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Introduction

This companion book contains the solutions of the tutorial exercises which are found at the
end of each chapter. Additional materials (datasets, codes, figures and slides) concerning
the Handbook of Risk Management are available at the following internet web page:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Chapter 2

Market Risk

2.4.1 Calculating regulatory capital with the Basel I standardized mea-

1.

surement method

(a) In the maturity approach, long and short positions are slotted into a maturity-

based ladder comprising fifteen time-bands. The time bands are defined by dis-
joint intervals |M~, M*]. The risk weights depend on the time band ¢ and the
value of the coupon’:

K (t) [ 0.00% 0.20% 0.40% 0.70% 1.25% 1.75% 2.25%
Mg, | IM  3M  6M 1Y 2Y 3Y 4y
Mo | IM  3M  6M 1Y  1.9Y 28Y 3.6Y
K(t)|27% 325% 3.7% 4.50% 5.25% 6.00% 8.00%
Mg | 5Y 7Y 10Y 15 20Y 400

Mdo | 43Y 57Y 7.3Y 93Y 10.6Y 12Y  20Y

These risk weights apply to the net exposure on each time band. For reflecting
basis and gap risks, the bank must also include a 10% capital charge to the
smallest exposure of the matched positions. This adjustment is called the ‘vertical
disallowance’. The Basel Committee considers a second adjustment for horizontal
offsetting (the ‘horizontal disallowance’). For that, it defines 3 zones (less than
1 year, one year to four years and more than four years). The offsetting can
be done within and between the zones. The adjustment coefficients are 30%
within the zones 2 and 3, 40% within the zone 1, between the zones 1 and
2, and between the zones 2 and 3, and 100% between the zones 1 and 3. To
compute mathematically the required capital, we note £L* (t) and S* (¢) the long
and short nominal positions for the time band ¢. ¢ = 1 corresponds to the first
time band [0, 1M], ¢ = 2 corresponds to the second time band ]1M, 3M|, etc. The
risk weighted positions for the time band ¢ are defined as £ (t) = K (t) x L* (t)
and S (t) = K (t) x 8* (t). The required capital for the overall net open position
is then equal to:

15 15
KOP =1Lty -> 8

The matched position M (¢) for the time band ¢ is equal to min (£ (t), S (t)). We
deduce that the additional capital for the vertical disallowance is:

13
KYP =10% x Y M (t)

t=1

LCoupons 3% or more are called big coupons (or BC) and coupons less than 3% are called small coupons
(SC). When the maturity is greater than 20Y, K (¢) is equal to 6.00% for big coupons and 12.50% for small

coupons.
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N (t) = L(t) — S (¢) is the net exposure for the time band ¢. We then define the
net long and net short exposures for the three zones as follows:

L; = Zmax(./\/'(t),())
S = —Zmin(]\/(t),O)

where A; = [0,1Y], Ay = |]1Y,4Y] and Az = ]4Y,+oc]. We define CF; ; as
the exposure of the zone ¢ that can be carried forward to the zone j. We then
compute the additional capital for the horizontal disallowance:

KHP = 0.4 x min (£1,81) + 0.3 x min (L2, S3) 4+ 0.3 x min (L3, S3) +
04xCF12+04xCFo3+CF13

The regulatory capital for the general market risk is the sum of the three com-
ponents:
K=K + VP + kP

For each time band, we report the long, short, matched and net exposures:

Time band | £*(t) S*(t) K(t) | L(t) S(&) M) N(t)
3M-6M 100 50  0.40% | 0.40 0.20 0.20 0.20
7Y-10Y 10 50  3.75% | 0.45 2.25 045 —1.80

The capital charge for the overall open position is:

KOP = |0.40 +0.45 — 0.20 — 2.25|
= 16

whereas the capital for the vertical disallowance is:

KYP = 10% x (0.20 + 0.45)
0.065

We now compute the net long and net short exposures for the three zones:

zone 1 2 3
L; |0.20 0.00 0.00
S; |1 0.00 0.00 1.80

It follows that there is no horizontal offsetting within the zones. Moreover, we
notice that we can only carry forward the long exposure £; to the zone 3 meaning
that:

KHP = 40% x 0.00 + 30% x 0.00 + 30% x 0.00 +
40% x 0.00 4+ 40% x 0.00 4+ 100% x 0.20
= 0.20

We finally deduce that the required capital is:

K = 1.6+4+0.065+0.20
$1.865 mn
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2. (a) We have:

Stock 3M Exxon IBM Pfizer AT&T Cisco Oracle
L; 100 100 10 50 60 90
S; 50 80
N; 100 50 10 50 60 90 —80

We deduce that the capital charge for the specific risk is equal to $35.20 mn:

7
JCSpecific _ gor o Z [N = 8% x 440 = 35.20
i=1

(b) The total net exposure Zzzl./\/'i is equal to $280 mn, meaning that the capital
charge for the general market risk is equal to $22.40 mn:

JcGeneral — 07 980 = 22.40

(¢) To hedge the market risk of the portfolio, the investor can sell $280 mn of S&P
500 futures contracts?. In this case, the capital charge for the general market risk
is equal to zero. However, this new exposure implies an additional capital charge
for the specific risk:

JeSpecific — 35.20 + 4% x 280 = 35.20 + 11.20 = 46.40
Let S be the short exposure on S&P 500 futures contracts. We have:

K = KSpeciﬁc + KGeneral
= (35.20 + 4% x S) + 8% x |280 — S|

We notice that there is a trade-off between the capital charge for the specific
risk which is an increasing function of S and the capital charge for the general
market risk which is a decreasing function of S for S < 280. Another expression
of K (total) jg.
K_{ 57.60 —4% x S if S < 280
T 12.80 +12% x S otherwise

We verify that the minimum is reached when § is exactly equal to 280 (see Figure
2.1).

3. (a) Under SMM, we have:
ISMM — 8% x N,

(b) The 10-day Gaussian value-at-risk is equal to:
" Ny x o (w)

/260
= 0457 x N x o (w)

VaRggy, (w; ten days) = 2.33 x /10

We deduce that the required capital is approximately equal to:
jcIMA

Q

(34 &) x VaRggy (w; ten days)
= (34¢&) x0.457T x N, x o (w)

Because £ < 1, it follows that:

MM < 1,828 x Ny, X 0 (w)

2We assume that the beta of the portfolio with respect to the S&P 500 index is equal to one.
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64
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FIGURE 2.1: Capital charge K with respect to &

A sufficient condition for IKIMM < jcSMM jg.
1.828 x Ny, x o (w) < 8% x Ny,
8
& o(w) < %

— 1.828
& o(w) <4.3™%

The annualized volatility of the portfolio must be lower than 4.37%. This im-
plies that long equity exposures induce more required capital under IMM than
under SMM. Indeed, the volatility of directional equity portfolios is generally
higher than 12%. In order to obtain equity portfolios with such lower volatil-
ity, the portfolio must be long/short, meaning that the directional risk must be
(partially) hedged.

The bank is exposed to foreign exchange and commodity risks with spot and
forward positions. Contrary to stocks or many equity products, these exposures
include a maturity pattern. For instance, the $100 mn EUR long position has
not the same maturity than the $100 mn EUR short position, implying that the
bank cannot match the two positions.

We first consider the FX risk. We have Ngyr = 100—100 = 0, Njpy = 50—100 =
—50, Ncap = 0 — 50 = —50 and Ngoa = 50 — 0 = 50. We deduce that the
aggregated long and short positions are Lpx = 0 and Spx = 100. It follows that
the required capital is:

K'Y = 8% x (max (Lrx, Srx) + [Naowd|)
= 8% x (100 + 50)
= $12mn
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For the commodity risk, we exclude the Gold position, because it is treated as a
foreign exchange risk. We have:

7 7
JcCommodity 1507 Z |L; — Sil + 3% x Z (L;+S;)

i=5 i=5

= 15% x (50 4+ 20 + 20) + 3% x 390

= 13.50+ 11.70

$25.20 mn
We finally obtain:
i = ’CFX + K:Commodity

$33.20 mn

Under the maturity ladder approach, the bank should spread long and short ex-
posures of each currency to seven time bands: 0-1M, 1M-3M, 3M-6M, 6M-1Y,
1Y-2Y, 2Y-3Y, 3Y+. For each time band, the capital charge for the basis risk
is equal to 1.5% of the matched positions (long and short). Nevertheless, the
residual net position of previous time bands may be carried forward to offset
exposures in next time bands. In this case, a surcharge of 0.6% of the residual
net position is added at each time band to cover the time spread risk. Finally,
a capital charge of 15% is applied to the global net exposure (or the resid-
ual unmatched position) for directional risk. To compute mathematically the
required capital, we note L£; (t) and S; (¢) the long and short positions of the
commodity i for the time band ¢. ¢ = 1 corresponds to the first time band
[0,1M] and ¢ = 7 corresponds to the last time band |3Y,+oc[. The cumulative
long and short exposures are £ (t) = £ (t — 1) + £; (t) with £ (0) = 0 and
S (t) =S8 (t — 1) +8; (t) with S; (0) = 0. The cumulative matched position is
M (t) = min (£ (t),S; (t)). We deduce that the matched exposition for the
time band ¢ is equal to M; (t) = M] (t) — M (t — 1) with M (0) = 0. The
value of the carried forward CF; (t) can be obtained recursively by reporting the
unmatched positions at time ¢ which can be offset in the times bands 7 with
7 > t. The residual unmatched position is A = max (£ (7),S; (7)) — M (¢).
We finally deduce that the required capital is the sum of the individual capital
charges:

7 6
Ki =1.5% x (ZQ X M, (t)> +0.6% x (an (t)) +15% x N;
t=1 t=1

We notice that the matched position M; () is multiplied by 2, because we apply
the capital charge 1.5% to the long and short matched positions.

We compute the cumulative positions £; (¢) and S;" (¢) and deduce the matched
expositions M; (¢):

Time band ¢ L;(t) Si(t) L7 () SF() M;(t) CF;(t)

0

0 900 500 1200 200 700
0 0 500 1200 0 700
100 2300 1300 800 600
300 600 2600 1900 600 300
0 100 2600 2000 100 200
0 200 2600 2200 200 0

2
|
—
>
N O U W N
—
[o'e]
)
(@)
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The sum of matched positions is equal to 2200. This means that the residual
unmatched position is 400 (2600 — 2200). At time band ¢ = 1, we can carry
forward 200 of long position in the next time band. At time band t = 2, we can
carry forward 700 of short position in the times band ¢ = 4. This implies that
CF;(3) =700 and CF; (4) = 700. At time band t = 4, the residual unmatched
position is equal to 1000 (1800 — 100 — 700). However, we can only carry 600
of this long position in the next time bands (300 for ¢ = 5, 100 for ¢ = 6 and
200 for t = 1). At the end, we verify that the residual position is 400, that is the
part of the long position at time band ¢ = 4 which can not be carried forward
(1000 — 600). We also deduce that the sum of carried forward positions is 2 700.
It follows that the required capital is:

K; = 1.5% x 4400+ 0.6% x 2700 + 15% x 400
= $142.20

2.4.2 Covariance matrix

1. (a) We have:
[y \/2171 = V4% = 20%

For the other stocks, we obtain o = 22.36% and o¢ = 24.49%.

(b) The correlation is the covariance divided by the product of volatilities:

21 2 3%
Ra,Rp) = : = = 67.08%
p(fa, Bp) = - /51X 2 20% x 22.36% !
We obtain:
100.00%
p= 67.08%  100.00%
40.82% —18.26% 100.00%
2. (a) Using the formula ¥; ; = p; 0,0}, it follows that:
1.00%
Y= 1.00% 4.00%
0.75% 0.00% 9.00%
(b) We deduce that:
o (w) = 0.5%x1%+0.5% x 4% +2 x 0.5 x 0.5 x 1%
= 1.75%
and o (w) = 13.23%.
(c) It follows that:
o2 (w) = 0.6%x 1%+ (—0.4)> x 4% + 2 x 0.6 x (—0.4) x 1%
= 0.52%

and o (w) = 7.21%. This long/short portfolio has a lower volatility than the
previous long-only portfolio, because part of the risk is hedged by the positive
correlation between stocks A and B.

3The total matched position is equal to 2 x 2200 = 4400 (long + short).



Market Risk 9

(d) We have:

o (w) = 150% x 1% + 5002 x 4% + (—200)> x 9% +
2 x 150 x 500 x 1% +
2 x 150 x (—200) x 0.75% +
2 x 500 x (—200) x 0%
= 14875

The volatility is equal to $121.96 and is measured in USD contrary to the two
previous results which were expressed in %.

3. (a) We have:
E[R] = BE[F] + E¢]
and:
R—E[R] = 8(F-E[F]) +c—E[]
It follows that:
cov(R) = E [(R _E[R])(R-E [R])T]
E[8(F-EF) (F-E[F)BT] +
2xE [B(F-E[F)) (s —E[s]) ] +

E|(-E[) (e ~E[)]
02387 + D

O’(Rz) = \/O’%—ﬂ? +5i2

We obtain o (Ra) = 18.68%, o (Rp) = 26.48% and o (R¢) = 15.13%.

We deduce that:

(b) The correlation between stocks ¢ and j is defined as follows:

036 ;

PR ) = R (R

We obtain:
100.00%
p= 94.62% 100.00%
12.73%  12.98% 100.00%
4. (a) We have:

n(Z) = E[XY]]
~ EX]E[Y]
i (X) 1 (Y)
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because X; and Y; are independent. For the covariance, we obtain:

cov(Zi, Z;) = E[(XiY) (X;Y;)] - E[X3Vi] E[X;Y]]
= E[X,X;|E[Y;Y;] - E[X;]E[X;]E[Y;] E[Y]]
= (cov(X;,X;)+E[X;]E[X];]) x
(cov (Y;,Y)) + E[V]E[Y;]) —
E[X:| E[X;] E Y] E [Y;]
= cov(X;, X;)cov (Y, Y;) +
cov (X;, X;) E Y] E[Yj] +
cov (Y;,Y;) E[X;] E [X]
= B (X8 (V) +2i; (X)) (V) (V) +
Yig (V) i (X) i (X)

To obtain this formula, we use the fact that X;X; and Y;Y; are independent. In
a matrix form, we find that:

n(Z) = p(X)opn(y)

% (2) S (X)oX(Y)+
S(X)op(Y)opu¥) +
S(Y)opu(X)ou(X)"

(b) Using the numerical values, we obtain* u (Z) = 0 and:

0.333%
$(Z)= | 0250% 1.333%
0.188% 0.000% 3.000%

The expression of the P&L is:
IT (w) = 15027 + 50025 — 20073

We find that p (IT) = 0 and o (II) = 69.79. We deduce that the Gaussian VaR
with a 99% confidence level is equal to $162.36. For the Monte Carlo method,
we use the following steps: (i) we first simulate the random variate X with the
Cholesky algorithm; (%) we then simulate Y with a uniform random generator;
(i) we calculate the components Z; = X;Y;; (iv) we finally deduce the P&L.
With one million of simulations, we find that the Monte Carlo VaR is equal to
$182.34. We explain this result because the distribution of IT (w) is far to be
normal as illustrated in Figure 2.2.

