Handbook of Financial Risk Management

Chapter 1

Introduction

FIGURE 1.1: Notional outstanding amount of exchange-traded derivatives (in \$ tn) Source: Bank for International Settlement (2019) and author's calculations.

Handbook of Financial Risk Management

FIGURE 1.2: Notional outstanding amount of OTC derivatives (in \$ tn) Source: Bank for International Settlement (2019).

FIGURE 1.3: Ratio OTC derivatives/exchange-traded derivatives

Source: Bank for International Settlement (2019).

 $\mathbf{2}$

FIGURE 1.4: Number of bank defaults in the US

Source: Federal Deposit Insurance Corporation, Historical Statistics on Banking – Failures & Assistance Transactions, www.fdic.gov/bank/individual/failed.

Handbook of Financial Risk Management

FIGURE 1.5: The huge increase of the number of banking supervision standards *Source*: Basel Committee on Banking Supervision and author's calculations.

FIGURE 1.6: Probability distribution of the portfolio loss

 ${\bf FIGURE} \ {\bf 1.7}:$ Minimum capital requirements in the Basel II framework

FIGURE 1.8: Solvency I capital requirement

FIGURE 1.9: Solvency II capital requirement

Part I

Risk Management in the Financial Sector

Chapter 2

Market Risk

FIGURE 2.1: Calculation of the required capital with the VaR

FIGURE 2.2: Two different periods to compute the VaR and the SVaR

FIGURE 2.3: Color zones of the backtesting procedure ($\alpha = 99\%$)

FIGURE 2.4: High, medium and low correlation scenarios

FIGURE 2.5: Density of the VaR estimator (Gaussian case)

FIGURE 2.6: Kernel estimation of the historical VaR

FIGURE 2.7: Cash flows of two bonds and two short exposures

FIGURE 2.8: Convergence of the VaR with PCA risk factors

FIGURE 2.9: Weights of the EWMA estimator

FIGURE 2.10: Comparison of GARCH and EWMA volatilities

FIGURE 2.11: Examples of skewed and fat tailed distributions

FIGURE 2.12: Estimated distribution of S&P 500 daily returns (2007-2014)

FIGURE 2.13: Derivatives and definition domain of the Cornish-Fisher expansion

FIGURE 2.14: Skew normal and t distributions of asset returns

FIGURE 2.15: Convergence of the Monte Carlo VaR when asset returns are skew normal

FIGURE 2.16: Probability density function of the daily P&L with credit risk

FIGURE 2.17: Relationship between the asset return R_S and the option return R_C

FIGURE 2.18: Approximation of the option price with the Greek coefficients

FIGURE 2.19: Density function of the different risk contribution estimators

FIGURE 2.20: Probability density function of the \mathcal{RC}_1 estimator for the 99% VaR and 97.5% ES

Chapter 3

Credit Risk

FIGURE 3.1: Credit debt outstanding in the United States (in \$ tn)

Source: Board of Governors of the Federal Reserve System (2019).

FIGURE 3.2: Credit to the private non-financial sector (in \$ tn)

Source: Bank for International Settlement (2019) & author's calculations.

FIGURE 3.3: US bond market outstanding (in \$ tn)

Source: Securities Industry and Financial Markets Association (2019a).

Source: Securities Industry and Financial Markets Association (2019a).

FIGURE 3.5: Average daily trading volume in US bond markets (in \$ bn) Source: Securities Industry and Financial Markets Association (2019a).

FIGURE 3.6: Cash flows of a bond with a fixed coupon rate

FIGURE 3.7: Movements of the yield curve

 $Credit\ Risk$

FIGURE 3.8: Cash flows of a bond with default risk

FIGURE 3.9: Difference between market and credit risks for a bond

FIGURE 3.10: Securitization in Europe and US (in \in tn)

Source: Association for Financial Markets in Europe (2019).

FIGURE 3.11: Structure of pass-through securities

Credit Risk

FIGURE 3.12: Structure of pay-through securities

FIGURE 3.13: Outstanding amount of credit default swaps (in $\$ tn)

Source: Bank for International Settlement (2019).

