Course 2023-2024 in Sustainable Finance
Lecture 13. Exercise — Equity and Bond Portfolio Optimization with Green Preferences

Thierry Roncalli*

* Amundi Asset Management

* University of Paris-Saclay

March 2024

1The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.
Lecture 1: Introduction
Lecture 2: ESG Scoring
Lecture 3: Impact of ESG Investing on Asset Prices and Portfolio Returns
Lecture 4: Sustainable Financial Products
Lecture 5: Impact Investing
Lecture 6: Engagement & Voting Policy
Lecture 7: Extra-financial Accounting
Lecture 8: Awareness of Climate Change Impacts
Lecture 9: The Ecosystem of Climate Change
Lecture 10: Economic Models & Climate Change
Lecture 11: Climate Risk Measures
Lecture 12: Transition Risk Modeling
Lecture 13: Climate Portfolio Construction
Lecture 14: Physical Risk Modeling
Lecture 15: Climate Stress Testing & Risk Management
We consider an investment universe of 8 issuers. In the table below, we report the carbon emissions $CE_{i,j}$ (in ktCO$_2$e) of these companies and their revenues Y_i (in $bn), and we indicate in the last row whether the company belongs to sector Sector_1 or Sector_2:

<table>
<thead>
<tr>
<th>Issuer</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CE_{i,1}$</td>
<td>75</td>
<td>5000</td>
<td>720</td>
<td>50</td>
<td>2500</td>
<td>25</td>
<td>30000</td>
<td>5</td>
</tr>
<tr>
<td>$CE_{i,2}$</td>
<td>75</td>
<td>5000</td>
<td>1030</td>
<td>350</td>
<td>4500</td>
<td>5</td>
<td>2000</td>
<td>64</td>
</tr>
<tr>
<td>$CE_{i,3}$</td>
<td>24000</td>
<td>15000</td>
<td>1210</td>
<td>550</td>
<td>500</td>
<td>187</td>
<td>30000</td>
<td>199</td>
</tr>
<tr>
<td>Y_i</td>
<td>300</td>
<td>328</td>
<td>125</td>
<td>100</td>
<td>200</td>
<td>102</td>
<td>107</td>
<td>25</td>
</tr>
<tr>
<td>Sector</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The benchmark b of this investment universe is defined as:

$$b = (22\%, 19\%, 17\%, 13\%, 11\%, 8\%, 6\%, 4\%)$$

In what follows, we consider long-only portfolios.
Question 1

We want to compute the carbon intensity of the benchmark.
Question (a)

Compute the carbon intensities $CI_{i,j}$ of each company i for the scopes 1, 2 and 3.
We have:

\[CI_{i,j} = \frac{CE_{i,j}}{Y_i} \]

For instance, if we consider the 8th issuer, we have2:

\[CI_{8,1} = \frac{CE_{8,1}}{Y_8} = \frac{5}{25} = 0.20 \text{ tCO}_2\text{e}/\$ \text{ mn} \]
\[CI_{8,2} = \frac{CE_{8,2}}{Y_8} = \frac{64}{25} = 2.56 \text{ tCO}_2\text{e}/\$ \text{ mn} \]
\[CI_{8,3} = \frac{CE_{8,3}}{Y_8} = \frac{199}{25} = 7.96 \text{ tCO}_2\text{e}/\$ \text{ mn} \]

2Because 1 ktCO\textsubscript{2}e/$ bn = 1 tCO\textsubscript{2}e/$ mn.
Since we have:

<table>
<thead>
<tr>
<th>Issuer</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CE_{i,1}$</td>
<td>75</td>
<td>5000</td>
<td>720</td>
<td>50</td>
<td>2500</td>
<td>25</td>
<td>30000</td>
<td>5</td>
</tr>
<tr>
<td>$CE_{i,2}$</td>
<td>75</td>
<td>5000</td>
<td>1030</td>
<td>350</td>
<td>4500</td>
<td>5</td>
<td>2000</td>
<td>64</td>
</tr>
<tr>
<td>$CE_{i,3}$</td>
<td>24000</td>
<td>15000</td>
<td>1210</td>
<td>550</td>
<td>500</td>
<td>187</td>
<td>30000</td>
<td>199</td>
</tr>
</tbody>
</table>

we obtain:

<table>
<thead>
<tr>
<th>Issuer</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CI_{i,1}$</td>
<td>0.25</td>
<td>15.24</td>
<td>5.76</td>
<td>0.50</td>
<td>12.50</td>
<td>0.25</td>
<td>280.37</td>
<td>0.20</td>
</tr>
<tr>
<td>$CI_{i,2}$</td>
<td>0.25</td>
<td>15.24</td>
<td>8.24</td>
<td>3.50</td>
<td>22.50</td>
<td>0.05</td>
<td>18.69</td>
<td>2.56</td>
</tr>
<tr>
<td>$CI_{i,3}$</td>
<td>80.00</td>
<td>45.73</td>
<td>9.68</td>
<td>5.50</td>
<td>2.50</td>
<td>1.83</td>
<td>280.37</td>
<td>7.96</td>
</tr>
</tbody>
</table>
Question (b)

Deduce the carbon intensities $C{I}_{i,j}$ of each company i for the scopes $1 + 2$ and $1 + 2 + 3$.
We have:

\[
CI_{i,1-2} = \frac{CE_{i,1} + CE_{i,2}}{Y_i} = CI_{i,1} + CI_{i,2}
\]

and:

\[
CI_{i,1-3} = CI_{i,1} + CI_{i,2} + CI_{i,3}
\]

We deduce that:

<table>
<thead>
<tr>
<th>Issuer</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI_{i,1}</td>
<td>0.25</td>
<td>15.24</td>
<td>5.76</td>
<td>0.50</td>
<td>12.50</td>
<td>0.25</td>
<td>280.37</td>
<td>0.20</td>
</tr>
<tr>
<td>CI_{i,1-2}</td>
<td>0.50</td>
<td>30.49</td>
<td>14.00</td>
<td>4.00</td>
<td>35.00</td>
<td>0.29</td>
<td>299.07</td>
<td>2.76</td>
</tr>
<tr>
<td>CI_{i,1-3}</td>
<td>80.50</td>
<td>76.22</td>
<td>23.68</td>
<td>9.50</td>
<td>37.50</td>
<td>2.12</td>
<td>579.44</td>
<td>10.72</td>
</tr>
</tbody>
</table>
Question (c)