2.4.3 Risk measure
1. (a) We have:
VaR, (L) =inf {£: Pr{L > ¢} > a}

and:
ES. (L) =E[L | L > VaR, (L)]

4We remind that the mean and the variance of the distribution U (0,1) is 1/2 and 1/12.
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0.008

0.007 | Exact distribution
===+ Normal approximation
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0.005

0.004
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0.001

0.000

-300  —200 ~100 0 100 200 300
P&L (in $)

FIGURE 2.2: Probability distribution of the P&L

(b) We assume that F is continuous. It follows that VaR,, (L) = F~! (a). We deduce
that:

ES. (L) = E[L|L>F"(a)]
I f(z) -
= Joo TF @
1 o0
= 1_a/l:1(a)xf(a:) dz

We consider the change of variable ¢t = F (z). Because dt = f (z) dz and F (c0) =
1, we obtain:

ES, (L) = ! /1 F~!(t) dt

11—«

(c) We have:

The non-centered moment of order n is®:
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oo 1'_(9+1)
E[L"] = / 2" ——p—dx
T_ €T _
¢ * o1
= — " dz
37:0 T_
i xn—& o
Tz [n - QL
_ 0 n
0 — nx_
We deduce that: 0
E[L] = _
(L= g—=
and:
E[L?] = b
0—2 —
The variance of the loss is then:
0
var (L) =E[L*] - E*[L] = ———5——1?

6-170-2)

x_ is a scale parameter whereas 6 is a parameter to control the distribution tail.

We have: .
71 -
1- (F (O‘)> —a
T_

VaRa (L) =F (o) =2_(1-a)"

We deduce that:

We also obtain:

BSq (L) = — [ = (1 7
- T— 1 1-6~1 !
l—a{ 1—9_1(1 2 N
0 _p—1
= 7% (1-a)
0
= mV&Ra

Because 6 > 1, we have % > 1 and:

ES, (L) > VaRq (L)

(d) We have:

00 2
1 1 1 —
ES, (L) = / x exp | —= (m M) dx
11—« utod—1(a) O s 2 o

5The moment exists if n # 6.
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By considering the change of variable t = 0! (z — p), we obtain:

1 > 1 1
ES, (L) = 1—0[[1)1( )(u—l—at)mexp (—21?2) de

H )
= 1= [P (D)]p-1(a) +

g /Oo te L) q
o o (L
(1—-a)V2r Jo-1(a) P\ 72

= vt aegvm e (5],

1, 4 2
+ mexp (—2 [ (a)] )
= p+ m¢ (@' (o)

Because ¢’ () = —x¢ (x), we have:

1—e@) = [ema

= p

Il
zﬁ
/T
o~ | =

We consider the integration by parts with u (t) = —t=1 and v’ (t) = ¢’ (¢):

1 —®(@) = [—(b(t)]oo—/xm;qb(t)dt

t
Lo at
_ 2@ +/wi¢’(t) dt

We consider another integration by parts with u (t) = ¢t=3 and v’ (t) = ¢ (¢):
¢(x) [e®]™ _ [>_3

Il
<
HO
T
S— =
8
-
w

x
_ ¢(x) ¢(2) 3,
o r a3 _/z t75¢ (t) dt

We continue to use the integration by parts with v’ (¢t) = ¢ (¢). At the end, we
obtain:

el - ¢;x)_¢;f)+3¢x(§)_3.5¢;f)+
3.5.7%;6)
_ ¢§:x) . ;12 S (-n (H (2i — 1)) ;K{
¢(x)  ¥(x)
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3.0 3
251+ \
1 —_— ()
20} £} — =— order 1
\ ‘, —===- order 4
\ \ ......... e order 5

Probability (in %)
o

0.5 F

0.0

FIGURE 2.3: Approximation of 1 — ® ()

4.0

We have represented the approximation in Figure 2.3. We finally deduce that:

v (x)

¢(x) =z (l-2(2)) -

By using the previous expression of ES,, (L), we obtain with z = ®~! (a):

ESa (L) = W + m¢ ((I)_l (O[))
= pt mﬁb (z)
= u+u_%0<¢”hwﬂ—a)—
= put+od(a)- U(lqj_(j)q,s?)()a)
U (0~ (a
- R0 e
We deduce that ES, (L) — VaR,, (L) because:
(27! ()

lim

a—=1(1—a)® 1 () =0

o= (a)

(e <a>)>

For the Gaussian distribution, the expected shortfall and the value-at-risk coin-
cide for high confidence level «. It is not the case with the Pareto distribution,
which has a fat tail. The use of the Pareto distribution can then produce risk
measures which may be much higher than those based on the Gaussian distribu-

tion.
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We have:

R(Li+Ly) = E[L1+ L] =E[L;]+E [ 2] =R (L1) + R (L)
R(L) = JE[A]_AJELZ
R(L+m) = E[L-m]=E

We notice that:

E[L]:/OO xdF(a:)/OlFl(t) dt

We deduce that if Fy (x) > Fy (), then F{' (t) < Fy' (t) and E[L;] < E[Ly].
We conclude that R is a coherent risk measure.

We have:

R (L1 + Lo) E[Ll +L2] +o0 (L1 + L)
E([Li] + E[Ly] +

Vo2 (L) + 0% (L) +2p (L1, L2) 0 (L) o (L2)

Because p (L1, L2) < 1, we deduce that:

IA

R (L1 + Lo) E[Li]+ E[Ls] +
Vo2 (L1) + 02 (L2) + 20 (L) o (L2)
E [Ll] —+ E [LQ} + o (Ll) + o (LQ)

INIA

We have:

R (ML)

E[AL] + 0 (ML)
AE [L] + Ao (L)
= MR(L)

and:
R(L+m) = E[L-—m]+o(L—m)
= E[L]-m+o(L)
R(L)—m

If we consider the convexity property, we notice that:

RAL; + (1 - \) Ly) R(AL) +R((1—\) L)

<
< AR(Ly)+(1- AR (L)

We conclude that R is a convex risk measure.

3. We have:

4; 0 1 2 3 4 5 6 7T 8
Pr{L=¢} 02 01 01 01 01 01 01 01 0.1
Pr{L<¢} 02 03 04 05 06 07 08 09 1.0
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(a) We have VaRsq9, (L) = 3, VaRys59 (L) = 6, VaRggy (L) = 7 and:
3x10% + ...+ 8 x 10%

ESso% (L) - 60% - 55
6 x10% 4+ ...+ 8 x 10%

ES7s (L) = 0 S0 =170
7 x 10% + 8 x 10%

ESgoy (L) = O20% - =75

(b) We have to build a bivariate distribution such that:
Fi' (0) + Fy' (@) < Fris (o)

To this end, we may use the Makarov inequalities. For instance, we may consider
an ordinal sum of the copula C* for (uj,us) < (a,«) and another copula C,
for (uy,us) > (o, ) to produce a bivariate distribution which does not satisfy
the subadditivity property. By taking for example a = 70% and C, = C~, we

obtain the following bivariate distribution®:

0 1 2 3 4 5 6 7 8 |pw
0.2 0.2
0.1 0.1
0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

01]0.1

0.1 0.1
0.1 0.1
02 01 01 01 01 01 0I 01 0.1

0~ O U W~ O

3

We then have:

7; 0 2 4 6 8 10 14
Pr{li+L,=0} 02 01 01 01 01 01 03
Pri{li+L,<f} 02 03 04 05 06 07 1.0

Because F;' (80%) = F5 ' (80%) = 6 and F1}, (80%) = 14, we obtain:
Fi ' (80%) + F5 ' (80%) < Fi}, (80%)

2.4.4 Value-at-risk of a long/short portfolio

We note S (resp. Spt) the price of stock A (resp. B) at time ¢. The portfolio value
is:

P, (w) =waSas +wpSp,
where w4 and wg are the number of stocks A and B. We deduce that the P&L between ¢
and t 4+ 1 is:
11 (IU) = Pt+1 - Pt
= wa(Sai+1—Sas) +we (Sei+1—SBt)

waSatRAt41 +wpSBRB 141
WatRat+1 + Wi Rp 41

6We have p1,; = Pr{Ly =4¢;} and po; = Pr{Ls = ¥;}.
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where R4 +4+1 and Rp 11 are the asset returns of A and B between ¢t and ¢ + 1, and Wy ;
and Wp are the nominal wealth invested in stocks A and B at time ¢.

1. We have Wy, = +2 and Wp = —1. The P&L (expressed in USD million) has the
following expression:
II(w) =2RA+1 — RB,t41

We have II (w) ~ N (0,02 (I)) with:

V(204) + (=08) +2pa.5 % (204) X (—0)
\/4 x 0.202 + (—0.20)* — 4 x 0.5 x 0.202

V3 x 20%
34.64%

o (1)

The annual volatility of the long/short portfolio is then equal to $346 400. We consider
the square-root-of-time rule to calculate the daily value-at-risk:

1
VaRggy, (w;one day) = e x ®71(0.99) x V3 x 20%

= 5.01%
The 99% value-at-risk is then equal to $50 056.

2. We use the historical data to calculate the scenarios of asset returns (Ra 141, Rp t+1)-
We then deduce the empirical distribution of the P&L with the formula IT (w) =
2RA+1 — RB,i+1. Finally, we calculate the empirical quantile. With 250 scenarios,
the 1% decile is between the second and third worst cases:

1
VaRggy (w;one day) = — [|—56850+ 3 (—54270 — (—56 850))
= 55560

The probability to lose $55560 per day is equal to 1%. We notice that the difference
between the historical VaR and the Gaussian VaR is equal to 11%.

3. If we assume that the average of the last 60 VaRs is equal to the current VaR, we
obtain:

IK™MA = m. x V10 x VaRggy, (w; one day)

KMA is respectively equal to $474 877 and $527 088 for the Gaussian and historical
VaRs. In the case of the standardized measurement method, we have:

jespecific  — 95 8% + 1 x 8%
= $240000
and:
K:General — |2 _ 1| x 8%
$80 000
We deduce that:
]CSMM _ K:Speciﬁc + K:General

$320 000
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The internal model-based approach does not achieve a reduction of the required capital
with respect to the standardized measurement method. Moreover, we have to add the
stressed VaR under Basel 2.5 and the IMA regulatory capital is at least multiplied by
a factor of 2.

. If pa,p = —0.50, the volatility of the P&L becomes:

\/4 % 0.202 + (—0.20)* — 4 x (—0.5) x 0.202
VT % 20%

o (1)

We deduce that:

VaRa (PA,B = —50%) - g (H§PA,B = —50%) o z —1.53
VaRa (pap = +50%) o (IL;pa,s = +50%) 3

The value-at-risk increases because the hedging effect of the positive correlation van-
ishes. With a negative correlation, a long/short portfolio becomes more risky than a
long-only portfolio.

. The P&L formula becomes:

II(w) =WaRa 41 +WsiRpit1 — (Cay1 —Cay)
where C 4 is the call option price. We have:
Cait1—Car~ Ay (Sauy1 —Sar)

where Ay is the delta of the option. If the nominal of the option is USD 2 million, we
obtain:

IM(w) = 2RA—Rp—2x0.5x Ry
= Ri-Rp (2.1)
and:
_ 2 2 2
o) = 1/0.207 + (~0.20)> = 2 x 0.5 x 0.20
= 20%

If the nominal of the option is USD 4 million, we obtain:

H(’LU) = 2RA—RB—4><0.5><RA
= —Rp (2.2)

and o (IT) = 20%. In both cases, we have:

1
VaRggy (w;one day) = x ®71(0.99) x 20%

V260
= $28900

The value-at-risk of the long/short portfolio (2.1) is then equal to the value-at-risk of
the short portfolio (2.2) because of two effects: the absolute exposure of the long/short
portfolio is higher than the absolute exposure of the short portfolio, but a part of the
risk of the long/short portfolio is hedged by the positive correlation between the two
stocks.
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6. We have:
I (w) =WaRar1 — (Cuy1 —CByt)

and:
Cpit1—Cpi~ Ay (Spit1— SBt)

where A, is the delta of the option. We note = the nominal of the option expressed
in USD million. We obtain:

IM(w) = 2R4—2xxA; X Rp
x
= 2R4 — ERB
We have”:
9 , 120% x
o*(I) = do%+ =L +2pap x (204) X (75@)
o2

= TA (;172 - 8pAva + 16)

Minimizing the Gaussian value-at-risk is equivalent to minimizing the variance of the
P&L. We deduce that the first-order condition is:

We deduce that the minimum VaR is reached when the nominal of the option is
x = 4pa,p. We finally obtain:

OA
o) = /1603 5 — 322 5 +16

= 2044/1 —pi"B

and:

1
VaRggy, (w;one day) = 7350 x 2.33 X 2 x 20% x m

5.78% x \/1—p4 p

If pa,p is negative (resp. positive), the exposure z is negative meaning that we have
to buy (resp. to sell) a call option on stock B in order to hedge a part of the risk
related to stock A. If pa p is equal to zero, the exposure x is equal to zero because a
position on stock B adds systematically a supplementary risk to the portfolio.

¢

2.4.5 Value-at-risk of an equity portfolio hedged with put options
1. Let R = (Ra, Rp) be the random vector of stock returns. We remind that®:

cov(R) =0 (Ry)BB" + D

where § = (84, 8p) and D is the covariance matrix of idiosyncratic risks.

"Because 04 = o = 20%.
8See Exercise 2.4.2 on page 8.
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a) We deduce that o (R;) = ,/B8%02 (R;) + 52. We obtain
j j j

o (Ra) = V0.5 x 4% + 3% = 20%
o (Rp) = V1.52 x 4% + 7% = 40%

The cross-correlation is:

and:

o2 (Rr) BaBe 4% x 0.5 x 1.5

o(Ra)o(Rp)  20% x 40% 87.5%

p(RAﬂRB) =

(b) To find the correlation between the stocks and the index, we can proceed in two
different ways.

i. We consider the random vector R = (R4, Rp, Ry). The formula cov (R) =
o2 (Ry) BBT + D is still valid with 83 = 8; = 1 and D33 = 67 = 0%. We

obtain:

_ 02(Rr)BaBr 4% x05x1

and:
0?(Rr) BB 4% x 1.5 x 1

o (Rg)o(R;)  40% x 20%
ii. The definition of beta 3; is:

cov (Rj,Rr) _ p(R;, Ri)o(R;)o(Ry)

p(RB,R[) = = 75%

bi=—0 (R;) o2 (R;)
It follows that: ()
— g I .
p(Rj7R1)_ O'(Rj)ﬂ']

We retrieve the previous formula.