FIGURE 3.14: Cash flows of a single-name credit default swap

FIGURE 3.15: Evolution of some sovereign CDS spreads

FIGURE 3.16: Evolution of some financial and corporate CDS spreads

FIGURE 3.17: Example of CDS spread curves as of 2015-09-17

 ${\bf FIGURE}~{\bf 3.18}:$ Hedging a defaultable bond with a credit default swap

FIGURE 3.19: An example of CDS offsetting

FIGURE 3.20: Structure of a collateralized debt obligation

 ${\bf FIGURE~3.21}:$ Probability functions of the credit portfolio loss

FIGURE 3.22: Relationship between the risk contribution \mathcal{RC}_i and model parameters

FIGURE 3.23: Risk weight of securitization exposures

FIGURE 3.24: Probability density function of the beta distribution $\mathcal{B}(\alpha, \beta)$

FIGURE 3.25: Calibration of the beta distribution

 $Credit \ Risk$

FIGURE 3.26: Maximum standard deviation $\sigma^+(\mu)$

FIGURE 3.27: Calibration of the beta distribution when $\sigma_{LGD} = 30\%$

FIGURE 3.28: Calibration of the beta distribution when $\sigma_{LGD} = 10\%$

FIGURE 3.29: Calibration of a bimodal LGD distribution

FIGURE 3.30: Loss frequency in % of the three LGD models

FIGURE 3.31: Loss frequency in % for different values of μ_{LGD} and σ_{LGD}

FIGURE 3.32: Example of the piecewise exponential model

FIGURE 3.33: Estimated hazard function

FIGURE 3.34: Calibrated survival function from CDS prices

FIGURE 3.35: Estimated hazard function $\lambda_{i}(t)$ from the credit migration matrix

FIGURE 3.36: Probability density function $f_{i}(t)$ of S&P ratings

FIGURE 3.37: Probability of default in the KMV model

FIGURE 3.38: Distance-to-default in the KMV model

FIGURE 3.39: Probability of default in the CreditGrades model

FIGURE 3.40: Intensity models and the default barrier issue

FIGURE 3.41: Hazard function $\lambda_{i}(t)$ (in bps)

FIGURE 3.42: Hazard function $\lambda_i(t)$ (in bps) when a AAA-rated company defaults after 10 years ($\rho = 5\%$)

FIGURE 3.43: Hazard function $\lambda_i(t)$ (in bps) when a AAA-rated company defaults after 10 years ($\rho = 50\%$)

FIGURE 3.44: Hazard function $\lambda_i(t)$ (in bps) when a BB-rated company defaults after 10 years ($\rho = 50\%$)

FIGURE 3.45: Hazard function $\lambda_i(t)$ (in bps) when a CCC-rated company defaults after 10 years ($\rho = 50\%$)

FIGURE 3.46: Distribution of the default rate (in %)

FIGURE 3.47: Economic interpretation of the common factor X

FIGURE 3.48: Dependogram of default times in the stochastic correlation model

FIGURE 3.49: Distribution of the latent variable Z in the local correlation model

FIGURE 3.50: Dependogram of default times in the local correlation model

FIGURE 3.51: Local correlation $\rho(x) = \beta^2(x)$

FIGURE 3.52: Correlation skew generated by the local correlation model

FIGURE 3.53: Calibration of the correlation skew (local correlation model)

FIGURE 3.54: Implied local correlation model

FIGURE 3.55: Calibration of the correlation skew (ordinal sum of \mathbf{C}^{\perp} and $\mathbf{C}^{+})$

FIGURE 3.56: Comparison between the 99.9% value-at-risk of a loan and its risk contribution in an IFG portfolio

FIGURE 3.57: Loss distribution of an IFG portfolio

FIGURE 3.58: Comparison of the loss distribution of non-IFG and IFG portfolios

FIGURE 3.59: Hazard function $\lambda(t)$ (in bps) estimated respectively with the piecewise exponential model and the Markov generator

Chapter 4

Counterparty Credit Risk and Collateral Risk

FIGURE 4.1: Probability density function of the counterparty exposure after six months

FIGURE 4.2: Probability density function of the counterparty exposure after nine months

FIGURE 4.3: Evolution of the counterparty exposure

FIGURE 4.4: Counterparty exposure profile of option

FIGURE 4.5: Counterparty exposure profile of interest rate swap

FIGURE 4.6: Impact of negative mark-to-market on the PFE multiplier

FIGURE 4.7: Conditional distribution of the mark-to-market

FIGURE 4.8: Conditional expectation of the exposure at default

 ${\bf FIGURE}$ 4.9: CVA of fixed-float swaps

FIGURE 4.10: Impact of collateral on the counterparty exposure

FIGURE 4.11: Impact of $\mu_{i}(t) / \sigma_{i}(t)$ on the counterparty exposure

Counterparty Credit Risk and Collateral Risk

FIGURE 4.12: Impact of the correlation on the counterparty exposure

FIGURE 4.13: Decomposition of the counterparty exposure when there is a collateral agreement