Deduce the weighted average carbon intensity (WACI) of the benchmark if we consider the scope 1 + 2 + 3.
We have:

\[CI(b) = \sum_{i=1}^{8} b_i CI_i \]

\[= 0.22 \times 80.50 + 0.19 \times 76.2195 + 0.17 \times 23.68 + 0.13 \times 9.50 + \]

\[+ 0.11 \times 37.50 + 0.08 \times 2.1275 + 0.06 \times 579.4393 + 0.04 \times 10.72 \]

\[= 76.9427 \text{ tCO}_2e/\$ \text{ mn} \]
Question (d)

We assume that the market capitalization of the benchmark portfolio is equal to 10 tn and we invest 1 bn.
Question (d).i

Deduce the market capitalization of each company (expressed in $ bn).
We have:

\[b_i = \frac{MC_i}{\sum_{k=1}^{8} MC_k} \]

and \(\sum_{k=1}^{8} MC_k = $10 \text{ tn.} \) We deduce that:

\[MC_i = 10 \times b_i \]

We obtain the following values of market capitalization expressed in $ bn:

<table>
<thead>
<tr>
<th>Issuer</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC_i</td>
<td>2200</td>
<td>1900</td>
<td>1700</td>
<td>1300</td>
<td>1100</td>
<td>800</td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>
Question (d).ii

Compute the ownership ratio for each asset (expressed in bps).
Let W be the wealth invested in the benchmark portfolio b. The wealth invested in asset i is equal to $b_i W$. We deduce that the ownership ratio is equal to:

$$\varpi_i = \frac{b_i W}{MC_i} = \frac{b_i W}{b_i \sum_{k=1}^{n} MC_k} = \frac{W}{\sum_{k=1}^{n} MC_k}$$

When we invest in a capitalization-weighted portfolio, the ownership ratio is the same for all the assets. In our case, we have:

$$\varpi_i = \frac{1}{10 \times 1000} = 0.01\%$$

The ownership ratio is equal to 1 basis point.
Question (d).iii

Compute the carbon emissions of the benchmark portfolio\(^a\) if we invest $1 \text{ bn} and we consider the scope 1 + 2 + 3.

\(^a\)We assume that the float percentage is equal to 100% for all the 8 companies.
Using the financed emissions approach, the carbon emissions of our investment is equal to:

\[
CE \ (\$1 \ \text{bn}) = 0.01\% \times (75 + 75 + 24000) + 0.01\% \times (5000 + 5000 + 15000) + \ldots + 0.01\% \times (5 + 64 + 199) = 12.3045 \ \text{ktCO}_2\text{e}
\]
Question (d).iv

Compare the (exact) carbon intensity of the benchmark portfolio with the WACI value obtained in Question 1.(c).
We compute the revenues of our investment:

\[Y \text{ ($1 bn)} = 0.01\% \sum_{i=1}^{8} Y_i = 0.1287 \text{ bn} \]

We deduce that the exact carbon intensity is equal to:

\[CI \text{ ($1 bn)} = \frac{CE \text{ ($1 bn)}}{Y \text{ ($1 bn)}} = \frac{12.3045}{0.1287} = 95.6061 \text{ tCO}_2\text{e}/$ mn \]

We notice that the WACI of the benchmark underestimates the exact carbon intensity of our investment by 19.5%:

\[76.9427 < 95.6061 \]
Question 2

We want to manage an equity portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate R. We assume that the volatility of the stocks is respectively equal to 22%, 20%, 25%, 18%, 40%, 23%, 13% and 29%. The correlation matrix between these stocks is given by:

$$\rho = \begin{pmatrix}
100 & 80 & 70 & 60 & 70 & 50 & 60 & 70 & 60 & 100 \\
80 & 100 & 75 & 65 & 50 & 60 & 70 & 75 & 65 & 70 \\
70 & 75 & 100 & 80 & 70 & 50 & 70 & 75 & 65 & 70 \\
60 & 65 & 80 & 100 & 85 & 70 & 80 & 80 & 65 & 60 \\
70 & 50 & 70 & 85 & 100 & 100 & 100 & 100 & 100 & 100 \\
50 & 60 & 70 & 80 & 100 & 60 & 100 & 100 & 100 & 100 \\
70 & 50 & 70 & 75 & 80 & 50 & 100 & 100 & 100 & 100 \\
60 & 65 & 70 & 75 & 65 & 70 & 60 & 100 & 100 & 100 \\
\end{pmatrix}$$
Question (a)

Compute the covariance matrix Σ.
The covariance matrix $\Sigma = (\Sigma_{i,j})$ is defined by:

$$\Sigma_{i,j} = \rho_{i,j} \sigma_i \sigma_j$$

We obtain the following numerical values (expressed in bps):

$$\Sigma = \begin{pmatrix}
484.0 & 352.0 & 385.0 & 237.6 & 616.0 & 253.0 & 200.2 & 382.8 \\
352.0 & 400.0 & 375.0 & 234.0 & 400.0 & 276.0 & 130.0 & 377.0 \\
385.0 & 375.0 & 625.0 & 360.0 & 700.0 & 402.5 & 227.5 & 507.5 \\
237.6 & 234.0 & 360.0 & 324.0 & 612.0 & 331.2 & 175.5 & 391.5 \\
616.0 & 400.0 & 700.0 & 612.0 & 1600.0 & 552.0 & 416.0 & 754.0 \\
253.0 & 276.0 & 402.5 & 331.2 & 552.0 & 529.0 & 149.5 & 466.9 \\
200.2 & 130.0 & 227.5 & 175.5 & 416.0 & 149.5 & 169.0 & 226.2 \\
382.8 & 377.0 & 507.5 & 391.5 & 754.0 & 466.9 & 226.2 & 841.0
\end{pmatrix}$$
Question (b)