(¢) The correlation matrix is then equal to:

100.0%
p=| 375% 100.0%
50.0%  75.0% 100.0%

We deduce that the covariance matrix ¥ is:

4%
Y= 3% 16%
2% 6% 4%

2. Let w = (wa,wp,wy) be the composition of the portfolio. The expression of the P&L
between t and t + h is:

II(w) = wa(Sai+n—Sa:)+ws (Si+n—SBt) +wa (Sre4n — Sit)
= waSatRA4n +wpSpiRBt+n +wrSriRrt4h
= WaRaAn +WBRBton + WiRr14n
= WTR
where W; is the current wealth invested in asset j, W = (W4, W, W;) is the vector

of dollar notionals and Ry, = (Ra,t+h, RB.t+h, Ri+r) is the random vector of asset
returns.
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(a) We have W4 = 400, Wi = 500 and W; = 250. We deduce that:

o (M) = W'sw
4002 x 4% + 500% x 16% + 2502 x 4% +
2 x 400 x 500 x 3% + 2 x 400 x 250 x 2% +
2 x 500 x 250 x 6%

We find that o (II) is equal to $28267. Using the square-root-of-time rule?, it
follows that:

2
VaRggy, (w;ten days) = &1 (99%) x 282.67 x \/5—2
= $128.96

(b) The 99% quantile corresponds to the 2.6'"" order statistic of the sample. The
historical value-at-risk is then the interpolated value between the second and
third largest losses:

VaRggy, (w;one day) = 55.23 — (2.6 —2) x (55.23 — 52.06)
= $53.33

We deduce that the 10-day VaR is:

VaRggy, (w;ten days) = /10 x VaRggy, (w;one day)
= $168.64

(¢) If we assume that the average of the last 60 VaRs is equal to the current VaR,

we obtain:
K™MA — m x VaRggy (w; ten days)
ICIMA g respectively equal to $387 and $506 for the Gaussian and historical
VaRs. In the case of the standardized measurement method, we have!?:
jespecific  — (W + W) x 8% + Wi x 4%
= 900 x 8% + 250 x 4%
$82
and:
K:General _ |WA + WB + WI| % 8%

= $92

We deduce that:

K:SMM K:Speciﬁc + ’CGeneral

= $174

9We use the following correspondence: 10 days is equivalent to 2 weeks and one year is equivalent to 52
weeks.
10We assume that the specific capital charge for an equity index is 4%.
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3. Let z be the number of put options. The expression of the P&L becomes:

II(w) = WaRA i+n + WeRB t+n + WiR14h + T (Pisn — Pr)

where P; is the value of the put option at time ¢. Under the delta approach, we have:

Piin — P ~ Ay (SI,t+h - Sl,t)
= ASriRrt4n

We deduce that:

IT (U)) = WARA,tJrh + WBRB,t+h + (WI + .TAtSLt) RI,tJrh

Using the numerical values, we obtain:

(a)

II ('LU) = 400RA,t+h + 500RB,t+h + (250 - 125£C) X R[7t+h

To hedge 50% of the index exposure, the number of put options must satisfy the
following equation:

250 — 12.52 = 125

The portfolio manager must purchase 10 put options. In this case, the expression
of the P&L becomes:

IT (w) = 400R 441, + 500R B 14n + 125R 411

and the 10-day Gaussian VaR is equal to $119.43.
We have:

I (w) = 400RA4n + 500Rp 14n + (250 — 12.52) x Ryen
= 400 (BaRrt+n +€a,4n) +500(BeRyvn +EB1+n) +
(250 — 12.5%) X R]’t+h
= (1200 — 12.52) X Ry t4n +400 X €4 445 + 500 X €5 141

As the index return is not correlated with the idiosyncratic risks, minimizing the
VaR is equivalent to minimizing the beta exposure in the index:

1200

= 96
T 195

The purchase of 96 put options is required to remove the directional risk. In this
case, the P&L reduces to:

1I ('[U) =400 x EAt+h -+ 500 x EB,t+h

and its volatility becomes:

o (IT) = /4002 x 3% + 5002 x 7% = $149.33

We deduce that the minimum 10-day VaR is equal to $68.13. In Figure 2.4, we
show the evolution of the VaR with the number of purchased options. We verify
that the minimum is reached for x = 96.
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FIGURE 2.4: Value of the 10-day VaR with respect to the number of purchased options

2.4.6 Risk management of exotic derivatives

Let C; be the option price at time ¢t. The P&L of the trader between ¢t and ¢ + 1 is:
II=—(Ciy1—Ct)

The formulation of the exercise suggests that there are two main risk factors: the price of
the underlying asset Sy and the implied volatility ;. We then obtain:

II = Gy (8¢, 5¢) — Cra1 (St41, D)
1. We have:
I = Ci(S,%) = Criar (Se1, Xig1)
~ —A¢ (St41—St) — %Ft (St41— St)2 — v (Zg1 — )

Using the numerical values of Ay, T'y and v, we obtain:

1
T~ —0.49 x (97— 100) — 5 x 0.02 x (97 — 100)*
= 1.47-0.09
= 138

We explain the P&L by the sensitivities very well.
2. We have:
I = Cit1(Si+1,8e11) — Cri2 (Si42, Sig2)
—A¢y1 (Sty2 = Siy1) — %I‘H—l (St+o — Se1)” —

Vi1 (Bigo — Bita)

Q



24

Handbook of Financial Risk Management

Using the numerical values of A;41, I't41 and vyy1, we obtain:

II

Q

1
—0.49 x 0 — 5 x 0.02 X 0% —0.38 x (22 — 20)
~0.76

To compare this value with the true P&L, we have to calculate C¢y1:

Cir1 = C—(Ci—Cipr)
= 6.78 —1.37
= 541
We deduce that:
II = Ciy1—Cip2
= 541 -6.17
= —0.76

Again, the sensitivities explain the P&L very well.

. We have:

II = Ciya(Stt2,242) — Cris (Seys, Xegs)
1
_At+2 (StJrS - St+2) - §Ft+2 (StJrB - StJrQ)z -

Vito (Big3 — Biga)

Q

Using the numerical values of Ay o, I'yy2 and vyyo, we obtain:

II

%

1
~0.44 % (95 = 97) — 5 x 0.018 x (95 - 97) —

0.38 x (19 — 22)
= 0.88—0.036 + 1.14
= 1.984

The P&L approximated by the Greek coefficients largely overestimate the true value
of the P&L.

. We notice that the approximation using the Greek coefficients works very well when

one risk factor remains constant:

(a) Between t and t+1, the price of the underlying asset changes, but not the implied
volatility;

(b) Between ¢t + 1 and ¢ 4 2, this is the implied volatility that changes whereas the
price of the underlying asset is constant.

Therefore, we can assume that the bad approximation between ¢ + 2 and ¢ 4 3 is due
to the cross effect between S; and ;. In terms of model risk, the P&L is then exposed
to the vanna risk, meaning that the Black-Scholes model is not appropriate to price
and hedge this exotic option.
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2.4.7 P&L approximation with Greek sensitivities

1. We note C; = Cy (S, X¢,T) meaning that the option price depends on the current
price S, the implied volatility >; and the maturity date T'. The delta of the option is
the first derivative of C; with respect to S;.

_ 8Ct (St72t7T)

N 05,

whereas the gamma is the second derivative:

_02C (54,5, T)

N 05?2

The theta of the option is the first derivative of C; with respect to the time t. We
have:

A,
T,

©; =0, Cy (5,5, T)
For the vega coefficient, we have:

00 (5,25, T)
- )

(&

2. Let r; and b; be the interest rate and the cost-of-carry parameter. We note 7 =T — ¢
the residual maturity. The Black-Scholes formula is:

Ct = Ste(bt_rt)Tq) (dl) — KE_T”—q) (dz)

with:
1 St 1
dl = Ztﬁ (11’1 ? + th> + 52“/?
dy = di =31

To calculate the Greek coefficients, we need the following preliminary result:

Ke "7 (dy) = Sie™ "7 ¢ (dy) (2.3)

Indeed, we have:

b(da) = ¢ (di—Si/7)
= \/127 exp (—; (dl — Ztﬁ)2>
= fyﬂ exp (—; (dF — 2d1 2/ + E?T))
= ¢(d1)exp (dlzt\ﬁ_ ;E%)
— $(d)exp (m %y bﬂ)
= %ebﬂ(b (d1)
The derivation of Equation (2.3) is then straightforward. We deduce that:
A = () + 5 ) L e o () G2
=T () 4 Sy () o — K0 () P
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We have:
ddy  0dy 1
08  0S;  SiXJT
We finally obtain:

Siee=r)T g (dy) — Ke "¢ (dy)

A, = e(bt*Tt)T(I)(d ) Ay \f
t

= & (dy)
The expression of the gamma is therefore:

el 107G (dy)

r =
' SiSe/T
To calculate the theta, we first calculate the derivative of d; and dy with respect to 7:
8d1 1 St bt Et
M In 2t
a1 s DK annr AT
ody _ 1S b %
o  2%rT K 25T 4yT
We deduce then:
8T Ct (St, Zt, T) = (bt — Tt) Ste(bt_rt)‘rq) (dl) + rtKe_”Tq) (d2) +
od o od
Sie®" TG (dy) = — Ke "¢ (dy)
or orT

= (by— 1) ST TD (dy) + 1 Ke D (dy) +

ad od
Spe® =TI (dy) (871 - 872)

= (bt — Tt) Ste(bt_rt)‘rq) (dl) + TtKe_rtT‘I) (dg) —|—

by by
Spe® =7 (dy) (4\% + 4\%>

= (bt — Tt) Ste(bt_n)‘rq) (d1> + TtKe_TtT‘I) (dg) +

QIStZte(bt Tt)T(b (dy)

The expression of the theta coefficient is then the opposite of 9, C; (St, X¢, T'). For the
vega coefficient, we obtain:

o = Sl () S - Ko () P
- s (8- 28)
We have:
75, = s ()
ggi = 22[<ln5+btr>—;ﬁ

It follows that:

= Sp/Te 76 (dy)
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3. (a) To calculate Cy, Ag, I'yg and O, we consider the Back-Scholes formulas with b; =
Tt. We have Ct = St(I) (dl) —Ke™™7® (dg), At = (dl), Ft = (b (dl)/ (StEtﬁ),
O, = —rKe "7 (dy) — S3i (d1)/ (24/7) with the following numerical values:
S; = 100, X; = 20%, 7 = 1 and r; = 5%. We notice that the option price is a
decreasing function of the strike, because it is a convex function of the strike.
The delta and gamma coeflicients are positive. The delta is a decreasing function
with respect to K. This is not the case of the gamma. The theta of the call option
is negative, because the time value decreases with the residual maturity.

(b) We apply the Black-Scholes formula C; = S;® (d1) —Ke ™" ® (dy) with Sy = 102,
¥ =20%, 1 = 5% and 7 = 1 — 1/252 because the residual maturity is one year
minus one trading day. We deduce that the P&L of a long position on this option
is Il = C1 — CQZ

K 80 95 100 105 120
II 1.852 1.464 1.285 1.099 0.589

(¢) We obtain the following results:

K 80 95 100 105 120
na 1.857 1.456 1.274 1.084 0.574
[A+T 1.871 1.480 1.311 1.124 0.608
[a+e 1.839 1.432 1.249 1.060 0.556
[MA+r+® 1853 1.465 1.287 1.100 0.590

The approximation of the P&L by the Greek sensitivities is very accurate.

(d) We obtain the following results:

K 80 95 100 105 120
T 45386 42,001 40.026 37596 28.090
s 14575 "34.939° 30.568 26.027 13.785

[a+e 42.186 31.793 27.361 22.888 11.445
[IA+T+@ 50036 50.912 48.975 45.739 31.071

In this case, the approximation of the P&L by the Greek sensitivities is not very
good. Indeed, the remaining maturity is now six months meaning that (1) the
theta effect is not well measured and (2) the price of the underlying asset has
changed significantly. In this situation, the delta P&L is overestimated.

2.4.8 Calculating the non-linear quadratic value-at-risk

1. We have:

E[X*] = / o *"¢ (z) dz
= /+<>0 2" rg (z) do

— 00
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Using the integration by parts formula, we obtain'!:

“+o0
E[X*] = [-2*1%(@)] 7 +(@2n-1) / T ¢ (@) do

— 00

+oo
(2n — 1)/ "2 (2) do

= (2n71)E7[§2”*2]
We deduce that E[X?] = 1, E[X?] = (2x2-1)E[X?] = 3, E[X‘] =

(2x3—1)E[X*] =15 and E [X¥] = (2x4—1)E [X*] = 105. For the odd mo-
ments, we obtain:

+oo
IE[XZT”I] = / z2"+1¢(x) dz

= 0

because 2" *1¢ (z) is an odd function.

. Let C; be the value of the call option at time t. The P&L is equal to:

11 (’LU) = Ct—i—h - Ct
where h is the holding period'?. We also have Sy1 = (1 + Ry1p) S; where Ry, is the

asset return. We notice that the daily volatility is equal to:

L 32.25%
V260

=2%

We deduce that Ry+p, ~ N (0,4 bps).
(a) We have:
II(w) =~ A¢(Sitn —St)
— AS:Rin
It follows that IT (w) ~ N (0, A762S?) where ¢ is the volatility of Ry, and:
VaR,, (w;h) = & (a) |A¢] 0S;
The numerical application gives VaR, (w; h) = 2.33 dollars.

(b) In the case of the delta-gamma approximation, we obtain:
1
11 (U}) ~ At (St+h — St) + 51’} (St+h — St)2
1
= AR 1S+ 5m%f o S?

We deduce that:

(=
=
I

1
E Ath+hSt + §I‘tR§+hStZ

1
== §Ft]E I:R?+hj| St2

1
= 51’}025?

HUbecause ¢’ (x) = —x¢ ().
12Here, h is equal to one day.
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and:

1 2
E [HZ] = E <Ath+hSt + QI‘th2+hSt2)

1
E [A%Ril*hsf + AT R, S] + 4Ft2R?+hS;l:|

We have Ryip = 0X with X ~ N (0,1). Tt follows that:

3

E [HQ] = AfUQStQ + ZI‘?OAS?

because E[X] = 0, E[X?] = 1, E[X?3] = 0 and E [X*] = 3. The standard
deviation of the P&L is then:

2
3 1
¢ A2o?S? 4 2r3otst - (2rtazsg)

= \/A 0282 + 1"20454

o (IT)

Therefore, the Gaussian approximation of the P&L is:

1 1
T (w) ~ A (2rt0253, A20%5? + 2r§a4s;1)

We deduce that the Gaussian value-at-risk is:

1
VaRq (wih) = =TS} + @ \/A 0252 + 1“20454

The numerical application gives VaR,, (w; h) = 2.29 dollars.
Let L = —II be the loss. We recall that the Cornish-Fisher value-at-risk is equal

to (FRM, page 88):
VaRa (w;h) = (L) +35(a;m (L), 72 (L)) o (L)
with:

1
i(aim,y2) = za+6(z —1)71+ﬂ( —324) 72 —

and z, = @71 (a). 71 et ¥ are the skewness and excess kurtosis of the loss L.
We have seen that: 1
H(U}) = AtO'StX + 51",5025?)(2

with X ~ N (0,1). Using the results in Question 1, we have E [X [ ]
E[X°] =E[X"] =0,E[X? =1,E[X*] =3,E [XG] =15 and IE [XB] 105.
We deduce that:

gAfI‘to“SfX‘*} +

E[I?] = E{AfaSSfX3+
3 2 _5a05v5H 1 3 _6gb6vyv6
E ZAtFtU StX +§I‘ta StX

9 15
= §Afl"ta45'f + gl"f’aﬁSf
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and:

4
E [11%] E [(AtUStX + ;rtcﬂst?) 1

45 105
= 3Alo'S! + 5 AP + SOTioS]

The centered moments are then:
E {(H “E [H])?’] = E[0?] — 3E [ E [112] + 2E2 [I1]

9 15

= §A%I‘t04szl + g
2

21“30653 +3Tio%Sy

= 3AT;0'S} + 30087

3
| o §A§rta4sf —

and:

E [(H _E [H])“} = E[I*] - 4E [ E [I?] + 6E2 [ E [I12] —
3E* (1]
= 3AlotSE D A0S + EOTSE -
%1—‘?0855 +
%AEFEUGSE + %r;*agsf - %F;*agsf
— 3Al0YS! 4 15AT26050 + 17451“;1085?