 ${\bf FIGURE}~{\bf 4.14}:~{\rm Optimal~collateral~threshold}$

Chapter 5

Operational Risk

FIGURE 5.1: Compound distribution when $N \sim \mathcal{P}(50)$ and $X \sim \mathcal{LN}(8,5)$

FIGURE 5.2: Impact of the threshold H on the severity distribution

FIGURE 5.3: Comparison of the estimated severity distributions

FIGURE 5.4: An example of QQ plot where extreme events are underestimated

FIGURE 5.5: PMF of the Poisson distribution $\mathcal{P}(60)$

FIGURE 5.6: PMF of the negative binomial distribution

FIGURE 5.7: Probability density function of the parameter λ

FIGURE 5.8: Histogram of the MC estimator \widehat{CaR}

FIGURE 5.9: Convergence of the accuracy ratio $R(n_s)$ when $\sigma = 1$

FIGURE 5.10: Convergence of the accuracy ratio $R(n_s)$ when $\sigma = 2.5$

 ${\bf FIGURE}~{\bf 5.11}:$ Impact of the insurance contract on the operational risk loss

FIGURE 5.12: Comparison between the Panjer and MC compound distributions

FIGURE 5.13: Relationship between α_{CaR} and $\alpha_{Severity}$

FIGURE 5.14: Numerical illustration of the single loss approximation

FIGURE 5.15: Upper bound ρ^+ of the aggregate loss correlation

FIGURE 5.16: Simulation of the Poisson process N(t) and peak over threshold events

Chapter 6

Liquidity Risk

 ${\bf FIGURE}~{\bf 6.1}:$ An example of a limit order book

FIGURE 6.2: Comparing the liquidation ratio (in %) between index fund portfolios *Source*: Roncalli and Weisang (2015).

FIGURE 6.3: The liquidity nodes of the financial system

Source: Nikolaou (2009).

 ${\bf FIGURE}$ 6.4: Spillover effects during the 2008 global financial crisis

Chapter 7

Asset Liability Management Risk

FIGURE 7.1: Internal and external funding transfer

FIGURE 7.2: An example of liquidity gap

FIGURE 7.3: Amortization schedule of the 30-year mortgage

FIGURE 7.4: Impact of the amortization schedule on the liquidity gap

FIGURE 7.5: Conventional amortization schedule with prepayment risk

Handbook of Financial Risk Management

FIGURE 7.6: Impact of the new production on the outstanding amount

Source: Demey et al. (2003).

FIGURE 7.7: Estimation of the amortization function $\hat{\mathbf{S}}(u-t)$

FIGURE 7.8: Amortization functions $\mathbf{S}(t, u)$ and $\mathbf{S}^{\star}(t, u)$

FIGURE 7.9: Relationship between A(t), $L^{\star}(t)$ and E(t)

FIGURE 7.10: Interest rate shocks (in bps)

FIGURE 7.11: Stressed yield curve (in %)

FIGURE 7.12: Components of interest rates

Source: BCBS (2016d, page 34).

FIGURE 7.13: Sensitivity of the customer rate with respect to the market rate

Handbook of Financial Risk Management

FIGURE 7.14: Earnings-at-risk analysis

FIGURE 7.15: Evolution of the net interest margin in the US

Source: Federal Financial Institutions Examination Council (US), Net Interest Margin for all US Banks [USNIM], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/USNIM, July 9, 2019.

FIGURE 7.16: The term structure of FTP rates

FIGURE 7.17: Statistics of the deposit amount N(t)

FIGURE 7.18: Stable and non-stable deposits

FIGURE 7.19: Impact of the market rate on the growth rate of deposits

FIGURE 7.20: Evolution of 30-year and 10-year mortgage rates in the US

Source: Freddie Mac, 30Y/15Y Fixed Rate Mortgage Average in the United States [MORTGAGE30US/15US], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/MORTGAGE30US, July 24, 2019.

