)] (89)

with the following properties22:

22See Appendix B.2.6 on page 273.
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• E [LGcash (wcash)] is an increasing function of wcash with E [LGcash (0)] = 0 and a
maximum reached at w?cash = 1:

supE [LGcash (wcash)] = E [LGcash (1)]

=

∫ 1

0

(T Casset (R )− T Ccash (R )) dF (R ) (90)

• E [LGasset (0)] = 0 and E [LGasset (1)] = 0, implying that E [LGasset (wcash)] is not an
increasing function of wcash. In fact, we can show that it is a bell curve, which is first
increasing and then decreasing.

If we combine the two effects, we can show that:

∂ E [LG (wcash)]

∂ wcash
= −T Ccash (wcash) · f (wcash) +

∫ 1

wcash

T C′asset (R − wcash) dF (R ) (91)

where f (x) is the probability density function of the redemption rate R and T C′asset is the
derivative of the transaction cost function. We deduce that E [LG (wcash)] is an increasing
function almost everywhere, except when wcash is close to one. Therefore, the function
E [LG (wcash)] reaches its maximum at a point w?cash, which is close to 1.

Under the assumption that liquidating cash has zero cost and the additive property of
the transaction cost function is almost satisfied, we demonstrate that23:

E [LG (wcash)] =

∫ wcash

0

T Casset (R ) dF (R ) + T Casset (wcash) · (1− F (wcash)) (92)

The interpretation of this formula is very simple. The first term corresponds to the expected
transaction cost of liquidating the risky assets when the redemption rate is lower than the
cash-to-assets ratio, whereas the second term is the transaction cost of liquidating the asset
amount equivalent to the cash buffer times the probability of observing a redemption shock
greater than the cash buffer. In Appendix B.2.6 on page 273, we demonstrate that:

∂ E [LG (wcash)]

∂ wcash
= T C′asset (wcash) · (1− F (wcash)) (93)

If we compare Equations (91) and (93), we observe that they are not the same. The first
term has vanished because T Casset (R ) ≈ 0. The second term is obtained by assuming that
T C′asset is relatively constant24:∫ 1

wcash

T C′asset (R − wcash) dF (R ) ≈ T C′asset (wcash)

∫ 1

wcash

dF (R )

= T C′asset (wcash) · (1− F (wcash)) (94)

Since ∂wcash
E [LG (wcash)] ≥ 0, the main impact of the approximation is to eliminate the hill

effect when wcash → 1.

Example 5 Using a square-root model, we assume that the transaction cost of liquidating
the risky assets is equal to:

T Casset (x) = x ·
(

s + βπππσ
√
x
)

(95)

23See Equation (161) on page 273.
24The choice of wcash for the derivative function T C′asset (R ) is explained later.
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where s is the bid-ask spread, σ is the daily volatility and βπππ is the price impact coefficient.
Concerning the cash, it may be liquidated at a fixed rate c:

T Ccash (x) = x · c

where c � s. We also consider that the redemption rate follows a power-law distribution:

F (x) = xη (96)

where η > 0.

In the top left-hand panel in Figure 10, we have reported the transaction cost function
T Casset (R ) for the following parameters: a bid-ask spread s of 20 bps, a price impact
sensitivity βπππ of 0.4 and an annualized volatility of 20%. We notice that the transaction
cost is between 0 and 70 bps. Whereas the unit transaction cost function is concave, the
total transaction cost is convex. The first derivative T C′asset (R ) is given in the top right-
hand panel in Figure 10. We verify that T C′asset (R ) > 0, but T C′asset (R ) is far from
constant. Therefore, the approximation of T Casset (R − wcash) by the function T Casset (R )−
T Casset (wcash) is not accurate. This discrepancy is illustrated in the bottom panels in Figure
10 when wcash is equal to 10% and 50%.

Figure 10: Transaction cost function (95) in bps
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As such, this is not surprising if the exact formula of E [LG (wcash)] is:

E [LG (wcash)] =
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
+

ηs · wcash (1− wcash)− ηβπππσ · I (wcash; η) (97)

whereas the approximate formula is very different:

E [LG (wcash)] ≈ s · wcash + βπππσ · w1.5
cash −

s
η + 1

· wη+1
cash −

3βπππσ

2η + 3
· wη+1.5

cash (98)
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We have reported these two functions in Figure 11. The liquidation gains are expressed
in bps. We observe some differences between the exact formula (97) and the approximate
formula (98), but these differences tend to diminish when wcash tends to 1. Moreover,
the differences increase with respect to the parameter η, which controls the shape of the
redemption rate distribution function25. This is normal because the probability of observing
a large redemption rate increases with the parameter η. In fact, the poor approximation of
E [LG (wcash)] mainly comes from the solution of E [LGasset (wcash)] and not the solution of
E [LGcash (wcash)] as illustrated in Figure 28 on page 288.

Figure 11: Exact vs. approximate solution of E [LG (wcash)] in bps (Example 5, page 238)
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This example allows us to verify the properties that have been demonstrated previously.
Indeed, Figure 11 confirms that the approximate function of E [LG (wcash)] is increasing and
reaches its maximum at w?cash = 1, whereas the exact function of E [LG (wcash)] increases
almost everywhere and only decreases when wcash is close to 1. This implies that the
maximum of E [LG (wcash)] reaches its maximum at w?cash < 1. In our example, w?cash is
equal to 97.40%, 96.67%, 93.55% and 83.37% when η is respectively equal to 0.5, 1, 2 and
3.

Example 6 We consider Example 5 on page 238, but we impose a daily trading limit x+.
This example is more realistic than the previous one, because selling 100% of the assets
generally requires more than one day. This is especially true in a liquidity stress testing
framework. For example, x+ = 10% imposes that we can sell 10% of the fund every trading
day, implying that we need 10 trading days to liquidate the fund.

25On page 288, Figure 27 shows the density and distribution functions of the redemption rate. If η = 1,
we obtain the uniform probability distribution. If η → 0, the redemption rate is located at R = 0. If η → 1,
the redemption rate is located at R = 1. If η < 1, the probability that the redemption rate is lower than
50% is greater than 50%. If η > 1, the probability that the redemption rate is lower than 50% is less than
50%. Therefore, η controls the location of the redemption rate. The greater the value of η, the greater the
risk of observing a large redemption rate.
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If x ≤ x+, we have:
T Casset (x) = x

(
s + βπππσ

√
x
)

(99)

If x+ < x ≤ 2x+, we need two trading days to liquidate x and we have:

T Casset (x) = x+
(

s + βπππσ
√
x+
)

︸ ︷︷ ︸
First trading day

+
(
x− x+

) (
s + βπππσ

√
x− x+

)
︸ ︷︷ ︸

Second trading day

= x · s + βπππσ ·
(
x+
√
x+ +

(
x− x+

)√
x− x+

)
(100)

More generally, if κx+ < x ≤ (κ+ 1)x+, x is liquidated in κ + 1 trading days, and we
obtain:

T Casset (x) = x · s + κβπππσ · x+
√
x+ + βπππσ ·

(
x− κx+

)√
x− κx+ (101)

where:
κ := κ

(
x;x+

)
=
⌊ x
x+

⌋
(102)

Figure 12 represents the transaction cost function T Casset (R ) for the following parameters:
a bid-ask spread s of 20 bps, a price impact sensitivity βπππ of 0.4, an annualized volatility of
20% and a trading limit x+ = 10%. Compared to Figure 10, the transaction cost is reduced
and is between 0 and 40 bps. This is normal because the daily price impact is bounded in
this example, and we cannot sell more than 10%. The first derivative T C′asset (R ) lies in the
interval [20, 43] bps and can be assumed to be constant. Therefore, the approximation of
T Casset (R − wcash) by the function T Casset (R )−T Casset (wcash) is good as illustrated in the
bottom panels in Figure 12 when wcash is equal to 10% and 50%.

Figure 12: Transaction cost function (101) in bps with x+ = 10%
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In Appendix C.2 on page 289, we report the transaction cost function when the trading
limit is respectively equal to x+ = 30% and x+ = 50% (Figures 29 and 30). We observe
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that the approximation is less and less accurate when the trading limit x+ increases. Let us
define the approximation error by:

Error
(
wcash;x+

)
= sup

R∈[0,1]
|(T Casset (R )− T Casset (wcash))− T Casset (R − wcash)| (103)

This function is represented in Figure 31 on page 290 for three values of x+: 10%, 20% and
30%. We see that the approximation error is cyclical:

Error
(
wcash;x+

)
= Error

(
wcash + k · x+;x+

)
for k = 1, 2, . . . (104)

and we observe a modulo pattern because of the introduction of trading limits. In Figure
13, we have reported the maximum approximation error:

MaxError
(
x+
)

= sup
wcash∈[0,1]

Error
(
wcash;x+

)
(105)

The maximum error is not acceptable when we would like to trade a large amount in
the market, but it is relatively low for usual trading limits. In our example, imposing
MaxError (x+) ≤ 1 bp is achieved when x+ ≤ 16%.

Figure 13: Maximum approximation error function MaxError (x+) in bps
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Remark 8 In Appendix B.2.8 on page 275, we derive the approximation of E [LG (wcash)].
Figure 14 shows the values of the liquidity gain when x+ = 10%. The two components are
reported in Figure 32 on page 290. Moreover, the comparison between the exact formulas
(computed with numerical integration) and the approximation formulas is given in Figure
33 on page 291. We verify that the approximation is very good.
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Figure 14: Approximation of the liquidity gain E [LG (wcash)] in bps when x+ = 10% (Ex-
ample 6, page 240)
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Optimal cash buffer We can now formulate the fund manager’s optimization program.
Its objective is to minimize the expected cost of the buffer BC (wcash) and maximize its
expected gain BG (wcash):

w?cash = arg min
w∈[0,1]

BC (wcash)− BG (wcash)︸ ︷︷ ︸
Net cost NC(wcash)

(106)

Since the buffer cost and the buffer gain are two increasing functions, the minimum of
BC (wcash) is reached at w?cash = 0 while the maximum of BG (wcash) is obtained for w?cash = 1.
Therefore, there is a trade-off between these two functions. For instance, if we consider that
the expected cost of the cash buffer corresponds to the opposite of the expected excess return
penalized by the tracking error variance, we obtain:

BC (wcash) = −E [R | Rasset] +
λ

2
σ2 (R | Rasset) (107)

= wcash (µasset − µcash) +
λ

2
w2

cash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)

where λ ≥ 0 represents the aversion parameter to the tracking error risk. For the specifica-
tion of the buffer gain, we can choose the expected liquidation gain:

BG (wcash) = E [LG (wcash)] (108)

We deduce the expression of the net buffer cost NBC (wcash):

NBC (wcash) = wcash (µasset − µcash) +

λ

2
w2

cash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)
−

E [LG (wcash)] (109)

243



Liquidity Stress Testing in Asset Management

It is made up of three components:

1. the return component that compares the expected asset return and the cash return;

2. the tracking error risk that measures the discrepancy of the fund’s behavior with
respect to the expected behavior;

3. the liquidity gain.

In order to find the solution to the optimization problem, we compute the derivative of the
net buffer cost:

∂NBC (wcash)

∂ wcash
= µasset − µcash +

λwcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)
−

∂ E [LG (wcash)]

∂ wcash
(110)

Finally, we conclude that:

w?cash ∈

 {0} if ∂wcash
NBC (wcash) ≥ 0

{1} if ∂wcash
NBC (wcash) ≤ 0

]0, 1[ otherwise
(111)

The optimal value is equal to w?cash = 0 in particular when the expected return difference
between the assets and the cash is greater than the marginal expected liquidation gain:

µasset − µcash ≥
∂ E [LG (wcash)]

∂ wcash
⇒ ∂NBC (wcash)

∂ wcash
≥ 0 (112)

If the fund manager is not sensitive to the tracking error risk (λ = 0), we have:

µasset ≤ 0 =⇒ w?cash = 1 (113)

The two extreme solutions are easy to interpret. The first extreme case w?cash = 0 is obtained
because the liquidation gain does not compensate the (large) risk premium µasset − µcash

of the assets, whereas the second extreme case w?cash = 100% is achieved because the fund
manager anticipates that the assets will generate a negative return. In the first case, it is
inefficient to implement a cash buffer because we expect the assets to perform very well.
Therefore, implementing a cash buffer will dramatically reduce the fund’s return and the
cost of the liquidity stress is not sufficient to offset this later. In the second case, it is better
to implement a 100% cash buffer because we anticipate that the assets will face a drawdown.
However, if the fund manager and the investors are sensitive to the tracking error risk, this
result no longer holds. Indeed, if µasset ≤ 0, the sign of the derivative depends on the value
of λ:

∂NBC (wcash)

∂ wcash
≈ µasset −

∂ E [LG (wcash)]

∂ wcash︸ ︷︷ ︸
negative

+

λ · wcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)︸ ︷︷ ︸

positive

(114)

For a large value of λ, w?cash = 100% is not optimal because it induces a high tracking error
risk. This is especially true if the asset volatility σasset is large. Nevertheless, the tracking
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error risk vanishes if ρcash,asset = 1 and σcash = σasset, which corresponds to a pure cash
fund, but this case is obvious. All these results indicate that the optimal cash buffer is
generally equal to 0% or 100%, whereas the probability of obtaining an intermediate value
is low.

Let us illustrate the previous analysis. For the transaction cost function, we consider the
square-root model with several sets of parameters:

(a) s = 20 bps, c = 1 bps, βπππ = 0.40, σ = 20% and x+ = 10%

(b) s = 20 bps, c = 1 bps, βπππ = 0.40, σ = 20% and x+ = 100%

(c) s = 50 bps, c = 1 bps, βπππ = 0.40, σ = 80% and x+ = 10%

(d) s = 50 bps, c = 1 bps, βπππ = 0.40, σ = 80% and x+ = 100%

The only difference between cases (a) and (b) (resp. cases (c) and (d)) is the trading limit.
There is no trading limit for cases (b) and (d), whereas we cannot sell more than 10% of
total net assets in cases (a) and (c). Cases (a) and (b) correspond to a normal period,
whereas cases (c) and (d) are more suitable for a liquidity stress period. Indeed, the bid-ask
spread is larger (50 bps vs. 20 bps), and we observe a higher volatility (80% versus 20%).
In Figure 15, we report the net buffer cost NBC (wcash) when µasset−µcash is set to 1% and
λ is equal to zero. Each plot corresponds to a different value of the parameter η. We notice
that the function NBC (wcash) is strictly increasing in cases (a) and (b), implying that the
optimal cash buffer is w?cash = 0. If we consider a normal transaction cost function, there is
no interest to implement a liquidity buffer. Cases (c) and (d) are more interesting, because
the function NBC (wcash) may be decreasing and then increasing, meaning that w?cash > 0.
Therefore, it is more interesting to use a “stressed” transaction cost function when we would
like to calculate cash buffer analytics. This is why we only focus on cases (c) and (d) in
what follows. Figure 16 shows the optimal value w?cash of the cash buffer with respect to
the expected redemption rate26. We verify that w?cash increases with the trading limit x+

and the expected redemption rate. For instance, the optimal cash buffer is equal to 10%
if E [R ] = 50% and x+ = 10%. If there is no trading limit, w?cash = 10% if E [R ] = 23%.
Of course, these results are extremely sensitive to the values of µasset − µcash, λ and σasset.
For example, we obtain Figure 34 on page 291 when µasset − µcash is equal to 2.5%. w?cash
is dramatically reduced, and there is no liquidity buffer when x+ = 10%. There is also no
implementation when x+ = 100% and E [R ] ≤ 50%. Therefore, the value of w?cash is very
sensitive to µasset−µcash. We observe the same phenomenon with the parameter λ. Indeed,
when we take into account the tracking error risk, the optimal value w?cash is reduced27.

Given wcash, we define the break-even risk premium as the value of µasset − µcash such
that the net cost function is minimum. It is equal to:

% (wcash) =
∂ E [LG (wcash)]

∂ wcash
− λwcash

(
σ2
cash + σ2

asset − 2ρcash,assetσcashσasset
)

(115)

In Figures 37 and 38 on page 291, we have reported the value of % (wcash) for the previous
example. Once % (wcash) is computed, we obtain the following rules28: µasset − µcash < % (wcash)⇒ w?cash > wcash

µasset − µcash = % (wcash)⇒ w?cash = wcash

µasset − µcash > % (wcash)⇒ w?cash < wcash

(116)

26We have E [R ] = η
η+1

when F (x) = xη .
27See Figures 35 and 36 on page 292.
28For instance, Figures 39 and 40 on page 294 illustrate this set of rules for a liquidity buffer of 10%.
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Figure 15: Net buffer cost (µasset − µcash = 1% and λ = 0)
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Figure 16: Optimal cash buffer (µasset − µcash = 1% and λ = 0)
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In particular, a cash buffer must be implemented if the risk premium of the asset is below
the threshold % (0):

w?cash > 0⇔ µasset − µcash < % (0) =
∂ E [LG (0)]

∂ wcash
(117)

We notice that % (0) does not depend on the tracking error risk. Figures 17 and 18 show
when a liquidity buffer is implemented with respect to the risk premium µasset − µcash and
the expected redemption rate E [R ].

3.1.3 The debate on cash hoarding

We cannot finish this section without saying a few words about the debate on cash hoarding.
Indeed, the underlying idea of the previous analysis is to implement a cash buffer before
the redemption occurs, and to help the liquidation process during the liquidity stress period
(Chernenko and Sunderam, 2016; Goldstein, 2017; Ma et al., 2021). However, Morris et al.
(2017) found that asset managers can hoard cash during redemption periods, because they
anticipate worst days. Instead of liquidating the cash buffer to meet investor redemptions,
asset managers can preserve the liquidity of their portfolios (Jiang et al., 2021) or even in-
crease the proportion of cash during the stress period (Schrimpf et al., 2021). In this case,
cash hoarding may amplify fire sales and seems to be contradictory with the implementation
of a cash buffer. However, cash hoarding is easy to understand in our framework. Indeed,
during a stress period, asset managers may anticipate a very pessimistic scenario, meaning
that they dramatically reduce the expected risk premium µasset−µcash. This implies increas-
ing the level of the optimal cash buffer w?cash. Therefore, the previous framework explains
that cash buffering and cash hoarding are compatible if we consider that asset managers
have a dynamic view of the risk premium of assets.

3.2 Special arrangements

Special arrangements are used extensively by the hedge fund industry. In particular, gates
and side pockets were extensively implemented during the 2008 Global Financial Crisis
after the Lehman Brothers collapse (Aiken et al., 2015; Teo, 2011). Nevertheless, mutual
funds are increasingly familiar with these tools and are allowed in many European countries
(Darpeix et al., 2020, Table 4.3.A, page 33). For instance, gates, in-kind redemptions, side
pockets and redemption suspensions are active in France, Italy, Spain and the Netherlands.
In Germany, gates and side pockets are not permitted whereas side pockets are prohibited
in the United Kingdom.

3.2.1 Redemption suspension and gate

When implementing a gate, the fund manager temporarily limits the amount of redemptions
from the fund. In this case, the gate forces the redeeming investors to wait until the next
regular withdrawal dates to receive the balance of their withdrawal request. For instance,
the fund manager can impose that the daily amount of withdrawals do not exceed 2% of the
fund’s net assets. Let us assume a redemption rate of 5% at time t (investors A) and 2% at
time t + 1 (investors B). Because we have a daily gate of 2%, only 40% of the withdrawal
of investors A may be executed at time t. The next 60% are executed at time t + 1 and
t + 2. Investors B who would like to redeem at time t + 1 must wait until time t + 2,
because redeeming investors A take precedence. Finally, we obtain the redemption schedule
reported in Table 10. We notice that the last redeeming investors may be greatly penalized
because of the queuing system. If there are many redemptions, the remaining investors have
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Figure 17: Implementation of a cash buffer when x+ = 10%

Figure 18: Implementation of a cash buffer when x+ = 100%
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no incentive to redeem because they face two risks. The risk of time redemption depends
on the frequency of withdrawal dates. In the case of monthly withdrawals, investors can
wait several months before obtaining their cash. For instance, we observed this situation
during the hedge fund crisis at the end of 2008. The second risk concerns the valuation.
Indeed, the unit price can change dramatically during the redemption gate period. This
is why regulators generally impose a maximum period for mutual funds that would like to
impose a redemption gate.

Table 10: Stress scenarios of the participation rate

Redemption Redeeming Time
Gate Investors t t+ 1 t+ 2 t+ 3

No gate
A

5%
(100%)

B
2%

(100%)

2%
A

2% 2% 1%
(40%) (40%) (20%)

B
1% 1%

(50%) (50%)

An extreme case of a redemption gate is when the manager completely suspends re-
demptions from his fund. A redemption suspension is rare and was originally used by hedge
funds29. However, it is now part of the liquidity management tools that can be used by
mutual funds. For instance, it is the only mechanism that is available in all European
jurisdictions (ESRB, 2017; Darpeix et al., 2020). It was used by at least 215 European in-
vestment funds (with net assets totaling e73.4 bn) during the coronavirus crisis in February
and March 2020 (Grill et al., 2021). The authors found that “many of those funds had
invested in illiquid assets, were leveraged or had lower cash holdings than funds that were
not suspended”.

At first sight, a suspension of redemptions seems to be a tougher decision than a re-
demption gate. Indeed, in this last case, redemptions continue to be accepted, but they
are delayed. However, it is not certain that a redemption gate will have less impact than
a redemption suspension. In a period of fire sales, gates can also exacerbate the liquidity
crisis because of the asset liquidation/market transmission channel of systemic risk (Roncalli
and Weisang, 2015a). On the contrary, redemption suspensions do not directly contribute
to the asset liquidation from a theoretical point of view. However, we generally observe
higher redemptions when suspensions are stopped. This means that we can have an ex-post
overreaction of investors. In fact, it seems that a suspension of redemptions is preferable
when the fund manager faces a temporary liquidity crisis such that many securities can not
be priced. In the absence of price valuation, it may be good to wait until normal conditions
are restored. Of course, it is not always possible and depends on the nature of the liquidity
crisis.

The impact of gates has received little attention from academics. Nevertheless, the
theoretical study of Cipriani et al. (2014) showed that there can be preemptive runs when
a fund manager is able to impose a gate, although it can be ex-post optimal for the fund’s
investors. This illustrates the issue of strategic interaction and payoff complementarities
described by Chen et al. (2010). Moreover, imposing a gate generally leads to a reputational

29See for instance the famous suspension of redemptions decided by GAM after its top manager in charge
of absolute return strategies was the subject of a disciplinary procedure (GAM, 2018).
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risk for the fund and a negative externality for the corresponding asset class and the other
similar investment funds. More generally, Voellmy (2021) showed that redemption gates are
less efficient than redemption fees, which are described on page 258.

3.2.2 Side pocket

When a side pocket is created, the fund separates illiquid assets from liquid assets. Therefore,
the fund is split into two funds: the mirror fund, which is made up of the liquid assets and
the side pocket of illiquid assets. Each investor in the initial fund receives the same number
of units of the mirror fund and the side pocket. The mirror fund inherits the properties of
the original fund. Therefore, the mirror fund can continue to be subscribed or redeemed. On
the contrary, the side pocket fund becomes a closed-end fund (Opromolla, 2009). The fund
manager’s objective is then to liquidate the assets of the side pocket fund. However, he is
not forced to liquidate them immediately and can wait until market conditions improve. For
instance,it took many months (and sometimes one or two years) for hedge fund to manage
the side pockets created in October 2008 and for investors to retrieve their cash.