9ATZ5555 —

It follows that the skewness is:

(L) = -7 )
E |(I - E[m)°|
- — @

 3AN0*S] + 005
(A20257 + LT20454)%/?
_ 6V2AT0"S] + 2V/2T500 58
(2A20252 + T20454)°/

whereas the excess kurtosis is:

Y2 (L) = ()
E (- E)’]
o (I

3A10S} + 15ATF05S) + BTio*sy
(A20252 + 1T25454)°

12A2T20585 + 3T}0 S8

(A20252 + 1T25454)°

3
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Using the numerical values, we obtain p (L) = —0.0400, o (L) = 1.0016, v, (L) =
—0.2394, v, (L) = 0.0764, 3 (a;v1,72) = 2.1466 and VaR,, (w;h) = 2.11 dollars.
The value-at-risk is reduced with the Cornish-Fisher approximation because the
skewness is negative whereas the excess kurtosis is very small.

(a) We have:
XTAX
(2—1/2)()T $1/2 g571/2 (2—1/2)()

- XTAX

!
Il

with A = S1/2A%Y2 X ~ N (1, %), fi = 27Y2p and ¥ = I. We deduce that:

E[Y] = a'Ap+tr(A)
= ,ﬁAu+tr(21/2A21/2>
= u'Ap+tr(AD)
and:
var (V) = E[Y?] -E?*[Y]

= 4 A%+ 2tr (A7)
— 4T AT A+ 2tr (21/2A2A21/2)

= 4y AYAp+ 2t ((AE)z)

E[Y] = tr(AY)

E[Y?] = (r(4%)+ 2 ((4%)?)

E[V*] = (r(A%)+6tr (A%)tr ((A)) +8tr ((AD)°)
EYY] = (r(AD)"+ 3240 (A%) tr ((4%)°) +

12 (tr ((AZ)2>)2 +12 (tr (A%))% br ((A)?) +
A8 tr ((AZ)4>

It follows that the first and second centered moments are u(Y) = tr (AX) and
var (V) = 2tr ((AE)Q). For the third centered moment, we have:

E [(Y ) [Y])ﬂ = E[Y?] —3E[V2]E[Y]+ 2E3 Y]
= (tr(A%))’ + 6tr (AD) tr ((AE)2> +
str ((A%)°) = 3 (tr (4%))°
6tr ((Az)z) tr (AX) + 2 (tr (A%))?
= 8t ((AE)3>
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The skewness is then equal to:

B 8tr ( 3)
ny) = (2tr< 2 )3/2
22 tr ((AZ)3

(i ((a))

We obtain for the fourth centered moment:

E|(Y-E [Y])ﬂ E[Y*] —4E [Y?]E[Y] +6E [Y?*] E* [Y] —

3EY Y]
= (tr(An)* + 3200 (AD) tr ((A%)°) +

(
12 (tr ( 2))2 48t ((AZ)4)
AX)) tr ((AE)z) ~ A (tr (AD)* -
AX))? tr ((AE)2> -
32tr( (AT) 3) tr (AX) + 6 (tr (AD))* +
12tr ( 2) ~ 3 (tr (AD)*
= 12(tr (4% )) +48tr ((AZ)4)
It follows that the excess kurtosis is:
12 (tr ((142)2))2 t 48t ((AE)4)
fol@))
12tr ((AZ)4)

(o))

II (’LU) = ’U)T (Ct+h — Ct)

1Y) =

4. We have:

where C; is the vector of option prices.
(a) The expression of the P&L is:

M(w) ~ w' (Ao (Sin—51))
= w' ((Ar0S;)0 Reyn)
= A/ R

where A, is the vector of delta exposures in dollars:

A =wiA 1St
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Because Ry ~ N (0,%), it follows that IT ~ A (O, AZZAQ. We deduce that
the Gaussian value-at-risk is:

VaR, (w;h) = &1 (a) /A ZA,

The risk contribution of option 7 is then equal to:

o1 (a) (ZAt) Ai,tSiﬂg

A TA,
A (BA).
g (o) 2 (BAY;

\VATZA,

(b) In the case of the delta-gamma approximation, we obtain:

O(w) ~ w' (Ao (Sen—S))+
1
iw—r (Ft o (St+h - St) o (St+h - St)T) w
~ 1 -
= AR+ 51[;1,;,111}@%

where T'; is the matrix of gamma exposures in dollars:

Lo = wiw;Ly 5,05:055

We deduce that:

- 1 -
]E [H] = ]E |:A:Rt+h + iR:‘FthRt‘i’h

1 -

= §]E (Rl TR ]
1 -

- 5 tr (FtZ)

and:
var(II) = E [(H —E [H])ﬂ

2
. 1 . 1=
= E (AI R + iRI nLiBen — o tr (1‘@))

ro. 1 _ ~
= E[(A]Rira)’] + 1 [(RLATeReen — tr (0,3))°] +
E [(A:Rt+h) (R;r+hf‘th+h —tr (ftZ))]

[~ 2 1 ~
= E (AZR,H_}L) :| + Z var (R;r+thRt+h)
~ ~ 1 ~ 2
-
= A/SA+ 5w ((rtz) )
Therefore, the Gaussian approximation of the P&L is:
1 - ~ ~ 1 -
I (w) ~ N (2 tr (D) ATSA + St ((rtz)Q))

We deduce that the Gaussian value-at-risk is:

VaR,, (w; h) = f% tr (ftE) + 37! (a) \/A:EAt + %tr ((f‘tE)2)
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(¢) If the portfolio is delta neutral, A; is equal to zero and we have:
1+ -
= §Rt+h]‘-‘th+h
Let L = —II be the loss. Using the formulas of Question 3(b), we obtain:

w(L) = —% tr (T,2)

o (L) = ftr( 2)
()

(o ((F0)%))"
12tr< )
(1 (%))

We have all the statistics to compute the Cornish-Fisher value-at-risk.

(L) =
2 (L) =

(d) We notice that the previous formulas obtained in the multivariate case are per-
fectly coherent with those obtained in the univariate case. When the portfolio is
not delta neutral, we could then postulate that the skewness is'3:

6V2AT ST, RA, +2v24 ((T:3)°)

(28724, + 1 ((0,0)7))"

M (L) = -

In fact, it is the formula obtained by Britten-Jones and Schaeffer (1999).

5. (a) Using the numerical values, we obtain y (L) = —78.65, o (L) = 88.04, v, (L) =
—2.5583 and 2 (L) = 10.2255. The value-at-risk is then equal to 0 for the delta
approximation, 126.16 for the delta-gamma approximation and —45.85 for the
Cornish-Fisher approximation. We notice that we obtain an absurd result in the
last case, because the distribution is far from the Gaussian distribution (high
skewness and kurtosis). If we consider a smaller order expansion:

1 1
3(e5m1,m2) = 2o+ 5 (25 — i + 57 (20 = 32a) 72

the value-at-risk is equal to 171.01.

(b) In this case, we obtain 126.24 for the delta approximation, 161.94 for the delta-
gamma approximation and —207.84 for the Cornish-Fisher approximation. For
the delta approximation, the risk decomposition is:

Option w; MRZ R61 RC:
1 50.00 0.86 42.87  33.96%
2 20.00 0.77 15.38  12.19%
3 30.00 2.27 67.98  53.85%

13You may easily verify that we obtained this formula in the case n = 2 by developing the different
polynomials.
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For the delta-gamma approximation, we have:

Option W; MRZ RCl RC*
1 50.00 4.06 202.92 125.31%
2 20.00 1.18 23.62  14.59%
3 30.00 1.04 31.10  19.21%

We notice that the delta-gamma approximation does not satisfy the Euler de-
composition.

2.4.9 Risk decomposition of the expected shortfall
1. We have:

It follows that:

with g (w) = w ' g and o (w) = VT Sw.
2. The expected shortfall ES,, (w; h) is the average of value-at-risks at level o and higher:
ES, (w;h) =E[L | L > VaR, (w; h)]
We know that the value-at-risk is:
VaRg (w;h) = —w " p+ @ () VT Sw

We deduce that:

- 22 e (42228 )

where 2= = —p(w) + @' (a)o(w). With the change of variable t =
o (w) " (@ 4 p(w)), we obtain:

B (i) = 1 [ <—u<w>+a<w>t>}exp(—;t2) dt

11—« -1 (a) 2T

= —lf(_wci [ (D)]g-1(a) T

%[i@texp (—;ﬁ) dt

= —u(w)+ (1—0;3?/% {_ o (iﬁﬂ :1<a>

= —u(w &ex 71 71042
= )+ T e (5 [0 @)

The expected shortfall of portfolio w is then:

ES, (w;h) = —w " pu+ Mq)%lo(la))\/wTEw



36

Handbook of Financial Risk Management

3. The vector of marginal risk is defined as follows:

MR — 0 Esgl(uw; h)
_ 027 (e) Zw
- T (1-a) VuTzsw

We deduce that the risk contribution RC; of the asset 7 is:
¢ (27! () w; x (Sw),
(1-a) VuwTSw

= —wip; +

It follows that:

¢ ¢ (271 () w; x (Sw),
DRC = Fowwt TGy

= 7’U}TM +
= ES, (w;h)

The expected shortfall then verifies the Euler allocation principle.

. We have:

- Z w; Ry = Z L;
i=1 i=1
with L; = —w; R;. We know that:

RC; = E[L;|L > VaR, (w;h)]

E[L; - 1{L > VaR, (w;h)}]
E[1{L > VaR, (w; h)}]
E[L; - 1{L > VaR, (w;h)}]
11—«

We deduce that:

Wy

RC;i = ———E[R; - 1{R(w) < = VaRq (w; h)}]

l1—«

We know that the random vector (R, R (w)) has a multivariate normal distribution:

(&t )~ (( o) (o )
( at o 2~N(( ) (G, )

Let I = E[R;-1{R (w;h)}]. We note f the density function of the

random vector (R;, R (w)) and p = %, 1/2 (w Ew)_1/2 (Xw), the correlation between
R; and R (w). It follows that:

We deduce that:

I = /+Oo/+oo]l{s<—VaRa(w;h)}-rf(r,s)drds

400  p— VaRq(w)
= / / rf(r,s)drds
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Let t = (r—p;) /y/Tii and u= (s —w' p) /Vw' Sw. We deduce that'*:

oo p@TH A=)y /3t t2 4+ u? — 2pt
/ / Hi T V=it = exp (M) dt du
2m\/1— p2 2(1— p2)

By considering the change of variables (¢,u) = ¢ (t,v) such that u = pt + /1 — p?v,
we obtain!®
oo 90y /St t2 + 02
I = / / R v it exp | — v dtdv
—oo J—00 2m 2

+o0 g(t) 1 t2+’02
= Mi[w [m 27Texp(— 5 )dtdv+
+o0 g(t) t t2 2
\/Eii/ / —exp | — v dtdv +
TS S 2m 2
= wili + /2l

where the bound g (¢) is defined as follows:

o1 (1—a)—pt

V1 —p?

g(t)=

For the first integral, we have'®

“+o0 1 t2 g(t) 1 U2
L = —— | d dt
! re’q’( 2) o meXp< 2> !

B Foo 1 (1—a)—pt
_ /_OO@( — >¢(t)dt

= l-a

The computation of the second integral I» is a little bit more tedious. Integration by
parts with the derivative function t¢ (¢) gives:

L = /_:o¢(¢_l\(/1%_pt>t¢(t) dt
oo ®1(1—a)—pt
F/ ( N )W) at

2ot [ o (t”q’l a- a>> at

V1P —o0 1—p
— po(e (1)

MBecause we have 1 (1 —a) = -1 ().

15We use the fact that dtdv = /1 — p2 dt du because the determinant of the Jacobian matrix containing
the partial derivatives Dy is 1/1 — p2.

16We use the fact that:
&1 (p) — pT
\/1—p2

where T ~ N (0,1).
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We could then deduce the value of I:

I = pi(l—a)=py/3i6 (27 (1~ a))
_ (1—a)— (Zw), -1 (q

We finally obtain that:

¢ (27 () w; x (Bw),
(1-a) VwT Sw
We obtain the same expression as found in Question 3. Nevertheless, the conditional

representation is more general than the Gaussian formula, because it is valid for any
probability distribution.

RC; = —w;p; +

2.4.10 Expected shortfall of an equity portfolio

1.

2.

We have:

I = 4(Pattn —Pays) +3(Pitn — Pry)
= 4Py Ra4n +3Pp i RBiyn
= 400 x RA,t+h + 600 x RB,t+h

where Ra 4, and Rp 1) are the stock returns for the period [t,t + h]. We deduce
that the variance of the P&L is:
o? (II) = 400 x (25%)% + 600 x (20%)? +
2 x 400 x 600 x (—20%) x 25% x 20%
= 19600

We deduce that o (IT) = $140. We know that the one-year expected shortfall is a linear
function of the volatility:

(I>_1
ES, (w;one year) = w x o (IT)
= 2.34 x 140

= $327.60

The 10-day expected shortfall is then equal to $64.25:

1
ESq (w;ten days) = 4/ % x 327.60

= $64.25

‘We have:
Il = 400 x R4, + 600 x Rp s

We deduce that the value II; of the daily P&L for each scenario s is:

S 1 2 3 4 5 6 7 8
11, -36 —-10 —-24 -26 -—-12 —-30 —-14 -16
Is050 —36 —-30 —-26 —-24 -16 —-14 —-12 -10
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The value-at-risk at the 97.5% confidence level correspond to the 6.25%" order statis-
tic!”. We deduce that the historical expected shortfall for a one-day time horizon is
equal to:

ES, (w;one day) = —E[II|II < —VaR, (IT)]

18
= *EZHS:%O
s=1

1
6(36+30+26+24+16+14)

= 2433

By considering the square-root-of-time rule, it follows that the 10-day expected short-
fall is equal to $76.95.