FIGURE 7.21: Survival function in the case of prepayment

FIGURE 7.22: Components of the OTC model

FIGURE 7.23: An example of survival function $\mathbf{S}_{p}(t, u)$ with a mortgage rate drop

 ${\bf FIGURE}\ {\bf 7.24}:$ Refinancing incentive rule of term deposits

Chapter 8

Systemic Risk and Shadow Banking System

FIGURE 8.1: Illustration of tail risk

FIGURE 8.2: Impact of the TLAC on capital requirements

FIGURE 8.3: Impact of the uniform correlation on $\Delta \operatorname{CoVaR}_i$

FIGURE 8.4: Network structure of the Brazilian banking system

Source: Cont et al. (2013).

FIGURE 8.5: A completely connected network

FIGURE 8.6: A sparse network

Source: FSB (2018a) and author's calculations.

FIGURE 8.8: Calculation of the shadow banking narrow measure

FIGURE 8.9: Breakdown by country of shadow banking assets (2016)

FIGURE 8.10: Interconnectedness between banks and OFIs

Part II

Mathematical and Statistical Tools

Chapter 9

Model Risk of Exotic Derivatives

FIGURE 9.1: Price of the call option

FIGURE 9.2: Price of the put option

FIGURE 9.3: Probability density function of the hedging ratio π

FIGURE 9.4: Relationship between the hedging efficiency $\sigma(\pi)$ and the hedging frequency

FIGURE 9.5: Impact of a jump on the hedging ratio $\pi(t)$

FIGURE 9.6: Impact of a jump on the hedging ratio $\pi(t)$

FIGURE 9.7: Delta coefficient of the call option

 ${\bf FIGURE}~{\bf 9.8}:$ Gamma coefficient of the call option

 ${\bf FIGURE}$ 9.9: P&L of the delta neutral hedging portfolio

FIGURE 9.10: Illustration of the configuration ($\Gamma > 0, \Theta < 0$)

FIGURE 9.11: Volatility smile

FIGURE 9.12: Risk-neutral probability density function

FIGURE 9.13: Hedging error when the implied volatility is 20%

FIGURE 9.14: Vasicek model $(a = 2.5, b = 6\% \text{ and } \sigma = 5\%)$

FIGURE 9.15: Calibration of the Vasicek model

FIGURE 9.16: Flat and spot implied volatilities

FIGURE 9.17: Comparing BS and UMV prices of the double KOC barrier option

FIGURE 9.18: Comparing BS and UMV prices of the cliquet option

FIGURE 9.19: Influence of the local cap on the cliquet option price

 ${\bf FIGURE~9.20}: {\rm Volatility~skew~generated~by~the~SLN~model~(fixed-strike~parametrization)}$

 ${\bf FIGURE~9.21}:$ Volatility skew generated by the SLN model (floating-strike parametrization)

FIGURE 9.22: Implied volatility (in %) of calibrated mixed SLN models

FIGURE 9.23: Impact of the implied volatility skew on the binary option price

FIGURE 9.24: Relative error of backward and forward PDE numerical solutions

FIGURE 9.25: Calibrated local volatility $\sigma(T, S)$ (in %)

 ${\bf FIGURE}~9.26:$ Time interpolation of the implied volatility

FIGURE 9.27: Cubic spline interpolation $\mathcal{S}_m(K)$ (in %)

FIGURE 9.28: Implied volatility surface $\Sigma(T, K)$ (in %)

FIGURE 9.29: Local volatility surface $\sigma(T, K)$ (in %)

FIGURE 9.30: Impact of SVI parameters on the total variance $\tilde{v}_{T}(x)$

FIGURE 9.31: SVI parametrization, implied volatility $\Sigma(T, K)$ and local volatility $\sigma(T, K)$ (in %)

FIGURE 9.32: Functions $f_1(u)$ and $f_2(u)$ ($\kappa = 1$)

FIGURE 9.33: Functions $f_1(u)$ and $f_2(u)$ ($\kappa = 0.5$)

FIGURE 9.34: Implied volatility of the Heston model (in %)

FIGURE 9.35: Skew of the Heston model (in bps)

FIGURE 9.36: Implied volatility of the Durrleman formula (in %)

FIGURE 9.37: Calibration of the smile by the Heston model and the Durrleman formula

FIGURE 9.38: Impact of the parameter β

FIGURE 9.39: Impact of the parameters α , ν and ρ

FIGURE 9.40: Implied volatility for different parameter sets (β, ρ)