To the best of our knowledge, the only academic study on side pocketing is the research
work conducted by Aiken et al. (2015), who analyzed the behavior of 740 hedge funds
between 2006 and 2011. The authors found that side pockets and gates are positively
correlated, meaning that hedge funds both gated investors and placed assets into a side
pocket during the 2008 Global Financial Crisis. This result suggests that gates and side
pockets are not mutually exclusive. This explains the bad reputation of side pockets. Indeed,
investors generally have the feeling of facing a double sentence. A part of their investment
is segregated, and they don’t know when and how much of their capital they will retrieve.
And the remainder of their investment is gated. This is not the original objective of side
pocketing, since the underlying idea is to separate the original fund into a healthy portfolio
and a bad portfolio. But generally, the healthy fund is also gated.

Certainly, side pocketing is a last-resort discretionary liquidity restriction because of the
reputational risk. First, the fund manager gives a strong signal to the market that the
liquidity crisis is not temporary but will persist for a long time. Therefore, side pocketing
indirectly contributes to strengthening the spillover effect of the liquidity crisis because
market sentiment is getting worse. Second, if we restrict our analysis to the fund level,
the effect of side pocketing is ambiguous. It is obvious that it eliminates the first-mover
advantage, but it is also a sign that the liquidity calibration of the original fund was worse.
Moreover, side pockets can be used to protect management fees on the more liquid assets or to
hide a poor risk management process. This explains that side pocketing is generally followed
by the collapse of the fund, which generally suffers from existing investors’ withdrawing while
it is not able to attract new investors.

3.2.3 In-kind redemptions

In-kind redemptions are non-monetary payments. In this case, the fund manager offers a
basket of securities to the redeeming investor, generally the asset portfolio of the fund on
a pro-rata basis. Since the beginning of the 2000s, in-kind redemptions have been used
extensively in order to improve the tax efficiency of US exchange traded funds (Poterba
and Shoven, 2002). Even though they are less common in the mutual fund industry, in-
kind redemptions have become increasingly popular to manage liquidity runs. For instance,
according to ESRB (2017), in-kind redemptions are the most common available tool in the
European Union, just after the suspension of redemptions.

In-kind redemptions are generally considered as an efficient tool for managing liquidity
runs since they transfer the liquidation issue to redeeming investors. As showed by Agarwal
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et al. (2020), redemption-in-kind funds tend to deliver more illiquid securities. Moreover,
these funds “experience less flow subsequently because investors avoid such funds where they
are unable to benefit from liquidity transformation function of funds” (Agarwal et al., 2020,
page 30).

Normally, in-kind redemptions solve the valuation problem of the redemption portfolio
when it corresponds to the pro-rata asset portfolio30. This property is appealing in a period
of liquidity stress. However, the pro-rata rule only concerns large redemptions in order to be
sure that the rounding effect and the decimalization impact are small. From a technical point
of view, redemption-in-kind is certainly more difficult to manage than gating the fund. This
certainly explains why there are few mutual funds that have applied in-kind redemptions in
Europe.

3.3 Swing pricing

The objective of swing pricing is to protect existing investors from dilution31 caused by
large trading costs and market impacts due to subscriptions and/or redemptions. Since
this mechanism is relatively new, there are few research studies on its benefit. From a
theoretical and empirical point of view, it seems that swing pricing can eliminate the first-
mover advantage (Jin et al., 2019; Capponi et al., 2020) and mitigate the systemic risk
(Malik and Lindner, 2017; Jin et al., 2019). Nevertheless, these results must be challenged
as shown by the works of Lewrick and Schanz (2017a,b):

[...] “we show that, within our theoretical framework, swing pricing can prevent
self-fulfilling runs on the fund. However, in practice, the scope for swing pricing
to prevent self-fulfilling runs is more limited, primarily because the share of
liquidity-constrained investors is difficult to assess” (Lewrick and Schanz, 2017a).

[...] “we show that swing pricing dampens outflows in reaction to weak fund
performance, but has a limited effect during stress episodes. Furthermore, swing
pricing supports fund returns, while raising accounting volatility, and may lead
to lower cash buffers” (Lewrick and Schanz, 2017b).

3.3.1 Investor dilution

Following Roncalli et al. (2021a), the total net assets (TNA) equal the total value of assets
A (t) less the current or accrued liabilities D (t):

TNA (t) = A (t)−D (t)

The net asset value (NAV) represents the share price or the unit price:

NAV (t) =
TNA (t)

N (t)

where the total number N (t) of shares or units in issue is the sum of all units owned by all
unitholders. In the sequel, we assume that the debits are negligible: D (t) � A (t). This
implies that:

NAV (t+ 1) ≈ A (t+ 1)

N (t+ 1)

RA (t+ 1) denotes the return of the assets. We can then face three situations:

30Indeed, the valuation problem is transferred to the redeeming investors.
31This means a reduction in the fund’s value.
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1. There is no net subscription or redemption flows, meaning that N (t+ 1) = N (t) and
A (t+ 1) = (1 +R (t+ 1)) ·A (t). In this case, we have:

NAV (t+ 1) = (1 +RA (t+ 1))
A (t)

N (t)

= (1 +RA (t+ 1)) ·NAV (t) (118)

The growth of the net asset value is exactly equal to the return of the assets:

RNAV (t+ 1) =
NAV (t+ 1)

NAV (t)
− 1 = RA (t+ 1)

2. If the investment fund experiences some net subscription flows, the number of units
becomes:

N (t+ 1) = N (t) + ∆N (t+ 1)

where ∆N (t+ 1) = N+ (t+ 1) is the number of units to be created. At time t + 1,
we have32:

A (t+ 1) = (1 +RA (t+ 1)) · (A (t) + ∆N (t+ 1) ·NAV (t))

= (1 +RA (t+ 1)) · (N (t) ·NAV (t) + ∆N (t+ 1) ·NAV (t))

= (1 +RA (t+ 1)) ·N (t+ 1) ·NAV (t)

and:
TNA (t+ 1) = A (t+ 1)− T C (t+ 1)

where T C (t+ 1) is the transaction cost of buying the new assets. We deduce that:

NAV (t+ 1) =
A (t+ 1)− T C (t+ 1)

N (t+ 1)

= (1 +RA (t+ 1)) ·NAV (t)− T C (t+ 1)

N (t+ 1)
(119)

In this case, the growth of the net asset value is less than the return of the assets:

RNAV (t+ 1) = RA (t+ 1)− T C (t+ 1)

N (t+ 1) ·NAV (t)
≤ RA (t+ 1)

3. If the investment fund experiences some net redemption flows, the number of units
becomes:

N (t+ 1) = N (t) + ∆N (t+ 1)

where ∆N (t+ 1) = −N− (t+ 1) and N− (t+ 1) is the number of units to be re-
deemed. At time t+ 1, we have:

NAV (t+ 1) =
(1 +RA (t+ 1)) ·N (t) ·NAV (t)− T C (t+ 1)

N (t)

= (1 +RA (t+ 1)) ·NAV (t)− T C (t+ 1)

N (t)
(120)

In this case, the growth of the net asset value is less than the return of the assets:

RNAV (t+ 1) = RA (t+ 1)− T C (t+ 1)

N (t) ·NAV (t)
≤ RA (t+ 1)

32∆N (t+ 1) ·NAV (t) is the amount invested in the new assets at time t.
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When comparing Equations (118), (119) and (120), we notice that subscription/redemption
flows may penalize existing/remaining investors, because the net asset value is reduced by
the transaction costs that are borne by all investors in the fund:

NAV (t+ 1 | ∆N (t+ 1) = 0)−NAV (t+ 1 | ∆N (t+ 1) 6= 0) =
T C (t+ 1)

max (N (t) , N (t+ 1))

The decline in the net asset value is referred to as “investor dilution”.

In order to illustrate the dilution, we consider a fund with the following character-
istics: NAV (t) = $100, N (t) = 10 and RA (t+ 1) = 5%. In the absence of subscrip-
tions/redemptions, we have:

NAV (t+ 1) = (1 + 5%)× 100 = 105

We assume that creating/redeeming 5 shares induces a transaction cost of $30. In the case
of a net subscription of $500, we have N (t+ 1) = 15 and:

NAV (t+ 1) = (1 + 5%)× 100− 30

15
= 103

In the case of a net redemption of $500, we have N (t+ 1) = 5 and:

NAV (t+ 1) = (1 + 5%)× 100− 30

10
= 102

The transaction cost therefore reduces the NAV and impacts all investors in the fund. More-
over, we notice that the dilution is greater for redemptions than subscriptions. The reason
is that the number of shares increases in the case of a subscription, implying that the trans-
action cost by share is lower than in the case of a redemption.

This asymmetry property between subscriptions and redemptions is an important issue
when considering a liquidity stress testing program. Another factor is that the unit transac-
tion cost is an increasing function of the size of the subscription/redemption amount. This
is particularly true in a stress market when it is difficult to sell assets because of the low
demand. If we consider the previous example, we can assume that selling $500 in a stress
period may induce a transaction cost of $50. In this case, we obtain:

NAV (t+ 1) = (1 + 5%)× 100− 50

10
= 100

This example illustrates how investor dilution is an important issue when the fund faces
redemptions in a stress period.

3.3.2 The swing pricing principle

The swing pricing principle means that the NAV is adjusted for net subscriptions/redemptions.
Therefore, transaction costs are only borne by the subscribing/redeeming investors. In the
case of a net redemption, the NAV must be reduced by the transaction costs divided by the
number of net redeeming shares:

NAVswing (t+ 1) = NAVgross (t+ 1)− T C (t+ 1)

N− (t+ 1)−N+ (t+ 1)

where NAVgross is the “gross” net asset value calculated before swing pricing is applied
(AFG, 2016). In the case of a net subscription, the NAV becomes:

NAVswing (t+ 1) = NAVgross (t+ 1) +
T C (t+ 1)

N+ (t+ 1)−N− (t+ 1)
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Therefore, the NAV is increased if N+ −N− > 0. Finally, we obtain the following compact
formula:

NAVswing (t+ 1) = NAVgross (t+ 1) +
T C (t+ 1)

∆N (t+ 1)

The adjustment only impacts investors that trade on that day, since existing investors are
not affected by this adjustment. Indeed, the total net asset is equal to:

TNA (t+ 1) = A (t+ 1)− T C (t+ 1)

= N (t) ·NAVgross (t+ 1) + ∆N (t+ 1) ·NAVswing (t+ 1)− T C (t+ 1)

= N (t) ·NAVgross (t+ 1) + ∆N (t+ 1) ·NAVgross (t+ 1)

= N (t+ 1) ·NAVgross (t+ 1)

meaning that it is exactly equal to the gross net asset value. If there is no redemp-
tion/subscription at time t+ 2, we obtain:

NAV (t+ 2) = (1 +RA (t+ 2)) ·NAVgross (t+ 1)

= (1 +RA (t+ 2)) · (1 +RA (t+ 1)) ·NAV (t+ 1)

We notice that swing pricing has protected the fund’s buy-and-hold investors.

If we consider the previous example, we have NAVgross (t+ 1) = 105 and:

NAVswing (t+ 1) =


105 +

30

5
= 111 if subscription

105− 30

5
= 99 if redemption

We observe that swing pricing increases the fund’s volatility since the NAV adjustment with
swing pricing is greater than the NAV adjustment without swing pricing. Moreover, the
adjustment is smaller for subscriptions because the number of shares increases33. Therefore,
we notice an asymmetry between subscriptions and redemptions since the latter impact the
unit price more than the former. In the case of a liquidity crisis where there is a substantial
imbalance between demand and supply, the impact of redemptions is even stronger and the
contagion risk of a spillover effect is increased.

3.3.3 Swing pricing in practice

Swing pricing is regulated in Europe and the U.S. and can be used under regulatory con-
straints (Malik and Lindner, 2017). For instance, in France, the asset manager should inform
the AMF and the fund’s auditor of the implementation of swing pricing (AFG, 2016). The
use of swing pricing has also been encouraged during the Coronavirus crisis in order to
manage the liquidity:

“The AMF also favors the use of swing pricing and anti-dilution levies mech-
anisms during the current crisis, given the low liquidity of certain underlying
assets and the sometimes-high costs involved in restructuring portfolios” (AMF,
2020, page 4).

According to ESMA (2020b), swing pricing was the most used LMT in Europe during the
market stress in February and March 2020, far ahead of redemption suspension. This follows
the recommendations provided by the ESRB. Similar rules have existed in the U.S. for some
years (SEC, 2016), even though the use of swing pricing is less widespread than in E.U.
jurisdictions.

33Indeed, we have max (N (t) , N (t+ 1)) = N (t+ 1) > N (t) in the case of net subscriptions and
max (N (t) , N (t+ 1)) = N (t) in the case of net redemptions.
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Full vs. partial vs. dual pricing According to Jin et al. (2019), asset managers use
three alternative pricing mechanisms:

1. Partial swing pricing
The NAV is adjusted only when the net fund flow is greater than a threshold.

2. Full swing pricing
The NAV is adjusted every time there is a net inflow or outflow. Full swing pricing
is a special case of partial swing pricing by considering that the threshold is equal to
zero.

3. Dual pricing
We distinguish bid and ask NAVs, meaning that the investment fund has two NAVs.
Therefore, investors purchase the fund shares at the ask price and sell at the bid price.

Using a dataset of UK based asset managers, Jin et al. (2019) estimated that approximately a
quarter of investment funds use traditional pricing mechanisms whereas the three remaining
quarters consider alternative pricing mechanisms. Within this group, the break down is the
following: 25% employ full swing pricing, 50% prefer partial swing pricing and 25% promote
dual pricing.

Dual pricing is an extension of full swing pricing that distinguishes between subscriptions
and redemptions. However, dual pricing is more complex to calibrate. Indeed, it is not
obvious to allocate transaction costs to both redeeming and subscribing investors because
of the netting process. We have:

NAVask (t+ 1) = NAVgross (t+ 1) +
α · T C (t+ 1)

N+ (t+ 1)

and:

NAVbid (t+ 1) = NAVgross (t+ 1)− (1− α) · T C (t+ 1)

N− (t+ 1)

where α is the portion of the transaction costs allocated to gross subscriptions. For instance,
we can use the pro-rata rule:

α =
N+ (t+ 1)

N+ (t+ 1) +N− (t+ 1)

but we can also penalize redeeming investors:

α =
N+ (t+ 1)

N+ (t+ 1) + γ ·N− (t+ 1)

where γ ≥ 1 is the penalization factor. Let us consider the previous example withN+ (t+ 1) =
10, N− (t+ 1) = 5 and T C (t+ 1) = 30. We have NAVswing (t+ 1) = 111. If we assume
that γ = 1, we have NAVask (t+ 1) = 107 and NAVbid (t+ 1) = 103. If γ is set to 2, the
previous figures become NAVask (t+ 1) = 106.5 and NAVbid (t+ 1) = 102.

Remark 9 The previous example illustrates one of the drawbacks of swing pricing. Indeed,
since there are 10 subscriptions and 5 redemptions, the swing NAV is greater than the gross
NAV ($111 vs. $105). Redeeming investors benefit from the entry of new investors. In the
case of dual pricing, the unit price of redeeming investors is equal to $103 (if γ is set to 1),
which is lower than $111.
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Setting the swing threshold and the swing factor In most cases, swing pricing is
applied only when the net amount of subscriptions and redemptions reaches a threshold34:∣∣∣∣ ∆N (t+ 1)

min (N (t) , N (t+ 1))

∣∣∣∣ ≥ swthreshold

where swthreshold is the swing threshold. For example, swthreshold = 5% implies that the
swing pricing mechanism is activated every time we observe at least 5% of inflows/outflows.
A swing factor is then applied to the NAV:

NAVswing (t+ 1) =

{
(1 + swfactor) ·NAV (t+ 1) if net subscription ≥ swthreshold

(1− swfactor) ·NAV (t+ 1) if net redemption ≥ swthreshold

We can use different approaches to calibrate the parameters swthreshold and swfactor.
For instance, we can assume that swthreshold is constant for a family of funds (e.g. equity
funds). In this case, swthreshold is estimated using a historical sample of flow rates and
transaction costs. The underlying idea is to use a value of swthreshold such that transaction
costs become significant. However, this approach may appear too simple in a liquidity stress
testing framework. Indeed, transaction costs are larger in a stress period, meaning that
swthreshold is a decreasing function of the stress intensity. For instance, the asset manager
can calibrate two values of swthreshold, a standard figure which is valid for normal periods
and a lower figure which is valid for normal periods. Typical values are 5% and 2%. The
parameter swfactor must reflect the transaction costs. Again, two approaches are possible:
ex-ante or ex-post transaction costs. In the first case, we consider the transaction cost
function calibrated to measure the asset risk, whereas the effective cost is used in the second
case.

By construction, the swing factor swfactor varies over time while the swing threshold
swthreshold is more static. When the swing pricing mechanism is applied, we can estimate
the amount of transaction costs:

T C (t+ 1) = swfactor ·NAV (t+ 1) · |∆N (t+ 1)|

We deduce that the transaction cost ratio is greater than the product of the swing threshold
and the swing factor:

T C (t+ 1)

min (N (t) , N (t+ 1)) ·NAV (t+ 1)
= swfactor ·

∣∣∣∣ ∆N (t+ 1)

min (N (t) , N (t+ 1))

∣∣∣∣
≥ swfactor · swthreshold

Another approach consists in fixing the value of the product:

swfactor · swthreshold = swproduct

In this case, we are sure that the swing pricing is activated when the transaction cost ratio
is greater than the swing product swproduct. In the previous approaches, the swing factor
is calculated once we have verified that the fund flow is larger than swthreshold. In this new
approach, the swing factor is first calculated in order to determine the swing threshold:

swthreshold =
swproduct

swfactor

Therefore, the swing threshold is dynamic and changes every day.

34An alternative approach is to replace min (N (t) , N (t+ 1)) with N (t).
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Let us see an example to illustrate the difference between the static and dynamic ap-
proaches. We consider that swthreshold = 5% and swfactor = 40 bps. We deduce that
swproduct = 2 bps. In the static approach, the swing pricing mechanism is not activated if
we face a redemption rate of 4% whatever the value of the swing factor. We assume that
we are in a period of stress and a redemption rate of 4% implies a swing factor of 60 bps.
In the dynamic approach, the swing threshold is equal to 3.33%, implying the activation of
the swing pricing mechanism. More generally, we have a hyperbolic relationship between
swfactor and swthreshold as illustrated in Figure 19.

Figure 19: Dynamic approach of swing pricing
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3.3.4 Anti-dilution levies

Anti-dilution levies (ADL) are very close to swing pricing since the fund manager does not
use the transaction costs to adjust the NAV, but to adjust entry and exit fees. According
to AFG (2016), these fees are equal to:

N+ > N− N+ < N− Pro-rata

ADL+ T C (t+ 1)

N+ (t+ 1)

T C (t+ 1)

∆N (t+ 1)
0 0

T C (t+ 1)

N+ (t+ 1) +N− (t+ 1)

ADL− 0 0
T C (t+ 1)

N− (t+ 1)
− T C (t+ 1)

∆N (t+ 1)

T C (t+ 1)

N+ (t+ 1) +N− (t+ 1)

where ADL+ is the entry fees and ADL− is the exit fees. In the case of a pro-rata rule, the
transaction costs are borne by subscribing and redeeming investors. In the other cases, the
transaction costs are charged to subscribing investors if N+ > N− or redeeming investors if
N+ < N−. Moreover, anti-dilution levies may or may not recognize netting figures. This is
why we have reported two columns for the cases N+ > N− and N+ < N−.
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The main advantage of anti-dilution levies is that the NAV is not noisy and reflects the
fair value of the unit price. Remaining investors may be sensitive because the mark-to-
market is smoother. However, subscribing/redeeming investors may prefer swing pricing,
because they may pay more attention to additional costs than to an adjusted price. Indeed,
they may have the feeling that swing pricing is fairer, because the published NAV applies
to all investors, whereas entry/exit costs only concern them.

Remark 10 Sometimes there is a confusion between redemption fees and exit fees35. Indeed,
redemption fees are charged to investors in a systematic way whatever the market conditions.
They are indicated in the prospectus and their level is disclosed. Therefore, they are not
a liquidity management tool for liquidity stress testing. On the contrary, swing pricing
and anti-dilution levies are only charged in stress markets. Their levels are not necessarily
disclosed. Table 11 summarizes the differences between these three mechanisms.

Table 11: Differences between redemption fees, anti-dilution levies and swing pricing

Characteristics
Redemption Anti-dilution Swing

fees levies pricing

Justification No obligation
Documented and general principles

externalised to fundholders
Requirements

Any redemption
Based on the net S/R balance

for activation and an activation threshold
Indication to Level of fees No detail

the level defined in the prospectus concerning the parameters

Source: Darpeix et al. (2020, page 15).

3.3.5 Effectiveness of swing pricing

Based on the empirical study of US funds and their Luxembourg counterparts, Lewrick and
Schanz (2017b) noticed that negative returns imply larger outflows during normal market
conditions for US funds. In stressed markets, in particular during the 2013 US taper tantrum,
they found no difference. Since swing pricing is applied in Luxembourg and not in the US
during the study period, they concluded that swing pricing failed to reduce the liquidity
risk. For Capponi et al. (2020), the reason lies in the scale and application of swing pricing.
These authors consider that swing factors are too small and must be larger to reduce the
incentive to redeem immediately to capture the first-mover advantage premium.

We reiterate here that the purpose of swing pricing is to protect the remaining investors.
In particular, during a period of market stress, they do not pay other investors’ transaction
costs. The objective of swing pricing is not to prevent a liquidity crisis, but it may help
fund managers to better rebalance their portfolio and reduce the use of horizontal slicing.

Remark 11 This section dedicated to liquidity management tools demonstrates that there
is not one solution, but several approaches to managing the liquidity risk. Nevertheless, this
section also shows that the perfect tool does not exist. In liquidity risk, the number of known
and unknown unknowns is much greater than the number of known knowns. Therefore, the
tools presented here give a partial answer to the problem, because the liquidity issue concerns
the balance between buying and selling forces. Therefore, it makes sense to complement the
liquidity framework by monitoring its level.

35See for instance Greene et al. (2007) and Lenkey and Song (2016).
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4 Liquidity monitoring tools

It is obvious that monitoring liquidity is an important stage of a liquidity stress testing
program. For instance, the step is mandatory in banking regulations. In addition to the
LCR and NSFR, BCBS (2013) defines a set of liquidity risk monitoring tools, in order to
“capture specific information related to a bank’s cash flows, balance sheet structure, available
unencumbered collateral and certain market indicators”. We can classify these tools36 into
two categories. The first category concerns the metrics that measure the liquidity at a global
level. It corresponds to the macro-economic approach of liquidity monitoring, and it mainly
uses market-wide information. The second category is specific to the managed portfolios.
It corresponds to the micro-economic approach of liquidity monitoring, and it mainly uses
security-based information.

4.1 Macro-economic approach to liquidity monitoring

The ESMA risk assessment uses several metrics (ESMA TRV Report, 2021, page 4) to mon-
itor financial risks: (a) risk participants (market environment, securities markets, infras-
tructure and services, asset management and consumers), (b) risk categories (liquidity risk,
market risk, contagion risk, credit risk, operational risk) and (c) risk drivers (macro-economic
environment, interest-rate environment, sovereign and private debt markets, infrastructure
disruption, political and event risks). Some of them are interesting when monitoring global
liquidity from an asset management viewpoint. We notice that the starting point of ESMA
for measuring financial risks is the market environment, more precisely the economic out-
look (real output, inflation risk, etc.) and the policy responses. Therefore, central bank
liquidity is an important monitoring metric. Besides money market conditions, monitoring
the banking sector is also essential, because of its interconnectedness with asset managers
and asset owners. Therefore, statistics on the repo market activity are important to track37.
Of course, traditional market risk metrics can be used to assess global liquidity. These in-
clude market sentiment (for instance, the levels of the VIX index and flight to liquidity),
the performance of asset classes, the average level of credit spreads (for both sovereign and
corporate bonds), the high yield premium, etc. Finally, the analysis of inflows/outflows, the
number of active LMTs, liquidity demand from investors, the dynamics of trading volumes
and the average bid-ask spreads can complement the macro-economic approach to liquidity
monitoring.