2.4.11 Risk measure of a long/short portfolio
We have:

Iy, = 2(Pajysn — Pay) —5(Pgu+n — Prt)
= 2PatRa+n — 5P RBt+h
= 100 x (RA,H—h - RB,t—i—h)

where R4 ¢15 and Rp 44 are the stock returns for the period [t,t + hl.
1. We deduce that the (annualized) variance of the P&L is:

0% (Mysy060) = 1002 x (25%)° + 1002 x (20%)> —
2 x 1002 x 12.5% x 25% x 20%
= 900

We have o (I1; 11260) = $30. It follows that the 10-day standard deviation is equal to:

10
o (Il t110) = 260 x o (It,t4-260)
= $5.883
(a) We obtain:
VaRgg% (w, ten days) = @71 (99%) X o (Ht,t+10)
= $13.69
(b) We have:
@71
ES, (w; ten days) = M x o (It t+10)
—o
and:
¢ (21 (97.5%))
— 7 2.3378
1-97.5%
~ 234

The 10-day expected shortfall is then equal to $13.75.
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TABLE 2.1: Order statistic Il.059 of the daily P&L

S 1 2 3 4 ) 6 7 8 9 10
IIs050 —6.3 —-6.0 —51 —-48 —-46 —-45 —-43 —-43 —-40 -39

2. Given the historical scenario s, the one-day simulated P&L is equal to:

Iy = 100 x (Ras— Rps)
100 x Dy

The order statistic Il4.050 of the daily P&L is given in Table 2.1.

(a) We deduce that the one-day value-at-risk at the 99% confidence level corresponds
to the 2.5" order statistic:

—6.0-5.1

VaRggy, (w;one day) = — ( 5

) = $5.55
It follows that:
VaRggy, (w; ten days) = v 10 x VaRggy, (w, one day) = $17.55
(b) The value-at-risk at the 97.5% confidence level correspond to the 6.25'" order

statistic. We deduce that the historical expected shortfall for a one-day time
horizon is equal to:

ESg7 5% (w; one day)

L8
5 > Taaso
s=1

1
= 5 (6.3+6.04+5.1+48+44.6+4.5)
= 8522

By considering the square-root-of-time rule, it follows that the 10-day expected
shortfall is equal to $16.50.

(c) In Basel II, the capital charge is equal to:

K = 3 x VaRggy (w;ten days)
= $52.65

In Basel 2.5, the capital charge becomes:

K = 3 x VaRggy (w;ten days) + 3 x SVaRggy (w; ten days)
= $157.96

where SVaR is the stressed value-at-risk. In Basel III, we obtain:

K = 2 xSESggy (w;ten days)
= $65.99

where SES is the stressed expected shortfall.

17"We have 2.5% x 250 = 6.25.
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2.4.12 Kernel estimation of the expected shortfall

1. We have:
E[X-1{X<a}] — / Pt <a)— K()dt
e nh &~ h
I [“ t  (t—uay
() e

/_m ftL’C(t_hx) dt = /_: (w1 + hw) K (u) du

(oo}

T—x, T—x,

_ /_" xl-lC(u)du-i-/ " huk (u) du

oo — 00

We deduce that:

x

EX -1{X <z}] = ii/ h’lxilC(u)du—i—
i=1

— 00

T—x,

n

%Z/ﬁ: huk (u) du

i=1

2. We have:

x

|
\
8

Il
| —
&
]
/7~
53
> |
&
~——

3. Since we have:

we deduce that:

It follows that:

@

/h huk (u) du = h ’ ull (u) du

— 00

— Owhenh —0

4. Finally, we obtain the result:

41
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‘We conclude that:
1
(1-a)
1

- —mE [II (w) - 1{II (w) < — VaRg, (w; h)}]

o)

because we have II (w) = —L (w).

ES , (w; h)

E[L(w) - 1{L (w) = VaRq (w; h)}]

Q




Chapter 3
Credit Risk

3.4.1 Single and multi-name credit default swaps
1. Wehave F (t) = 1—e*, S (t) = e and f (t) = Ae~*. We know that S (7) ~ U 1.
Indeed, we have:
Pr{U<u} = Pr{S(r)<u}
= Pr{r>S8"(u)}
= S(S7'(w)
= u
It follows that 7 = S™! (U) with U ~ Ujp1j. Let u be a uniform random variate.
Simulating 7 is then equivalent to transform u into t:

1
t=——1Inu

A
2. (a) The premium leg is paid quarterly. The coupon payment is then equal to:
PL(twm) = Aty XSXN
= i x 150 x 107 x 10°
= $3750

In case of default, the default leg paid by protection seller is equal to:

DL = (1-R)xN
= (1-40%) x 10°
$600 000

The corresponding cash flow chart is given in Figure 3.1. If the reference entity
does not default, the P&L of the protection seller is the sum of premium interests:

rseler = 8 x 3750 = $30 000

If the reference entity defaults in one year and two months, the P&L of the

protection buyer is':

e = (1-R)xN— 3 Aty xsxN
tm <T
2
= (1-40%) x 10° — (4+3) x 3750
= $582500

1We include the accrued premium.
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“ N

The protection buyer receives $600 000

if the defaults occurs before the maturity

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8

T time

The protection buyer pays $3 750

K each quarter if the defaults does not occur J

FIGURE 3.1: Cash flow chart of the CDS contract

(b) Using the credit triangle relationship, we have:
s~(1-R)x A
We deduce that?:
PD ~ A\
S
1-R
150 x 10~*

1—40%
= 2.50%

(c) We denote by s’ the new CDS spread. The default probability becomes:
SI

1-R

450 x 104

1—40%
= 7.50%

PD =

The protection buyer is short credit and benefits from the increase of the default
probability. His mark-to-market is therefore equal to:
mPwer = N x (s’ — ) x RPV,
105 x (450 — 150) x 10™* x 1.189
= $35671

2We recall that the one-year default probability is approximately equal to A:

PD 1-S(1)
Y

= 1l—e
1—-(1-X)
A

R
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The offsetting mechanism is then the following: the protection buyer B transfers
the agreement to C, who becomes the new protection buyer; C' continues to
pay a premium of 150 bps to the protection seller A; in return, C' pays a cash
adjustment of $35671 to B.

For a given date t, the credit curve is the relationship between the maturity T
and the spread s; (T"). The credit curve of the reference entity #1 is almost flat.
For the entity #2, the spread is very high in the short-term, meaning that there is
a significative probability that the entity defaults. However, if the entity survive,
the market anticipates that it will improve its financial position in the long-run.
This explains that the credit curve #2 is decreasing. For reference entity #3, we
obtain opposite conclusions. The company is actually very strong, but there are
some uncertainties in the future3. The credit curve is then increasing.

If we consider a standard recovery rate (40%), the implied default probability is
2.50% for #1, 10% for #2 and 1.33% for #3. We can consider a short credit posi-
tion in #2. In this case, we sell the 5Y protection on #2 because the model tells
us that the market default probability is over-estimated. In place of this direc-
tional bet, we could consider a relative value strategy: selling the 5Y protection
on #2 and buying the 5Y protection on #3.

Let 7., be the k' default among the basket. FtD, StD and LtD are three CDS
products, whose credit event is related to the default times 71.,,, T2., and Ty.p-

The default correlation p measures the dependence between two default times
7; and 7;. The spread of the FtD (resp. LtD) is a decreasing (resp. increasing)
function with respect to p.

To fully hedge the credit portfolio of the 3 entities, we can buy the 3 CDS.
Another solution is to buy the FtD plus the StD and the LtD (or the third-to-
default). Because these two hedging strategies are equivalent, we deduce that:

CDS CDS

sCDS | (CDS 4 (CDS _ (FtD 4 ¢StD | gLtD

3

We notice that the default correlation does not affect the value of the CDS
basket, but only the price distribution between FtD, StD and LtD. We obtain a
similar result for CDO?. In the case of the subprime crisis, all the CDO tranches
have suffered, meaning that the price of the underlying basket has dropped. The
reasons were the underestimation of default probabilities.

3.4.2 Risk contribution in the Basel II model

1.

(a)

The portfolio loss L follows a Gaussian probability distribution:
L(w)~N (0, \/wTZw>

We deduce that:
VaR,, (w) = &~ (a) VT Xw

3An example is a company whose has a monopoly because of a strong technology, but faces a hard
competition because technology is evolving fast in its domain (e.g. Blackberry at the end of 2000s).
4The junior, mezzanine and senior tranches can be viewed as FtD, StD and LtD.
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We have:

d VaR, (w 0 B 1

7@10( ) = 30 (q) 1(oz) (wTZw) )
! (a) (wTEw)_§ (2Xw)

Yw

VwTXw

The marginal value-at-risk of the ' credit is then:

1
2

=

I
A

(@)

_O0VaRa (w) 4 (Xw),
M= Y e

The risk contribution of the i*" credit is the product of the exposure by the
marginal risk:

RCi = w; X MRZ
— (1)71 (OZ) w; X ( w)

2

VEADY

By construction, the random vector (g, L (w)) is Gaussian with:

(oo )= ((0)- (7 7))

We deduce that the conditional distribution function of e given that L (w) = ¢
is Gaussian and we have:

Ele|L(w)=0=0+%w(w Sw)  (£-0)

We finally obtain:

Ele|L(w)=F ' (a)] = Zw (wTEw)il ! (a) VuTZw
Yw
— & (a
- e
0 VaR, (w)
B ow

The marginal VaR of the i*® credit is then equal to the conditional mean of the
individual loss ¢; given that the portfolio loss is exactly equal to the value-at-risk.

EAD,; is the exposure at default, LGD; is the loss given default, 7; is the default
time and T; is the maturity of the credit i. We have:

E; = LGDZ x1 {Ti < Tz}

The exposure at default is not random, which is not the case of the loss given
default.
We have to make the following assumptions:

i. the loss given default LGD; is independent from the default time 7;;
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ii. the portfolio is infinitely fine-grained meaning that there is no exposure
concentration:

EAD;
> i—1 EAD; —

iii. the default times depend on a common risk factor X and the relationship is
monotonic (increasing or decreasing).

In this case, we have:
Ele;|L=F'(a)] =E[LGDy] xE [D; | L=F"(a)]

(¢) It follows that:

RCZ = w; X MRZ
EAD; xE[LGD;] X E [D; | L = F~! ()]

The expression of the value-at-risk is then:
n

SR

i=1

Zn:EADi xE[LGD;] xE [D; | L = F~' ()]

i=1

VaR,, (w)

(d) i. We have

ElZiZ;] = E [(\/ﬁX + mgi) (\/ﬁX + m@}

= p

p is the constant correlation between assets Z; and Z;.

ii. We have:
pi = Pr{n<T}
= ®(B)
iii. It follows that:
pi(z) = Pr{Z,<B;| X =z}
= Pr{VpX+ T pei <Bi | X =a}

Bi — /pX
S f

s
(228
g

x =

= &

=)
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(e) Under the assumptions (H), we know that:

L = Y EAD; xE[LGDj] x p; (X)

i=1
n 1 (p;) — /X
— STEAD, xE[LGD/] x @ (M)
i=1 viTP
= g(X)
with ¢’ (z) < 0. We deduce that:

VaR,, (w) = F ! (a)

R
a
: 1?
IA
‘Q
3
z

It follows that:

VaR, (w) = g(®'(1-a)

iEADi XE[LGD;] x p; (@71 (1 — a))
=1

The risk contribution RC; of the ith credit is then:

RC;

EAD; xE [LGD;] x p; (27" (1 — )

vVi-»p

EAD; xE [LGD;] x ® ((I)l (m)\/—i%@l (a)>

(a) We note Q the event X < g~* (VaR,, (w)) or equivalently X < &1

have:

ES, (w) = E[L|L>VaR, (w)]
= E[L|g(X )>VaR (w)]
E[L|X <g'(VaRq (w))]

- ZEADz xE [LGD;] x p; (X) | Q

i=1

= Zn:EADZ- xE[LGD;] x E [p; (X) | ©]
=1

EAA]:)Z xE [LGDl] < & (‘I)l (pi) _ \/ﬁ©71 (1 _ a))

(1—a). We
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(b) Tt follows that:

Elp:i (X)€Y

Il
=
=
N
<
)
|
N
=
~—
L2,

¢ (2)
@11 —a)

Py (7' (1—a), @ (pi); /D)
1l -«

C (1o psiVp)

11—«

where C is the Gaussian copula. We deduce that:

C(1—a,p;
RC; = EAD; xE [LGD,] x (1= pis vP)

j —
(¢) If p = 0, we have:
. (@1 (pZ)J;\/ffl (a)> = @ (@' (p))
= D
and:
C (1 — Q, Di; \/ﬁ) = 1 =o)pi

11—« 11—«
= Di

The risk contribution is the same for the value-at-risk and the expected shortfall:
RCZ' = EADZ xE [LGDz] X Di
= E[L]
It corresponds to the expected loss of the credit. If p = 1 and « > 50%, we have:

p—1
=1

If p =1 and « is high (o > 1 — sup, p;), we have:

C (1 - a,pi;/p) ~ min (1 —a;p;)

11—« o 11—«
= 1

In this case, the risk contribution is the same for the value-at-risk and the ex-
pected shortfall:

However, it does not depend on the unconditional probability of default p;.

. Pillar 2 concerns the non-compliance of assumptions (). In particular, we have to
understand the impact on the credit risk measure if the portfolio is not infinitely
fine-grained or if asset correlations are not constant.
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3.4.3 Calibration of the piecewise exponential model

1. We have:

and:

S(t)=Pr{r>tl=1-F(t)

f#t)=0F()=-0:S(t)

2. The function A (t) is the instantaneous default rate:

A ()

1
i —_ <7< >
Ah_}n(}JrAPr{t_T_t—t—AM'_t}
1Pr{t<T<t+A}
im —
A—0+ A Pr{r >t}
1 . Prit<r <t+4+ A}
lim
Pr{r >t} a—o+ A
[ )
S (t)

In the case of the exponential model, we obtain:

)\67/\t
e— At

A(t) = =\

3. Since T ~ £ (M), it follows that:

5(T)

(1-R)x [ e f(t) dt
S emrts (1) at
(1-R) x [ e Ae Mt
foT e—rte—At ¢

Ax(1-R)

4. (a) We define the survival function as follows:

S (t) =

We deduce that:

f(t)

e— it ift <3
e—3M1—As2(t—3) if3<t<5
e=3M=2X2=X3(t=5) if¢ > 5§

Ape— Mt ift<3

Age—3M1 = Ao (t=3) if3<t<5h

)\36_3)\1—2>\2—>\3(t—5) ift>5

We verify that the hazard rate is a piecewise constant function:

A(t)

A it <3
W), sci<s
(t) Ns ift>5
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(b) Let (t1,t5,t%) be the knots of the piecewise exponential model®. We note that
S(t) =8 (t5,_,) e () and £ (£) = AnS (t5,_;) e (78n-1) When T €
[tx,_q,t2, [, it follows that:

m—17"m

(1-R)x [ e " f(t) dt
I emrts (t) dt

(1-R) x (fotin-l () dt [ et () dt)
(f(f:"*l eS8 () dt+ [ eS (1) dt)

We introduce the following notation with 7" < ¢7 -

s(T) =

1

T
Z(th_1,T) = /t e S (t) dt

m—1

T
- S ( x )/ e TteAm(t=t1,_1) q¢
t

*
m—1

T
— S(th ) Mt / e~ HAmt gt
t

*
m—1

—(r+Am)t 1T

* e

= s() e | ]
t*

—(r+Am)th 1 _ o= (r+Am)T
= S ( " 1) Amtin & ©
e (r+Am)
i1 _ T o= Am(T =15, 1)
= s, )" e ¢
(r4+Am)

We obtain the following cases:
i. f T'< 3, we have:

(1-R)x [ e " f(t) dt

$ (@) Jerts (t) dt
(1 -=-R)x X xI(0,T)
N 7(0,7)
= 1-R)x X\

ii. If 3 < T <5, we have:
(1-R) x ( JEertp () dt+ [ e f (8) dt)

(f03 e~ TtS (t) dt + ng e~ S (t) dt)
MZ(0,3) + XZ(3,T)
Z(0,3)+Z(3,T)

s(T) =

(1-R)x

iii. If T'> 5, we have:

MZ (0,3) + AT (3,5) + A3Z(5,7)

_ ()5
ST =0 =R 6 3+ 2 (3.5) + 2 (5.1

5We use the convention ty =0.
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(¢) The parameters (A1, A2, A\3) satisfy the following set of equations:
sB)=1-R)x X\
A1Z(0,3)+A2Z(3,5
5 (5) = (1 - R) x 27Gar s (3.1)

(3,5)
MZ(0,3)4XaZ(3,5) FAsZ(5,7
s(M=(1-R)x é(o,zs)+z(?5,5))+z(§,7§ :

From the first equation, we estimate it

s(3)

X11(1—7%)

We can now solve numerically the second equation and we obtain Ao Finally,
we solve the nonlinear third equation to obtain A3. This iterative approach of
calibration is known as the bootstrapping method.