FIGURE 9.41: Probability density function of the estimate $\hat{\beta}$ (SABR model)

FIGURE 9.42: Calibration of the SABR model

FIGURE 9.43: Volatility smiles generated by the quadratic Gaussian model

FIGURE 9.44: Impact of dividends on the call option price

FIGURE 9.45: Correlation smile

 ${\bf FIGURE}~{\bf 9.46}:$ Price of the basket option with respect to the constant correlation

 ${\bf FIGURE~9.47}:$ Comparison of the option price obtained with Black-Scholes and copula-SABR models

Chapter 10

Statistical Inference and Model Estimation

FIGURE 10.1: Illustration of the intercept problem

FIGURE 10.2: Log-likelihood function of the Bernoulli distribution

FIGURE 10.3: Probability density function of the monthly returns of the S&P 500 index

FIGURE 10.4: Calibrated density function of the loss given default

FIGURE 10.5: Histogram of the weekly returns of the S&P 500 index

FIGURE 10.6: Density estimation of the weekly returns of the S&P 500 index

FIGURE 10.7: Density estimation of the worst weekly return of a year

FIGURE 10.8: Non-parametric regression of the additive model

FIGURE 10.9: Non-parametric regression of the multiplicative model

 ${\bf FIGURE~10.10:~CUMSUM~test}$ and recursive least squares

FIGURE 10.11: The tracking problem

FIGURE 10.12: Estimation of the dynamic allocation by Kalman filtering

FIGURE 10.13: Probability density function of $\hat{\beta}_1$ in the case of a spurious regression

FIGURE 10.14: Illustration of the cointegration

FIGURE 10.15: Monthly returns of the S&P 500 index (in %)

FIGURE 10.16: ACF and PACF of R_t and R_t^2

FIGURE 10.17: Diagnostic checking of the GARCH(1,1) model

FIGURE 10.18: Estimation of the stochastic volatility model

FIGURE 10.19: MCMC estimates of the stochastic volatility model

FIGURE 10.20: Time representation of the process x_t

FIGURE 10.21: Autocorrelation representation of the process x_t

FIGURE 10.22: Spectral representation of the process x_t

FIGURE 10.23: Spectral density function of ARMA processes

 $\mathbf{FIGURE}\ \mathbf{10.24}:$ Spectral density function of LL, LLT and BSM

FIGURE 10.25: Spectral density function of the stochastic cycle model

FIGURE 10.26: Estimation of the spectral density function

FIGURE 10.27: Estimation of the autocorrelation function

FIGURE 10.28: PDF of TDML and FDML estimators

FIGURE 10.29: Coherency function $c_{y,x}(\lambda)$

FIGURE 10.30: Detection of the cycle in the Canadian lynx data set

FIGURE 10.31: AR representation of the fractional process

FIGURE 10.32: Spectral density function of the FWN process

FIGURE 10.33: Spectral density function of the ARFIMA process

 \mathbf{FIGURE} 10.34: R/S analysis and estimation of the Hurst exponent

FIGURE 10.35: Spectral decomposition of the signal y_t

FIGURE 10.36: Reconstructed signal y_t^m

Chapter 11

Copulas and Dependence Modeling

FIGURE 11.1: Example of a bivariate probability distribution with given marginals

Handbook of Financial Risk Management

FIGURE 11.2: The triangle region of the contour lines $\mathbf{C}(u_1, u_2) = \alpha$

FIGURE 11.3: The three copula functions $\mathbf{C}^-,\,\mathbf{C}^\perp$ and \mathbf{C}^+

FIGURE 11.4: Concordance ordering of the Frank copula

FIGURE 11.5: Contour lines of bivariate densities (Normal copula)

FIGURE 11.6: Contour lines of bivariate densities (Frank copula)

FIGURE 11.7: Contour lines of bivariate densities (Gumbel copula)

FIGURE 11.8: Bounds of (τ, ϱ) statistics

FIGURE 11.9: Bounds of the linear correlation between two log-normal random variables

FIGURE 11.10: Quantile-quantile dependence measures $\lambda^{+}(\alpha)$ and $\lambda^{-}(\alpha)$