4.2 Micro-economic approach to liquidity monitoring

The micro-economic approach focuses on asset classes, security instruments and issuers. For
instance, the global liquidity metric gives no information on the liquidity of US municipal
bonds, the investment grade segment of the ETF market, Italian BTP bonds, etc. The
underlying idea is to then use more specific measures, including the daily spread, the daily
volume, the number of daily quotes, etc. These metrics can be computed by asset class,
security or issuer. Other information may be useful, for instance market-making activity,
issuance activity, ETF liquidity, etc. Other important information flows are the metrics that
can be computed from order books or the activity of trading desks. A typical example is
the order imbalance proposed by Easley et al. (2015).

36The exhaustive list of liquidity monitoring metrics in the case of the Basel III framework is available in
BCBS (2019).

37Other statistics are easily available such as the one-month return of banks’ stocks, CDS and credit
spreads of banks, etc.
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5 Conclusion

This article concludes a series of research studies dedicated to liquidity stress testing in
asset management. As already said, academics and professionals have so far paid little
attention when asset-liability management concerns the asset management industry. The
goal of this research project was then to fill the gap to develop mathematical and statistical
approaches and provide appropriate answers. The first part of this project was dedicated to
the liability liquidity risk (Roncalli et al., 2021a) and focused on the statistical modeling of
redemption shocks. The second part concerned the asset liquidity risk (Roncalli et al., 2021b)
and dealt with the modeling of the transaction cost function. Finally, this article, which
constitutes the third part of the project, establishes the ALM framework of the liquidity risk
in asset management (Roncalli, 2021c). It is organized around the three Ms: measurement,
management and monitoring.

The primary liquidity measurement tool is the redemption coverage ratio or RCR. Using
a redemption scenario, the RCR measures the fund manager’s ability to liquidate the re-
demption portfolio in a stress period. Two methods exist to calculate the RCR: the time to
liquidation approach and the HQLA framework. The RCR depends on several assumptions
about liability and asset risks, but also on the liquidity policy (trading limits and liquidation
method38). We show that the latter has a big impact. Moreover, we show how reverse stress
testing can be implemented, in particular how to define liability and asset RST scenarios.

Liquidity management tools are many and varied. However, we can classify them into
three main categories. The first category concerns cash management and the implementation
of liquidity buffers. For that, we propose an analytical framework that compares the costs
and benefits of a cash buffer. Therefore, we are able to define the optimal value of the cash
buffer, which depends on marginal transaction costs, the expected return of assets and the
sensitivity to the tracking error risk. In particular, we illustrate the central role of the risk
premium. This analysis enabled us to reconcile the paradox around cash buffering and cash
hoarding. In particular, we explain cash hoarding by the dynamic implementation of a cash
buffer when the asset manager formulates negative expectations on the risk premium. The
second category of LMTs are special arrangements. It concerns redemption suspensions,
gates, side pockets and in-kind redemptions. Finally, the last category revolves around
swing pricing.

Liquidity monitoring tools are more classical since they are not specific to the asset
management industry. Indeed, central and commercial banks, regulators, market makers,
investors, hedge funds and asset managers use very similar approaches. This is especially
true for global liquidity that is highly dependent on central bank liquidity, economic outlook
and market sentiment. Monitoring liquidity at asset class, security or issuer level is more
challenging, but this is mainly a data management project.

Once again, financial regulation has sped up the development of liquidity risk manage-
ment with the publication of the ESMA guidelines on liquidity stress testing in UCITS and
AIFs. Even though these guidelines are less specific than those applied in the banking sector,
they give sufficient information about what is expected and the road that asset managers
must take in the future in terms of liquidity management. This study has been completed
with the sole aim of complying with ESMA guidelines and asset management practices. It
can be viewed as a benchmark for asset managers and a guidebook for academics, who want
to develop practical models in this research field.

38We compare vertical slicing (naive and optimal pro-rata liquidation) and horizontal slicing (waterfall
liquidation).
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Appendix

A Glossary

ALMT

ALMT (or a-LMT) is the acronym of “Additional Liquidity Management Tool”. They in-
clude the tools applied by asset managers in exceptional circumstances to control or limit
dealing in fund units/shares in the interests of investors. Examples of ALMT are suspension
of dealing in units, deferral of dealing, side-pocketing and special arrangements.

Anti-diluation levy

Anti-diluation levies correspond to entry and exit fees. Their levels are calculated with
respect to the transaction costs induced by subscriptions and redemptions.

Cash buffer

A cash buffer is a special type of liquidity buffers that is exclusively composed of cash
instruments and cash equivalents.

Cash conversion factor

A CCF is a multiplicative factor, which indicates how to convert $1 of assets into a liquid
cash exposure.

Cash hoarding

Cash hoarding corresponds to a situation where the asset manager increases its cash holding
in a liquidity stress period.

Gate

When a gate is implemented, the fund manager temporarily limits the amount of redemp-
tions.

Horizontal slicing

See waterfall liquidation.

HQLA class

The term HQLA refers to high quality liquid asset. An HQLA class groups all the securities
that present the same ability to be converted into cash.

In-kind redemption

When in-kind redemptions are implemented, the fund manager offers a basket of securities to
the redeeming investor. In-kind redemptions are also called physical redemptions as opposed
to cash redemptions that imply a monetary payment.
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Liquidation policy

See trading limit.

Liquidation time

See time to liquidation.

Liquidity buffer

A liquidity buffer refers to the stock of liquid instruments held by the fund manager in order
to manage future redemptions.

Liquidity management tool

Liquidity management tools include liquidity buffers, special arrangements, swing pricing
and anti-dilution levies. See also ALMT.

Liquidity shortfall

The liquidation shortfall is defined as the residual redemption that cannot be fulfilled after
h trading days. It is expressed as a percentage of the redemption value. If it is equal to
0%, this means that we can liquidate the redemption in h trading days. More generally, its
mathematical expression is:

LS (h) = R ·max (0, 1− RCR (h))

Pro-rata liquidation

The pro-rata liquidation uses the proportional rule, implying that each asset is liquidated
such that the structure of the portfolio is the same before and after the liquidation.

Redemption coverage ratio

The redemption coverage ratio RCR (h) is the proportion of the redemption that is liquidated
after h trading days. We generally focus on daily and weekly liquidation ratios RCR (1) and
RCR (5). The RCR is also used to define the liquidation time (or time to liquidation), which
is an important measure for managing the liquidity risk.

Redemption scenario

A redemption scenario q is defined by the vector (q1, . . . , qn) where qi is the number of shares
of security i to sell. This scenario can be expressed in dollars:

Q := (Q1, . . . , Qn) = (q1P1, . . . , qnPn)

where Pi is the price of security i. The redemption scenario may also be defined by its dollar
value R:

R = V (q) =

n∑
i=1

qiPi
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Redemption suspension

A redemption suspension is a temporary measure where the investors are unable to withdraw
their capital in the fund.

Reverse stress testing

Side pocket

A side pocket is a segregated portfolio of illiquid assets.

Special arrangement

Special arrangements are specific types of LMT measures available to some AIFs and which
impact investors’ redemption rights, such as side pockets or gates.

Swing pricing

Swing pricing is a NAV adjustment process to incorporate redemption and subscription
costs.

Time to liquidation

The time to liquidation is the inverse function of the liquidation ratio. It indicates the
minimum number of days required to liquidate the proportion p of the redemption.

Trading limit

The trading limit q+ is the maximum number of shares that can be sold in one trading day.

Vertical slicing

See pro-rata liquidation.

Waterfall liquidation

In this approach, the portfolio is liquidated by selling the most liquid assets first.
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B Mathematical results

B.1 Computation of the cash conversion factor

We define H (t) as the following integral function:

H (t) =

∫ t

0

f (u)

(
1−

∫ u

0

g (s) ds

)
du (121)

where f (u) ≥ 0 and g (u) ≥ 0 are two positive functions. We note:

F (t) =

∫ t

0

f (u) du (122)

and:

G (t) =

∫ t

0

g (u) du (123)

We assume that:

• F (t) is an increasing function with F (0) = 0 and F (∞) = 1;

• G (t) is an increasing function with G (0) = 0 and G (∞) ≤ 1.

We deduce that

0 ≤ H (t) ≤ 1 (124)

In the case where f (u) = ξ is constant, we obtain:

H (t) = ξ

∫ t

0

(
1−

∫ u

0

g (s) ds

)
du

=
F (t)

∫ t
0

(1−G (u)) du

t
(125)

because we have F (t) = ξt. Using the integral mean value theorem, we deduce that∫ t
0
G (u) du = t (1−G (c)) where c ∈ [0, t]. If g (u) is relatively smooth, it follows that:

H (t) = F (t) (1−G (c))

≈ F (t)

(
1−G

(
t

2

))
(126)

This result has been obtained by considering that f (u) is constant. Nevertheless, we assume
that this result holds in the general case.

Let us apply the previous result to the computation of the cash conversion factor. f (u)
is the instantaneous amount of the liquidation portfolio that can be sold in the market at
time u, whereas F (t) is the cumulated amount of the liquidation portfolio that can be sold
between 0 and t. G (u) =

∫ u
0
g (s) ds is the drawdown during the period [0, t]. Using the

notations on page 221, Equation (126) becomes:

CCF (t) = LF (t)

(
1−DF

(
t

2

))
(127)
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B.2 Analytics of the cash buffer

B.2.1 Mean-variance analysis of the portfolio

Let wcash be the cash-to-assets ratio:

wcash =
cash

TNA
(128)

The random return of the portfolio that includes the cash buffer is equal to:

R = wcash ·Rcash + (1− wcash) ·Rasset

= Rasset − wcash · (Rasset −Rcash) (129)

where Rcash and Rasset are the random returns of the cash and the assets. We deduce that:

E [R] = µasset − wcash · (µasset − µcash) (130)

and:

σ2 (R) = w2
cash · σ2

cash + (1− wcash)
2 · σ2

asset +

2wcash · (1− wcash) · ρcash,asset · σcash · σasset (131)

where µcash and µasset are the expected returns of the cash and asset components, σcash and
σasset are the corresponding volatilities, and ρcash,asset is the correlation between the cash
and the assets. Generally, we assume that σcash ≈ 0 (or σcash � σasset), implying that:

σ (R) ≈ (1− wcash) · σasset (132)

B.2.2 Tracking error analysis of the portfolio

Since the tracking error due to the cash buffer is given by:

e = R−Rasset

= −wcash · (Rasset −Rcash) (133)

we obtain the following formula for the expected excess return:

E [R | Rasset] = E [R−Rasset]

= −wcash · (µasset − µcash) (134)

whereas the tracking error volatility σ (R | Rasset) is equal to:

σ2 (R | Rasset) = σ2 (R−Rasset)

= w2
cash ·

(
σ2
cash + σ2

asset − 2ρcash,asset · σcash · σasset
)

(135)

If we assume that σcash ≈ 0, it follows that:

σ (R | Rasset) ≈ wcash · σasset (136)
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B.2.3 Beta and correlation of the portfolio

The covariance between the portfolio return and the asset return is equal to:

cov (R,Rasset) = E [R ·Rasset]− E [R] · E [Rasset]

= E
[
wcash ·Rcash ·Rasset + (1− wcash) ·R2

asset

]
−

(µasset − wcash · (µasset − µcash)) · µasset

= wcash · (ρcash,asset · σcash · σasset + µcash · µasset) +

(1− wcash) ·
(
σ2
asset + µ2

asset

)
−(

µ2
asset − wcash ·

(
µ2
asset − µcash · µasset

))
= wcash · ρcash,asset · σcash · σasset +

(1− wcash) · σ2
asset (137)

We deduce that:

β (R | Rasset) =
cov (R,Rasset)

σ2 (Rasset)

= 1− wcash

σ2
asset

(
σ2
asset − ρcash,asset · σcash · σasset

)
(138)

If σcash ≈ 0, we obtain:
β (R | Rasset) ≈ 1− wcash (139)

and:

ρ (R,Rasset) =
cov (R,Rasset)

σ (R) · σ (Rasset)

≈ 1 (140)

B.2.4 Sharpe and information ratios

The Sharpe ratio is equal to:

SR (R) =
E [R]− E [Rcash]

σ (R)

=
(1− wcash) · (µasset − µcash)

σ (R)
(141)

For the information ratio, we obtain:

IR (R | Rasset) =
E [R | Rasset]

σ (R | Rasset)

= − µasset − µcash√
σ2
cash + σ2

asset − 2ρcash,asset · σcash · σasset
(142)

If σcash ≈ 0, we deduce that:

SR (R) ≈ µasset − µcash

σasset
= SR (Rasset) (143)

and:

IR (R | Rasset) ≈ −
µasset − µcash

σasset
= −SR (Rasset) (144)
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B.2.5 Liquidation gain

Without the cash buffer, the transaction cost of the redemption shock R = R ·TNA is equal
to:

T Cwithout = T Casset (R · TNA) (145)

where T Casset (V ) is the transaction cost39 when liquidating the amount V of assets. With
the cash buffer, the breakdown of redemption shock is:

R = Rcash + Rasset

= min (wcash,R ) · TNA︸ ︷︷ ︸
Cash liquidation

+ (R − wcash)
+ · TNA︸ ︷︷ ︸

Asset liquidation

(146)

Indeed, the fund manager first sells the cash until the redemption rate reaches the cash-to-
assets ratio, and then liquidates the assets if necessary:

R =

 0 if R = 0
R · TNA if 0 < R ≤ wcash

wcash · TNA + (R − wcash) · TNA if R > wcash

(147)

We deduce that the transaction cost has two components:

T Cwith = T Ccash (min (wcash,R ) · TNA) + T Casset
(

(R − wcash)
+ · TNA

)
(148)

where T Ccash (V ) is the transaction cost when liquidating the amount V of cash. Another
more tractable expression of T Cwith is:

T Cwith = T Ccash (R · TNA) · 1 {R ≤ wcash}+

T Casset ((R − wcash) · TNA) · 1 {R > wcash} (149)

It follows that the liquidation gain of implementing a cash buffer is:

LG = T Cwithout − T Cwith (150)

We deduce that:

LG = T Casset (R · TNA)− T Ccash (R · TNA) · 1 {R ≤ wcash} −
T Casset ((R − wcash) · TNA) · 1 {R > wcash}

= T Casset (R · TNA) · 1 {R ≤ wcash}+ T Casset (R · TNA) · 1 {R > wcash} −
T Ccash (R · TNA) · 1 {R ≤ wcash} − T Casset ((R − wcash) · TNA) · 1 {R > wcash}

= (T Casset (R · TNA)− T Ccash (R · TNA)) · 1 {R ≤ wcash}+

(T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) · 1 {R > wcash}
= LGcash + LGasset (151)

where:
LGcash = (T Casset (R · TNA)− T Ccash (R · TNA)) · 1 {R ≤ wcash} (152)

and:

LGasset = (T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) · 1 {R > wcash} (153)

39The unit of the transaction cost function is expressed in % of the total net assets.
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Finally, we conclude that:

E [LG] = E [LGcash] + E [LGasset]

=

∫ wcash

0

(T Casset (R · TNA)− T Ccash (R · TNA)) dF (R ) +∫ 1

wcash

(T Casset (R · TNA)− T Casset ((R − wcash) · TNA)) dF (R ) (154)

where F (x) is the distribution function of the redemption rate R .

We can simplify the previous expressions in two different ways. If we assume that
T Ccash (R) ≈ 0, we have:

LGcash ≈ T Casset (R · TNA) · 1 {R ≤ wcash} (155)

and:

E [LGcash] =

∫ wcash

0

T Casset (R · TNA) dF (R ) (156)

We can also simplify LGasset with the following approximation:

T Casset ((R − wcash) · TNA) ≈ T Casset (R · TNA)− T Casset (wcash · TNA) (157)

This approximation is valid if the transaction cost function is perfectly additive. This is
not the case because of the price impact. However, the transaction cost function may be
decomposed as a sum of daily transaction costs. Because of the liquidation policy limits, the
daily transaction costs are almost the same for large redemptions and can justify the previous
approximation. To better illustrate the underlying idea, let us assume that R = 30% and
wcash = 5%. Moreover, we suppose that we can liquidate 5% of the total net assets every
day with a total cost of 7 bps in the stress regime40. Liquidating 30% is performed in 6
days: T Casset (R · TNA) = 6 × 7 = 42 bps. Liquidating 30% − 5% is performed in 5 days
and we have:

T Casset ((30%− 5%) · TNA) = T Casset (25% · TNA)

= 5× 7 = 35 bps

= 42− 7

= T Casset (30% · TNA)− T Casset (5% · TNA) (158)

In practice, we don’t verify the strict equality because of many factors, but we can consider
that the approximation is relatively valid compared to all uncertainties of a stress testing
program. Therefore, we have:

LGasset ≈ (T Casset (R · TNA)− T Casset (R · TNA) + T Casset (wcash · TNA)) · 1 {R > wcash}
= T Casset (wcash · TNA) · 1 {R > wcash} (159)

and:

E [LGasset] =

∫ 1

wcash

T Casset (wcash · TNA) dF (R )

= T Casset (wcash · TNA) · (1− F (wcash)) (160)

40We recall that the transaction cost function is expressed in % of the total net assets, and not with
respect to the liquidation amount. A total cost of 7 bps for the fund when the redemption rate is equal to
5% is then equivalent to a unit transaction cost of 140 bps
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Finally, we obtain:

E [LG] =

∫ wcash

0

T Casset (R · TNA) dF (R ) +

T Casset (wcash · TNA) · (1− F (wcash)) (161)

Remark 12 Since T Casset (R) is a function, we can replace it by the function T Casset (R )
without any impact on the previous equations. This is equivalent to normalize the total net
assets — TNA = 1.

B.2.6 First derivative of E [LG (wcash)]

Exact formula The first derivative of E [LGcash (wcash)] satisfies:

∂ E [LGcash (wcash)]

∂ wcash
= (T Casset (wcash)− T Ccash (wcash)) · f (wcash)

≥ 0 (162)

where f (x) is the probability density function of the redemption rate R . For E [LGasset (wcash)],
we use the Leibniz integral rule:

∂ E [LGasset (wcash)]

∂ wcash
= −T Casset (wcash) · f (wcash) +∫ 1

wcash

T C′asset (R − wcash) dF (R ) (163)

where T C′asset is the derivative of the transaction cost function, which is assumed to be
positive. We have:

∂ E [LGasset (0)]

∂ wcash
=

∫ 1

0

T C′asset (R ) dF (R )

≥ 0 (164)

and:

∂ E [LGasset (1)]

∂ wcash
= −T Casset (1) · f (1)

< 0 (165)

Finally, we obtain:

∂ E [LG (wcash)]

∂ wcash
= −T Ccash (wcash) · f (wcash) +

∫ 1

wcash

T C′asset (R − wcash) dF (R ) (166)

It follows that:

∂ E [LG (0)]

∂ wcash
=

∫ 1

0

T C′asset (R − wcash) dF (R )

≥ 0 (167)

and:

∂ E [LG (1)]

∂ wcash
= −T Ccash (1) · f (1)

< 0 (168)

273



Liquidity Stress Testing in Asset Management

Approximate formula The first derivative of E [LGcash (wcash)] satisfies:

∂ E [LGcash (wcash)]

∂ wcash
= T Casset (wcash) · f (wcash)

≥ 0 (169)

For E [LGasset (wcash)], we obtain:

∂ E [LGasset (wcash)]

∂ wcash
= −T Casset (wcash) · f (wcash) + T C′asset (wcash) · (1− F (wcash)) (170)

We have:

∂ E [LGasset (0)]

∂ wcash
= T C′asset (0) · (1− F (0))

≥ 0 (171)

and:

∂ E [LGasset (1)]

∂ wcash
= −T Casset (1) · f (1)

< 0 (172)

Finally, we conclude that:

∂ E [LG (wcash)]

∂ wcash
= T Casset (wcash) · f (wcash)− T Casset (wcash) f (wcash) +

T C′asset (wcash) · (1− F (wcash))

= T C′asset (wcash) · (1− F (wcash))

≥ 0 (173)

B.2.7 Closed-form formula of Example 5 on page 238

Exact formula If T Casset (x) = x · (s + βπππσ
√
x), T Ccash (x) = x · c and F (x) = xη, we

have:

E [LGcash (wcash)] =

∫ wcash

0

(T Casset (R )− T Ccash (R )) dF (R )

= η

∫ wcash

0

x ·
(

s − c + βπππσ
√
x
)
· xη−1 dx

= η (s − c)

∫ wcash

0

xη dx+ ηβπππσ

∫ wcash

0

xη+0.5 dx

=
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
· wη+1.5

cash (174)

and:

E [LGasset (wcash)] =

∫ 1

wcash

(T Casset (R )− T Casset ((R − wcash))) dF (R )

= η

∫ 1

wcash

(
swcash + βπππσ

(
x
√
x− (x− wcash)

√
x− wcash

))
· xη−1 dx

= ηswcash

∫ 1

wcash

dx+ ηβπππσ

∫ 1

wcash

xη+0.5 dx−

ηβπππσ

∫ 1

wcash

(x− wcash)
1.5
xη−1 dx (175)
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If we denote by I (wcash; η) the integral
∫ 1

wcash
(x− wcash)

1.5
xη−1 dx, we obtain:

E [LGasset (wcash)] = ηs ·wcash (1− wcash)+
2ηβπππσ

2η + 3
·
(

1− wη+1.5
cash

)
−ηβπππσ ·I (wcash; η) (176)

where41:

I (wcash; η) =
2

5
(1− wcash)

5/2
wη−1cash 2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
(177)

We deduce that:

E [LG (wcash)] =
η (s − c)

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
+

ηs · wcash (1− wcash)− ηβπππσ · I (wcash; η) (178)

Approximate formula We have:

E [LGcash (wcash)] =

∫ wcash

0

T Casset (x) dF (x)

= η

∫ wcash

0

x ·
(

s + βπππσ
√
x
)
· xη−1 dx

= ηs
∫ wcash

0

xη dx+ ηβπππσ

∫ wcash

0

xη+0.5 dx

=
ηs

η + 1
· wη+1

cash +
2ηβπππσ

2η + 3
· wη+1.5

cash (179)

and:

E [LGasset (wcash)] = T Casset (wcash) · (1− F (wcash))

= wcash · (s + βπππσ
√
wcash) · (1− wηcash)

= s · wcash − s · wη+1
cash + βπππσ · w1.5

cash − βπππσ · w
η+1.5
cash (180)

We deduce that:

E [LG (wcash)] = s · wcash + βπππσ · w1.5
cash −

s
η + 1

· wη+1
cash −

3βπππσ

2η + 3
· wη+1.5

cash (181)

B.2.8 Closed-form formula of Example 6 on page 240

We have:

T Casset (x) = x · s︸︷︷︸+

linear

κβπππσ · x+
√
x+︸ ︷︷ ︸

constant

+ βπππσ ·
(
x− κx+

)√
x− κx+︸ ︷︷ ︸

nonlinear

:= g
(
x;κ, x+

)
(182)

where:

κ := κ
(
x;x+

)
=
⌊ x
x+

⌋
(183)

41See Equation (201) in Appendix B.3 on page 278.
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We recall that T Ccash (x) = x · c and F (x) = xη. By denoting κcash = κ (wcash;x+), we
obtain:

E [LGcash (wcash)] =

∫ wcash

0

T Casset (x) dF (x)

=

∫ x+

0

T Casset (x) dF (x) +

∫ 2x+

x+

T Casset (x) dF (x) + . . .+∫ κcashx
+

(κcash−1)x+

T Casset (x) dF (x) +

∫ wcash

κcashx+

T Casset (x) dF (x)

=

κcash∑
k=1

∫ kx+

(k−1)x+

T Casset (x) dF (x) +

∫ wcash

κcashx+

T Casset (x) dF (x)

(184)

We have the following cases:

T Casset (x) =

{
g (x; k − 1, x+) if x ∈ [(k − 1)x+, kx+]
g (x;κcash, x

+) x ∈ [κcashx
+, wcash]

(185)

We deduce that:

(∗) =

∫ kx+

(k−1)x+

T Casset (x) dF (x)

= ηs
∫ kx+

(k−1)x+

xη dx+

η (k − 1)βπππσx
+
√
x+
∫ kx+

(k−1)x+

xη−1 dx+

ηβπππσ

∫ kx+

(k−1)x+

(
x− (k − 1)x+

)√
x− (k − 1)x+xη−1 dx (186)

and:

(∗) =

∫ wcash

κcashx+

T Casset (x) dF (x)

= ηs
∫ wcash

κcashx+

xη dx+

ηκcashβπππσx
+
√
x+
∫ wcash

κcashx+

xη−1 dx+

ηβπππσ

∫ wcash

κcashx+

(
x− κcashx+

)√
x− κcashx+xη−1 dx (187)

For the first and second terms, we have:∫ b

a

xη dx =

[
xη+1

η + 1

]b
a

=
bη+1 − aη+1

η + 1
(188)
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and: ∫ b

a

xη−1 dx =
bη − aη

η
(189)

We also notice that:
κcash∑
k=1

(kx+)
η+1 − ((k − 1)x+)

η+1

η + 1
+
wη+1

cash − (κcashx
+)
η+1

η + 1
=
wη+1

cash

η + 1
(190)

We note:

H
(
wcash, κcash, x

+
)

=

κcash∑
k=1

(k − 1)
(
kx+

)η − ((k − 1)x+
)η

+ κcash
(
wηcash −

(
κcashx

+
)η)

For the third term, we have:∫ b

a

(x− a)
√
x− axη−1 dx = I (a, b; η) (191)

Except for some specific values42 of η, this term has no closed-form formula and we use a
numerical solution. We conclude that:

E [LGcash (wcash)] = ηs
wη+1

cash

η + 1
+

βπππσx
+
√
x+H

(
wcash, κcash, x

+
)

+ (192)

ηβπππσ

(
κcash∑
k=1

I
(
(k − 1)x+, kx+; η

)
+ I

(
κcashx

+, wcash; η
))

(193)

The computation of E [LGasset (wcash)] gives:

E [LGasset (wcash)] = T Casset (wcash) · (1− F (wcash))

= s
(
wcash − wη+1

cash

)
+ κcashβπππσx

+
√
x+ (1− wηcash) +

βπππσ ·
(
wcash − κcashx+

)√
wcash − κcashx+ · (1− wηcash) (194)

We conclude that:

E [LG (wcash)] = ηs
wη+1

cash

η + 1
+ βπππσx

+
√
x+H

(
wcash, κcash, x

+
)

+

ηβπππσ

(
κcash∑
k=1

I
(
(k − 1)x+, kx+; η

)
+ I

(
κcashx

+, wcash; η
))

+

s
(
wcash − wη+1

cash

)
+ κcashβπππσx

+
√
x+ (1− wηcash) +

βπππσ ·
(
wcash − κcashx+

)√
wcash − κcashx+ · (1− wηcash) (195)

B.3 Computation of the integral function I (wcash; η)

We consider the following integral:

I (wcash; η) =

∫ 1

wcash

(x− wcash)
3/2

xη−1 dx (196)

where η > 0 and wcash ∈ [0, 1].

42See Appendix B.4 on page 280.
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B.3.1 Preliminary result

Let B (a, b) =
∫ 1

0
xa−1 (1− x)

b−1
dx and 2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
be the beta func-

tion and the ordinary hypergeometric function43. If c > b > 0, we know that:

B (b, c− b) 2F1 (a, b; c; z) =

∫ 1

0

xb−1 (1− x)
c−b−1

(1− zx)
−a

dx (197)

If c = 1 + b, we deduce that:∫ 1

0

xb−1 (1− zx)
−a

dx = B (b, 1) 2F1 (a, b; c; z)

=
2F1 (a, b; c; z)

b
(198)

because:

B (b, 1) =

∫ 1

0

xb−1 dx

=

[
xb

b

]1
0

=
1

b
(199)

B.3.2 Main result

We consider the change of variable:

y =
x− wcash

1− wcash
(200)

We deduce that:

I (wcash; η) =

∫ 1

0

((1− wcash) y)
3/2

(wcash + (1− wcash) y)
η−1

(1− wcash) dy

= (1− wcash)
5/2

wη−1cash

∫ 1

0

y3/2
(

1 +

(
1− wcash

wcash

)
y

)η−1
dy

= (1− wcash)
5/2

wη−1cashB

(
5

2
, 1

)
2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
=

2

5
(1− wcash)

5/2
wη−1cash 2F1

(
1− η, 5

2
;

7

2
;
wcash − 1

wcash

)
(201)

Remark 13 From a theoretical point of view, Equation (201) is only valid for 0.5 < wcash ≤

1 if we adopt the definition 2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
because we must have |z| < 1.

Nevertheless, we can show that Equation (197) remains valid for |z| ≥ 1 if we consider that
the hypergeometric function is the solution of Euler’s hypergeometric differential equation.
In this case, we can use Equation (201) for 0 ≤ wcash ≤ 0.5, but we must be careful about
the numerical implementation of the hypergeometric function 2F1 (a, b; c; z).

43(a)n is the rising Pochhammer symbol.
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B.3.3 Special cases

Specific values of η If η = 0.5, we have:

I (wcash; 0.5) =

∫ 1

wcash

(x− wcash)
3/2

√
x

dx

=
(4− 10wcash)

√
1− wcash + 3w2

cash

(
2 ln

(
1 +
√

1− wcash

)
− ln (wcash)

)
8

(202)

If η = 1, we obtain:

I (wcash; 1) =

∫ 1

wcash

(x− wcash)
3/2

dx

=

[
(x− wcash)

5/2

2.5

]1
wcash

=
2

5
(1− wcash)

5/2
(203)

We verify that:

2F1

(
1− 1,

5

2
,

7

2
; z

)
= 1 (204)

If η = 2, we have:

I (wcash; 2) =

∫ 1

wcash

(x− wcash)
3/2

xdx (205)

Let y = (x− wcash)
3/2

, we have x = y2/3 + wcash and dx =
2

3
y−1/3 dy. It follows that:

I (wcash; 2) =

∫ (1−wcash)
3/2

0

y
(
y2/3 + wcash

) 2

3
y−1/3 dy

=
2

3

∫ (1−wcash)
3/2

0

(
y4/3 + wcashy

2/3
)

dy

=
2

3

[
3y7/3

7
+ 3wcash

y5/3

5

](1−wcash)
3/2

0

=
2 (1− wcash)

7/2

7
+

2wcash (1− wcash)
5/2

5

=
2

5
(1− wcash)

5/2
wcash

(
1 +

5

7

(
1− wcash

wcash

))
(206)

We verify that:

2F1

(
1− 2,

5

2
,

7

2
; z

)
= 1− 5

7
z (207)

If η is integer, 2F1

(
1− η, 52 ,

7
2 ; z
)

is a polynomial function. The analytical solution
can be computed using the Wolfram’s alpha platform44 and the hypergeometric function

44https://www.wolframalpha.com
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Hypergeometric2F1[1-eta,5/2,7/2,z] by replacing eta with the corresponding integer.
For instance, we have:

2F1

(
1− 3,

5

2
,

7

2
; z

)
=

35z2 − 90z + 63

63
(208)

and:

2F1

(
1− 3,

5

2
,

7

2
; z

)
=
−105z3 + 385z2 − 495z + 231

231
(209)

It is then straightforward to find the analytical solution of I (wcash; η) by using Equation

(201) and replacing z by
wcash − 1

wcash
.

Specific values of wcash If wcash = 0, we have:

I (0; η) =
2

2η + 3
(210)

We deduce that:
E [LGasset (0)] = 0 (211)

If wcash = 0.5, we have:

2F1

(
1− η, 5

2
,

7

2
; 1

)
=

15
√
πΓ (η)

8Γ
(
η + 5

2

) (212)

and:

I (0.5; η) =
3
√
πΓ (η)

2η+7/2Γ
(
η + 5

2

) (213)

We deduce that:

E [LGasset (0.5)] =
ηs
4

+ ηβπππσ

(
2

2η + 3

(
1− 1

2

η+1.5)
− 3

√
πΓ (η)

2η+7/2Γ
(
η + 5

2

)) (214)

If wcash = 1, we have:

2F1

(
1− η, 5

2
,

7

2
; 0

)
= 1 (215)

and:
I (1; η) = 0 (216)

We deduce that:
E [LGasset (1)] = 0 (217)

B.4 Computation of I (a, b; η) in some special cases

Using the results derived previously, we deduce that:

I (a, b; 1) =
2

5
(b− a)

2.5

I (a, b; 2) =
2

35
(b− a)

2.5
(2a+ 5b)

I (a, b; 3) =
2

315
(b− a)

2.5 (
8a2 + 20ab+ 35b2

)
(218)
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For η = 0.5, we have:

I (a, b; 0.5) =
1

4

√
b− a

(
(2b− 5a)

√
b− 3ψ (a, b)

)
(219)

where:

ψ (a, b) =

 Re

(
a2 (a− b)−0.5 sin−1

√
b

a

)
if a 6= 0

0 if a = 0

(220)
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C Additional results

C.1 Tables

Table 12: Number of liquidated shares qi (h) (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 20 000 20 000 10 000 20 000 15 100 2 000 360
2 20 000 20 000 80 20 000 0 1 500 0
3 20 000 20 000 0 100 0 0 0
4 20 000 20 0 0 0 0 0
5 7 020 0 0 0 0 0 0
6 0 0 0 0 0 0 0

Total 87 020 60 020 10 080 40 100 15 100 3 500 360

Table 13: Weights wi (q;h) in % (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 11.95 16.52 32.77 13.70 16.93 4.28 3.84
2 16.41 22.68 22.68 18.81 11.63 5.15 2.64
3 20.59 28.45 18.96 15.77 9.72 4.30 2.21
4 25.68 26.63 17.74 14.75 9.10 4.03 2.06
5 27.32 26.04 17.35 14.43 8.90 3.94 2.02
6 27.32 26.04 17.35 14.43 8.90 3.94 2.02

Table 14: Weights wi (ω − q;h) in % (Example 1, naive pro-rata liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
0 27.32 26.04 17.35 14.43 8.90 3.94 2.02
1 29.13 27.16 15.54 14.51 7.95 3.90 1.80
2 29.29 26.65 16.39 13.64 8.40 3.72 1.91
3 28.83 25.50 16.99 14.13 8.71 3.86 1.98
4 27.72 25.90 17.26 14.35 8.85 3.92 2.01
5 27.32 26.04 17.35 14.43 8.90 3.94 2.02
6 27.32 26.04 17.35 14.43 8.90 3.94 2.02
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Table 15: Number of liquidated shares qi (h) (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 20 000 20 000 10 000 20 000 20 000 2 000 1 000
2 20 000 20 000 10 000 20 000 20 000 2 000 800
3 20 000 20 000 10 000 20 000 20 000 2 000 0
4 20 000 20 000 10 000 20 000 15 500 2 000 0
5 20 000 20 000 10 000 20 000 0 2 000 0
6 20 000 20 000 400 20 000 0 2 000 0
7 20 000 20 000 0 20 000 0 2 000 0
8 20 000 20 000 0 20 000 0 2 000 0
9 20 000 20 000 0 20 000 0 1 500 0

10 20 000 20 000 0 20 000 0 0 0
11 20 000 20 000 0 500 0 0 0
12 20 000 20 000 0 0 0 0 0
13 20 000 20 000 0 0 0 0 0
14 20 000 20 000 0 0 0 0 0
15 20 000 20 000 0 0 0 0 0
16 20 000 100 0 0 0 0 0
17 20 000 0 0 0 0 0 0
18 20 000 0 0 0 0 0 0
19 20 000 0 0 0 0 0 0
20 20 000 0 0 0 0 0 0
21 20 000 0 0 0 0 0 0
22 15 100 0 0 0 0 0 0
23 0 0 0 0 0 0 0

Total 435 100 300 100 50 400 200 500 75 500 17 500 1 800

Table 16: Weights wi (q;h) in % (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
1 10.64 14.71 29.17 12.20 19.97 3.81 9.50
2 10.74 14.85 29.45 12.31 20.16 3.85 8.63
3 11.06 15.29 30.33 12.68 20.76 3.96 5.92
4 11.36 15.70 31.15 13.02 20.12 4.07 4.56
5 11.95 16.52 32.77 13.70 16.93 4.28 3.84
6 13.09 18.09 30.15 15.01 15.46 4.69 3.51

Table 17: Weights wi (ω − q;h) in % (Example 3, waterfall liquidation)

h
Asset

#1 #2 #3 #4 #5 #6 #7
0 27.32 26.04 17.35 14.43 8.90 3.94 2.02
1 29.55 27.56 15.77 14.73 7.41 3.96 1.02
2 32.38 29.46 13.66 15.07 5.46 3.97 0.00
3 35.72 31.60 10.65 15.33 2.77 3.93 0.00
4 39.97 34.24 6.42 15.54 0.00 3.83 0.00
5 44.33 36.58 0.29 15.24 0.00 3.56 0.00
6 46.61 36.82 0.00 13.65 0.00 2.92 0.00
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C.2 Figures

Figure 20: Calibration of the drawdown function (S&P 500 index, 1990-2020, historical
value-at-risk)
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Figure 21: Liquidity time in days (naive pro-rata liquidation)
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Figure 22: Liquidity time in days (naive pro-rata liquidation, illiquid exposure)
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Figure 23: Liquidity time in days (waterfall liquidation)
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Figure 24: Liquidity time in days (waterfall liquidation, illiquid exposure)
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Figure 25: Impact of the cash buffer on the portfolio return (µasset = 10%, σasset = 20%
and ρcash,asset = 0%)
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Figure 26: Impact of the cash buffer on the portfolio return (µasset = 3%, σasset = 5% and
ρcash,asset = 20%)
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Figure 27: Probability distribution function of the redemption rate R (Example 5, page
238)
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Figure 28: Exact vs. approximate solution of E [LGcash (wcash)] and E [LGasset (wcash)] in
bps (Example 5, page 238)

0 20 40 60 80 100

0

10

20

30

40

50

0 20 40 60 80 100

0

10

20

30

40

50

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

288



Liquidity Stress Testing in Asset Management

Figure 29: Transaction cost function (101) in bps with x+ = 30%
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Figure 30: Transaction cost function (101) in bps with x+ = 50%
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Figure 31: Approximation error function Error (wcash;x+) in bps
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Figure 32: Approximation of the liquidity gains E [LGcash (wcash)] and E [LGasset (wcash)] in
bps (Example 6, page 240)
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Figure 33: Comparison of exact and approximate formulas in bps when x+ = 10% (Example
6, page 240)
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Figure 34: Optimal cash buffer (µasset − µcash = 2.5% and λ = 0)
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Figure 35: Optimal cash buffer (µasset − µcash = 1%, λ = 0.25 and σasset = 20%)
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Figure 36: Optimal cash buffer (µasset − µcash = 1%, λ = 2 and σasset = 20%)
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Figure 37: Break-even risk premium % (wcash) in % (x+ = 10%, λ = 0)
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Figure 38: Break-even risk premium % (wcash) in % (x+ = 100%, λ = 0)
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Figure 39: Decision rule for implementing a cash buffer of 10% (x+ = 10%, λ = 0)

Figure 40: Decision rule for implementing a cash buffer of 10% (x+ = 100%, λ = 0)
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Abstract

This article is part of a comprehensive research project on liquidity risk in asset
management, which can be divided into three dimensions. The first dimension covers
liability liquidity risk (or funding liquidity) modeling, the second dimension focuses on
asset liquidity risk (or market liquidity) modeling, and the third dimension considers
the asset-liability management of the liquidity gap risk (or asset-liability matching).
The purpose of this research is to propose a methodological and practical framework
in order to perform liquidity stress testing programs, which comply with regulatory
guidelines (ESMA, 2019a, 2020a) and are useful for fund managers. The review of
the academic literature and professional research studies shows that there is a lack of
standardized and analytical models. The aim of this research project is then to fill the
gap with the goal of developing mathematical and statistical approaches, and providing
appropriate answers.

The three dimensions have been developed in the published working papers: (1)
modeling the liability liquidity risk (Roncalli et al., 2021a), (2) modeling the asset liq-
uidity risk (Roncalli et al., 2021b) and (3) managing the asset-liability liquidity risk
(Roncalli, 2021c). This fourth working paper provides three examples and the com-
prehensive details to compute the redemption coverage ratio, implement reverse stress
testing and estimate the liquidation cost of the redemption portfolio. The portfolios
have been chosen in order to cover the main asset classes: large-cap stocks, small-
cap stocks, sovereign bonds and corporate bonds. Since we provide the data in the
appendix, these basic examples are easily reproducible and may help quantitative an-
alysts to understand the different steps to implement liquidity stress testing in asset
management.

Keywords: liquidity risk, stress testing, asset-liability management, redemption coverage
ratio, reverse stress testing, transaction cost, reproducible research, knowledge transfer.

JEL classification: C02, G32.
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1 Introduction

Since September 2020, the European Securities and Markets Authority (ESMA) has required
asset managers to adopt a liquidity stress testing (LST) policy for their investment funds
(ESMA, 2020a). More precisely, each asset manager must assess the liquidity risk factors
across their funds in order to ensure that stress testing is tailored to the liquidity risk
profile of each fund. The guidelines are described in two ESMA publications (ESMA, 2019a,
2020a). However, contrary to the banking regulation on liquidity risk, those regulatory texts
do not contain any methodological aspects1. Even though they are complemented by two
other ESMA publications (ESMA, 2019b, 2020b) and some IMF FSAP analysis (IMF, 2017,
2020), the absence of standardized models and parameter values can be a major hurdle for
implementing LST policies, especially for small asset managers2. Certainly, this situation
can be explained by the lack of maturity of this topic in the asset management industry.

In April 2020, we launched an ambitious research project in order to develop quantita-
tive models and provide practical solutions for implementing LST programs. This research
project has been built around three dimensions: liability liquidity risk, asset liquidity risk
and asset-liability risk management. It resulted in three publications, each one considering
a specific dimension: (1) modeling the liability liquidity risk (Roncalli et al., 2021a), (2)
modeling the asset liquidity risk (Roncalli et al., 2021b) and (3) managing the asset-liability
liquidity risk (Roncalli, 2021c). The discussions we had with the asset management industry
show that these working papers may be viewed as too elaborate. Therefore, we have decided
to complement them with a fourth working paper, which is a step-by-step practical guide.
This working paper is equivalent to the publication of Bouveret (2017), but our research is
reproducible since all the data are provided and described in the appendix.

In order to be concise and simple, we have only focused on three LST measures or tools.
The first one is the redemption coverage ratio, which can be computed using a time to
liquidation (TTL) approach or a high-quality liquid assets (HQLA) approach. The first
approach requires us to define a redemption portfolio and a liquidation policy, whereas the
second one is based on the concept of cash conversion factor. For the latter approach, we
can use the figures provided by the Basel Committee or postulate a parametric function.
The second tool or the reverse stress testing (RST) defines two measures: the liability
RST scenario and the asset RST scenario. Finally, the third measure is the liquidity cost
associated with the redemption scenario. For that, we need to specify the unit transaction
cost function and combine it with the liquidation policy. Moreover, analyzing the redemption
cost helps to determine the liquidity risk contribution of each asset.

This paper is organized as follows. Section Two deals with equity portfolios. Using a e1
bn investment in large-cap stocks, we show how to compute the redemption coverage ratio
and implement reverse stress testing. Then, we conduct a transaction cost analysis in order
to calculate the liquidation cost of the redemption portfolio. Using a second portfolio, we
show how the transaction cost formulas are impacted by small-cap stocks. We also illustrate
how several statistics change when we consider an asset-liability stress test scenario instead
of a normal scenario. In Section Three, we do the same analysis with a bond portfolio. In
particular, we highlight the differences between stock and bond portfolios. Finally, Section
Four offers some concluding remarks.

1For instance, the redemption coverage ratio (RCR) is the main tool of LST programs. However, it
is referred to only twice. First, ESMA defines it as: “a measurement of the ability of a fund’s assets to
meet funding obligations arising from the liabilities side of the balance sheet, such as a redemption shock”
(ESMA-2020a, page 7). Second, ESMA states that “an outcome of combined asset and liability LST may
be a comparable metric or score, for example based on the RCR” (ESMA-2020a, page 20).

2However, the research of Bouveret (2017) contains the basics of liquidity stress testing for investment
funds and can be used as a beginner’s guide.
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2 The case of equity portfolios

We consider the equity portfolio described in Table 13 on page 322. This portfolio corre-
sponds to a e1 bn investment3 in the Eurostoxx 50 index at the end of October 2021. For
each stock i, we have the number of shares ωi held by the portfolio, the price Pi, the bid
and ask quotes P bid

i and P ask
i , the annualized volatility σi and the current daily volume vi.

2.1 Redemption coverage ratio

2.1.1 Liquidation ratio

Let q+i be the maximum number of shares that can be sold during a trading day for the
asset i. We note q = (q1, . . . , qn) the redemption portfolio and qi (h) the number of shares
liquidated after h trading days. Following Roncalli et al. (2021b, Equation (22), page 14),
we have:

qi (h) = min

(qi − h−1∑
k=0

qi (k)

)+

, q+i

 (1)

where qi (0) = 0. The liquidation ratio LR (q;h) is then the proportion of the redemption
scenario q that is liquidated after h trading days (Roncalli et al., 2021b, Equation (23), page
14):

LR (q;h) =

∑n
i=1

∑h
k=1 qi (k) · Pi∑n
i=1 qi · Pi

(2)

where Pi is the price of the asset i.

We consider the vertical slicing approach (or pro-rata liquidation). We deduce that the
redemption portfolio is defined as (Roncalli, 2021c, page 9):

qi = R · ωi (3)

The liquidation policy is given by (Roncalli et al., 2021b, Equation (9), page 4):

q+i = x+i · vi (4)

where x+i is the trading limit expressed in %. In the sequel, we assume that x+i = 10%,
which is a standard figure. In Table 1, we report the values of qi, vi, q

+
i and qi (h). We

observe that we need three trading days to liquidate the redemption portfolio when the
redemption shock R is set to 80%. In fact, most exposures are liquidated in two days, but
two stocks require three trading days: Flutter Entertainment (i = 24) and Linde (i = 35).
We verify that the mark-to-market value of the liquidated portfolio is equal to the nominal
redemption shock R = R · TNA:

V (q) =

h+∑
h=1

n∑
i=1

qi (h) · Pi = R (5)

where h+ is the liquidation period. In our case, we have R = e799 999 999.60.