(d) When 7 is equal to zero and \,, is small, the function Z (¢%,_;,T) becomes:

va (t:n—hT) = S (t:n—l) — Y
~ S(trn_y)(T—th_y)
T—t5

We introduce the following notation:

__s(1)
MT) = (1-R)
Using Equation (3.1), we deduce that:
Moo= A(3)
¢ (Z(0,3)+Z(3,5) 7(0,3)+¢
e = ( 73,5 ) MO - T E)
_5A(5) = 3A(3)
T2
< (T(0,3)+ZI(3,5)+Z(57) MZ (0,3) + AT (3,5)
v (R )r- 2EEYES
TA(7) —5X(5)
2
We notice that:
s(8) = (1-R)x\
s() = (1-R)x (W)
5(7) _ (1—R)>< (3:\1+2/’;\2+25\3>

The spread is then a weighted average of the different hazard rates, whose weights
are proportional to the interval time between two knots.
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(e) Using a numerical solver, we obtain A1 = 166.7 bps, A2 = 401.2 bps and \3 =
322.4 bpsS.

(f) Since S () ~ Ujp 1, the simulated default time ¢ is S™* (u) where u is a uniform
random number. If u > S (3), we have e ! =y ort = —A\; ' Inwu. If S (5) < u <
S (3), it follows that S (3) e *2(*=3) =y or t = 3+ A\;' (InS (3) — Inw). Finally,
we obtain t = 54+ 3! (InS (5) — Inw) if u < S (5). Using the previous numerical
values, we find that S (3) = 0.951 and S (5) = 0.878. The simulated default times

are then:
2.449 for v = 0.96

46.54 for u = 0.23
4.380 for © = 0.90
7.881 for © = 0.80

3.4.4 Modeling loss given default
1. The loss given default is equal to:
LGD=1-R+c¢

where ¢ is the recovery (or litigation) cost. Consider for example a $200 credit and
suppose that the borrower defaults. If we recover $140 and the litigation cost is $20,
we obtain R = 70% and LGD = 40%, but not LGD = 30%.

2. The amounts outstanding of credit is:

EAD = 250000 x 50000
$12.5 bn

The annual loss after recovery is equal to:

L = EADx(1-R)xPD+C
= 43.75+12.5
= $56.25 mn

where C is the litigation cost. We deduce that:

L
EAD x PD
54
12.5 x 103 x 1%
= 45%

LGD =

This figure is larger than 35%, which is the loss given default without taking into
account the recovery cost.

3. (a) The Beta distribution allows to obtain all the forms of LGD (bell curve, inverted-
U shaped curve, etc.). The uniform distribution corresponds to the case a = 1
and 8 = 1. Indeed, we have:

fz) =

R 6If we consider the approximated formulas, the solutions are A = 166.7 bps, X2 = 375.0 bps and
A3 = 308.3 bps.
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(b) We have:

(o, B)

Zlnf (z4)
i=1

—nInB (a, B) + (o — I)Zlnxﬂ—(ﬁ— 1)Zln(1 — ;)

The first-order conditions are:

0L(0,B)  uB(a,B) =,
da ~ "B(wp) *;mﬁo

and:

98(0.f)  9:B(afh) . o
98 ""B(ap) +;ln(1_%)_0

(¢) Let prgp and oLgp be the mean and standard deviation of the LGD parameter.
The method of moments consists in estimating a and § such that:

Q@
a+t B = MLGD
and:
af _ 2
(@+B)2(a+p+1) P
We have:
5 o= pcp)
HLGD
and:

(@+B)* (a+B+1)oigp = af
It follows that:

2 (1-pep) )’
@) = (a+aliziocol)

a2

2
HLep

and: )
e} 1-— 1—
aff = — <a+a(MLGD) +1) otap :a2w
Mi.cp HLGD ULGD
We deduce that:

1-— 1—
a (1 + ( MLGD)) _ ( ,ULzGD)NLGD 1
HLGD OLGD

We finally obtain:

2

. 1-

aMM = Hicp ( 5 #LGD) — ULGD (3.2)
0LGD

A preo (1 — uLGD)2

Pum = — (1= prep) (3.3)

2
9LGD
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4. (a) The mean of the loss given default is equal to:

100 x 0% + 100 x 25% + 600 x 50% + . ..
1000

HLGD =
= 50%

The expression of the expected loss is:

100
EL = Y EAD; xE [LGD;] x PD;
i=1

where PD; is the default probability of credit . We finally obtain:

100
EL = > 10000 x 50% x 1%
=1
= $5000
(b) We have purgp = 50% and:
100 x (0 — 0.5)* + 100 x (0.25 — 0.5)* + ...
OLGD =
1000
B \/2 x 0.52 + 2 x 0.252
B 10
~ [0.625
B 10
= 25%

Using Equations (3.2) and (3.3), we deduce that:

) 0.52 x (1 —0.5)
s 05x(1-05) B
Bum = — o0 (1-0.5)=15

(¢) The previous portfolio is homogeneous and infinitely fine-grained. In this case,
we know that the unexpected loss depends on the mean of the loss given default
and not on the entire probability distribution. Because the expected value of
the calibrated Beta distribution is 50%, there is no difference with the uniform
distribution, which has also a mean equal to 50%. This result holds for the Basel
model with one factor, and remains true when they are more factors.

3.4.5 Modeling default times with a Markov chain
1. We have P (4) = P(2) P(2) and P (6) = P (4) P(2).
2. In a piecewise exponential model, the survival function has the following expression:

S(t) =S (th_,) e mtna)  ifre e ]

m—1 m—1>"m

We deduce that:
B InS (t%_l) —InS(t,)

tn — b

m
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with S (t§) = S(0) = 1. Here, the knots of the piecewise function are t7 = 2, t5 = 4
and t = 6. If we consider the risk class A, we deduce that:

Inl—1In(1-1%)

Al = -0 = 50.3 bps
In(1—1%) —In (1 — 2.4
Ny = n-1%) 4_n2( 9%) _ 75.8 bps
N - IO 2.49%)6—_12 (1-4296%) _ oo

We finally obtain the following results:

Rating A B C
A1 50.3 256.5 1115.7
A2 75.8 2759 856.9
A3 93.5 277.8 650.2

. Let P (t) be the transition matrix between 0 and ¢t. The Markov generator of P (t) is

the matrix A = (), ;) defined by:

P (t) = exp (tA)

where eM is the matrix exponential of the matrix M. We deduce that:
A In }2 (t)

In this example, the direct estimator is given by:
A=—"+2

We verify that A is a Markov generator because Z?Zl Xij = 0 and A\;; > 0 when

i .

. For the piecewise exponential model, we proceed as in Question 2 by adding the knots

tr, = 2m with m > 4. In this case, we have:
Ai (8) = A if t € 12m —2,2m]

with:
N InS; (2m — 2) — In'S; (2m)

and S; (2m) =1 — P, 4 (2m). For the Markov generator, we have:

Si (t) = 1- ezTP (t) €y

>

= 1-e/ethey
We deduce that:

M) = _ztis(it)(t)

T Apth
e; Ae'ey

Tethe,

%

l1—e
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In the long-run, the markov chain is stationary. This means that the default probability
of the different risk classes is the same when ¢ tends to co and we have:

Aa (00) = Ap (00) = A¢ (00) = 147.6 bps
In the short-run, the hazard rate are ranked with respect to the risk class:
Aa (0) < Ap (0) < A¢ (0)

We deduce that the function A4 (¢) is increasing whereas the function A¢ (t) is de-
creasing. For the rating B, the behavior of the hazard function is more complex. It
first increases like A4 (t) and reaches a maximum at ¢t = 4.2, because the transition
probability to risk classes C' and D is very high. Then, it decreases because of the
stationarity property.

3.4.6 Continuous-time modeling of default risk

1.

2.

The Chapman-Kolmogorov equation is:

‘We deduce that:

because P (0) = I,. We have:

62.60% 13.14% 5.53%  18.73%
38.42% 20.74% 6.81%  34.03%
21.90% 12.29% 4.35%  61.46%
0.00%  0.00% 0.00% 100.00%

P(10) =

(a) The eigendecomposition of P is equal to P = VDV ~! meaning that:

PV =VD
We deduce that:
P(2)V = PVD
= VDD
= VD?
By recursion, we obtain:
P(n)V=VD"

We can then calculate P (n) as follows:
P(n)=VvD"V~!

The eigendecomposition of P (n) is similar to the eigendecomposition of P: the
eigenvectors are the same, only the eigenvalues are different.
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(b) We have:
0.4670 —0.2808 —0.0264 1.0000
V= 0.3561 0.8486 —0.2373 1.0000
0.2065 0.5363 0.8609 1.0000
0.0000 0.0000 0.0000 1.0000
and
0.9717 0.0000 0.0000 0.0000
D 0.0000 0.8111 0.0000 0.0000

0.0000 0.0000 0.5571 0.0000
0.0000 0.0000 0.0000 1.0000

We deduce that:

0.7506 0.0000 0.0000 0.0000
0.0000 0.1233 0.0000 0.0000

10 _
D= 0.0000 0.0000 0.0029 0.0000
0.0000 0.0000 0.0000 1.0000
We verify that:
62.60% 13.14% 5.53%  18.73%
VDOl — 38.42% 20.74% 6.81%  34.03%

21.90% 12.29% 4.35%  61.46%
0.00% 0.00% 0.00% 100.00%

= P(10)

3. Let RR; (n) be the rating of a firm at time n whose initial rating is the state i. We
have:

Si(n) = 1—-Pr{R;(n)=D}
1-e/P(n)ey

1-— e;rP"e4

= 1- (Pn)m

In the piecewise exponential model, we recall that the survival function has the fol-
lowing expression:
Si(n)=S;(n—1) e M)

We deduce that:

&

—

2
|

InS;(n—1)—1InS; (n)

1—e P ley
In{—-"55—
1—e, Prey

We verify that:
1
A1) = In| ————
z() n(legl'pne4>
= —In(1-e/Pey)

because S; (0) = 1. Numerical values of S; (n) and \; (n) are given in Table 3.1.
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TABLE 3.1: Numerical values of S; (n) and \; (n)

3

SA (n)

SB (n)

SC (TL)

)\A (n)

)\B (’I’L)

)\C (TL)

0O Ut W~ O

1.0000
0.7914
0.7704
0.7498
0.7295
0.7096
0.6901
0.6711
0.6525
0.6344
0.6167
0.1962
0.0468

1.0000
0.6360
0.6139
0.5932
0.5737
0.5552
0.5377
0.5211
0.5051
0.4899
0.4752
0.1496
0.0357

1.0000
0.3708
0.3575
0.3451
0.3335
0.3226
0.3123
0.3026
0.2933
0.2843
0.2758
0.0868
0.0207

0.2339
0.0269
0.0272
0.0274
0.0276
0.0278
0.0280
0.0281
0.0282
0.0283
0.0287
0.0287

0.4526
0.0354
0.0343
0.0334
0.0327
0.0320
0.0315
0.0310
0.0307
0.0303
0.0287
0.0287

0.9921
0.0367
0.0352
0.0341
0.0332
0.0324
0.0318
0.0313
0.0308
0.0305
0.0287
0.0287

4. Let P (t) be the transition matrix between 0 and t.
the matrix A = (), ;) defined by:

P (t) = exp (tA)

59

The Markov generator of P (t) is

where e is the matrix exponential of the matrix M. We deduce that:

In particular, we have:

We obtain:

>
I

We verify that A is

14 ],
5. We have:

We remind that:

We deduce that:

—6.4293

11.3156 —
5.3803
0.0000

A=t"'InP(t)
n
B In P™
- n
= InP
3.2282 2.4851
23.5006 9.9915
21.6482 —52.3649
0.0000 0.0000

P (t) = exp (tA)

0.7160

2.1936

x 1072

25.3364
0.0000

M2 M3
M=T+M+—+—+...

2! 3!

t2 t3 t4
P(t):I4+tA+§A2+—A3+ﬂA4+...

6

a Markov generator because Z?Zl Xij = 0and A\;; > 0 when
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The 6-month transition

*(3)

6. We have:

‘We know that:

We deduce that:

probability matrix is equal to:

or(3)

96.90% 1.56% 1.11% 0.43%
5.32% 89.19% 4.17% 1.33%
2.60% 8.99% 77.20% 11.21%
0.00% 0.00% 0.00% 100.00%

Si(t) = 1-Pr{N(t)=Dj}
= 1-e/P(t)ey

_ T tA
= l—-e; eey

filt) _ 0iSi(t)
S () S ()

o (f) = e Aetle,
i) = 1 —elethey
K3

3.4.7 Derivation of the original Basel granularity adjustment

1. We deduce that:

and:

If we assume that p? (z

p(r) = E[Li|X =2
= E[LGDZ] Di (3?)
= Epi(l1+wi(z—-1))
o (Li | X = x)

A;

= E?[LGD;]p; (z) (1 — pi (x)) + o (LGD;) p; (x)
2

(E? [LGD;] + 0% (LGD;)) p; () — E* [LGD;] p; ()

) =~ 0, it follows that:

v(z) ~ (E?[LGD;]+ o?(LGD;))p; (2)
(E? + 0 (LGDy)) p; (1 4 @; (z — 1))
We have:
E? +0%(LGD;) = E? + %E (1-E)

We conclude that:

1

U(LL'):Ei<4+3Ei>pi(1+wi(m_1))

4
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2. The computation of the derivatives of p (x) gives:

Op(x)
= Eip;w;
oz b
and:
Pulx) _
ox2
For the variance, we obtain:
ov (x) 1 3
=L |-+ L |pwi
oz (4 3 )p “

Since we have:
ngzagflefﬁgx

o) = T )

and:
Inh(z)=—InT (ag) + agIn g + (g — 1) Inz — By

We deduce that:

dyinh ()= =D _ 1
x Bg
The granularity adjustment function is:
1 02p (z) 10v(z) 1 O Inh (x)
) = =v(x - = - —v(er) ——=
B 2 ( )(8zu(x))2 20,p(x) 2 (=) Ot ()
1 1 3 1
= *iEi <4 + 4Ei> piwi X Fpimr
1 1 3 (ay—1) 1 1
SE (4B ) pi(l+wi(x—1))( —L— - =
22 (138 mo oo (B ) <

(R D) G

3. In order to maintain the coherency with the IRB formula, we must have:

. <¢>—1 (p:) + V59 ()

>:pi(1+wi<x—1>>

Vi—p
This implies that the factor weight w; is equal to:
1 F

T

where:

(2T ) VPR ()
Fl_q}( VI=p > b

Finally, we obtain the following expression for g (z):

v - i) ((32-3)

1 i
5 (0:25+0.75E)) <A —14 Ap>

where:
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4. Since we have E[X] = a8, and o (X) = ,/a,8,, the parameters of the Gamma
distribution are a = 0.25 and f = 4. Since the confidence level « of the value at
risk is equal to 99.5%, the quantile of the Gamma distribution G (0.25;4) is equal to”
T, = 12.007243 and the value of A is 3.4393485. We deduce that:

1 i
B(zy) = 3 (0.25 4 0.75E;) (2.4393485 + 3.4393485?)