Write the optimization problem if the objective function is to minimize the tracking error risk under the constraint of carbon intensity reduction.
The tracking error variance of portfolio w with respect to benchmark b is equal to:

$$\sigma^2 (w \mid b) = (w - b)^\top \Sigma (w - b)$$

The carbon intensity constraint has the following expression:

$$\sum_{i=1}^{8} w_i CI_i \leq (1 - R) CI(b)$$

where R is the reduction rate and $CI(b)$ is the carbon intensity of the benchmark. Let $CI^* = (1 - R) CI(b)$ be the target value of the carbon footprint. The optimization problem is then:

$$w^* = \arg \min \frac{1}{2} \sigma^2 (w \mid b)$$

s.t. \[
\begin{align*}
\sum_{i=1}^{8} w_i CI_i & \leq CI^* \\
\sum_{i=1}^{8} w_i &= 1 \\
0 & \leq w_i \leq 1
\end{align*}
\]

We add the second and third constraints in order to obtain a long-only portfolio.
Question (c)

Give the QP formulation of the optimization problem.
The objective function is equal to:

\[f(w) = \frac{1}{2} \sigma^2 (w \mid b) = \frac{1}{2} (w - b)^\top \Sigma (w - b) = \frac{1}{2} w^\top \Sigma w - w^\top \Sigma b + \frac{1}{2} b^\top \Sigma b \]

while the matrix form of the carbon intensity constraint is:

\[CI^\top w \leq CI^* \]

where \(CI = (CI_1, \ldots, CI_8) \) is the column vector of carbon intensities. Since \(b^\top \Sigma b \) is a constant and does not depend on \(w \), we can cast the previous optimization problem into a QP problem:

\[w^* = \arg \min \frac{1}{2} w^\top Q w - w^\top R \]

subject to:

\[\begin{cases} Aw = B \\ Cw \leq D \\ w^- \leq w \leq w^+ \end{cases} \]

We have \(Q = \Sigma, R = \Sigma b, A = \mathbf{1}_8^\top, B = 1, C = CI^\top, D = CI^*, w^- = \mathbf{0}_8 \) and \(w^+ = \mathbf{1}_8 \).
Question (d)

\(R \) is equal to 20%. Find the optimal portfolio if we target scope 1 + 2. What is the value of the tracking error volatility?
We have:

\[CI(b) = 0.22 \times 0.50 + 0.19 \times 30.4878 + \ldots + 0.04 \times 2.76 \]
\[= 30.7305 \text{ tCO}_2e/\$ \text{ mn} \]

We deduce that:

\[CI^* = (1 - R) CI(b) = 0.80 \times 30.7305 = 24.5844 \text{ tCO}_2e/\$ \text{ mn} \]

Therefore, the inequality constraint of the QP problem is:

\[
\begin{pmatrix}
0.50 & 30.49 & 14.00 & 4.00 & 35.00 & 0.29 & 299.07 & 2.76 \\
\cdot & \cdot
\end{pmatrix}
\begin{pmatrix}
w_1 \\
w_2 \\
\vdots \\
w_7 \\
w_8
\end{pmatrix}
\leq 24.5844\]
We obtain the following optimal solution:

\[
\begin{pmatrix}
23.4961 \\
17.8129 \\
17.1278 \\
15.4643 \\
10.4037 \\
7.5903 \\
4.0946 \\
4.0104
\end{pmatrix}
\]

The minimum tracking error volatility \(\sigma (w^* \mid b) \) is equal to 15.37 bps.
Question (e)

Same question if \mathcal{R} is equal to 30%, 50%, and 70%.
Table 1: Solution of the equity optimization problem (scope SC_{1-2})

<table>
<thead>
<tr>
<th>R</th>
<th>0%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>22.0000</td>
<td>23.4961</td>
<td>24.2441</td>
<td>25.7402</td>
<td>30.4117</td>
</tr>
<tr>
<td>w_2</td>
<td>19.0000</td>
<td>17.8129</td>
<td>17.2194</td>
<td>16.0323</td>
<td>9.8310</td>
</tr>
<tr>
<td>w_3</td>
<td>17.0000</td>
<td>17.1278</td>
<td>17.1917</td>
<td>17.3194</td>
<td>17.8348</td>
</tr>
<tr>
<td>w_4</td>
<td>13.0000</td>
<td>15.4643</td>
<td>16.6964</td>
<td>19.1606</td>
<td>23.3934</td>
</tr>
<tr>
<td>w_5</td>
<td>11.0000</td>
<td>10.4037</td>
<td>10.1055</td>
<td>9.5091</td>
<td>7.1088</td>
</tr>
<tr>
<td>w_6</td>
<td>8.0000</td>
<td>7.5903</td>
<td>7.3854</td>
<td>6.9757</td>
<td>6.7329</td>
</tr>
<tr>
<td>w_7</td>
<td>6.0000</td>
<td>4.0946</td>
<td>3.1418</td>
<td>1.2364</td>
<td>0.0000</td>
</tr>
<tr>
<td>w_8</td>
<td>4.0000</td>
<td>4.0104</td>
<td>4.0157</td>
<td>4.0261</td>
<td>4.6874</td>
</tr>
</tbody>
</table>

$\mathbf{CI}(w) = \begin{bmatrix} 30.7305 \\ 24.5844 \\ 21.5114 \\ 15.3653 \\ 9.2192 \end{bmatrix}$

$\sigma(w | b) = \begin{bmatrix} 0.00 \\ 15.37 \\ 23.05 \\ 38.42 \\ 72.45 \end{bmatrix}$
In Table 1, we report the optimal solution w^* (expressed in %) of the optimization problem for different values of R. We also indicate the carbon intensity of the portfolio (in tCO$_2$/mn) and the tracking error volatility (in bps). For instance, if R is set to 50%, the weights of assets #1, #3, #4 and #8 increase whereas the weights of assets #2, #5, #6 and #7 decrease. The carbon intensity of this portfolio is equal to 15.3653 tCO$_2$/mn. The tracking error volatility is below 40 bps, which is relatively low.
Question (f)

We target scope 1 + 2 + 3. Find the optimal portfolio if R is equal to 20%, 30%, 50% and 70%. Give the value of the tracking error volatility for each optimized portfolio.
In this case, the inequality constraint $Cw \leq D$ is defined by:

$$C = c^T x_{1-3} = \begin{pmatrix} 80.5000 \\ 76.2195 \\ 23.6800 \\ 9.5000 \\ 37.5000 \\ 2.1275 \\ 579.4393 \\ 10.7200 \end{pmatrix}^T$$

and:

$$D = (1 - \mathcal{R}) \times 76.9427$$
We obtain the results given in Table 2.