3The exact value of the total net assets is equal to:

TNA = V (ω) =

n∑
i=1

ωi · Pi = 999 999 999.50e
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Table 1: Liquidation of the redemption portfolio (TNA = e1 bn, R = 80%, vertical slicing)

i ωi qi vi q+i qi (1) qi (2) qi (3)
∑3
h=1 qi (h)

1 59 106 47 284.8 514 842 51 484.2 47 284.8 0.0 0.0 47 284.8
2 8 883 7 106.4 56 255 5 625.5 5 625.5 1 480.9 0.0 7 106.4
3 150 027 120 021.6 629 509 62 950.9 62 950.9 57 070.7 0.0 120 021.6
4 184 310 147 448.0 1 316 600 131 660.0 131 660.0 15 788.0 0.0 147 448.0
5 130 520 104 416.0 750 684 75 068.4 75 068.4 29 347.6 0.0 104 416.0
6 268 123 214 498.4 1 736 372 173 637.2 173 637.2 40 861.2 0.0 214 498.4
7 131 520 105 216.0 754 901 75 490.1 75 490.1 29 725.9 0.0 105 216.0
8 651 421 521 136.8 4 358 304 435 830.4 435 830.4 85 306.4 0.0 521 136.8
9 3 192 430 2 553 944.0 54 130 721 5 413 072.1 2 553 944.0 0.0 0.0 2 553 944.0

10 5 544 072 4 435 257.6 72 371 040 7 237 104.0 4 435 257.6 0.0 0.0 4 435 257.6
11 242 317 193 853.6 2 473 040 247 304.0 193 853.6 0.0 0.0 193 853.6
12 181 800 145 440.0 2 444 130 244 413.0 145 440.0 0.0 0.0 145 440.0
13 136 334 109 067.2 1 183 053 118 305.3 109 067.2 0.0 0.0 109 067.2
14 365 067 292 053.6 2 390 614 239 061.4 239 061.4 52 992.2 0.0 292 053.6
15 251 719 201 375.2 1 434 050 143 405.0 143 405.0 57 970.2 0.0 201 375.2
16 265 762 212 609.6 2 672 846 267 284.6 212 609.6 0.0 0.0 212 609.6
17 206 041 164 832.8 1 579 517 157 951.7 157 951.7 6 881.1 0.0 164 832.8
18 60 148 48 118.4 339 768 33 976.8 33 976.8 14 141.6 0.0 48 118.4
19 311 879 249 503.2 2 536 147 253 614.7 249 503.2 0.0 0.0 249 503.2
20 1 026 503 821 202.4 9 225 311 922 531.1 821 202.4 0.0 0.0 821 202.4
21 2 459 244 1 967 395.2 30 518 046 3 051 804.6 1 967 395.2 0.0 0.0 1 967 395.2
22 795 234 636 187.2 19 419 467 1 941 946.7 636 187.2 0.0 0.0 636 187.2
23 95 262 76 209.6 491 647 49 164.7 49 164.7 27 044.9 0.0 76 209.6
24 55 520 44 416.0 212 501 21 250.1 21 250.1 21 250.1 1 915.8 44 416.0
25 1 840 196 1 472 156.8 14 316 692 1 431 669.2 1 431 669.2 40 487.6 0.0 1 472 156.8
26 351 837 281 469.6 7 543 014 754 301.4 281 469.6 0.0 0.0 281 469.6
27 413 417 330 733.6 3 643 730 364 373.0 330 733.6 0.0 0.0 330 733.6
28 1 235 905 988 724.0 15 954 487 1 595 448.7 988 724.0 0.0 0.0 988 724.0
29 5 774 696 4 619 756.8 106 942 206 10 694 220.6 4 619 756.8 0.0 0.0 4 619 756.8
30 23 113 18 490.4 204 628 20 462.8 18 490.4 0.0 0.0 18 490.4
31 161 807 129 445.6 786 412 78 641.2 78 641.2 50 804.4 0.0 129 445.6
32 261 645 209 316.0 2 285 287 228 528.7 209 316.0 0.0 0.0 209 316.0
33 290 422 232 337.6 2 489 971 248 997.1 232 337.6 0.0 0.0 232 337.6
34 76 637 61 309.6 372 415 37 241.5 37 241.5 24 068.1 0.0 61 309.6
35 162 956 130 364.8 578 973 57 897.3 57 897.3 57 897.3 14 570.2 130 364.8
36 83 427 66 741.6 364 566 36 456.6 36 456.6 30 285.0 0.0 66 741.6
37 44 351 35 480.8 256 421 25 642.1 25 642.1 9 838.7 0.0 35 480.8
38 64 954 51 963.2 363 103 36 310.3 36 310.3 15 652.9 0.0 51 963.2
39 282 801 226 240.8 2 135 693 213 569.3 213 569.3 12 671.5 0.0 226 240.8
40 120 062 96 049.6 794 444 79 444.4 79 444.4 16 605.2 0.0 96 049.6
41 362 506 290 004.8 1 551 395 155 139.5 155 139.5 34 865.3 0.0 290 004.8
42 345 779 276 623.2 1 859 400 185 940.0 185 940.0 90 683.2 0.0 276 623.2
43 180 140 144 112.0 818 822 81 882.2 81 882.2 62 229.8 0.0 144 112.0
44 237 952 190 361.6 1 136 151 113 615.1 113 615.1 76 746.5 0.0 190 361.6
45 660 350 528 280.0 10 497 975 1 049 797.5 528 280.0 0.0 0.0 528 280.0
46 835 885 668 708.0 6 596 020 659 602.0 659 602.0 9 106.0 0.0 668 708.0
47 247 964 198 371.2 1 943 066 194 306.6 194 306.6 4 064.6 0.0 198 371.2
48 189 196 151 356.8 912 539 91 253.9 91 253.9 60 102.9 0.0 151 356.8
49 57 954 46 363.2 1 071 749 107 174.9 46 363.2 0.0 0.0 46 363.2
50 163 680 130 944.0 976 446 97 644.6 97 644.6 33 299.4 0.0 130 944.0
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The liquidation contribution of the trading day h is the proportion of the redemption
portfolio liquidated on day h:

LC (q;h) =

∑n
i=1 qi (h) · Pi∑n
i=1 qi · Pi

(6)

By construction, we verify that the sum of liquidation contributions is equal to the liquida-
tion ratio:

LR (q;h) =

h∑
k=1

LC (q; k) (7)

In Table 2, we report the liquidation contribution LC (q;h) and the liquidation ratio LR (q;h)
for different values of the redemption rate. When R is equal to 90%, we liquidate 72.41%
the first day, 26.06% the second day and 1.53% the third day.

Table 2: Liquidation ratio in % (TNA = e1 bn, vertical slicing)

R 5% 10% 25% 50% 75% 90%
LC (q; 1) 100.00 100.00 100.00 96.43 81.31 72.41
LC (q; 2) 0.00 0.00 0.00 3.57 18.46 26.06
LC (q; 3) 0.00 0.00 0.00 0.00 0.23 1.53
LR (q; 1) 100.00 100.00 100.00 96.43 81.31 72.41
LR (q; 2) 100.00 100.00 100.00 100.00 99.77 98.47
LR (q; 3) 100.00 100.00 100.00 100.00 100.00 100.00

The liquidity risk profile depends on the size of the redemption portfolio. For instance,
we can consider individual investment funds, whose total net assets are lower than $1 bn.
On the contrary, if we consider the largest asset managers, their aggregate exposure to the
stocks of the Eurostoxx 50 index is greater than $1 bn. In Figure 13 on page 334, we report
the liquidation ratio4 when the total net assets are respectively equal to 1, 5, 10 and 20 bn.
If we consider a redemption rate of 10%, we obtain the results given in Figure 1 for different
time horizons (one day, two days and one week). For instance, we obtain LR (q; 1) = 37.43%,
LR (q; 2) = 66.91% and LR (q; 1) = 99.47% when the total net assets are equal to e20 bn.

From the liquidation ratio, we can compute the liquidation time (Roncalli et al., 2021b,
page 18):

LT (q; p) = LR−1 (q; p)

= {inf h : LR (q;h) ≥ p} (8)

The liquidation period h+ is equal to LT (q; 1). It measures the number of days required to
liquidate 100% of the redemption portfolio. In practice, the redemption portfolio can have
some small illiquid exposures on small-cap stocks. Therefore, it is better to define h+ as the
99% quantile of the liquidation ratio:

h+ = LR−1 (q; 99%) (9)

In Figure 2, we report the computation of the liquidation ratio for the previous example.

4For that, we scale the original portfolio (ω1, . . . , ωn) by a factor of m where m is respectively equal to
1, 5, 10 and 20.
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Figure 1: Liquidation ratio LR (q;h) in % when the redemption rate is equal to 10%
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Figure 2: Liquidation time h+ = LR−1 (q; 99%) in number of trading days
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2.1.2 Time to liquidation approach

We now turn to the computation of the redemption coverage ratio. Following Roncalli
(2021c, Equation (12), page 6), we have:

RCR (h) =
LR (q;h) · V (q)

R · V (ω)
(10)

where V (q) =
∑n
i=1 qi · Pi and V (ω) =

∑n
i=1 ωi · Pi = TNA. The liquidity shortfall is the

amount of additional assets to be sold to satisfy the redemption. Its relative value (with
respect to the total net assets) is equal to (Roncalli, 2021c, Equation (9), page 6):

LS (h) = R ·max (0, 1− RCR (h)) (11)

As noticed by Roncalli (2021c), the redemption coverage ratio is exactly equal to the liqui-
dation ratio when the redemption shock R = R ·TNA is equal to the mark-to-market V (q)
of the redemption portfolio. The reason is that the redemption portfolio is defined using the
vertical slicing and its value is exactly equal to the redemption portfolio (Roncalli, 2021c,
page 9). Therefore, in the case of the naive vertical slicing approach, we always have:

q = R · ω =⇒ RCR (h) ≤ 1 (12)

It is obvious that the RCR cannot be computed with the naive vertical slicing approach.
It is better to consider the waterfall approach: q = ω. In this case, we use the following
formula (Roncalli, 2021c, Equations (7) and (8), page 6):

RCR (h) =

h∑
k=1

∑n
i=1 ωi (k) · Pi
R · TNA

=
1

R

h∑
k=1

∑n
i=1 ωi (k) · Pi∑n
i=1 ωi · Pi

(13)

In Table 3, we report the redemption coverage ratio for different redemption rate values
when the total net assets are equal to e1 bn. When the liquidation approach corresponds
to the naive vertical slicing, we obtain the same figures as the liquidation ratio (see Table 2
on page 301). When we use the waterfall approach, the RCR is higher. Figure 3 shows the
evolution of the RCR with respect to the TNA. In the case where the redemption rate is
equal to 10%, the RCR is below one when the TNA is larger than 7.6 bn for the one-day time
horizon, 15.1 bn for the two-day time horizon and 37.7 bn for the one-week time horizon.

Table 3: Redemption coverage ratio (TNA = e1 bn)

Redemption rate R 5% 10% 25% 50% 75% 90%
RCR (1) 1.00 1.00 1.00 0.96 0.81 0.72

Vertical slicing RCR (2) 1.00 1.00 1.00 1.00 1.00 0.98
RCR (3) 1.00 1.00 1.00 1.00 1.00 1.00
RCR (1) 13.38 6.69 2.68 1.34 0.89 0.74

Waterfall liquidation RCR (2) 19.29 9.64 3.86 1.93 1.29 1.07
RCR (3) 20.00 10.00 4.00 2.00 1.33 1.11

2.1.3 Impact of the stress test scenario

To compute the redemption coverage ratio in a stress period, we can shock the redemption
rate R and the daily trading volume vi. For the first parameter, we use a larger value
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Figure 3: Redemption coverage ratio when the redemption rate is equal to 10% (waterfall
liquidation)
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R stress for the redemption shock. For the second parameter, we recall that the liquidation
policy is defined as q+i = x+i · vi. Following Roncalli et al. (2021b, page 56), we introduce a
multiplicative parameter mv ≤ 1 so that the liquidation policy in a stress period becomes:

q+i = mv · x+i · vi (14)

We consider the previous equity portfolio. We assume that the redemption rate R is
equal to 5% in a normal period5. Results are given in Table 4. For the stress testing
exercise, we consider a higher redemption rate value (R stress = 20%) and different asset
liquidity scenarios. Results are given in Table 5. For instance, if we assume that the asset
liquidity is reduced by a factor of 2 (mv = 50%), the value of RCRstress (1) is equal to 0.38
for a one-day time horizon and a TNA of e5 bn, while it was equal to 3.02 in a normal
period.

Table 4: Redemption coverage ratio in a normal period (R = 5%, waterfall liquidation)

TNA e1 bn e5 bn e10 bn e20 bn
h = 1 13.38 3.02 1.51 0.75
h = 2 19.29 6.04 3.02 1.51
h = 5 20.00 13.38 7.49 3.77

Remark 1 We can break down the impact of the stress test scenario by distinguishing the
effect of the redemption shock and the impact of the asset liquidity.

5This figure is far overestimated when it concerns normal market periods.
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Table 5: Stress testing of the redemption coverage ratio (R stress = 20%, waterfall liquidation)

mv = 1.00 mv = 0.75
TNA e1 bn e5 bn e10 bn e20 bn e1 bn e5 bn e10 bn e20 bn
h = 1 3.35 0.75 0.38 0.19 2.67 0.57 0.28 0.14
h = 2 4.82 1.51 0.75 0.38 4.33 1.13 0.57 0.28
h = 5 5.00 3.35 1.87 0.94 5.00 2.67 1.41 0.71

mv = 0.50 mv = 0.10
TNA e1 bn e5 bn e10 bn e20 bn e1 bn e5 bn e10 bn e20 bn
h = 1 1.87 0.38 0.19 0.09 0.38 0.08 0.04 0.02
h = 2 3.35 0.75 0.38 0.19 0.75 0.15 0.08 0.04
h = 5 4.97 1.87 0.94 0.47 1.87 0.38 0.19 0.09

2.1.4 The case of small-cap portfolios

The previous example may be misleading because we obtain high redemption coverage ratio
figures as we are considering large-cap liquid stocks. In fact, liquidity stress testing makes
more sense when the portfolio contains small- and mid-cap stocks. In Table 14 on page 323,
we consider a second portfolio, which is equally weighted on 20 stocks. Since some stocks
present a low free-float market capitalization, liquidating this portfolio is more challenging.
For instance, 144 trading days are required to liquidate 99% of a e1 bn exposure on this
portfolio6. Therefore, it is unsurprising that we obtained the redemption coverage ratio
values given in Tables 6 and 7. Using the waterfall approach, the redemption coverage ratio
RCRstress (1) is below one for a e1 bn exposure even though the multiplicative factor mv is
equal to 1.

Table 6: Redemption coverage ratio in a normal period (small-cap portfolio, R = 5%,
waterfall liquidation)

TNA e1 bn e2 bn e3 bn e4 bn
h = 1 1.28 0.64 0.43 0.32
h = 2 2.56 1.28 0.85 0.64
h = 5 5.89 3.20 2.13 1.60

Table 7: Stress testing of the redemption coverage ratio (small-cap portfolio, R stress = 20%,
waterfall liquidation)

mv = 1.00 mv = 0.75
TNA e1 bn e2 bn e3 bn e4 bn e1 bn e2 bn e3 bn e4 bn
h = 1 0.32 0.06 0.03 0.02 0.24 0.05 0.02 0.01
h = 2 0.64 0.13 0.06 0.03 0.48 0.10 0.05 0.02
h = 5 1.47 0.32 0.16 0.08 1.17 0.24 0.12 0.06

mv = 0.50 mv = 0.10
TNA e1 bn e2 bn e3 bn e4 bn e1 bn e2 bn e3 bn e4 bn
h = 1 0.16 0.03 0.02 0.01 0.03 0.01 0.00 0.00
h = 2 0.32 0.06 0.03 0.02 0.06 0.01 0.01 0.00
h = 5 0.80 0.16 0.08 0.04 0.16 0.03 0.02 0.01

6Figures 14 and 15 on page 334 show other liquidation statistics.
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2.1.5 HQLA approach

The high-quality liquid assets (HQLA) method is explained in detail in Roncalli (2021c,
Section 2.1.2, pages 13-18). Let CCFk be the cash conversion factor (CCF) of the kth

HQLA class. The redemption coverage ratio is defined as:

RCR (h) =

∑m
k=1 wk · CCFk (h)

R
(15)

where wk is the weight of the kth HQLA class. In the case of the Basel III framework,
CCFk (h) is fixed and does not depend on the time horizon h. In the case of the risk
sensitive framework, Roncalli (2021c) proposed the following formula:

CCFk,j (h) = LFk (h) ·
(

1−DFk

(
h

2

))
· (1− SFk (TNAj ,Hj)) (16)

where LFk (h) ∈ [0, 1] is the liquidity factor, DFk (τh) ∈ [0,MDDk] is the drawdown factor
and SFk ∈ [0, 1] is the specific risk factor associated to the fund j. Following Roncalli
(2021c), we specify these functions as follows:

LFk (h) = min (1.0, λk · h)

DFk (h) = min
(

MDDk, ηk ·
√
h
)

SFk (TNAj ,Hj) = min

ξsizek

(
TNAj

TNA? − 1

)+

+ ξconcentrationk

(√
Hj
H?
− 1

)+

,SF+


(17)

where λk is the selling intensity, MDDk is the maximum drawdown, ηk is the loss intensity,
TNAj is the total net assets and Hj is the Herfindahl index of the fund.

In the Basel framework, the value of CCFk (h) is set to 50%. Concerning the risk
sensitive framework, we assume that λk = 2%, ηk = 5%, MDDk = 50%, ξsizek = 10%,
ξconcentrationk = 25%, TNA? = 1 bn, H? = 2% and SF+ = 0.80. Results are given7 in Figures
4 and 5 when the stressed redemption rate R stress is equal to 20%. We also compare the
HQLA approach with the time-to-liquidation (TTL) approach8.

2.2 Reverse stress testing

According to Roncalli (2021c), reverse stress testing consists in finding the liquidity scenario
such that RCR (h) = RCR− where RCR− is the minimum acceptable level of the redemption
coverage ratio9.

2.2.1 Liability RST scenario

From a liability perspective, reverse stress testing consists in finding the redemption shock
above which the redemption coverage ratio is lower than the minimum acceptable level:

RCR (h) ≤ RCR− ⇔ R ≥ R RST (18)

R RST is computed by solving the non-linear equation:

R RST =
{

R ∈ [0, 1] : RCR (h) = RCR−} (19)

7For the small-cap portfolio, we assume that the selling intensity λk is reduced by 25%, the loss intensity
ηk is increased by 20% and the threshold TNA? is divided by a factor of two.

8The stress multiplier mv is set to 50%.
9A standard value of RCR− is 50%.
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Figure 4: Redemption coverage ratio of the large-cap portfolio (TNA = e1 bn, R stress = 20%
and mv = 50%)
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Figure 5: Redemption coverage ratio of the small-cap portfolio (TNA = e1 bn, R stress = 20%
and mv = 50%)
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In the case where the liquidation portfolio q does not depend on the redemption rate, we
obtain an analytical expression:∑h

k=1

∑n
i=1 qi (k) · Pi

R RST · TNA
= RCR− ⇔ R RST =

∑h
k=1

∑n
i=1 qi (k) · Pi

RCR− ·TNA
(20)

For instance, this solution is valid for the waterfall approach since we have q = ω. However,
the analytical solution cannot be used for the pro-rata liquidation: q = R · ω. In this case,
we must solve the non-linear equation (19).

Table 8 gives the liability RST scenario R RST when the minimum acceptable redemption
coverage ratio is set to 50% and we consider the pro-rata liquidation policy. We notice that
R RST may be greater than one, implying that the size of the fund is too small to experience
a liquidity stress test scenario. In this case, we report the total net assets TNARST =
R RST · TNA such that the non-linear equation RCR (h) = RCR− is satisfied for a 100%
redemption rate. If we consider the large-cap portfolio with mv = 0.50, the reverse stress
testing scenario for the one-day time horizon is R RST = 72.1%. If mv = 1.00, the value of
R is always greater than one. Therefore, the reverse stress testing scenario for the one-day
time horizon is given by the variable TNARST instead of the metric R RST. In our case,
we obtain TNARST = e1.441 bn. Therefore, by assuming a 100% redemption shock, the
size of the fund must be greater than e1.441 bn to breach the stress test scenario. On the
contrary, if we consider the small-cap portfolio, reverse stress testing implies low values of
the redemption rate R RST. For example, if we observe a 50% reduction in the asset liquidity,
a redemption scenario of 4.9% is sufficient to observe a redemption coverage ratio lower than
50% when the time horizon h is set to one trading day.

Table 8: Liability reverse stress testing scenario R RST in % (TNA = e1 bn, pro-rata
liquidation, RCR− = 50%)

Large-cap portfolio Small-cap portfolio
mv 1.00 0.75 0.50 0.10 1.00 0.75 0.50 0.10
h = 1 144.1 108.1 72.1 14.5 9.7 7.3 4.9 1.0
h = 2 288.2 216.2 144.1 28.9 19.3 14.5 9.7 2.0
h = 3 432.3 324.2 216.2 43.3 28.9 21.7 14.5 2.9
h = 4 576.3 432.3 288.2 57.7 38.5 28.9 19.3 3.9
h = 5 720.4 540.3 360.2 72.1 48.1 36.1 24.1 4.9

2.2.2 Asset RST scenario

From an asset perspective, reverse stress testing consists in finding the asset liquidity shock
mv below which the redemption coverage ratio is lower than the minimum acceptable level:

RCR (h) ≤ RCR− ⇔ mv ≤ mRST
v (21)

Since the liquidation policy q+i = mv ·x+i ·vi depends on the value mv, there is no analytical
solution. The numerical solution corresponds then to the root of the non-linear equation{
mv ∈ [0, 1] : RCR (h) = RCR−}.