FIGURE 11.11: Tail dependence $\lambda^+(\alpha)$ for the Normal copula

FIGURE 11.12: Relationship between τ and ρ of the Student's t copula

FIGURE 11.13: Tail dependence $\lambda^+(\alpha)$ for the Student's t copula ($\nu = 1$)

FIGURE 11.14: Tail dependence $\lambda^+(\alpha)$ for the Student's t copula ($\nu = 4$)

 ${\bf FIGURE}$ 11.15: Comparison of the empirical copula (blue line) and the Normal copula (red line)

FIGURE 11.16: Dependogram of EU and US equity returns

FIGURE 11.17: Dependogram of simulated Gaussian returns

Chapter 12

Extreme Value Theory

FIGURE 12.1: Distribution function $\mathbf{F}_{i:n}$ when the random variables X_1, \ldots, X_n are Gaussian

Handbook of Financial Risk Management

FIGURE 12.2: Density function $f_{n:n}$ of the Gaussian random variable $\mathcal{N}(0,1)$

FIGURE 12.3: Density function of the maximum order statistic (daily return of the MSCI USA index, 1995-2015)

150

FIGURE 12.4: Annualized volatility (in %) calculated from the order statistics $R_{i:10}$

FIGURE 12.5: Density function of the first-to-default time $\tau_{1:10}$

151

Handbook of Financial Risk Management

FIGURE 12.6: Max-convergence of the exponential distribution $\mathcal{E}(1)$ to the Gumbel distribution

FIGURE 12.7: Density function of Λ , Φ_1 and Ψ_1

FIGURE 12.8: Density function of the Fréchet probability distribution

FIGURE 12.9: Graphical validation of the regular variation property for the normal distribution $\mathcal{N}(0,1)$

FIGURE 12.10: Probability density function of the GEV distribution

FIGURE 12.11: Probability density function of the maximum return $R_{22:22}$

FIGURE 12.12: Mean residual life plot

FIGURE 12.13: Multivariate extreme value distributions

Chapter 13

Monte Carlo Simulation Methods

FIGURE 13.1: Lattice structure of the linear congruential generator

FIGURE 13.2: Inversion method when X is a discrete random variable

FIGURE 13.3: Rejection sampling applied to the normal distribution

158

FIGURE 13.4: Comparison of the exact and simulated densities

FIGURE 13.5: Simulation of the Normal copula

FIGURE 13.6: Simulation of the t_1 copula

FIGURE 13.7: Simulation of the Clayton copula

FIGURE 13.8: Simulation of the correlated random vector (τ , LGD)

FIGURE 13.9: Convergence of the method of the empirical quantile function

FIGURE 13.10: Simulation of the random variables Z_1 and Z_2

FIGURE 13.11: Simulation of the random vector (Z_1, Z_2)

FIGURE 13.12: Distribution of the eigenvalues of simulated random orthogonal matrices

FIGURE 13.13: Comparison of the Bendel-Mickey and covariance algorithms

FIGURE 13.14: Price of the basket option

FIGURE 13.15: Simulation of rating dynamics (correlation matrix ρ_1)

FIGURE 13.16: Simulation of rating dynamics (correlation matrix ρ_2)

FIGURE 13.17: Simulation of rating dynamics (correlation matrix ρ_1)

FIGURE 13.18: Simulation of rating dynamics (correlation matrix ρ_2)

FIGURE 13.19: Simulation of the geometric Brownian motion

FIGURE 13.20: Simulation of the Ornstein-Uhlenbeck process

FIGURE 13.21: Comparison of exact, Euler-Maruyama and Milstein schemes (monthly discretization)

FIGURE 13.22: Simulation of a non-homogenous Poisson process with cyclical intensity

FIGURE 13.23: Simulation of a jump-diffusion process

FIGURE 13.24: Simulation of the Brownian bridge $B_1(t)$ using the time reversibility property

FIGURE 13.25: Simulation of the Brownian bridge B(t)

FIGURE 13.26: Simulation of the diffusion bridge X(t)

FIGURE 13.27: Density of the maximum estimators \hat{M} and \tilde{M}

FIGURE 13.28: Brownian motion in the plane (independent case)

FIGURE 13.29: Brownian motion in the plane ($\rho_{1,2} = 85\%$)