Table 2: Solution of the equity optimization problem (scope \mathcal{SC}_{1-3})

<table>
<thead>
<tr>
<th>\mathcal{R}</th>
<th>0%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>22.0000</td>
<td>23.9666</td>
<td>24.9499</td>
<td>26.4870</td>
<td>13.6749</td>
</tr>
<tr>
<td>w_2</td>
<td>19.0000</td>
<td>17.4410</td>
<td>16.6615</td>
<td>8.8001</td>
<td>0.0000</td>
</tr>
<tr>
<td>w_3</td>
<td>17.0000</td>
<td>17.1988</td>
<td>17.2981</td>
<td>19.4253</td>
<td>24.1464</td>
</tr>
<tr>
<td>w_4</td>
<td>13.0000</td>
<td>16.5034</td>
<td>18.2552</td>
<td>25.8926</td>
<td>41.0535</td>
</tr>
<tr>
<td>w_5</td>
<td>11.0000</td>
<td>10.2049</td>
<td>9.8073</td>
<td>7.1330</td>
<td>3.5676</td>
</tr>
<tr>
<td>w_6</td>
<td>8.0000</td>
<td>7.4169</td>
<td>7.1254</td>
<td>7.0659</td>
<td>8.8851</td>
</tr>
<tr>
<td>w_7</td>
<td>6.0000</td>
<td>3.2641</td>
<td>1.8961</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>w_8</td>
<td>4.0000</td>
<td>4.0043</td>
<td>4.0065</td>
<td>5.1961</td>
<td>8.6725</td>
</tr>
<tr>
<td>$\mathcal{CI}(w)$</td>
<td>76.9427</td>
<td>61.5541</td>
<td>53.8599</td>
<td>38.4713</td>
<td>23.0828</td>
</tr>
<tr>
<td>$\sigma(w \mid b)$</td>
<td>0.00</td>
<td>21.99</td>
<td>32.99</td>
<td>104.81</td>
<td>414.48</td>
</tr>
</tbody>
</table>
Question (g)

Compare the optimal solutions obtained in Questions 2.(e) and 2.(f).
Figure 1: Impact of the scope on the tracking error volatility
Figure 2: Impact of the scope on the portfolio allocation (in %)
In Figure 1, we report the relationship between the reduction rate \mathcal{R} and the tracking error volatility $\sigma(w | b)$. The choice of the scope has little impact when $\mathcal{R} \leq 45\%$. Then, we notice a high increase when we consider the scope $1 + 2 + 3$. The portfolio’s weights are given in Figure 2. For assets #1 and #3, the behavior is divergent when we compare scopes $1 + 2$ and $1 + 2 + 3$.

Question 3

We want to manage a bond portfolio with respect to the previous investment universe and reduce the weighted average carbon intensity of the benchmark by the rate R. We use the scope $1 + 2 + 3$. In the table below, we report the modified duration MD_i and the duration-times-spread factor DTS_i of each corporate bond i:

<table>
<thead>
<tr>
<th>Asset</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD_i (in years)</td>
<td>3.56</td>
<td>7.48</td>
<td>6.54</td>
<td>10.23</td>
<td>2.40</td>
<td>2.30</td>
<td>9.12</td>
<td>7.96</td>
</tr>
<tr>
<td>DTS_i (in bps)</td>
<td>103</td>
<td>155</td>
<td>75</td>
<td>796</td>
<td>89</td>
<td>45</td>
<td>320</td>
<td>245</td>
</tr>
<tr>
<td>Sector</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Question 3 (Cont’d)

We remind that the active risk can be calculated using three functions. For the active share, we have:

\[
\mathcal{R}_{AS} (w \mid b) = \sigma^2_{AS} (w \mid b) = \sum_{i=1}^{n} (w_i - b_i)^2
\]

We also consider the MD-based tracking error risk:

\[
\mathcal{R}_{MD} (w \mid b) = \sigma^2_{MD} (w \mid b) = \sum_{j=1}^{n_{sector}} \left(\sum_{i \in \text{Sector}_j} (w_i - b_i) \text{MD}_i \right)^2
\]

and the DTS-based tracking error risk:

\[
\mathcal{R}_{DTS} (w \mid b) = \sigma^2_{DTS} (w \mid b) = \sum_{j=1}^{n_{sector}} \left(\sum_{i \in \text{Sector}_j} (w_i - b_i) \text{DTS}_i \right)^2
\]
Finally, we define the synthetic risk measure as a combination of AS, MD and DTS active risks:

\[\mathcal{R} (w \mid b) = \varphi_{AS} \mathcal{R}_{AS} (w \mid b) + \varphi_{MD} \mathcal{R}_{MD} (w \mid b) + \varphi_{DTS} \mathcal{R}_{DTS} (w \mid b) \]

where \(\varphi_{AS} \geq 0, \varphi_{MD} \geq 0 \) and \(\varphi_{DTS} \geq 0 \) indicate the weight of each risk. In what follows, we use the following numerical values: \(\varphi_{AS} = 100, \varphi_{MD} = 25 \) and \(\varphi_{DTS} = 1 \). The reduction rate \(\mathcal{R} \) of the weighted average carbon intensity is set to 50% for the scope 1 + 2 + 3.
Question (a)