For the large-cap portfolio, the values taken by mRST
v are very small. This indicates that

the asset liquidity must be dramatically reduced to observe a stress test scenario, which is
not realistic. For instance, in the case where the redemption shock is equal to 10%, the
current liquidity must be reduced by a factor greater than 10 (mRST

v is equal to 0.07 for
h = 1). In the case of the small-cap portfolio, the current liquidity is not enough to liquidate
10% of the total net assets in one day since we have mRST

v = 1.04.
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Table 9: Asset reverse stress testing scenario mRST
v (TNA = e1 bn, pro-rata liquidation,

RCR− = 50%)

Large-cap portfolio Small-cap portfolio
R 5% 10% 20% 50% 5% 10% 20% 50%

h = 1 0.04 0.07 0.14 0.35 0.52 1.04 2.08 5.20
h = 2 0.02 0.04 0.07 0.17 0.26 0.52 1.04 2.60
h = 3 0.01 0.02 0.05 0.12 0.17 0.35 0.69 1.73
h = 4 0.01 0.02 0.04 0.09 0.13 0.26 0.52 1.30
h = 5 0.01 0.01 0.03 0.07 0.11 0.21 0.42 1.04

2.3 Transaction cost analysis

2.3.1 Analytics of the transaction cost function

The cost function corresponds to the square-root-linear model described in Roncalli et al.
(2021b, Section 2.4.2, page 11). Let xi (h) be the participation rate at the trading day h. It
is equal to:

xi (h) =
qi (h)

vi
(22)

where vi is the daily volume. The unit transaction cost function is equal to:

ccci (xi (h)) =


1.25 si + 0.40σi

√
xi (h) if xi (h) ≤ x̃i

1.25 si +
0.40√
x̃i
σixi if x̃i ≤ xi (h) ≤ x+i

+∞ if xi (h) > x+i

(23)

where si is the bid-ask spread, σi is the daily volatility, x+i = 10% and x̃i =
2

3
x+i . We can

break down this unit transaction cost as follows:

ccci (xi (h)) = cccs
i + cccπππi (xi (h)) (24)

where cccs
i is the spread component and cccπππi (xi (h)) is the price impact component. Let Qi =

qi · Pi and Qi (h) = qi (h) · Pi be the nominal value of qi and qi (h). The transaction cost of
the trade associated to qi (h) is therefore equal to:

T Ci (qi (h)) = Qi (h) · ccci (xi (h)) (25)

Again, we have the following decomposition: T Ci (qi (h)) = T Cs
i (qi (h)) + T Cπππi (qi (h))

T Cs
i (qi (h)) = Qi (h) · cccs

i

T Cπππi (qi (h)) = T Ci (qi (h))− T Cs
i

(26)

We can now compute the total and unit costs of the redemption portfolio:

T C (q) =

h+∑
h=1

n∑
i=1

T Ci (qi (h)) (27)

and:

ccc (q) =
T C (q)∑n
i=1 qi · Pi

(28)
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If we are interested in the contribution of the stock i or the trading day h, we have10:

T C (q;h) =

n∑
i=1

T Ci (qi (h)) (31)

and11:

T Ci (qi) =

h+∑
h=1

T Ci (qi (h)) (34)

We consider the redemption portfolio described in Table 1 on page 300. Using the daily
volume, the annualized volatility and the bid-ask quotes given in Table 13 on page 322, we
compute the daily participation rate12 xi (h), the daily volatility13 σi and the (half) bid-ask
spread14 si. Then, we define the spread and price impact component cccs

i and cccπππi (xi (h)) and
we deduce the unit transaction cost ccci (xi (h)). Results are given in Table 16 on page 326.
For example, if we consider the first stock (i = 1), we have x1 (1) = 9.18%, σ1 = 1.59%,
s1 = 0.89 bps, cccs

1 = 1.11 bps, cccπππ1 (x1 (1)) = 22.67 bps and ccc1 (x1 (1)) = 23.78 bps. When
h is equal to 2 or 3, we have ccc1 (x1 (h)) = 0 bps because x1 (h) = 0. Then, we compute
Qi (h) = qi (h) · Pi and deduce T Ci (qi (h)) and T Ci (qi) using Equations (25) and (34).
Results are reported in Table 17 on page 327. The transaction cost to liquidate q1 is equal
to e31 936. Finally, liquidating the redemption portfolio implies a total cost T C (q) of
e1 738 156. This represents a unit transaction cost ccc (q) of 21.73 bps. Table 18 on page 328
also provides the break-down between the spread component T Cs

i (qi) and the price impact
component T Cπππi (qi).

Remark 2 From a trading viewpoint, computing the unit transaction cost ccc (q) makes a lot
of sense because we compare the total transaction cost to the value of the redemption portfolio.
From a liquidity stress testing viewpoint, it is better to normalize the total transaction cost
by the total net assets:

c̃cc (q) =
T C (q)

TNA
(37)

10We have the following decomposition:

T Cs (q;h) =

n∑
i=1

Qi (h) · cccs
i (29)

and:
T Cπππ (q;h) = T C (q;h)− T Cs (q;h) (30)

11We have the following decomposition:

T Cs
i (qi) = Qi · cccs

i (32)

and:
T Cπππi (qi) = T Ci (qi)− T Cs

i (qi) (33)

12We use Equation (22).
13We have:

σi =
σyearly
i√

260
(35)

14We have:

si =
P ask
i − Pbid

i

P ask
i + Pbid

i

(36)
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Indeed, the computation of ccc (q) measures the real impact of the redemption portfolio by
combining the redemption shock and the liquidation cost:

c̃cc (q) =
T C (q)∑n
i=1 ωi · Pi

= R · ccc (q) (38)

Moreover, without the implementation of swing pricing, this is the cost borne by the final
investor. In the example above, we obtain c̃cc (q) = 17.38 bps and ccc (q) = 21.73 bps.

In Figure 6, we report the transaction cost functions T C (q), ccc (q) and c̃cc (q). For each
cost function, we indicate the total value and also the breakdown between the spread and
the price impact. In the last panel, we show the proportion of ccc (q) due to the price impact.
In Figure 7, we illustrate the breakdown per asset when the redemption rate is equal to 5%.

Figure 6: Transaction cost of the large-cap portfolio (TNA = e1 bn)
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2.3.2 The case of small-cap stocks

For small-cap stocks, the only difference concerns the sensitivity coefficients of the unit
transaction cost function. Following Roncalli et al. (2021b, Equation (44), page 40), we
have:

ccci (xi (h)) =


1.40 si + 0.50σi

√
xi (h) if xi (h) ≤ x̃i

1.40 si +
0.50√
x̃i
σixi if x̃i ≤ xi (h) ≤ x+i

+∞ if xi (h) > x+i

(39)

We consider the small-cap portfolio. Figure 8 shows the breakdown per trading day when
we assume that the redemption rate is equal to 5%. Finally, we obtain T C (q) = e147 560.
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Figure 7: Breakdown per asset in e (large-cap portfolio, TNA = e1 bn, R = 5%)
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Figure 8: Breakdown per trading day in e (small-cap portfolio, TNA = e1 bn, R = 5%)
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2.3.3 Stress testing

The transaction cost function remains the same for the stress period, but the three param-
eters si, σi and vi change because we apply shocks to them. Since the stress test scenario is
defined by the triplet (∆s ,∆σ,mv), it follows that Equation (23) becomes:

ccci (xi (h)) =


1.25 (si + ∆s ) + 0.40

(
σi +

∆σ√
260

)
√
xi if xi (h) ≤ x̃i

1.25 (si + ∆s ) +
0.40√
x̃i

(
σi +

∆σ√
260

)
xi if x̃i ≤ xi (h) ≤ x+i

+∞ if xi (h) > x+i

(40)

where:

xi (h) =
qi (h)

mv · vi
(41)

Therefore, a stress test scenario has three impacts: (1) for a given value of qi (h), the
participation rate xi (h) is larger; (2) the transaction cost ccci (xi (h)) is higher because the
participation rate, the bid-ask spread and the volatility are higher; (3) moreover, it takes
more time to liquidate the redemption portfolio since we have q+i = mv · x+i · vi, meaning
that the daily trading limits expressed in number of shares are reduced.

Figure 9: Breakdown per trading day in e (large-cap portfolio, TNA = e1 bn, R = 80%)
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We consider the example described in Section 2.3.1 on page 309. Previously, we found
that the total transaction cost T C (q) was equal to 1 738 156 euros. representing a redemption
transaction cost ccc (q) of 21.73 bps and a portfolio transaction cost c̃cc (q) of 17.38 bps. Let us
assume the following stress test scenario: ∆s = 8 bps, ∆σ = 20% and mv = 0.50. We now
obtain15 T Cstress (q) = 4 124 811 euros, ccc (q) = 51.56 bps and c̃cc (q) = 41.25 bps. In Figure 9,
we compare the breakdown per trading day for the normal and stress cases.

15See Tables 19, 20 and 21 on page 329 for computational details.
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3 The case of bond portfolios

The case of bond portfolios is similar to the case of equity portfolios. This is why we only
focus on the most important differences when doing a liquidity stress testing exercise with
bond portfolios.

3.1 Computing the liquidation portfolio

We define the redemption portfolio by the vector of liquidated bonds q = (q1, . . . , qn).
Nevertheless, in the fixed-income universe, we may prefer to consider nominal values Qi =
qi · Pi instead of real values qi. Therefore, the redemption portfolio is also defined by
Q = (Q1, . . . , Qn). Let Qi (h) be the exposure in the ith bond liquidated after h trading
days. We have:

Qi (h) = min

(Qi − h−1∑
k=0

Qi (k)

)+

, Q+
i

 (42)

where Qi (0) = 0 and Q+
i is the maximum trading limit that can be sold during a trading

day for the bond i. Equation (42) is equivalent to Equation (1) on page 299 because we
have:

qi (h) =
Qi (h)

Pi
(43)

The formulas for LR (q;h), RCR (h) and LS (h) remain the same as previously.

We consider the portfolio described on page 324. It is made up of 11 sovereign bonds and
36 corporate bonds. In Table 15, we report the values of Q+

i . We assume that Q+
i is equal to

$50 mn for US sovereign bonds, $6 mn for senior corporate bonds and $3 mn for non-senior
corporate bonds (e.g. subordinated debt). If we consider a redemption rate equal to 30%,
we obtain the liquidation values Qi (h) given in Table 10. We have LR (q; 1) = 0.9566,
LR (q; 2) = 0.9958 and LR (q; 3) = 1. The redemption portfolio can almost be liquidated
during the first day, since only the exposures on the four subordinated bonds require more
than one day to be sold.

3.2 Computing the redemption coverage ratio

We scale up the portfolio in order to obtain TNA = $10 bn or TNA = $20 bn. Results
are given in Table 11. When the total net assets are equal to $10 bn and the redemption
rate is set to 30%, the redemption coverage ratio RCR (1) is equal to 0.251 if we consider
a pro-rata liquidation or a waterfall liquidation. Therefore, we notice that the liquidation
policy may have no impact on the RCR. The reason lies in the fact that Qi (h) is equal to
Q+
i when the time horizon h is low. This means that the trading limits are reached for all

the bonds. In this case, we cannot use a bond i to liquidate the exposure on the bond j.

Stress testing is implemented by considering a shock on the trading limits:

Qi (h) = min

(Qi − h−1∑
k=0

Qi (k)

)+

,mQ+ ·Q+
i

 (44)

where mQ+ ≤ 1 is the stress parameter of the trading limit Q+
i . For instance, if mv is equal

to 50%, we obtain the right panel in Table 11. We notice the high impact of the stress
parameter mQ+ on the redemption coverage ratio16.

16See Figures 17 and 18 on page 336 for a more visual illustration.
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Table 10: Liquidation of the redemption portfolio (bond portfolio, TNA = $1 bn, R = 30%,
vertical slicing)

i Qi Q+
i Qi (1) Qi (2) Qi (3)

∑3
h=1Qi (h)

1 16 255 353 50 000 000 16 255 353 0 0 16 255 353
2 12 718 447 50 000 000 12 718 447 0 0 12 718 447
3 12 017 318 50 000 000 12 017 318 0 0 12 017 318
4 13 233 346 50 000 000 13 233 346 0 0 13 233 346
5 12 063 483 50 000 000 12 063 483 0 0 12 063 483
6 11 544 025 50 000 000 11 544 025 0 0 11 544 025
7 21 235 655 50 000 000 21 235 655 0 0 21 235 655
8 20 407 521 50 000 000 20 407 521 0 0 20 407 521
9 20 072 491 50 000 000 20 072 491 0 0 20 072 491

10 13 683 284 50 000 000 13 683 284 0 0 13 683 284
11 26 768 829 50 000 000 26 768 829 0 0 26 768 829
12 3 802 896 6 000 000 3 802 896 0 0 3 802 896
13 3 282 954 6 000 000 3 282 954 0 0 3 282 954
14 1 476 301 6 000 000 1 476 301 0 0 1 476 301
15 2 064 731 6 000 000 2 064 731 0 0 2 064 731
16 2 954 414 6 000 000 2 954 414 0 0 2 954 414
17 2 359 638 6 000 000 2 359 638 0 0 2 359 638
18 1 887 457 6 000 000 1 887 457 0 0 1 887 457
19 3 538 056 6 000 000 3 538 056 0 0 3 538 056
20 6 906 942 3 000 000 3 000 000 3 000 000 906 942 6 906 942
21 6 153 350 3 000 000 3 000 000 3 000 000 153 350 6 153 350
22 2 639 184 6 000 000 2 639 184 0 0 2 639 184
23 4 773 841 6 000 000 4 773 841 0 0 4 773 841
24 3 007 583 6 000 000 3 007 583 0 0 3 007 583
25 5 735 256 3 000 000 3 000 000 2 735 256 0 5 735 256
26 6 210 205 3 000 000 3 000 000 3 000 000 210 205 6 210 205
27 3 561 300 6 000 000 3 561 300 0 0 3 561 300
28 2 978 950 6 000 000 2 978 950 0 0 2 978 950
29 4 166 994 6 000 000 4 166 994 0 0 4 166 994
30 2 979 133 6 000 000 2 979 133 0 0 2 979 133
31 2 920 499 6 000 000 2 920 499 0 0 2 920 499
32 2 358 223 6 000 000 2 358 223 0 0 2 358 223
33 2 652 842 6 000 000 2 652 842 0 0 2 652 842
34 4 958 507 6 000 000 4 958 507 0 0 4 958 507
35 3 535 819 6 000 000 3 535 819 0 0 3 535 819
36 2 650 657 6 000 000 2 650 657 0 0 2 650 657
37 2 662 310 6 000 000 2 662 310 0 0 2 662 310
38 3 140 845 6 000 000 3 140 845 0 0 3 140 845
39 4 155 263 6 000 000 4 155 263 0 0 4 155 263
40 2 803 320 6 000 000 2 803 320 0 0 2 803 320
41 2 293 116 6 000 000 2 293 116 0 0 2 293 116
42 1 946 863 6 000 000 1 946 863 0 0 1 946 863
43 2 656 800 6 000 000 2 656 800 0 0 2 656 800
44 2 295 612 6 000 000 2 295 612 0 0 2 295 612
45 3 267 302 6 000 000 3 267 302 0 0 3 267 302
46 2 270 545 6 000 000 2 270 545 0 0 2 270 545
47 2 952 538 6 000 000 2 952 538 0 0 2 952 538
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Table 11: Redemption coverage ratio RCR (h) (bond portfolio, R = 30%)

Normal period Stress period
Pro-rata Waterfall Pro-rata Waterfall

TNA 10 20 10 20 10 20 10 20

h

1 0.251 0.126 0.251 0.126 0.126 0.063 0.126 0.063
2 0.503 0.251 0.503 0.251 0.251 0.126 0.251 0.126
3 0.704 0.377 0.754 0.377 0.377 0.188 0.377 0.188
4 0.835 0.503 1.005 0.503 0.503 0.251 0.503 0.251
5 0.900 0.622 1.257 0.628 0.622 0.314 0.628 0.314
6 0.928 0.704 1.508 0.754 0.704 0.377 0.754 0.377
7 0.940 0.773 1.759 0.880 0.773 0.440 0.880 0.440
8 0.948 0.835 2.006 1.005 0.835 0.503 1.005 0.503
9 0.953 0.873 2.195 1.131 0.873 0.565 1.131 0.565
10 0.957 0.900 2.346 1.257 0.900 0.622 1.257 0.628

Figure 10: Multiplier stress factor mRCR (h) (mQ+ = 50%)
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Remark 3 The stress parameter mQ+ is exactly equal to the previous stress parameter mv.

Indeed, we have q+i = x+i ·vi and Q+
i = q+i ·Pi. The stressed values are defined as q+,stressi =

mv ·q+i and Q+,stress
i = mQ+ ·Q+

i . We deduce that Q+,stress
i = q+i ·Pi = mv ·q+i ·Pi = mv ·Q+

i

and mQ+ = mv.

We note RCRnormal (h) the redemption coverage ratio when mQ+ (or mv) is equal to
one. The stressed value RCRstress (h) is computed with mQ+ < 1. We define the multiplier
stress factor of the redemption coverage ratio as:

mRCR (h) =
RCRstress (h)

RCRnormal (h)
(45)

By construction, we have RCRstress (∞) = RCRnormal (∞), implying that:

mQ+ ≤ mRCR (h) ≤ 1 (46)

In Figure 10, we report mRCR (h) when we consider the pro-rata liquidation and the waterfall
liquidation. We notice that the stress test scenario has a bigger impact on the pro-rata
liquidation than on the waterfall liquidation. In particular, in this example, mRCR (h) does
not depend on the redemption shock when we use the waterfall liquidation.

3.3 Computing the transaction cost

In the case of bonds, the participation rate is defined with respect to the outstanding amount
M i and not the daily volume vi:

yi (h) =
Qi (h)

M i
(47)

Following Roncalli et al. (2021b), we use the following unit transaction cost for the sovereign
bonds:

ccci (yi (h)) = 1.25 si + 3.00σiyi (h)
0.25

if yi (h) ≤ y+i (48)

where:

y+i =
Q+
i

M i
(49)

In the case of corporate bonds, the formula becomes:

ccci (yi (h)) = 1.50 si + 0.125 DTSi yi (h)
0.25

if yi (h) ≤ y+i (50)

where DTSi is the duration-times-spread measure of the bond i. Again, we can introduce a
second transaction cost regime, where the price impact is linear. In this case, we have:

ccci (yi (h)) =

 1.25 si + 3.00σiyi (h)
0.25

if yi (h) ≤ ỹi
1.25 si +

3.00

ỹ0.75i

σiyi (h) if ỹi ≤ yi (h) ≤ y+i
(51)

and:

ccci (yi (h)) =

 1.50 si + 0.125 DTSi yi (h)
0.25

if yi (h) ≤ ỹi
1.50 si +

0.125

ỹ0.75i

DTSi yi (h) if ỹi ≤ yi (h) ≤ y+i
(52)

where ỹi =
2

3
y+i .
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Using the data given in Table 15 on page 324, we compute the unit transaction cost with
respect to Qi (h) in Figure 11. The first panel uses the formula of sovereign bonds while the
three other panels use the formula of corporate bonds. i = 1 corresponds to the UST bond.
The spread si is equal to 1.33 bps and the yearly volatility is equal to 16 bps. This explains
the low transaction cost. i = 45 corresponds to the Petronas bond. The transaction cost is
very high because the bid-ask spread si is equal to 57.15 bps and the DTS is equal to 2635
bps.

Figure 11: Unit transaction cost function

0 10 20 30 40 50

1.6

1.8

2

2.2

0 2 4 6

5

5.5

6

6.5

7

0 1 2 3

15

20

25

30

0 2 4 6

100

120

140

160

We consider the bond portfolio, whose total net assets are equal to $10 bn. By assuming
a 30% redemption rate and a vertical slicing approach, we obtain T C (q) = 10.68 million
dollars. This implies a liquidation cost ccc (q) of 35.60 bps and an investment cost c̃cc (q) of
10.68 bps. The price impact cost represents 68.90% of the total cost17.

Let us consider the following stress test scenario: ∆s = 3 bps, ∆σyearly = 2%, ∆DTS = 100
bps and mQ+ = 0.50. We now obtain T Cstress (q) = 12.29 million dollars. In Table 12, we
compare the breakdown between the spread and price impact components. We notice that
the ratio of the transaction cost that is explained by the price impact is greater for the
normal scenario than for the stress test scenario. At first sight, this result may be curious,
because we expect that price impacts increase when we stress the liquidity condition. The
issue comes from the definition of the participation rate. In the case of stocks, we have

xi (h) =
qi (h)

vi
. When we stress the volume vi by applying the stress factor mv, we have

two effects: an impact on qi (h) and an impact on vi. Finally, the stressed value of xi (h) is
greater or equal to the normal value of xi (h). This is not the case for bonds. Indeed, we
have:

yi (h) =
Qi (h)

M i
(53)

17More figures are given in Tables 22 and 23 on page 332.
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Figure 12: Ratio of transaction cost explained by the price impact (bond portfolio, TNA =
$10 bn, R = 30%, vertical slicing)
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When we stress the liquidity policy by applying the multiplicative factor mQ+ , we have
an impact on the liquidation shares Qi (h), but no effect on the outstanding amount M i.
Therefore, the stressed value of yi (h) is less than the normal value of yi (h). Finally, the
part of the transaction cost due to the price impact is reduced when we decrease mQ+ (see
Figure 12). In order to be consistent with the equity framework, we propose to scale the
participation rate:

ystress
∗

i (h) =
1

mQ+

(
Qi (h)

M i

)
(54)

This approach is called “stress∗” in order to distinguish it from the previous one. In Table
12 we report the transaction cost of the redemption portfolio when we assume that R = 30%
and the fund size is equal to $10 bn. In the normal case, the investment cost is equal to
10.68 bps. However, this figure is not representative of a normal cost. Indeed, we use a too
high redemption value (R = 30%). If we assume that R = 30%, we obtain c̃cc (q) = 1.53 bps.
This investment cost becomes 12.29 bps when we consider the stress test scenario. If we
implement the correction given by Equation (54), we finally obtain c̃cc (q) = 13.75 bps.

Table 12: Spread and price impact components in bps (bond portfolio, TNA = $10 bn,
R = 30%, vertical slicing)

Scenario cccs (q) cccπππ (q) ccc (q) c̃ccs (q) c̃ccπππ (q) c̃cc (q)

Normal (R = 5%) 11.07 19.51 30.58 0.55 0.98 1.53
Normal 11.07 24.53 35.60 3.32 7.36 10.68
Stress 15.12 25.84 40.96 4.54 7.75 12.29
Stress∗ 15.12 30.73 45.85 4.54 9.22 13.75
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4 Conclusion

This working paper complements the publication of the three previous research papers ded-
icated to the liquidity stress testing in asset management (Roncalli et al., 2021a,b; Roncalli,
2021c). Using three portfolios, we have explained how to compute the redemption coverage
ratio, implement reverse stress testing and estimate the liquidation cost of the redemption
portfolio. The first portfolio is an index portfolio corresponding to the Eurostoxx 50 index.
The second portfolio is an active equity portfolio, which is made up of 20 small- and mid-cap
stocks. Finally, the third portfolio corresponds to 47 sovereign and corporate bonds. These
examples illustrate the main asset classes that are concerned by liquidity stress testing:
large-cap stocks, small-cap stocks, sovereign bonds, corporate bonds. We have excluded
derivatives from this research project because of the lack of research on this topic. Nev-
ertheless, these examples must enable asset managers to understand the common basics of
liquidity stress testing in asset management.
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Appendix

A Data

We use three portfolios18:

1. Table 13 presents a first equity portfolio based on the Eurostoxx 50 index. It is made
up of 50 stocks with the following correspondence: (1) Adidas, (2) Adyen, (3) Air
Liquide, (4) Airbus, (5) Allianz, (6) Anheuser-Busch, (7) ASML, (8) AXA, (9) Banco
Santander, (10) BASF, (11) Bayer, (12) BMW, (13) BBVA, (14) BNP Paribas, (15)
CRH, (16) Daimler, (17) Danone, (18) Deutsche Boerse, (19) Deutsche Post, (20)
Deutsche Telekom, (21) Enel, (22) Eni, (23) EssilorLuxottica, (24) Flutter Entertain-
ment, (25) Iberdrola, (26) Inditex, (27) Infineon Technolog, (28) ING, (29) Intesa
Sanpaolo, (30) Kering, (31) Kon Ahold Delhaize, (32) Kone, (33) Koninklijke Philips,
(34) L’Oreal, (35) Linde, (36) LVMH, (37) Muenchener Rueckve, (38) Pernod Ricard,
(39) Prosus, (40) Safran, (41) Sanofi, (42) SAP, (43) Schneider Electric, (44) Siemens,
(45) Stellantis, (46) TotalEnergies, (47) Universal Music, (48) Vinci, (49) Volkswagen,
(50) Vonovia.