7

K2

= (04+12E) (0.76229640 + 1.0747964?)
We retrieve almost the Basel formula given in BCBS (2001a, §456):

B(74) = (044 1.2 x LGD) <0.76 + 1.10?)

3

In order to find exactly the Basel formula, we do not use the approximation p? (z) ~ 0
for calculating v (). In this case, we have:

v(@0) =B (34 55 ) 5 (14 @1 (o= 1)) = B (L4 i o= 1)

and:

3U(x) o 1 3 2 9
833‘ - E1 <4 + 4E1) pito; 2E1 p; Wi (1 + Wi (:C 1))

We deduce that:

Bzx) = % (0.25 + 0.75E;) (— (O‘gz_ L 519) (' +(z—1)) - 1) +

Eip;(1+w; (z—1)) (1 + %wfl <a9m_1 _ ;))
g

Correction term

When the expected LGD E; varies from 5% to 95%, the probability of default p; varies
from 10 bps to 15% and the asset correlation p varies from 10% to 30%, the relative
error between the exact formula and the approximation is lower than 1%.

5. We deduce that:

1 EAD*
GA = 15 x PADTXB(Za)\ 04 RWAs

8% n*
EAD* *

= (0618 x EY) (9.5 £ 13.75 x g) ~0.04 x RWAng
EAD*

= e x GSF —0.04 x RWANR

where:
GSF = (0.6 + 1.8 x E*) <9.5 +13.75 x l’;)

"Contrary to the Vasicek model, the conditional probability of default p; (X) is an increasing function
of X in the CreditRisk+ model. Therefore, we have zo = H™! (a) and not o = H™1 (1 — ).
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6. Following Wilde (2001b) and Gordy (2003), the portfolio loss is equal to:

L= i Z EAD; x LGD; xD;

j=1lieC;

where C; is the j*® class of risk. The goal is to build an equivalent homogeneous
portfolio w* such that:
L* = EAD* x LGD* xD*

First, it is obvious to impose that:
nc

EAD* =) Y EAD;

Jj=11i€C;
Wilde and Gordy also propose to equalize the default rates weighted by exposures:

nc

E[EAD* xD*] = E Z Z EAD; xD;
j=11iec;
This implies that:
_ 2?51 ZiECJ EADI chj
P EAD

ne
= E Sc; X pe;
Jj=1

where pc; is the default probability associated to Class C; and s¢; is the corresponding

s o ZiECj EADZ
¢ = thc Zi’eCj EAD;

Jj=1

relative exposure:

We also have:

nc
E[EAD* x LGD* xD*] = E Z Z EAD,; x LGD; xD;
j=14€eC;

ne

iZEADi x B* x p* = ZZEADiin X pe,
j=1ieC;

j=1i€C;
ne
= Y pe, Y EAD; xE;
j=1 1€C;

Let Ec; be the average loss given default for Class C;:
Ziec; EAA])Z XE,‘
Ec, = !
ZiGCj EADl

We deduce that:
iZEADi x E* x p* = nchcj x Ec, x »_EAD;
iec;

j=11iec, j=1
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or:

_ EAD;
E* = ZPC Ec % ncZzeC]
= p* 2 =1 2ivec, BADy

Sc; X Pe;
= X Ecj
Z T

- 1SC/><pC/

We remind that the conditional variance of the portfolio loss is equal to:

ne

(LX) =) EAD? x (Ep; (X) (1 —pi (X)) + 0> (LGD;) p; (X))

j=11i€C;

It follows that the expression of the unconditional variance is:

o*(L) = o*(E[L|X])+E[o*(L|X)]
= 0'2 nZCZEADlEsz(X) +
Jj=114i€C;

Contribution of the systematic risk

ne

Z Z EAD? (E7p: (X) (1 —pi (X)) + 0 (LGD;) p; (X))

j=11i€C;

Contribution of the idiosyncratic risk

and:

ne
o?(L) = o> EAD*sc Ee,pe, (X) | +

j=1

Contribution of the systematic risk

i (pe, (X) (1= pe, (X)) =0 (pe, (X)) | D_EAD} E} | +
Jj=1 i€C;

Contribution of the idiosyncratic default risk

ne

> “pe, | > EAD; o* (LGD;)
j=

i€Cy

Contribution of the idiosyncratic LGD

For the homogenous portfolio w*, we have:

%\ 2
o?(L*) = o*(EAD* E*p* (X)) + w X
n
(B (0" (1 = p*) = o (0" (X)) + 0* (LGD") ")
In the CreditRisk+ model, we have:

pi (X) =pi (1 +@; (X - 1))
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We have already used the property that E [p; (X)] = p;, which implies that E [X] = 1.
For the variance, we have:

o? (pi (X)) = piwio® (X)
The calibration of the systematic risk implies that the factor weight w™* is equal to:

nc
. Zj:l pe;we; Ee;se,
p*E*
ne
Zj:l pCj ij ECj SCJ'
ne
Zj:l pCj ECJ' Scj

For the idiosyncratic default risk, we have:
2
E*p* (1-pY) — (Pw*o (X))

- Do (BAD; E;)?
2 B2 (pcj (1=pe,) = (pe,me,0 (X))z) RO

2
(EAD* E‘cj)

We use the following equalities:

Yicc, (BAD; E;)? Yicc, (EAD; E;)*
* 2 N > . E:iBAD; 2
(EAD Ecj) EAD* &%
Zz‘ecj EAD;

Ziecj (EAD; Ei)2 < Eiecj EAD; )2
2 nc i
(Ziecj E; x EADi> 2= i€Cyr EAD;

= Hcsg

where Hp is the Herfindahl defined by the following expression®:

Ziec (EAD; XEi)Q
(X,ec EAD; xE;)?

He =

Finally, the expression of n* is equal to:

1
nc 2
2521 Ac, He, Se;

n* =

where:

E2 (pe, (1= pc,) = (pe,e,0 (X))?)
(B (p* (1= p*) = (o (X))%)

We retrieve the expression of n* given by the Basel Committee (BCBS, 2001a, §445).

Ae. =

J

8We do not obtained the same result than Gordy (2003), who finds that:
2
D ic ¢, BAD;

2
(ZiEC- EADZ’)
J

He. =

J
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However, there is a difference between the analysis of Gordy (2003) and the formula
Ac, proposed by the Basel Committee. In BCBS (2001a), the calibration of n* uses
both the idiosyncratic default risk and the idiosyncratic loss given default. In this
case, we have:

_ E?j (pcj (1 —pcj> - (pcjw(:ja <X))2) +pcj02 (LGDCJ')

Ac.
(B4 (p* (1= p*) = (o (X))*) + pro? (LGD)

J

Using the hypothesis of the Basel Committee — o (X) = 2, we have:

(pimio (X))? = <U(X))F>2 _ (:c4F2

For X ~ G (0.25;4), we have already shown that x, = 12.007243. We obtain:
(piwio (X))? = 0.033014360 x F?

We remind that: )

Finally, we obtain the expression of the Basel Committee:

E? (pc]. (1= pe,) — 0.033 x Fg) +0.25 x pe, Ee, (1 — Ec,)

Ac, =
(E*)? (p* (1—p*) — 0.033 x (F*)Q) £0.25 x prE* (1 — B*)
where:
o (pe. o
Fe, =@ (pc]); vpr (@) — P,
and F* = ;il se, Fe, .

7. For calculating the granularity adjustment, we proceed in two steps:

e In the first step, we transform the current portfolio into an equivalent homoge-
nous portfolio:

Z’iECj EADZ
Scj = -
251 Liec; BAD;
ne
PDAG = ZScj X Pch
j=1

"¢\ s, X PDe; x LGD,

LGDArg =
AG "< sc, X PDe,

where PDc; is the default probability of Class C; and LGDc; is the average loss
given default of Class C;:

Ziecj EADZ X LGDz
Eiecj EAD;

LGDe, =
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Then, we calculate

ne
Fag = E sc; x Fe,

j=1

where Fg, is the unit unexpected loss of Class C;:

Fe = (@—1 (PDc,) + /p® " (a)) D,

V1i=p
The equivalent number of loans n* is the inverse of the Herfindahl H* index:
e L 1

= nc 2
H* Ej:l ch X ch X SCj

where:
Yice, EAD?

e (Zz‘ecj EADi>2

J

Ag, is calculated as follows:

LGD, (Be, — 0.033F2 ) + { Be, LGD,
A = 7 J
< LGDZAG (BAG — OOSSFKG) + iBAG

where:

B; =PD; (1 -PD;)
e In the second step, we calculate the granularity scale factor:

PDAG)
AG

GSF = (0.6 + 1.8 x LGDag) X (9.5 +13.75 x

Finally, the granularity adjustment is equal to:

TNRE x GSF

GA = —0.04 x RWANR

where TNRE is the total non-retail exposure and RWAyg is the total non-retail
risk-weighted assets.

3.4.8 Variance of the conditional portfolio loss

1. D; (X) is a Bernoulli random variable with parameter p; (X). We have E [D; (X)] =
pi (X). By definition, the probability distribution of D? (X) is the same than the prob-
ability distribution of D; (X). It follows that D? (X) is a Bernoulli random variable
with parameter p; (X). Since D; (X) and D; (X) are independent because the default
times are conditionally independent in the Basel II model, we obtain:

E[D;(X)D; (X)] = E[D;(X)|E[D;(X)]
= pi(X)p; (X)

2. We have:

i=1



68

Handbook of Financial Risk Management

3. We have:
E[L(X) = E lzn: w; LGD; D; (X)]
= Zn:;i]E[LGDi]E[Di (X)]
= iwi]E[LGDi]pi(X)
4. We have:
(iwiLGDiDi (X)>2 = zn:waGD?D? (X)+ Y wyw; LGD; LGD; D; (X) D; (X)
i=1 i=1 i#j
and:
E[L*(X)] = E[(iwiLGDiDi(X)>2]

S 2B [LGD?) E [DF (X)] + 3w [LGD,] E[LGD,  E [D; (X)] E D, (X)]
i=1 i£]

We also have:

E? [L(X)]

N 2
<Z w;E [LGD;] p; (X)>

= Y w!E*[LGD;]p; (X) + > wiw;E [LGD;] E [LGD;] p; (X) p; (X)
i=1 i#]

We deduce that:
o?(L(X)) = E[L*(X)] - E*[L(X)]

= zn: w?E [LGD}| E [D} (X)] — anngaz [LGD;] p? (X) +
> wiw;E [LGD;] E [LGD;| E[D; (X)|E [D; (X)] -
i#£]
> wiw,E [LGD,] E [LGD,] p; (X) p; (X)
i#£]

= inE [LGD| E [D} (X)] — iwﬁa? [LGD;] p? (X) +

i=1 =1
> wiw, B [LGD,] E [LGD;] cov (D; (X), D; (X))
i#j

= zn:wf (E [LGD| E [D? (X)] — E? [LGD;] p? (X))
=1
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because cov (D; (X), D, (X)) = 0. It follows that:
Z w? (E [LGD?] p; (X) — E?[LGD;] p? (X))

If we note E [LGD}| = 02 (LGD;) + E? [LGD;], we obtain:
E [LGD}] pi (X) = 0® (LGD;) p; (X) + E? [LGD] p; (X)

and:
Z w? (0% (LGD;) p; (X) + E2 [LGD;] pi (X) (1 — p; (X))
Another expression is:
X)) =Y w? (E[D: (X)]o® (LGD,) + E [LGD,] o (D; (X))

because E [D; (X)] = p; (X) and 02 (D; (X)) = p; (X) (1 — pi (X)).
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Chapter 4

Counterparty Credit Risk and Collateral
Risk

4.4.1 Impact of netting agreements in counterparty credit risk

1. (a) Let MtM4 (C) and MTMp (C) be the MtM values of Bank A and Bank B for
the contract C. We must theoretically verify that:

MtMayB (C) = MTM4 (C) + MTMp (C)
0 (4.1)
In the case of listed products, the previous relationship is verified. In the case of
OTC products, there are no market prices, forcing the bank to use pricing models
for the valuation. The MTM value is then a mark-to-model price. Because the

two banks do not use the same model with the same parameters, we note a
discrepancy between the two mark-to-market prices:

MTM4 (C) + MTMp (C) # 0

For instance, we obtain:

MTMa,5(C1) = 10—11=-1
MTMa,5(C) = —54+6=1
MTM4,5(Cs) = 6—3=3

MTMa,p(Cy) = 17-12=5
MTMa,p5(Cs) = —54+9=4
MTMasp (Cs) = —5+5=0
MTMayp (C7) = 14+1=2

Only the contract Cg satisfies the relationship (4.1).

(b) We have:
7

EAD =) " max (MTM (C;) ,0)
i=1
We deduce that:
EADy, = 104+6+4+17+1=34
EADp = 6+9+5+1=21

(c) If there is a global netting agreement, the exposure at default becomes:

7
EAD = max (Z MTM (C;), 0)

i=1

71
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Using the numerical values, we obtain:

EAD4, = max(10-5+6+17—-5-5+1,0)
= max (19,0)
= 19
and:
EADp = max(—114+6-3—-12+9+5+1,0)
= max (—5,0)
0

If the netting agreement only concerns equity contracts, we have:
3 7
EAD = max (Z MTM (C;) ,0) + ) max (MTM (C;),0)
i=1 i=4

It follows that:

EAD4, = max(10—-5+6,0)+17+1=29

EADp = max(-11+6-3,00+9+5+1=15
The potential future exposure e; (t) is defined as follows:

e1 (t) = max (z1 + o1 W1 (¢),0)

We deduce that:

Ele; (t)] = /_O0 max (z,0) f (z) da

_ /Ooozf(x)das

where f(x) is the density function of MtM; (¢). As we have MtM; (t) ~
N (gcl, oft), we deduce that:

s e (320 o

With the change of variable y = o 't~'/2 (z — 21), we obtain:

Bl = [ 2o (<L) 4y

o1Vt
oo

- :171/71 ¢()dy+ale/ o (y) dy

o1Vt

- xl‘b(gl\[)-i-ale{ ()};

o1Vt

= e (Omf) oo <01\f)
because ¢ (—z) = ¢ (z) and ® (—z) =1 — ® ().
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(b) When there is no netting agreement, we have:
e(t)=-e1(t) +ea(t)
We deduce that:

Ele®)] = Eler(®)]+Eles (?)]