FIGURE 13.30: Computing π with 1 000 simulations

FIGURE 13.31: Density function of $\hat{\pi}_{n_s}$

FIGURE 13.32: Convergence of the estimator \hat{I}_{n_S}

FIGURE 13.33: Computing the look-back option price

FIGURE 13.34: Computing π with normal random numbers

FIGURE 13.35: Functions $\varphi_{1}(x), \varphi_{2}(x)$ and $\varphi_{3}(x)$

 ${\bf FIGURE}$ 13.36: Antithetic simulation of the GBM process

FIGURE 13.37: Probability density function of $\widehat{\mathcal{C}}_{MC}$ and $\widehat{\mathcal{C}}_{AV}$ $(n_S = 1\,000)$

FIGURE 13.38: Understanding the variance reduction in control variates

 ${\bf FIGURE}~{\bf 13.39}{:}~{\rm CV}$ estimator of the arithmetic Asian call option

FIGURE 13.40: Histogram of the MC and IS estimators $(n_S = 1\,000)$

FIGURE 13.41: Standard deviation (in %) of the estimator \hat{p}_{IS} ($n_S = 1\,000$)

FIGURE 13.42: Density function of the estimators $\hat{\mathcal{P}}_{MC}$ and $\hat{\mathcal{P}}_{IS}$ ($n_S = 1\,000$)

FIGURE 13.43: Function $\psi(x)$

FIGURE 13.44: Intra-strata variance $\sigma^{2}(j)$ (in bps)

FIGURE 13.45: Optimal allocation $q^{\star}(j)$ (in %)

FIGURE 13.46: Strata for different random variables

FIGURE 13.47: Variance of the two estimators $\hat{I}_{\text{STR}}^{(1)}(m)$ and $\hat{I}_{\text{STR}}^{(2)}(m)$ for different values of m

FIGURE 13.48: Illustration of the Gibbs sampler

FIGURE 13.49: Illustration of the random walk sampler

FIGURE 13.50: Simulating bivariate probability distributions with the MH algorithm

FIGURE 13.51: An example of a SMC run with $1\,000$ particles

FIGURE 13.52: Density of the RMSE statistic for 1000 particles

FIGURE 13.53: Density of the RMSE statistic for the SIS algorithm

FIGURE 13.54: Comparison of different low discrepancy sequences

FIGURE 13.55: The Sobol generator

 ${\bf FIGURE}\ {\bf 13.56}:$ Quasi-random points on the unit sphere

Stress Testing and Scenario Analysis

FIGURE 14.1: 2017 DFAST supervisory scenarios: Domestic variables

FIGURE 14.2: 2017 DFAST supervisory scenarios: International variables

FIGURE 14.3: Loss function of the S&P 500 index

 ${\bf FIGURE \ 14.4: \ Macroeconomic \ approach \ of \ stress \ testing}$

 ${\bf FIGURE}~{\bf 14.5}:$ Feedback effects in stress testing models

FIGURE 14.6: Stress scenarios (in %) of MSCI USA and MSCI EMU indices

FIGURE 14.7: Failure area of MSCI USA and MSCI EMU indices (blockwise dependence)

FIGURE 14.8: Failure area of MSCI USA and MSCI EMU indices (daily dependence)

FIGURE 14.9: Probability density function of PD_t

FIGURE 14.10: Relationship between the macroeconomic variables and PD_t

FIGURE 14.11: Conditional quantile (Gaussian distribution)

FIGURE 14.12: Conditional quantile (Normal copula & Student's t marginals)

FIGURE 14.13: Conditional quantile (Student's t copula & Gaussian marginals)