Compute the modified duration $MD(b)$ and the duration-times-spread factor $DTS(b)$ of the benchmark.
We have:

\[
MD(b) = \sum_{i=1}^{n} b_i \, MD_i \\
= 0.22 \times 3.56 + 0.19 \times 7.48 + \ldots + 0.04 \times 7.96 \\
= 5.96 \text{ years}
\]

and:

\[
DTS(b) = \sum_{i=1}^{n} b_i \, DTS_i \\
= 0.22 \times 103 + 0.19 \times 155 + \ldots + 0.04 \times 155 \\
= 210.73 \text{ bps}
\]
Question (b)

Let w_{ew} be the equally-weighted portfolio. Compute $\text{MD}(w_{ew})$, $\text{DTS}(w_{ew})$, $\sigma_{AS}(w_{ew} \mid b)$, $\sigma_{MD}(w_{ew} \mid b)$ and $\sigma_{DTS}(w_{ew} \mid b)$.

aPrecise the corresponding unit (years, bps or %) for each metric.
We have:

\[
\begin{align*}
\text{MD} (w_{ew}) &= 6.20 \text{ years} \\
\text{DTS} (w_{ew}) &= 228.50 \text{ bps} \\
\sigma_{AS} (w_{ew} | b) &= 17.03\% \\
\sigma_{MD} (w_{ew} | b) &= 1.00 \text{ years} \\
\sigma_{DTS} (w_{ew} | b) &= 36.19 \text{ bps}
\end{align*}
\]
Question (c)

We consider the following optimization problem:

\[
 w^* = \arg\min \frac{1}{2} \mathcal{R}_{AS}(w \mid b)
\]

\[
\begin{align*}
 \sum_{i=1}^{n} w_i &= 1 \\
 \text{MD}(w) &= \text{MD}(b) \\
 \text{DTS}(w) &= \text{DTS}(b) \\
 \mathcal{CI}(w) &\leq (1 - \mathcal{R}) \mathcal{CI}(b) \\
 0 &\leq w_i \leq 1
 \end{align*}
\]

Give the analytical value of the objective function. Find the optimal portfolio \(w^* \). Compute \(\text{MD}(w^*) \), \(\text{DTS}(w^*) \), \(\sigma_{AS}(w^* \mid b) \), \(\sigma_{MD}(w^* \mid b) \) and \(\sigma_{DTS}(w^* \mid b) \).
We have:

\[R_{AS} (w | b) = (w_1 - 0.22)^2 + (w_2 - 0.19)^2 + (w_3 - 0.17)^2 + (w_4 - 0.13)^2 + (w_5 - 0.11)^2 + (w_6 - 0.08)^2 + (w_7 - 0.06)^2 + (w_8 - 0.04)^2 \]

The objective function is then:

\[f (w) = \frac{1}{2} R_{AS} (w | b) \]

The optimal solution is equal to:

\[w^* = (17.30\%, 17.41\%, 20.95\%, 14.41\%, 10.02\%, 11.09\%, 0\%, 8.81\%) \]

The risk metrics are:

\[
\begin{align*}
\text{MD} (w^*) &= 5.96 \text{ years} \\
\text{DTS} (w^*) &= 210.73 \text{ bps} \\
\sigma_{AS} (w^* | b) &= 10.57\% \\
\sigma_{MD} (w^* | b) &= 0.43 \text{ years} \\
\sigma_{DTS} (w^* | b) &= 15.21 \text{ bps}
\end{align*}
\]
Question (d)

We consider the following optimization problem:

\[
\begin{align*}
\nonumber w^* &= \arg \min \frac{\varphi_{AS}}{2} \mathcal{R}_{AS} (w \mid b) + \frac{\varphi_{MD}}{2} \mathcal{R}_{MD} (w \mid b) \\
\text{s.t.} & \begin{cases}
\sum_{i=1}^{n} w_i = 1 \\
\text{DTS}(w) = \text{DTS}(b) \\
\text{CI}(w) \leq (1 - \mathcal{R}) \text{CI}(b) \\
0 \leq w_i \leq 1
\end{cases}
\end{align*}
\]

Give the analytical value of the objective function. Find the optimal portfolio \(w^* \). Compute \(\text{MD}(w^*) \), \(\text{DTS}(w^*) \), \(\sigma_{AS} (w^* \mid b) \), \(\sigma_{MD} (w^* \mid b) \), and \(\sigma_{DTS} (w^* \mid b) \).
We have\(^3\):

\[
R_{MD} (w | b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) MD_i \right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) MD_i \right)^2
\]

\[
= \left(\sum_{i=1,3,4,6} w_i MD_i - \sum_{i=1,3,4,6} b_i MD_i \right)^2 + \left(\sum_{i=2,5,7,8} w_i MD_i - \sum_{i=2,5,7,8} b_i MD_i \right)^2
\]

\[
= (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2
\]

The objective function is then:

\[
f (w) = \frac{\varphi_{AS}}{2} R_{AS} (w | b) + \frac{\varphi_{MD}}{2} R_{MD} (w | b)
\]

\(^3\)We verify that 3.4089 + 2.5508 = 5.9597 years.
The optimal solution is equal to:

\[w^* = (16.31\%, 18.44\%, 17.70\%, 13.82\%, 11.67\%, 11.18\%, 0\%, 10.88\%) \]

The risk metrics are:

\[
\begin{align*}
\text{MD} (w^*) &= 5.93 \text{ years} \\
\text{DTS} (w^*) &= 210.73 \text{ bps} \\
\sigma_{AS} (w^* | b) &= 11.30\% \\
\sigma_{MD} (w^* | b) &= 0.03 \text{ years} \\
\sigma_{DTS} (w^* | b) &= 3.70 \text{ bps}
\end{align*}
\]
Question (e)