2. In Table 14, we consider a second equity portfolio with more small and mid-cap stocks.
We have the following correspondence: (1) Heineken, (2) Zalando, (3) ArcelorMittal,
(4) Kerry Group, (5) Porsche, (6) Puma, (7) Hannover Rueck, (8) Solvay, (9) Euronext,
(10) Sodexo, (11) Gecina, (12) Ubisoft Entertainment, (13) Rational, (14) Deutsche
Lufthansa, (15) Ackermans & van Haaren, (16) Aeroports de Paris, (17) Telecom
Italia, (18) Christian Dior, (19) Sopra Steria Group, (20) Dassault Aviation.

3. The last portfolio is made up of 11 US bonds and 36 USD-denominated corporate
bonds. Table 15 gives the different characteristics for the different bonds: (1) UST (T
1 5/8 11/15/22), (2) UST (T 0 1/4 05/15/24), (3) UST (T 0 3/8 08/15/24), (4) UST
(T 1 5/8 08/15/29), (5) UST (T 2 3/8 05/15/29), (6) UST (T 3 1/8 11/15/28), (7) UST
(T 1 5/8 05/15/31), (8) UST (T 1 1/4 08/15/31), (9) UST (T 1 1/8 02/15/31), (10)
UST (T 2 3/8 05/15/51), (11) UST (T 2 08/15/51), (12) Apple (AAPL 3 02/09/24),
(13) DNB Bank (DNBNO 0.856 09/30/25), (14) Equinor (EQNR 2 7/8 04/06/25), (15)
Bank of America (BAC 3.093 10/01/25), (16) Comcast (CMCSA 3.7 04/15/24), (17)
Cnooc Finance (CNOOC 3 05/09/23), (18) EMD Finance (MRKGR 3 1/4 03/19/25),
(19) Boeing (BA 4.508 05/01/23), (20) Bank of America (BCHINA 5 11/13/24), (21)
BP Capital Markets (BPLN 4 3/8 PERP), (22) Apple (AAPL 3.35 02/09/27), (23)
Nestle (NESNVX 3 5/8 09/24/28), (24) Alibaba (BABA 3.4 12/06/27), (25) Bank of
America (BAC 4.183 11/25/27), (26) Dai-Ichi Life Insurance (DAIL 4 PERP), (27)
NTT Finance (NTT 1.162 04/03/26), (28) Anheuser-Busch (ABIBB 4 04/13/28), (29)
Bat Capital (BATSLN 3.557 08/15/27), (30) Bayer (BAYNGR 4 1/4 12/15/25), (31)
Nissan (NSANY 4.345 09/17/27), (32) Amazon (AMZN 1 1/2 06/03/30), (33) Alpha-
bet (GOOGL 1.1 08/15/30), (34) Shell (RDSALN 2 3/4 04/06/30), (35) Bank of Amer-
ica (BAC 2.592 04/29/31), (36) BNP Paribas (BNP 2.871 04/19/32), (37) Petronas
(PETMK 3 1/2 04/21/30), (38) British Telecom (BRITEL 9 5/8 12/15/30), (39)
Deutsche Telekom (DT 8 1/4 06/15/30), (40) Orange (ORAFP 8 1/2 03/01/31), (41)
Shell (RDSALN 3 1/4 04/06/50), (42) Abbott Laboratories (ABT 4 3/4 11/30/36),
(43) Saudi Arabian Oil (ARAMCO 3 1/4 11/24/50), (44) Bank of America (BAC
4.443 01/20/48), (45) Petronas (PETMK 4.55 04/21/50), (46) Credit Suisse (CS 4
7/8 05/15/45) and (47) Telefonica (TELEFO 5.213 03/08/47).

18The raw data are available at https://www.researchgate.net/publication/356849853.
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Table 13: Large-cap equity portfolio (Eurostoxx 50 index), TNA = e1 bn)

i ωi Pi P bid
i P ask

i σyearly
i vi

1 59 106 284.050 281.750 281.800 25.69 514 842
2 8 883 2630.500 2567.500 2568.500 31.14 56 255
3 150 027 143.600 142.880 142.920 13.75 629 509
4 184 310 112.000 111.640 111.660 26.42 1 316 600
5 130 520 200.950 200.150 200.200 21.75 750 684
6 268 123 54.460 53.280 53.290 27.08 1 736 372
7 131 520 698.400 690.100 690.300 31.82 754 901
8 651 421 24.415 24.760 24.765 18.72 4 358 304
9 3 192 430 5.641 5.988 5.990 33.74 54 130 721

10 5 544 072 3.2805 3.2465 3.2480 29.85 72 371 040
11 242 317 62.550 62.190 62.200 20.69 2 473 040
12 181 800 48.735 48.805 48.820 21.39 2 444 130
13 136 334 87.340 86.610 86.630 26.13 1 183 053
14 365 067 57.460 58.250 58.260 26.61 2 390 614
15 251 719 41.360 41.060 41.070 20.83 1 434 050
16 265 762 83.850 84.870 84.900 26.15 2 672 846
17 206 041 56.040 55.810 55.830 18.72 1 579 517
18 60 148 144.200 142.700 142.750 17.01 339 768
19 311 879 54.040 53.160 53.170 19.38 2 536 147
20 1 026 503 16.032 15.942 15.944 19.77 9 225 311
21 2 459 244 7.270 7.213 7.215 23.17 30 518 046
22 795 234 12.164 12.408 12.412 21.32 19 419 467
23 95 262 172.860 177.120 177.160 20.43 491 647
24 55 520 165.600 163.600 163.650 33.71 212 501
25 1 840 196 10.250 10.225 10.230 24.90 14 316 692
26 351 837 31.050 30.910 30.930 25.62 7 543 014
27 413 417 40.100 39.700 39.710 29.69 3 643 730
28 1 235 905 13.082 13.122 13.126 25.02 15 954 487
29 5 774 696 2.438 2.441 2.442 22.67 106 942 206
30 23 113 650.900 646.100 646.200 31.69 204 628
31 161 807 57.460 57.960 57.980 19.61 786 412
32 261 645 28.085 27.965 27.970 15.39 2 285 287
33 290 422 40.665 40.250 40.260 21.56 2 489 971
34 76 637 393.450 388.850 388.950 20.44 372 415
35 162 956 271.800 271.300 271.400 17.81 578 973
36 83 427 671.700 666.100 666.200 28.37 364 566
37 44 351 254.400 255.300 255.400 21.80 256 421
38 64 954 201.100 197.000 197.050 17.37 363 103
39 282 801 76.530 75.000 75.020 46.16 2 135 693
40 120 062 114.080 116.920 116.940 30.87 794 444
41 362 506 85.990 85.770 85.780 14.72 1 551 395
42 345 779 126.300 123.060 123.080 21.01 1 859 400
43 180 140 148.900 145.600 145.620 22.27 818 822
44 237 952 139.840 136.940 136.980 25.33 1 136 151
45 660 350 17.286 17.078 17.084 28.79 10 497 975
46 835 885 43.295 43.610 43.620 21.90 6 596 020
47 247 964 25.120 24.970 24.980 12.73 1 943 066
48 189 196 91.670 91.590 91.620 20.21 912 539
49 57 954 194.780 193.200 193.260 29.39 1 071 749
50 163 680 54.060 52.680 52.700 19.20 976 446

The portfolio holding ωi and the daily volume vi are measured in number of shares, the yearly volatility

σyearly
i is expressed in %, whereas the prices (Pi, P

bid
i and P ask

i ) are in euros.
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Table 14: Small-cap equity portfolio (Eurostoxx index), TNA = e1 bn)

i ωi Pi P bid
i P ask

i σyearly
i vi

1 505 766 98.860 98.840 98.860 17.68 432 593
2 645 495 77.460 77.460 77.480 34.36 725 019
3 1 830 496 27.315 27.310 27.320 41.55 5 513 446
4 436 110 114.650 114.650 114.750 16.88 221 468
5 592 839 84.340 84.300 84.320 27.48 535 423
6 447 628 111.700 111.650 111.750 21.57 291 008
7 309 311 161.650 161.600 161.700 20.60 92 108
8 473 261 105.650 105.600 105.700 17.23 134 879
9 531 915 94.000 93.950 94.050 21.40 201 095

10 597 944 83.620 83.600 83.660 26.02 298 374
11 407 997 122.550 122.500 122.550 17.73 90 460
12 1 066 100 46.900 46.890 46.910 30.24 566 323
13 56 883 879.000 878.400 879.400 34.17 8 328
14 7 423 908 6.735 6.734 6.738 38.20 12 831 900
15 324 464 154.100 154.000 154.200 14.60 22 415
16 413 908 120.800 120.600 120.750 30.83 90 763
17 153 940 887 0.325 0.324 0.325 25.92 179 923 300
18 70 521 709.000 709.000 709.500 28.73 4 061
19 289 687 172.600 172.500 172.700 26.86 19 850
20 537 923 92.950 92.850 93.000 24.35 41 414

The portfolio holding ωi and the daily volume vi are measured in number of shares, the yearly volatility

σyearly
i is expressed in %, whereas the prices (Pi, P

bid
i and P ask

i ) are in euros.
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Table 15: Bond portfolio (USD-denominated, TNA = $1 bn)

i Isin ωi Pi si σyearly
i DTSi M i Q+

i

1 US912828TY62 529 725 102.288 1.33 0.16 121 993 50
2 US91282CCC38 427 182 99.243 1.56 0.99 88 769 50
3 US91282CCT62 403 263 99.334 1.21 1.46 83 876 50
4 US912828YB05 432 386 102.018 2.31 4.65 92 619 50
5 US9128286T26 372 123 108.060 1.46 4.31 84 427 50
6 US9128285M81 339 801 113.243 2.10 3.91 80 506 50
7 US91282CCB54 695 025 101.846 1.55 5.90 148 501 50
8 US91282CCS89 695 930 97.747 1.60 6.25 142 197 50
9 US91282CBL46 689 215 97.079 1.61 5.88 140 063 50

10 US912810SX72 412 836 110.482 2.86 15.15 95 481 50
11 US912810SZ21 880 939 101.289 3.10 17.88 91 407 50
12 US037833CG39 120 000 105.636 3.43 0.92 43 1 750 6
13 US25601B2A27 110 140 99.357 6.52 2.44 78 1 250 6
14 US29446MAD48 46 500 105.828 9.09 2.38 101 1 250 6
15 US06051GGT04 65 100 105.721 9.87 1.19 137 1 750 6
16 US20030NCR08 92 000 107.044 4.07 1.06 53 2 500 6
17 US12625GAC87 75 300 104.455 6.65 0.88 119 2 000 6
18 US26867LAL45 59 000 106.636 6.17 1.57 124 1 600 6
19 US097023CS21 112 300 105.018 2.19 1.30 101 3 000 6
20 US061202AA55 205 000 112.308 9.37 2.08 265 3 000 3
21 US05565QDU94 192 000 106.829 3.56 4.29 559 2 500 3
22 US037833CJ77 80 000 109.966 7.56 2.44 137 2 250 6
23 US641062AF17 142 000 112.062 13.08 3.94 243 1 250 6
24 US01609WAT99 92 800 108.031 10.18 3.74 518 2 550 6
25 US06051GGC78 170 000 112.456 10.85 2.74 392 2 000 3
26 US23380YAD94 190 500 108.665 26.74 2.10 555 2 500 3
27 US62954WAC91 120 000 98.925 7.94 2.20 168 3 000 6
28 US035240AL43 88 000 112.839 13.64 3.54 300 2 500 6
29 US05526DBB01 130 000 106.846 15.23 2.79 566 3 500 6
30 US07274NAJ28 89 000 111.578 11.56 2.04 257 2 500 6
31 US654744AC50 89 000 109.382 7.22 3.08 753 2 500 6
32 US023135BS49 80 500 97.649 14.43 4.97 296 2 000 6
33 US02079KAD90 93 800 94.273 12.76 5.05 425 2 250 6
34 US822582CG52 156 000 105.951 11.78 5.83 413 1 750 6
35 US06051GJB68 116 000 101.604 13.98 5.32 729 3 000 6
36 US09659W2P81 86 400 102.263 15.38 5.57 926 2 250 6
37 US716743AP46 82 000 108.224 23.37 10.20 763 2 250 6
38 US111021AE12 68 000 153.963 16.15 4.43 1193 2 670 6
39 US25156PAC77 92 000 150.553 14.01 3.75 839 3 500 6
40 US35177PAL13 60 000 155.740 17.46 4.65 763 2 460 6
41 US822582CH36 70 000 109.196 26.31 15.97 1619 2 000 6
42 US002824BG43 49 900 130.051 37.90 7.36 817 1 650 6
43 US80414L2L80 90 000 98.400 59.02 11.07 2872 2 250 6
44 US06051GGG82 60 000 127.534 56.44 12.08 1560 2 000 6
45 US716743AR02 87 000 125.184 57.14 12.43 2336 2 750 6
46 US225433AF86 58 600 129.155 29.29 10.24 1962 1 925 6
47 US87938WAU71 77 700 126.664 27.90 10.78 2635 2 500 6

The portfolio holding ωi is measured in number of shares, the price Pi is in US dollars, the yearly volatility

σyearly
i is expressed in %, the (half) bid-ask spread si and the duration-times-spread DTSi are in bps,

whereas the outstanding amount M i and the daily trading limit Q+
i are expressed in $ mn.
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B Additional results

This appendix contains additional tables and figures.
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Table 16: Computation of the unit transaction cost ccci (xi (h)) (large-cap portfolio, TNA =
e1 bn, R = 80%, vertical slicing)

i si cccs
i σi xi (h) cccπππi (xi (h)) ccci (xi (h))

1 0.89 1.11 1.59 9.18 0.00 0.00 22.67 0.00 0.00 23.78 0.00 0.00
2 1.95 2.43 1.93 10.00 2.63 0.00 29.92 12.53 0.00 32.35 14.97 0.00
3 1.40 1.75 0.85 10.00 9.07 0.00 13.21 11.98 0.00 14.96 13.73 0.00
4 0.90 1.12 1.64 10.00 1.20 0.00 25.38 7.18 0.00 26.50 8.30 0.00
5 1.25 1.56 1.35 10.00 3.91 0.00 20.90 10.67 0.00 22.46 12.23 0.00
6 0.94 1.17 1.68 10.00 2.35 0.00 26.02 10.31 0.00 27.19 11.48 0.00
7 1.45 1.81 1.97 10.00 3.94 0.00 30.57 15.66 0.00 32.38 17.47 0.00
8 1.01 1.26 1.16 10.00 1.96 0.00 17.99 6.50 0.00 19.25 7.76 0.00
9 1.67 2.09 2.09 4.72 0.00 0.00 18.18 0.00 0.00 20.27 0.00 0.00

10 2.31 2.89 1.85 6.13 0.00 0.00 18.33 0.00 0.00 21.22 0.00 0.00
11 0.80 1.00 1.28 7.84 0.00 0.00 15.58 0.00 0.00 16.59 0.00 0.00
12 1.54 1.92 1.33 5.95 0.00 0.00 12.94 0.00 0.00 14.86 0.00 0.00
13 1.15 1.44 1.62 9.22 0.00 0.00 23.14 0.00 0.00 24.59 0.00 0.00
14 0.86 1.07 1.65 10.00 2.22 0.00 25.57 9.83 0.00 26.64 10.90 0.00
15 1.22 1.52 1.29 10.00 4.04 0.00 20.01 10.39 0.00 21.53 11.91 0.00
16 1.77 2.21 1.62 7.95 0.00 0.00 19.98 0.00 0.00 22.19 0.00 0.00
17 1.79 2.24 1.16 10.00 0.44 0.00 17.99 3.07 0.00 20.22 5.30 0.00
18 1.75 2.19 1.05 10.00 4.16 0.00 16.34 8.61 0.00 18.53 10.80 0.00
19 0.94 1.18 1.20 9.84 0.00 0.00 18.32 0.00 0.00 19.49 0.00 0.00
20 0.63 0.78 1.23 8.90 0.00 0.00 16.91 0.00 0.00 17.69 0.00 0.00
21 1.39 1.73 1.44 6.45 0.00 0.00 14.59 0.00 0.00 16.33 0.00 0.00
22 1.61 2.01 1.32 3.28 0.00 0.00 9.57 0.00 0.00 11.59 0.00 0.00
23 1.13 1.41 1.27 10.00 5.50 0.00 19.63 11.89 0.00 21.04 13.30 0.00
24 1.53 1.91 2.09 10.00 10.00 0.90 32.39 32.39 7.94 34.30 34.30 9.85
25 2.44 3.06 1.54 10.00 0.28 0.00 23.92 3.28 0.00 26.98 6.34 0.00
26 3.23 4.04 1.59 3.73 0.00 0.00 12.28 0.00 0.00 16.32 0.00 0.00
27 1.26 1.57 1.84 9.08 0.00 0.00 25.89 0.00 0.00 27.47 0.00 0.00
28 1.52 1.90 1.55 6.20 0.00 0.00 15.45 0.00 0.00 17.36 0.00 0.00
29 2.05 2.56 1.41 4.32 0.00 0.00 11.69 0.00 0.00 14.25 0.00 0.00
30 0.77 0.97 1.97 9.04 0.00 0.00 27.51 0.00 0.00 28.48 0.00 0.00
31 1.73 2.16 1.22 10.00 6.46 0.00 18.84 12.36 0.00 21.00 14.52 0.00
32 0.89 1.12 0.95 9.16 0.00 0.00 13.54 0.00 0.00 14.66 0.00 0.00
33 1.24 1.55 1.34 9.33 0.00 0.00 19.33 0.00 0.00 20.88 0.00 0.00
34 1.29 1.61 1.27 10.00 6.46 0.00 19.64 12.89 0.00 21.25 14.50 0.00
35 1.84 2.30 1.10 10.00 10.00 2.52 17.11 17.11 7.01 19.41 19.41 9.31
36 0.75 0.94 1.76 10.00 8.31 0.00 27.26 22.64 0.00 28.20 23.58 0.00
37 1.96 2.45 1.35 10.00 3.84 0.00 20.94 10.59 0.00 23.39 13.04 0.00
38 1.27 1.59 1.08 10.00 4.31 0.00 16.69 8.95 0.00 18.27 10.53 0.00
39 1.33 1.67 2.86 10.00 0.59 0.00 44.35 8.82 0.00 46.02 10.49 0.00
40 0.86 1.07 1.91 10.00 2.09 0.00 29.66 11.07 0.00 30.73 12.14 0.00
41 0.58 0.73 0.91 10.00 8.69 0.00 14.14 12.29 0.00 14.87 13.02 0.00
42 0.81 1.02 1.30 10.00 4.88 0.00 20.19 11.51 0.00 21.20 12.53 0.00
43 0.69 0.86 1.38 10.00 7.60 0.00 21.40 16.26 0.00 22.25 17.12 0.00
44 1.46 1.83 1.57 10.00 6.75 0.00 24.34 16.44 0.00 26.16 18.26 0.00
45 1.76 2.20 1.79 5.03 0.00 0.00 16.02 0.00 0.00 18.22 0.00 0.00
46 1.15 1.43 1.36 10.00 0.14 0.00 21.04 2.02 0.00 22.47 3.45 0.00
47 2.00 2.50 0.79 10.00 0.21 0.00 12.23 1.44 0.00 14.73 3.95 0.00
48 1.64 2.05 1.25 10.00 6.59 0.00 19.42 12.87 0.00 21.46 14.91 0.00
49 1.55 1.94 1.82 4.33 0.00 0.00 15.16 0.00 0.00 17.10 0.00 0.00
50 1.90 2.37 1.19 10.00 3.41 0.00 18.45 8.80 0.00 20.82 11.17 0.00

The daily volatility σi and the daily participation rate xi (h) are expressed in %, whereas the bid-ask

spread si and the unit transaction costs cccs
i, ccc

πππ
i (xi (h)) and ccci (xi (h)) are measured in bps.
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Table 17: Computation of the total transaction cost T Ci (qi (h)) (large-cap portfolio, TNA =
e1 bn, R = 80%, vertical slicing)

i Qi (h) T Ci (qi (h)) T Ci (qi)
1 13 431 247.44 0.00 0.00 31 936.75 0.00 0.00 31 936.75
2 14 797 877.75 3 895 507.45 0.00 47 874.31 5 830.54 0.00 53 704.85
3 9 039 749.24 8 195 352.52 0.00 13 523.51 11 248.99 0.00 24 772.50
4 14 745 920.00 1 768 256.00 0.00 39 081.24 1 467.05 0.00 40 548.28
5 15 084 994.98 5 897 400.22 0.00 33 877.67 7 212.12 0.00 41 089.78
6 9 456 281.91 2 225 300.95 0.00 25 712.16 2 554.23 0.00 28 266.39
7 52 722 285.84 20 760 568.56 0.00 170 729.19 36 278.74 0.00 207 007.93
8 10 640 799.22 2 082 755.76 0.00 20 480.97 1 616.00 0.00 22 096.97
9 14 406 798.10 0.00 0.00 29 198.99 0.00 0.00 29 198.99

10 14 549 862.56 0.00 0.00 30 872.51 0.00 0.00 30 872.51
11 12 125 542.68 0.00 0.00 20 112.48 0.00 0.00 20 112.48
12 7 088 018.40 0.00 0.00 10 535.97 0.00 0.00 10 535.97
13 9 525 929.25 0.00 0.00 23 421.99 0.00 0.00 23 421.99
14 13 736 468.04 3 044 931.81 0.00 36 592.48 3 319.27 0.00 39 911.75
15 5 931 230.80 2 397 647.47 0.00 12 772.78 2 855.88 0.00 15 628.67
16 17 827 314.96 0.00 0.00 39 565.34 0.00 0.00 39 565.34
17 8 851 613.27 385 616.84 0.00 17 902.33 204.55 0.00 18 106.88
18 4 899 454.56 2 039 218.72 0.00 9 079.77 2 201.99 0.00 11 281.76
19 13 483 152.93 0.00 0.00 26 283.29 0.00 0.00 26 283.29
20 13 165 516.88 0.00 0.00 23 292.62 0.00 0.00 23 292.62
21 14 302 963.10 0.00 0.00 23 351.72 0.00 0.00 23 351.72
22 7 738 581.10 0.00 0.00 8 966.85 0.00 0.00 8 966.85
23 8 498 610.04 4 674 981.41 0.00 17 880.92 6 216.75 0.00 24 097.67
24 3 519 016.56 3 519 016.56 317 256.48 12 069.30 12 069.30 312.50 24 451.10
25 14 674 609.30 414 997.90 0.00 39 590.09 263.12 0.00 39 853.21
26 8 739 631.08 0.00 0.00 14 262.89 0.00 0.00 14 262.89
27 13 262 417.36 0.00 0.00 36 426.36 0.00 0.00 36 426.36
28 12 934 487.37 0.00 0.00 22 448.98 0.00 0.00 22 448.98
29 11 262 967.08 0.00 0.00 16 047.96 0.00 0.00 16 047.96
30 12 035 401.36 0.00 0.00 34 275.96 0.00 0.00 34 275.96
31 4 518 723.35 2 919 220.82 0.00 9 487.95 4 238.94 0.00 13 726.89
32 5 878 639.86 0.00 0.00 8 618.38 0.00 0.00 8 618.38
33 9 448 008.50 0.00 0.00 19 728.26 0.00 0.00 19 728.26
34 14 652 668.17 9 469 593.95 0.00 31 129.91 13 728.40 0.00 44 858.31
35 15 736 486.14 15 736 486.14 3 960 180.36 30 551.75 30 551.75 3 687.74 64 791.24
36 24 487 898.22 20 342 434.50 0.00 69 044.22 47 969.50 0.00 117 013.72
37 6 523 350.24 2 502 965.28 0.00 15 259.67 3 264.04 0.00 18 523.71
38 7 302 001.33 3 147 798.19 0.00 13 344.15 3 315.46 0.00 16 659.62
39 16 344 458.53 969 749.90 0.00 75 209.91 1 016.95 0.00 76 226.86
40 9 063 017.15 1 894 321.22 0.00 27 848.80 2 299.77 0.00 30 148.57
41 13 340 445.60 11 597 067.15 0.00 19 838.80 15 102.83 0.00 34 941.63
42 23 484 222.00 11 453 288.16 0.00 49 789.93 14 346.06 0.00 64 135.98
43 12 192 259.58 9 266 017.22 0.00 27 133.61 15 862.95 0.00 42 996.55
44 15 887 935.58 10 732 230.56 0.00 41 565.42 19 601.77 0.00 61 167.20
45 9 131 848.08 0.00 0.00 16 635.12 0.00 0.00 16 635.12
46 28 557 468.59 394 244.27 0.00 64 179.58 136.08 0.00 64 315.65
47 4 880 981.79 102 102.75 0.00 7 191.19 40.30 0.00 7 231.49
48 8 365 245.01 5 509 632.84 0.00 17 955.14 8 216.72 0.00 26 171.86
49 9 030 624.10 0.00 0.00 15 446.58 0.00 0.00 15 446.58
50 5 278 667.08 1 800 165.56 0.00 10 989.73 2 010.43 0.00 13 000.16