Chapter 15

Credit Scoring Models

FIGURE 15.1: Piecewise variables

FIGURE 15.2: Dummy variables

FIGURE 15.3: Optimal slicing with four classes

 ${\bf FIGURE}~{\bf 15.4}:$ Interpretation of the lasso regression

FIGURE 15.5: Variable selection with the lasso regression

Handbook of Financial Risk Management

FIGURE 15.6: Selection of the ridge parameter using the PRESS statistic

FIGURE 15.7: An example of dendrogram

FIGURE 15.8: Unbalanced clustering

FIGURE 15.9: Comparison of the three dendrograms

FIGURE 15.10: Scatterplot of the factor values $z_{i,1}$ and $z_{i,2}$

FIGURE 15.11: PCA correlation circle

FIGURE 15.12: Estimating the first factor of a basket of financial assets

FIGURE 15.13: Variance decomposition and signal reconstruction

FIGURE 15.14: Classification statistical problem

FIGURE 15.15: Boundary decision of discriminant analysis

Credit Scoring Models

FIGURE 15.16: Impact of the parameters on LDA/QDA boundary decisions

6

C₂ X₁

3

-3

-3

-3

ż

6

C₂ X₁

FIGURE 15.17: Comparing QDA, LDA and LDA^2 predictions

FIGURE 15.18: QDA, LDA and LDA^2 decision regions

FIGURE 15.19: Linear projection and the Fisher solution

FIGURE 15.20: Class separation and the cut-off criterion

FIGURE 15.21: Illustration of the k-NN classifier

FIGURE 15.23: Feed-forward neural network with a single hidden layer

Input x_4

 ${\bf FIGURE}$ 15.24: Feed-forward neural network with two hidden layers and three output units

FIGURE 15.25: Canonical neural network

FIGURE 15.26: Neural networks as universal approximators

Handbook of Financial Risk Management

FIGURE 15.27: The scaling issue of neural networks (f(x) = |x| - 2)

FIGURE 15.28: Convergence of the XOR problem

 ${\bf FIGURE}~{\bf 15.29}:$ Separating hyperplane picking

 ${\bf FIGURE \ 15.30}: {\rm Margins \ of \ separation}$

FIGURE 15.31: Optimal hyperplane

 ${\bf FIGURE \ 15.32}: \ {\rm Soft \ margin \ SVM \ classifiers}$

 ${\bf FIGURE}$ 15.33: Transforming a non-linearly separable training set into a linearly separable training set

FIGURE 15.34: Probability density function of in-sample error rates

FIGURE 15.35: An example of decision tree

FIGURE 15.36: Weighting schemes of the boosting approach

1	/36	1/36	1/36	1/36	1/36	1/36
1	/36	1/36	1/36	1/36	1/36	1/36
1	/36	$^{1/36}$	$^{1/36}$	$^{1/36}$	$^{1/36}$	$^{1/36}$
1	/36	1/36	1/36	1/36	1/36	1/36
1	/36	$^{1/36}$	$^{1/36}$	$^{1/36}$	$^{1/36}$	$^{1/36}$
1	/36	1/36	1/36	1/36	1/36	1/36

$$\begin{split} H\left(X \right) &= H\left(Y \right) = 1.792 \\ H\left(X,Y \right) &= 3.584 \\ I\left(X,Y \right) &= 0 \end{split}$$

$^{1/24}$	$^{1/24}$				
1/24	1/24	1/24	1/48		
	1/24	$^{1/6}$	1/24	$1/_{48}$	
	1/48	1/24	1/6	1/24	
		1/48	1/24	1/24	$^{1/24}$
				1/24	1/24

 $\begin{array}{l} H\left(X \right) = H\left(Y \right) = 1.683 \\ H\left(X,Y \right) = 2.774 \\ I\left(X,Y \right) = 0.593 \end{array}$

1/6					
	$^{1/6}$				
		$^{1/6}$			
			1/6		
				$^{1/6}$	
					1/6

 $\begin{array}{l} H\left(X \right) = H\left(Y \right) = 1.792 \\ H\left(X,Y \right) = 1.792 \\ I\left(X,Y \right) = 1.792 \end{array}$

					$^{1/12}$
1/8			1/8		
	1/24				
5/24		1/24			
$^{3/24}$				1/24	
3/24	1/24	1/24			

$H\left(X\right) = 1.658$
$H\left(Y\right) = 1.328$
$I\left(X,Y\right) = 0.750$

FIGURE 15.37: Examples of Shannon entropy calculation

FIGURE 15.38: Scorecards S_1 and S_2

FIGURE 15.39: Performance, selection and discriminant curves

FIGURE 15.40: The score S_1 is better than the score S_2

FIGURE 15.41: Illustration of the partial ordering between two scores

FIGURE 15.42: Comparison of the distributions $\mathbf{F}_{0}(s)$ and $\mathbf{F}_{1}(s)$

FIGURE 15.43: An example of Lorenz curve

 ${\bf FIGURE}$ 15.44: Selection, precision and ROC curves

Conclusion

Appendix A

Technical Appendix

FIGURE A.1: Weights and knots of the Gauss-Legendre quadrature

FIGURE A.2: Gauss-Legendre numerical integration

FIGURE A.3: Legendre approximation of $f(x) = 2\pi \cos(2\pi x) + 2x$