We consider the following optimization problem:

$$w^* = \arg \min \frac{1}{2} \mathcal{R}(w \mid b)$$

$$\text{s.t.} \begin{cases} \sum_{i=1}^{n} w_i = 1 \\ CI(w) \leq (1 - R) CI(b) \\ 0 \leq w_i \leq 1 \end{cases}$$

Give the analytical value of the objective function. Find the optimal portfolio w^*. Compute $MD(w^*)$, $DTS(w^*)$, $\sigma_{AS}(w^* \mid b)$, $\sigma_{MD}(w^* \mid b)$ and $\sigma_{DTS}(w^* \mid b)$.
We have\(^4\):

\[
\mathcal{R}_{\text{DTS}}(w \mid b) = \left(\sum_{i=1,3,4,6} (w_i - b_i) DTS_i \right)^2 + \left(\sum_{i=2,5,7,8} (w_i - b_i) DTS_i \right)^2 \\
= (103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49)^2 + \\
(155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24)^2
\]

The objective function is then:

\[
f(w) = \frac{\varphi_{\text{AS}}}{2} \mathcal{R}_{\text{AS}}(w \mid b) + \frac{\varphi_{\text{MD}}}{2} \mathcal{R}_{\text{MD}}(w \mid b) + \frac{\varphi_{\text{DTS}}}{2} \mathcal{R}_{\text{DTS}}(w \mid b)
\]

\(^4\)We verify that 142.49 + 68.24 = 210.73 bps.
The optimal solution is equal to:

\[w^* = (16.98\%, 17.21\%, 18.26\%, 13.45\%, 12.10\%, 9.46\%, 0\%, 12.55\%) \]

The risk metrics are:

\[
\begin{align*}
\text{MD} (w^*) &= 5.97 \text{ years} \\
\text{DTS} (w^*) &= 210.68 \text{ bps} \\
\sigma_{AS} (w^* | b) &= 11.94\% \\
\sigma_{MD} (w^* | b) &= 0.03 \text{ years} \\
\sigma_{DTS} (w^* | b) &= 0.06 \text{ bps}
\end{align*}
\]
Question (f)

Comment on the results obtained in Questions 3.(c), 3.(d) and 3.(e).
Table 3: Solution of the bond optimization problem (scope SC_{1-3})

<table>
<thead>
<tr>
<th>Problem</th>
<th>Benchmark</th>
<th>3.(c)</th>
<th>3.(d)</th>
<th>3.(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>22.0000</td>
<td>17.3049</td>
<td>16.3102</td>
<td>16.9797</td>
</tr>
<tr>
<td>w_2</td>
<td>19.0000</td>
<td>17.4119</td>
<td>18.4420</td>
<td>17.2101</td>
</tr>
<tr>
<td>w_3</td>
<td>17.0000</td>
<td>20.9523</td>
<td>17.6993</td>
<td>18.2582</td>
</tr>
<tr>
<td>w_4</td>
<td>13.0000</td>
<td>14.4113</td>
<td>13.8195</td>
<td>13.4494</td>
</tr>
<tr>
<td>w_5</td>
<td>11.0000</td>
<td>10.0239</td>
<td>11.6729</td>
<td>12.1008</td>
</tr>
<tr>
<td>w_6</td>
<td>8.0000</td>
<td>11.0881</td>
<td>11.1792</td>
<td>9.4553</td>
</tr>
<tr>
<td>w_7</td>
<td>6.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>w_8</td>
<td>4.0000</td>
<td>8.8075</td>
<td>10.8769</td>
<td>12.5464</td>
</tr>
<tr>
<td>$MD(w)$</td>
<td>5.9597</td>
<td>5.9597</td>
<td>5.9344</td>
<td>5.9683</td>
</tr>
<tr>
<td>$DTS(w)$</td>
<td>210.7300</td>
<td>210.7300</td>
<td>210.7300</td>
<td>210.6791</td>
</tr>
<tr>
<td>$\sigma_{AS}(w</td>
<td>b)$</td>
<td>0.0000</td>
<td>10.5726</td>
<td>11.3004</td>
</tr>
<tr>
<td>$\sigma_{MD}(w</td>
<td>b)$</td>
<td>0.0000</td>
<td>0.4338</td>
<td>0.0254</td>
</tr>
<tr>
<td>$\sigma_{DTS}(w</td>
<td>b)$</td>
<td>0.0000</td>
<td>15.2056</td>
<td>3.7018</td>
</tr>
<tr>
<td>$CI(w)$</td>
<td>76.9427</td>
<td>38.4713</td>
<td>38.4713</td>
<td>38.4713</td>
</tr>
</tbody>
</table>
Question (g)

How to find the previous solution of Question 3.(e) using a QP solver?
The goal is to write the objective function into a quadratic function:

\[
f(w) = \frac{\varphi_{\text{AS}}}{2} \mathcal{R}_{\text{AS}}(w | b) + \frac{\varphi_{\text{MD}}}{2} \mathcal{R}_{\text{MD}}(w | b) + \frac{\varphi_{\text{DTS}}}{2} \mathcal{R}_{\text{DTS}}(w | b)
\]

\[
= \frac{1}{2} w^\top Q(b) w - w^\top R(b) + c(b)
\]

where:

\[
\mathcal{R}_{\text{AS}}(w | b) = (w_1 - 0.22)^2 + (w_2 - 0.19)^2 + (w_3 - 0.17)^2 + (w_4 - 0.13)^2 + (w_5 - 0.11)^2 + (w_6 - 0.08)^2 + (w_7 - 0.06)^2 + (w_8 - 0.04)^2
\]

\[
\mathcal{R}_{\text{MD}}(w | b) = (3.56w_1 + 6.54w_3 + 10.23w_4 + 2.30w_6 - 3.4089)^2 + (7.48w_2 + 2.40w_5 + 9.12w_7 + 7.96w_8 - 2.5508)^2
\]

\[
\mathcal{R}_{\text{DTS}}(w | b) = (103w_1 + 75w_3 + 796w_4 + 45w_6 - 142.49)^2 + (155w_2 + 89w_5 + 320w_7 + 245w_8 - 68.24)^2
\]
We use the analytical approach which is described in Section 11.1.2 on pages 332-339. Moreover, we rearrange the universe such that the first fourth assets belong to the first sector and the last fourth assets belong to the second sector. In this case, we have:

\[
W = \begin{pmatrix}
W_1, W_3, W_4, W_6, & W_2, W_5, W_7, W_8 \\
\underline{\text{Sector}_1} & \underline{\text{Sector}_2}
\end{pmatrix}
\]
The matrix $Q(b)$ is block-diagonal:

$$Q(b) = \begin{pmatrix} Q_1 & 0_{4,4} \\ 0_{4,4} & Q_2 \end{pmatrix}$$

where the matrices Q_1 and Q_2 are equal to:

$$Q_1 = \begin{pmatrix}
11025.8400 & 8307.0600 & 82898.4700 & 4839.7000 \\
8307.0600 & 6794.2900 & 61372.6050 & 3751.0500 \\
82898.4700 & 61372.6050 & 636332.3225 & 36408.2250 \\
4839.7000 & 3751.0500 & 36408.2250 & 2257.2500 \\
\end{pmatrix}$$

and:

$$Q_2 = \begin{pmatrix}
25523.7600 & 14243.8000 & 51305.4400 & 39463.5200 \\
14243.8000 & 8165.0000 & 29027.2000 & 22282.6000 \\
51305.4400 & 29027.2000 & 104579.3600 & 80214.8800 \\
39463.5200 & 22282.6000 & 80214.8800 & 61709.0400 \\
\end{pmatrix}$$
The vector $R(b)$ is defined as follows:

$$R(b) = \begin{pmatrix}
15001.8621 \\
11261.1051 \\
114306.8662 \\
6616.0617 \\
11073.1996 \\
6237.4080 \\
22424.3824 \\
17230.4092
\end{pmatrix}$$

Finally, the value of $c(b)$ is equal to:

$$c(b) = 12714.3386$$
Using a QP solver, we obtain the following numerical solution:

\[
\begin{pmatrix}
w_1 \\
w_3 \\
w_4 \\
w_6 \\
w_2 \\
w_5 \\
w_7 \\
w_8 \\
\end{pmatrix} = \begin{pmatrix}
16.9796 \\
18.2582 \\
13.4494 \\
9.4553 \\
17.2102 \\
12.1009 \\
0.0000 \\
12.5464 \\
\end{pmatrix} \times 10^{-2}
\]

We observe some small differences (after the fifth digit) because the QP solver is more efficient than a traditional nonlinear solver.
Question 4

We consider a variant of Question 3 and assume that the synthetic risk measure is:

\[D(w \mid b) = \varphi_{AS} D_{AS}(w \mid b) + \varphi_{MD} D_{MD}(w \mid b) + \varphi_{DTS} D_{DTS}(w \mid b) \]

where:

\[D_{AS}(w \mid b) = \frac{1}{2} \sum_{i=1}^{n} |w_i - b_i| \]

\[D_{MD}(w \mid b) = \sum_{j=1}^{n_{sector}} \left| \sum_{i \in \text{Sector}_j} (w_i - b_i) \cdot MD_i \right| \]

\[D_{DTS}(w \mid b) = \sum_{j=1}^{n_{sector}} \left| \sum_{i \in \text{Sector}_j} (w_i - b_i) \cdot DTS_i \right| \]
Question (a)

Define the corresponding optimization problem when the objective is to minimize the active risk and reduce the carbon intensity of the benchmark by \mathcal{R}.
The optimization problem is:

\[w^* = \arg \min_{w} D(w \mid b) \]

s.t. \[
\begin{align*}
\mathbf{1}_8^T w &= 1 \\
\mathbf{C}\mathbf{I}^T w &\leq (1 - \mathbf{R}) \mathbf{C}\mathbf{I}(b) \\
\mathbf{0}_8 &\leq w \leq \mathbf{1}_8
\end{align*}
\]
Question (b)

Give the LP formulation of the optimization problem.
We use the absolute value trick and obtain the following optimization problem:

\[w^* = \arg \min \frac{1}{2} \varphi_{AS} \sum_{i=1}^{8} \tau_{i,w} + \varphi_{MD} \sum_{j=1}^{2} \tau_{j,MD} + \varphi_{DTS} \sum_{j=1}^{2} \tau_{j,DTS} \]

subject to:

\[
\begin{align*}
1^\top_8 w &= 1 \\
0_8 &\leq w &\leq 1_8 \\
CI^\top w &\leq (1 - R) CI (b) \\
|w_i - b_i| &\leq \tau_{i,w} \\
\sum_{i \in \text{sector}_j} (w_i - b_i) \text{MD}_i &\leq \tau_{j,MD} \\
\sum_{i \in \text{sector}_j} (w_i - b_i) \text{DTS}_i &\leq \tau_{j,DTS} \\
\tau_{i,w} &\geq 0, \tau_{j,MD} \geq 0, \tau_{j,DTS} \geq 0
\end{align*}
\]
We can now formulate this problem as a standard LP problem:

\[x^* = \arg \min c^\top x \]

subject to:

\[
\begin{align*}
Ax &= B \\
Cx &\leq D \\
x^- &\leq x \leq x^+
\end{align*}
\]

where \(x \) is the \(20 \times 1 \) vector defined as follows:

\[
x = \begin{pmatrix}
w \\
\tau_w \\
\tau_{MD} \\
\tau_{DTS}
\end{pmatrix}
\]
The 20×1 vector c is equal to:

$$
c = \begin{pmatrix}
 0_8 \\
 \frac{1}{2} \varphi_{AS} 1_8 \\
 \varphi_{MD} 1_2 \\
 \varphi_{DTS} 1_2
\end{pmatrix}
$$