Total 626 583 692.07 169 138 870.69 4 277 436.84 1 459 115.46 275 040.48 4 000.24 1 738 156.17

All the metrics are expressed in e.
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Table 18: Break-down of the total transaction cost T C (q) (large-cap portfolio, TNA = e1
bn, R = 80%, vertical slicing)

i T Ci (qi) T Cs
i (qi) T Cπππi (qi)

1 31 936.75 1 489.58 30 447.17
2 53 704.85 4 549.60 49 155.26
3 24 772.50 3 015.24 21 757.26
4 40 548.28 1 848.88 38 699.40
5 41 089.78 3 275.63 37 814.15
6 28 266.39 1 370.18 26 896.21
7 207 007.93 13 308.25 193 699.67
8 22 096.97 1 605.70 20 491.27
9 29 198.99 3 006.93 26 192.06

10 30 872.51 4 200.63 26 671.88
11 20 112.48 1 218.50 18 893.98
12 10 535.97 1 361.34 9 174.63
13 23 421.99 1 374.67 22 047.31
14 39 911.75 1 800.42 38 111.33
15 15 628.67 1 267.64 14 361.03
16 39 565.34 3 937.82 35 627.51
17 18 106.88 2 068.53 16 038.35
18 11 281.76 1 519.24 9 762.52
19 26 283.29 1 585.06 24 698.23
20 23 292.62 1 032.23 22 260.39
21 23 351.72 2 478.33 20 873.38
22 8 966.85 1 558.94 7 407.91
23 24 097.67 1 859.21 22 238.47
24 24 451.10 1 404.75 23 046.35
25 39 853.21 4 610.61 35 242.60
26 14 262.89 3 533.16 10 729.73
27 36 426.36 2 087.65 34 338.71
28 22 448.98 2 463.90 19 985.08
29 16 047.96 2 883.21 13 164.75
30 34 275.96 1 164.15 33 111.82
31 13 726.89 1 603.83 12 123.05
32 8 618.38 656.86 7 961.52
33 19 728.26 1 466.90 18 261.36
34 44 858.31 3 876.68 40 981.63
35 64 791.24 8 161.31 56 629.92
36 117 013.72 4 206.10 112 807.62
37 18 523.71 2 209.30 16 314.41
38 16 659.62 1 657.44 15 002.18
39 76 226.86 2 885.32 73 341.54
40 30 148.57 1 171.36 28 977.21
41 34 941.63 1 817.07 33 124.56
42 64 135.98 3 548.54 60 587.44
43 42 996.55 1 842.10 41 154.45
44 61 167.20 4 859.11 56 308.09
45 16 635.12 2 004.83 14 630.29
46 64 315.65 4 148.76 60 166.89
47 7 231.49 1 247.02 5 984.47
48 26 171.86 2 839.95 23 331.90
49 15 446.58 1 752.57 13 694.02
50 13 000.16 1 679.36 11 320.80

Total 1 738 156.17 132 514.40 1 605 641.78

All the metrics are expressed in e.
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Table 19: Stress testing — Liquidation portfolio qi (h) (large-cap portfolio, TNA = e1 bn,
R = 80%, vertical slicing)

i qi q+i qi (1) qi (2) qi (3) qi (4) qi (5)
1 47 284.80 25 742.10 25 742.10 21 542.70 0.00 0.00 0.00
2 7 106.40 2 812.75 2 812.75 2 812.75 1 480.90 0.00 0.00
3 120 021.60 31 475.45 31 475.45 31 475.45 31 475.45 25 595.25 0.00
4 147 448.00 65 830.00 65 830.00 65 830.00 15 788.00 0.00 0.00
5 104 416.00 37 534.20 37 534.20 37 534.20 29 347.60 0.00 0.00
6 214 498.40 86 818.60 86 818.60 86 818.60 40 861.20 0.00 0.00
7 105 216.00 37 745.05 37 745.05 37 745.05 29 725.90 0.00 0.00
8 521 136.80 217 915.20 217 915.20 217 915.20 85 306.40 0.00 0.00
9 2 553 944.00 2 706 536.05 2 553 944.00 0.00 0.00 0.00 0.00

10 4 435 257.60 3 618 552.00 3 618 552.00 816 705.60 0.00 0.00 0.00
11 193 853.60 123 652.00 123 652.00 70 201.60 0.00 0.00 0.00
12 145 440.00 122 206.50 122 206.50 23 233.50 0.00 0.00 0.00
13 109 067.20 59 152.65 59 152.65 49 914.55 0.00 0.00 0.00
14 292 053.60 119 530.70 119 530.70 119 530.70 52 992.20 0.00 0.00
15 201 375.20 71 702.50 71 702.50 71 702.50 57 970.20 0.00 0.00
16 212 609.60 133 642.30 133 642.30 78 967.30 0.00 0.00 0.00
17 164 832.80 78 975.85 78 975.85 78 975.85 6 881.10 0.00 0.00
18 48 118.40 16 988.40 16 988.40 16 988.40 14 141.60 0.00 0.00
19 249 503.20 126 807.35 126 807.35 122 695.85 0.00 0.00 0.00
20 821 202.40 461 265.55 461 265.55 359 936.85 0.00 0.00 0.00
21 1 967 395.20 1 525 902.30 1 525 902.30 441 492.90 0.00 0.00 0.00
22 636 187.20 970 973.35 636 187.20 0.00 0.00 0.00 0.00
23 76 209.60 24 582.35 24 582.35 24 582.35 24 582.35 2 462.55 0.00
24 44 416.00 10 625.05 10 625.05 10 625.05 10 625.05 10 625.05 1 915.80
25 1 472 156.80 715 834.60 715 834.60 715 834.60 40 487.60 0.00 0.00
26 281 469.60 377 150.70 281 469.60 0.00 0.00 0.00 0.00
27 330 733.60 182 186.50 182 186.50 148 547.10 0.00 0.00 0.00
28 988 724.00 797 724.35 797 724.35 190 999.65 0.00 0.00 0.00
29 4 619 756.80 5 347 110.30 4 619 756.80 0.00 0.00 0.00 0.00
30 18 490.40 10 231.40 10 231.40 8 259.00 0.00 0.00 0.00
31 129 445.60 39 320.60 39 320.60 39 320.60 39 320.60 11 483.80 0.00
32 209 316.00 114 264.35 114 264.35 95 051.65 0.00 0.00 0.00
33 232 337.60 124 498.55 124 498.55 107 839.05 0.00 0.00 0.00
34 61 309.60 18 620.75 18 620.75 18 620.75 18 620.75 5 447.35 0.00
35 130 364.80 28 948.65 28 948.65 28 948.65 28 948.65 28 948.65 14 570.20
36 66 741.60 18 228.30 18 228.30 18 228.30 18 228.30 12 056.70 0.00
37 35 480.80 12 821.05 12 821.05 12 821.05 9 838.70 0.00 0.00
38 51 963.20 18 155.15 18 155.15 18 155.15 15 652.90 0.00 0.00
39 226 240.80 106 784.65 106 784.65 106 784.65 12 671.50 0.00 0.00
40 96 049.60 39 722.20 39 722.20 39 722.20 16 605.20 0.00 0.00
41 290 004.80 77 569.75 77 569.75 77 569.75 77 569.75 57 295.55 0.00
42 276 623.20 92 970.00 92 970.00 92 970.00 90 683.20 0.00 0.00
43 144 112.00 40 941.10 40 941.10 40 941.10 40 941.10 21 288.70 0.00
44 190 361.60 56 807.55 56 807.55 56 807.55 56 807.55 19 938.95 0.00
45 528 280.00 524 898.75 524 898.75 3 381.25 0.00 0.00 0.00
46 668 708.00 329 801.00 329 801.00 329 801.00 9 106.00 0.00 0.00
47 198 371.20 97 153.30 97 153.30 97 153.30 4 064.60 0.00 0.00
48 151 356.80 45 626.95 45 626.95 45 626.95 45 626.95 14 475.95 0.00
49 46 363.20 53 587.45 46 363.20 0.00 0.00 0.00 0.00
50 130 944.00 48 822.30 48 822.30 48 822.30 33 299.40 0.00 0.00
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Table 20: Stress testing — Participation rate xi (h) and unit transaction cost ccci (xi (h))
(large-cap portfolio, TNA = e1 bn, R = 80%, vertical slicing)

i si σi xi (h) ccci (xi (h))
1 8.89 2.83 10.00 8.37 0.00 0.00 0.00 55.01 47.85 0.00 0.00 0.00
2 9.95 3.17 10.00 10.00 5.26 0.00 0.00 61.57 61.57 41.54 0.00 0.00
3 9.40 2.09 10.00 10.00 10.00 8.13 0.00 44.18 44.18 44.18 38.12 0.00
4 8.90 2.88 10.00 10.00 2.40 0.00 0.00 55.72 55.72 28.95 0.00 0.00
5 9.25 2.59 10.00 10.00 7.82 0.00 0.00 51.67 51.67 42.92 0.00 0.00
6 8.94 2.92 10.00 10.00 4.71 0.00 0.00 56.41 56.41 36.51 0.00 0.00
7 9.45 3.21 10.00 10.00 7.88 0.00 0.00 61.60 61.60 51.02 0.00 0.00
8 9.01 2.40 10.00 10.00 3.91 0.00 0.00 48.46 48.46 30.27 0.00 0.00
9 9.67 3.33 9.44 0.00 0.00 0.00 0.00 60.81 0.00 0.00 0.00 0.00

10 10.31 3.09 10.00 2.26 0.00 0.00 0.00 60.78 31.47 0.00 0.00 0.00
11 8.80 2.52 10.00 5.68 0.00 0.00 0.00 50.10 35.06 0.00 0.00 0.00
12 9.54 2.57 10.00 1.90 0.00 0.00 0.00 51.69 26.08 0.00 0.00 0.00
13 9.15 2.86 10.00 8.44 0.00 0.00 0.00 55.76 48.84 0.00 0.00 0.00
14 8.86 2.89 10.00 10.00 4.43 0.00 0.00 55.85 55.85 35.42 0.00 0.00
15 9.22 2.53 10.00 10.00 8.08 0.00 0.00 50.75 50.75 43.24 0.00 0.00
16 9.77 2.86 10.00 5.91 0.00 0.00 0.00 56.55 40.04 0.00 0.00 0.00
17 9.79 2.40 10.00 10.00 0.87 0.00 0.00 49.44 49.44 21.21 0.00 0.00
18 9.75 2.30 10.00 10.00 8.32 0.00 0.00 47.75 47.75 41.79 0.00 0.00
19 8.94 2.44 10.00 9.68 0.00 0.00 0.00 49.01 47.78 0.00 0.00 0.00
20 8.63 2.47 10.00 7.80 0.00 0.00 0.00 48.99 40.60 0.00 0.00 0.00
21 9.39 2.68 10.00 2.89 0.00 0.00 0.00 53.21 29.95 0.00 0.00 0.00
22 9.61 2.56 6.55 0.00 0.00 0.00 0.00 38.25 0.00 0.00 0.00 0.00
23 9.13 2.51 10.00 10.00 10.00 1.00 0.00 50.26 50.26 50.26 21.45 0.00
24 9.53 3.33 10.00 10.00 10.00 10.00 1.80 63.51 63.51 63.51 63.51 29.80
25 10.44 2.78 10.00 10.00 0.57 0.00 0.00 56.19 56.19 21.43 0.00 0.00
26 11.23 2.83 7.46 0.00 0.00 0.00 0.00 46.75 0.00 0.00 0.00 0.00
27 9.26 3.08 10.00 8.15 0.00 0.00 0.00 59.31 50.50 0.00 0.00 0.00
28 9.52 2.79 10.00 2.39 0.00 0.00 0.00 55.16 29.19 0.00 0.00 0.00
29 10.05 2.65 8.64 0.00 0.00 0.00 0.00 47.98 0.00 0.00 0.00 0.00
30 8.77 3.21 10.00 8.07 0.00 0.00 0.00 60.63 51.06 0.00 0.00 0.00
31 9.73 2.46 10.00 10.00 10.00 2.92 0.00 50.21 50.21 50.21 28.95 0.00
32 8.89 2.19 10.00 8.32 0.00 0.00 0.00 45.12 39.40 0.00 0.00 0.00
33 9.24 2.58 10.00 8.66 0.00 0.00 0.00 51.48 46.14 0.00 0.00 0.00
34 9.29 2.51 10.00 10.00 10.00 2.93 0.00 50.46 50.46 50.46 28.77 0.00
35 9.84 2.34 10.00 10.00 10.00 10.00 5.03 48.63 48.63 48.63 48.63 33.35
36 8.75 3.00 10.00 10.00 10.00 6.61 0.00 57.41 57.41 57.41 41.80 0.00
37 9.96 2.59 10.00 10.00 7.67 0.00 0.00 52.61 52.61 43.27 0.00 0.00
38 9.27 2.32 10.00 10.00 8.62 0.00 0.00 47.49 47.49 42.54 0.00 0.00
39 9.33 4.10 10.00 10.00 1.19 0.00 0.00 75.23 75.23 29.54 0.00 0.00
40 8.86 3.15 10.00 10.00 4.18 0.00 0.00 59.94 59.94 36.87 0.00 0.00
41 8.58 2.15 10.00 10.00 10.00 7.39 0.00 44.09 44.09 44.09 35.37 0.00
42 8.81 2.54 10.00 10.00 9.75 0.00 0.00 50.42 50.42 49.45 0.00 0.00
43 8.69 2.62 10.00 10.00 10.00 5.20 0.00 51.47 51.47 51.47 34.77 0.00
44 9.46 2.81 10.00 10.00 10.00 3.51 0.00 55.38 55.38 55.38 32.89 0.00
45 9.76 3.03 10.00 0.06 0.00 0.00 0.00 59.07 15.27 0.00 0.00 0.00
46 9.15 2.60 10.00 10.00 0.28 0.00 0.00 51.69 51.69 16.89 0.00 0.00
47 10.00 2.03 10.00 10.00 0.42 0.00 0.00 43.95 43.95 17.75 0.00 0.00
48 9.64 2.49 10.00 10.00 10.00 3.17 0.00 50.68 50.68 50.68 29.81 0.00
49 9.55 3.06 8.65 0.00 0.00 0.00 0.00 53.00 0.00 0.00 0.00 0.00
50 9.90 2.43 10.00 10.00 6.82 0.00 0.00 50.03 50.03 38.06 0.00 0.00

The daily volatility σi and the daily participation rate xi (h) are expressed in %, whereas the bid-ask

spread si and the unit transaction costs ccci (xi (h)) are measured in bps.
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Table 21: Stress testing — Break-down of the total transaction cost T C (q) (large-cap port-
folio, TNA = e1 bn, R = 80%, vertical slicing)

i T Ci (qi) T Cs
i (qi) T Cπππi (qi)

1 69 498.63 14 920.83 54 577.80
2 107 290.00 23 242.98 84 047.02
3 73 910.28 20 250.34 53 659.94
4 87 281.60 18 363.05 68 918.54
5 103 263.27 24 258.03 79 005.24
6 61 463.65 13 051.76 48 411.89
7 430 680.96 86 791.11 343 889.85
8 57 872.23 14 329.25 43 542.97
9 87 604.76 17 413.73 70 191.03

10 80 581.70 18 750.49 61 831.21
11 54 141.87 13 344.04 40 797.83
12 33 736.06 8 449.35 25 286.71
13 50 102.25 10 900.60 39 201.65
14 87 508.74 18 581.82 68 926.92
15 40 467.87 9 596.51 30 871.36
16 89 878.23 21 765.14 68 113.09
17 44 580.36 11 305.76 33 274.60
18 31 915.40 8 457.91 23 457.49
19 65 268.45 15 068.21 50 200.23
20 59 659.28 14 197.75 45 461.53
21 68 639.06 16 781.30 51 857.76
22 29 601.62 9 297.52 20 304.10
23 64 977.96 15 032.80 49 945.16
24 45 645.94 8 760.04 36 885.90
25 83 351.95 19 700.22 63 651.73
26 40 860.80 12 272.79 28 588.01
27 73 414.82 15 350.07 58 064.75
28 64 855.26 15 398.39 49 456.88
29 54 038.96 14 146.18 39 892.79
30 67 823.25 13 199.55 54 623.71
31 35 944.56 9 041.78 26 902.78
32 24 997.62 6 535.50 18 462.12
33 46 297.30 10 914.91 35 382.39
34 117 072.56 27 998.94 89 073.61
35 166 258.54 43 594.46 122 664.07
36 244 729.74 49 036.44 195 693.30
37 45 147.21 11 235.62 33 911.59
38 48 068.44 12 107.24 35 961.21
39 125 825.97 20 199.53 105 626.44
40 61 311.15 12 128.69 49 182.46
41 105 645.33 26 754.59 78 890.75
42 175 033.80 38 486.05 136 547.75
43 105 152.21 23 300.38 81 851.83
44 141 145.26 31 479.28 109 665.98
45 53 687.02 11 136.67 42 550.35
46 148 277.36 33 100.47 115 176.89
47 21 632.44 6 230.10 15 402.34
48 67 548.14 16 714.83 50 833.30
49 47 858.61 10 783.19 37 075.42
50 33 262.97 8 758.19 24 504.78

Total 4 124 811.45 932 514.40 3 192 297.05

All the metrics are expressed in e.
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Table 22: Break-down of the total transaction cost T C (q) (bond portfolio, TNA = $10 bn,
R = 30%, vertical slicing)

i T Ci (qi) T Cs
i (qi) T Cπππi (qi)

1 36 012.29 27 024.52 8 987.77
2 69 885.29 24 800.97 45 084.32
3 82 529.58 18 176.19 64 353.39
4 255 188.46 38 211.29 216 977.17
5 212 256.83 22 015.86 190 240.97
6 199 177.04 30 303.07 168 873.97
7 457 182.39 41 144.08 416 038.31
8 475 933.42 40 815.04 435 118.38
9 448 409.64 40 395.89 408 013.75

10 783 664.66 48 917.74 734 746.92
11 1 897 014.61 103 729.21 1 793 285.40
12 26 113.54 19 565.90 6 547.64
13 43 144.34 32 107.29 11 037.05
14 26 290.67 20 129.36 6 161.31
15 41 572.40 30 568.34 11 004.05
16 23 824.88 18 036.70 5 788.18
17 34 493.76 23 537.39 10 956.36
18 27 033.64 17 468.42 9 565.22
19 24 224.80 11 622.52 12 602.29
20 152 183.10 97 077.07 55 106.03
21 140 308.97 32 858.89 107 450.08
22 43 327.04 29 928.35 13 398.69
23 145 124.09 93 662.76 51 461.33
24 103 949.26 45 925.79 58 023.47
25 168 041.37 93 341.29 74 700.07
26 356 675.94 249 091.31 107 584.63
27 63 633.66 42 415.08 21 218.57
28 94 233.98 60 949.31 33 284.67
29 175 895.36 95 194.98 80 700.38
30 80 175.43 51 658.16 28 517.28
31 112 149.16 31 629.01 80 520.15
32 78 265.60 51 043.74 27 221.86
33 92 505.62 50 775.40 41 730.22
34 170 309.73 87 616.82 82 692.91
35 165 002.62 74 146.13 90 856.49
36 152 015.61 61 150.66 90 864.95
37 168 452.93 93 327.29 75 125.64
38 211 293.24 76 086.97 135 206.27
39 206 312.96 87 322.85 118 990.11
40 150 154.94 73 418.95 76 735.99
41 232 066.72 90 497.82 141 568.90
42 174 454.08 110 679.19 63 774.90
43 517 530.40 235 206.50 282 323.90
44 331 010.74 194 346.51 136 664.23
45 550 434.34 280 040.49 270 393.85
46 270 117.83 99 756.39 170 361.44
47 410 992.48 123 563.71 287 428.78

Total 10 680 569.46 3 321 281.21 7 359 288.25

All the metrics are expressed in $.
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Table 23: Break-down of the total transaction cost T C (q) (bond portfolio, TNA = $10 bn,
R = 30%, vertical slicing)

h T Ci (q;h) T Cs
i (q;h) T Cπππi (q;h)

1 2 474 425.38 662 994.50 1 811 430.88
2 2 474 425.38 662 994.50 1 811 430.88
3 2 088 332.97 625 380.98 1 462 951.99
4 1 671 552.80 521 194.84 1 150 357.97
5 961 444.93 309 791.04 651 653.89
6 298 303.99 130 259.49 168 044.50
7 129 808.94 70 773.73 59 035.21
8 77 556.19 44 594.76 32 961.43
9 43 809.26 25 534.82 18 274.44

10 39 588.86 22 734.00 16 854.86
11 39 588.86 22 734.00 16 854.86
12 39 588.86 22 734.00 16 854.86
13 39 588.86 22 734.00 16 854.86
14 39 588.86 22 734.00 16 854.86
15 39 588.86 22 734.00 16 854.86
16 39 588.86 22 734.00 16 854.86
17 39 588.86 22 734.00 16 854.86
18 39 588.86 22 734.00 16 854.86
19 39 588.86 22 734.00 16 854.86
20 31 558.10 18 425.29 13 132.81
21 20 125.95 13 466.70 6 659.24
22 6 611.72 4 216.50 2 395.22
23 6 611.72 4 216.50 2 395.22
24 113.52 97.57 15.95
25 0.00 0.00 0.00

Total 10 680 569.46 3 321 281.21 7 359 288.25

All the metrics are expressed in $.
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Figure 13: Liquidation ratio LR (q;h) in % (equity portfolio, vertical slicing)
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Figure 14: Liquidation ratio LR (q;h) in % (small-cap portfolio, vertical slicing)
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Figure 15: Liquidation time h+ = LR−1 (q; 99%) in number of trading days (small-cap
portfolio, vertical slicing)
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Figure 16: Transaction cost of the large-cap portfolio (TNA = e5 bn)
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Figure 17: Normal redemption coverage ratio (bond portfolio, R = 30%, mQ+ = 1.0)
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Figure 18: Stressed redemption coverage ratio (bond portfolio, R = 30%, mQ+ = 0.5)
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