The equality constraint is defined by $A = \begin{pmatrix} 1_8^T & 0_8^T & 0_2^T & 0_2^T \end{pmatrix}$ and $B = 1$. The bounds are $x^- = 0_{20}$ and $x^+ = \infty \cdot 1_{20}$.
For the inequality constraint, we have:\(^5\):

\[
C \mathbf{x} \leq D \iff \begin{pmatrix} I_{8} & -I_{8} & 0_{8,2} & 0_{8,2} \\ -I_{8} & -I_{8} & 0_{8,2} & 0_{8,2} \\ C_{MD} & 0_{2,8} & -l_2 & 0_{2,2} \\ -C_{MD} & 0_{2,8} & -l_2 & 0_{2,2} \\ C_{DTS} & 0_{2,8} & 0_{2,2} & -l_2 \\ -C_{DTS} & 0_{2,8} & 0_{2,2} & -l_2 \\ CI^{\top} & 0_{1,8} & 0 & 0 \end{pmatrix} \begin{pmatrix} b \\ -b \\ MD^* \\ -MD^* \\ DTS^* \\ -DTS^* \\ (1 - R) CI(b) \end{pmatrix} \leq \begin{pmatrix} b \\ -b \\ MD^* \\ -MD^* \\ DTS^* \\ -DTS^* \\ (1 - R) CI(b) \end{pmatrix}
\]

where:

\[
C_{MD} = \begin{pmatrix} 3.56 & 0.00 & 6.54 & 10.23 & 0.00 & 2.30 & 0.00 & 0.00 \\ 0.00 & 7.48 & 0.00 & 0.00 & 2.40 & 0.00 & 9.12 & 7.96 \end{pmatrix}
\]

and:

\[
C_{DTS} = \begin{pmatrix} 103 & 0 & 75 & 796 & 0 & 45 & 0 & 0 \\ 0 & 155 & 0 & 0 & 89 & 0 & 320 & 245 \end{pmatrix}
\]

The 2 \times 1 vectors \(MD^*\) and \(DTS^*\) are respectively equal to \((3.4089, 2.5508)\) and \((142.49, 68.24)\).

\(^5C\) is a 25 \times 8 matrix and \(D\) is a 25 \times 1 vector.
Question (c)

Find the optimal portfolio when R is set to 50%. Compare the solution with this obtained in Question 3.(e).
We obtain the following solution:

\[
\begin{align*}
\mathbf{w}^* &= (18.7360, 15.8657, 17.8575, 13.2589, 11, 9.4622, 0, 13.8196) \times 10^{-2} \\
\tau^*_w &= (3.2640, 3.1343, 0.8575, 0.2589, 0, 1.4622, 6, 9.8196) \times 10^{-2} \\
\tau_{MD} &= (0, 0) \\
\tau_{DTS} &= (0, 0)
\end{align*}
\]
Table 4: Solution of the bond optimization problem (scope \mathcal{SC}_{1-3})

<table>
<thead>
<tr>
<th>Problem</th>
<th>Benchmark</th>
<th>3.(e)</th>
<th>4.(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>22.0000</td>
<td>16.9796</td>
<td>18.7360</td>
</tr>
<tr>
<td>w_2</td>
<td>19.0000</td>
<td>17.2102</td>
<td>15.8657</td>
</tr>
<tr>
<td>w_3</td>
<td>17.0000</td>
<td>18.2582</td>
<td>17.8575</td>
</tr>
<tr>
<td>w_4</td>
<td>13.0000</td>
<td>13.4494</td>
<td>13.2589</td>
</tr>
<tr>
<td>w_5</td>
<td>11.0000</td>
<td>12.1009</td>
<td>11.0000</td>
</tr>
<tr>
<td>w_6</td>
<td>8.0000</td>
<td>9.4553</td>
<td>9.4622</td>
</tr>
<tr>
<td>w_7</td>
<td>6.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>w_8</td>
<td>4.0000</td>
<td>12.5464</td>
<td>13.8196</td>
</tr>
</tbody>
</table>

- $\text{MD}(w)$: 5.9597 5.9683 5.9597
- $\text{DTS}(w)$: 210.7300 210.6791 210.7300
- $\sigma_{\text{AS}}(w \mid b)$: 0.0000 11.9400 12.4837
- $\sigma_{\text{MD}}(w \mid b)$: 0.0000 0.0308 0.0000
- $\sigma_{\text{DTS}}(w \mid b)$: 0.0000 0.0561 0.0000
- $\mathcal{D}_{\text{AS}}(w \mid b)$: 0.0000 25.6203 24.7964
- $\mathcal{D}_{\text{MD}}(w \mid b)$: 0.0000 0.0426 0.0000
- $\mathcal{D}_{\text{DTS}}(w \mid b)$: 0.0000 0.0608 0.0000
- $\mathcal{CI}(w)$: 76.9427 38.4713 38.4713
In Table 4, we compare the two solutions\(^6\). They are very close. In fact, we notice that the LP solution matches perfectly the MD and DTS constraints, but has a higher AS risk \(\sigma_{AS}(w \mid b)\). If we note the two solutions \(w^*(L_1)\) and \(w^*(L_2)\), we have:

\[
\begin{align*}
\mathcal{R}(w^*(L_2) \mid b) &= 1.4524 < \mathcal{R}(w^*(L_1) \mid b) = 1.5584 \\
\mathcal{D}(w^*(L_2) \mid b) &= 13.9366 > \mathcal{D}(w^*(L_1) \mid b) = 12.3982
\end{align*}
\]

There is a trade-off between the \(L_1\)- and \(L_2\)-norm risk measures. This is why we cannot say that one solution dominates the other.

\(^6\)The units are the following: \(\%\) for the weights \(w_i\), and the active share metrics \(\sigma_{AS}(w \mid b)\) and \(\mathcal{D}_{AS}(w \mid b)\); years for the modified duration metrics \(MD(w)\), \(\sigma_{MD}(w \mid b)\) and \(\mathcal{D}_{MD}(w \mid b)\); bps for the duration-times-spread metrics \(DTS(w)\), \(\sigma_{DTS}(w \mid b)\) and \(\mathcal{D}_{DTS}(w \mid b)\); \(t\text{CO}_2e/\$\) mn for the carbon intensity \(DTS(w)\).