= n (2] wonis (J2) +
o (727) oo (27

(¢) In the case of a netting agreement, the potential future exposure becomes:

e(t) = max (MtM; (¢t) + MtMs (¢),0)
max (MtM;2 (),0)
= max(:v1+x2—|—01W1 (t)+02W2 (t),O)

We deduce that:
MtM 42 (t) ~N (1‘1 + xa, (0’% + 0'% + 2p0'10'2) t)

Using results of Question 2(a), we finally obtain:

G . T+ T2
Ele(®)] = (z1+ Q)q)(\/(af+cr§+2,oalaz)t>+

V(07 + 03 +2p0102) 19 | et L2
V(02 + 02 +2poio9)t

(d) We have represented the expected exposure E[e(t)] in Figure 4.1 when x; =
zo = 0 and 07 = 02. We note that it is an increasing function of the time ¢
and the volatility 0. We also observe that the netting agreement may have a big
impact, especially when the correlation is low or negative.

4.4.2 Calculation of the effective expected positive exposure

1. We have e (t) = max (MTM (t),0) where MTM (¢) is the mark-to-market price of the
OTC contract at the future date t. We note F|q ; the cumulative distribution function
of the random variable e (t). The peak exposure is the quantile a of Fg :

PE. () = Fi} (o)
The maximum peak exposure is the maximum value of PE,, (¢):

MPE, (0;t) = sup PE,, (s)
S
The expected exposure is the average of the potential future exposure:

BE (1) =Efe (1) = [ = dFj, (2)
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One OTC contract Two OTC contracts
0.4 p = 707%
—_—, = 107 0.4
- gy = 207
0.3 -
o3t e o-"
0.2 e
J— - 0.2 .
0.1 P 01 //”‘
'4’-—- l"
00 0 1 2 3 4 5 00 0 1 2 3 4 5
t (in years) t (in years)
Two OTC contracts Two OTC contracts
p = —50% t = 5 years
0.4 0.4
-—‘/‘-—-
0.3 03 e
0.2 .02 _,.—"————
CA N e T 0.1 /’/
0.0 "‘ - . . . 0.0 .
0 1 2 3 4 5 -100 =50 0 50 100
t (in years) p (in %)
FIGURE 4.1: Expected exposure E [e (t)] when there is a netting agreement
We define the expected positive exposure as the weighted average over time of the
expected exposure for a given holding period [0, ¢]:
1 [t
EPE (0;t) = ?/ EE (s) ds
0
The effective expected exposure is the maximum expected exposure which occurs
before the date t:
EEE (t) = supEE(s)
s<t
= max (EEE (t7),EE (7))
The effective expected positive exposure is the weighted average of effective expected
exposure for a given time period [0, ¢]:
1 t
EEPE (0;t) = ;/ EEE (s) ds
0
2. We have:

Pr{e(t) <z}
Pr{ox/%X < x}

nfr 2]

T

ot

F[(),t] (95) =
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with z € [O, a\/ﬂ. We deduce that:

PE, (0;t) = aoVt
MPE, (0;T) = aoVT

oVt
EE(t):/ xidxfa\/i
0

oVt 2
EPE (0;t) = /O 0\2[ U:;/i
EEE (1) = %ﬁ
EEPE (0;t) = t/o U\[ds_ %ﬁ
3. We have:
Fioy(z) = Pr {e”‘/’;X < CE}
Inz
- +(7)
with 2 € [0, 00]. We deduce that:
= exp (a(b 1 )
MPE, — exp <J<I> L(a) )
= ;(7275)

4. We have:

Floq (7) =
o (13 — 3Tt + 3T21)

with z € [O, o (t3 — %Tt2 + %th)]. We deduce that:
7 4
PE, (0) = ac <t3 — th2 + 3T2t>
MPE, (0;t) = 1 {t < t*} x PFE, (0;t) + 1 {t > t*} x PFE, (0; t*)
1 7 4
EE(t) = o (t* — -Tt* + -T*
=30 ( 37013 )
Ot3 — 28Tt + 24Tt
72
EEE (t) = 1{t < t*} x EE(t) + 1 {t > t*} x EE (t*)

EPE (0;t) :a(

(0]
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1 t
EEPE (0;¢) = 2/ EEE (s) ds
0

with:

t*:(7_9\/ﬁ)T

This question is more difficult than the previous ones, because e (t) is not a mono-
tonically increasing function. It is increasing when t < #§ and then decreasing!. This
explains that MPE,, (0;¢) and EEE () depends on the parameter t*.

5. The cumulative distribution function of X is:

F (x) Pr{X <z}

T a
= / Y du
0 Cl—|—1
— xa+1

We deduce that:
Fioy(z) = Prie(t) <z}
= Pr {UﬁX < x}

)
NS
(o)
(a+1)z*
(O_\/E)a-l-l

and:

f[o,t] (m) =
It follows that:

PE, (t) = o@D/t

and:
MPE, (0;T) = a/(@*Voy/T

The expected exposure is:

oVt a
B (a+1)z _(a+1)ovit
EE (¢) _A x(m/i)aﬂ de = P

We deduce that:
BEE (1) — (O DoV
a+2

and:

e - [ 42000t

1n fact, there is a second root:

. (7+9\/ﬁ>T

We observe that e (t) can take a negative value when ¢ is in the neighborhood of this solution. We ignore
this problem to calculate the different measures.
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6. In Figures 4.2 and 4.3, we have reported the functions EE (¢), EPE (0;t), EEE (¢)
and EEPE (0;¢) for the two exposures given in Questions 3 and 5. We notice that
the second exposure has the profile of an amortizing swap where the first exposure is
more like an option profile.

EE(t) EPE(O;t)
15 5
4
10
3
2
5
1
0 0
0 5 10 15 20 0 5 10 15 20
t (in years) t (in years)
EEE(0) EEPE(0;t)
15 5
4
10
3
2
5
1
0 0
0 5 10 15 20 0 5 10 15 20
t (in years) t (in years)

FIGURE 4.2: Credit exposure when e (t) = exp (vt (0,1))

4.4.3 Calculation of the required capital for counterparty credit risk

1. We have:

Fioy(x) = Prie(t) <z}
Pr {NCT\/ZU < x}

- Pr{U< ’Y:\/{}
(7o)

with x € [0, NJ\/i]. We deduce that:

PE, (1) = Fgl,(a)
= Novta'/?
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EE(t) EPE(0;t)
8 8
6 6
4 4
2 2
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t (in years) t (in years)
EEE(t) EEPE(O;t)
8 8
6 6
4 4
2 2
0 : : ‘ s .0 : : ‘ s s
0 1 2 3 4 5 0 1 2 3 4 5
t (in years) t (in years)

FIGURE 4.3: Credit exposure when e (t) = o (t2 — ZTt* + 3T°t) Ujp 1)

For the expected exposure, we obtain:

EE (1)

‘We deduce that:

and:

= Ele(?)]
No’x/f
PY 'y—l
= rT—————=2x dx
L e
Y 2t Novt
B (NO’\/E)’Y {’Y-l—l}
. Y
= 77+1N0\/i

0

EEE (t) = ——NoVit

1

¢
EEPE (0;¢t) = 7/ EEE (s) ds
0

t

1 [t~
= - ——No+/sds
t/07+1 Vs

t
= LNJE [283/2]
v+1 t |3 o

2y
3(v+1)

2. (a) When the bank uses an internal model, the regulatory exposure at default is:

EAD = a x EEPE (0;1)
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Using the standard value a = 1.4, we obtain:

EAD

4
1.4><§><3><106><0.20
$373333

(b) While the bank uses the FIRB approach, the required capital is:

C = EAD xE [LGD] x (cb (@_1 (PD) J:/g_l (99'9%)) - PD)

When p is equal to 20%, we have:

o' (PD) 4 /p® " (99.9%) —2.33+1/0.20 x 3.09
VI—p B Vv1—=0.20
= —1.06

By using the approximations —1.06 ~ 1 and ® (—1) ~ 0.16, we obtain:

I = 373333 x0.70 x (0.16 — 0.01)
= $39200

The required capital of this OTC product for counterparty credit risk is then
equal to $39200.

4.4.4 Calculation of CVA and DVA measures

1. The positive exposure e™ (t) is the maximum between zero and the mark-to-market

value:
et () = max (0, MtM (¢))
= max (O,NU\/EX)
We have:
Fo(x) = Pr {e+ () < x}
= Pr {max (O,NU\/EX) < x}
We notice that:
0 if X <0
max (O’NU\/ZX> o { NovtX otherwise

By assuming that x € [O, Nax/i], we deduce that:

Foy(x) = Pr {e+ t) <z, X< 0} +Pr {e+ t) <z, X > O}
- Pr{ogx,Xgo}+Pr{Na\/%ng,X>o}
1

1




Handbook of Financial Risk Management

where U is the standard uniform random variable. We finally obtain the following

expression:
1 T

Flog(2) ==+ —0
0.0 (2) 2 2Novt
If 2 <0 or x> Nov/i, it is easy to show that Flo,q () =0 and Fp 4 (z) = 1.

. The expected positive exposure EpE (¢) is defined as follows:
EpE (t) = E [e* (1)]

Using the expression of Fg ; (), it follows that the density function of e™ (t) is equal
to:

8F[O,t} ()

Jog (@) = 91
1

2NoVt
We deduce that:

No/t
EpE(t) = /o z fio (z) dz

No+vt
X
- / R
0 2NO’\/E
2 Novt
T
o

Nov/t
4

0

. By definition, we have:
T
CVA = (1 — Rp) % / By (t) EpE (1) dSp (1)
0

. The interest rates are equal to zero meaning that By (t) = 1. Moreover, we have
Sp (t) = e~ *2!. We deduce that:

T
CVA = (1—RB)></ NZ\/E)\Be_’\Btdt
0
_ NAB(I_RB)G/T\/ieABtdt
4 0

The definition of the incomplete gamma function is:

T
’y(&x):/ ts et dt
0

By considering the change of variable y = Apt, we obtain:

T AT d
Vie Astdt = / iefy 5
/0 0 V A\ AB
1 [re

Ty
— 3/2—1 —y
= y* eV dy
)\Zz/o

vy (%, AsT)
AL
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It follows that: s
N(1—=Rp)ovy (3, A7)

4B

5. The CVA is proportional to the notional N of the OTC contract, the loss given
default (1 — R p) of the counterparty and the volatility o of the underlying asset. It is
an increasing function of the maturity 7' because we have (%, )\BTQ) >y (%, )\BTl)
when T > Tj. If the maturity is not very large (less than 10 years), the CVA is an

increasing function of the default intensity Az. The limit cases are?:

CVA =

N1-R 3\ .7
lim CVA = lim ( )07 (5, A8T)
Ao Ap o0 WAp

= 0

and: .
N(1-Rp)ol (¢
tim ova = Y= Ro)ol ()

T— o0 4@

When the counterparty has a high default intensity, meaning that the default is im-
minent, the CVA is equal to zero because the mark-to-market value is close to zero.
When the maturity is large, the CVA is a decreasing function of the intensity Ap. In-
deed, the probability to observe a large mark-to-market in the future increases when
the default time is very far from the current date. We have illustrated these proper-
ties in Figure 4.4 with the following numerical values: N = $1 mn, Rp = 40% and
o = 30%.

3.0 \

x 10°

2.5 \

0.5

0.0 I L I L I L I L I L I L I L I L I L |

A (in 7)

FIGURE 4.4: Evolution of the CVA with respect to maturity 7" and intensity Ap

6. We notice that the mark-to-market is perfectly symmetric about 0. We deduce that

2We have limgy— o0 v (8, z) = I' (s).
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the expected negative exposure EnE (t) is equal to the expected positive exposure
EpE (¢). It follows that the DVA is equal to:

N1=Ra)oy(3,24T)
4V A4

DVA =

4.4.5 Approximation of the CVA for an interest rate swap

1. We have:
A —-B>0= x>z =InB-1InA

It follows that:

E [maX (AeX - Bao)] = /Oo max (Ae® — B, 0) L(ﬁ (x—,ux> dz
—00 ox

2P:¢

o0 1 _
A/ em¢<$ ”X) dz —
* ox ox

o0 1 _
B qS(x “X> dz
o 00X ox

By considering the change of variable y = 03" (z — px), we deduce that:
oo oo
BpB () =4 [ e o) -5 [ ol dy
y* y*
where y* = o' (z* — px). We have:

> 1 1,2
A/ eux+axy¢(y) dy = AeMx / e 3Y +oxy dy
y* Y

« 2T
= AeHX+20'§( * 1 e_g(y_o'x)z d
y* VvV 2 Y
= Aell«x-i-%ag( /oo 1 e—%ZQ dz
*—ox \/%

)
= Aet*Ti% (1 - @ (y* —oy))
px + ok +1nA1nB)

ox

_ Ae~x+éai<p(
and:
B/ ¢(y)dy = BP(-y")
Yy

_ Bo <;LX —|—lnA—lnB>
ox

Finally, we obtain:

EpE () = Aeﬂx+é03«q>< -

B (ux -HnA—lnB)
ox

px + 0% —|—1nA—lnB>
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. The mark-to-market is an approximation of a fixed-float IRS in continuous time by
assuming that the floating leg is constant, implying that the term structure of the
float rate is flat (Syrkin and Shirazi, 2015). The first term of the mark-to-market is
the floating leg, because the cash flows change with the time ¢, whereas the second
term is the fixed leg3:

MEM (1) :N/tTf(t,T)Bt(s) ds—N/tTf(O,T)Bt (s) ds

Floating leg Fixed leg

Since the instantaneous forward rate follows a geometric Brownian motion, we deduce
that:

f (0, T)=f (O, T) e(“_%az)t-‘rUW(t)
and:

F0,T) ~ LN <1nf (0,7) + <u - ;ﬁ) t g%)

We also have:

e (t,T)

I
—
S~
oy
=
o,
Va)

_ |:_ efr(sft) :| T
r t
1— ef'r(Tft)
- T

It follows that:
T
M) = N(F@T)-70.1) [ Bi(s) ds
¢
= Nf(0,T)¢(t,T) (e(“’%"Q)”"W(t) - 1)
The confidence interval of MtM (¢) with confidence level « is defined by:
MM (2) € [q- (£ ) g ()]

where:
-

gi () = Nf(0,T) ¢ (t,T) (e(ﬂféazﬁiaﬁ@”(%) 7 1)
. For the expected mark-to-market, we have:

EMM(t)] = Nf(0,T)¢(tT) (e(“—%”z)tﬂa [e"W(t)}—l)

Nf(0,T) ¢ (t,T) (e(ﬂ*%f)tea?t - 1)
Nf0,T)p(t,T) (e“t - 1)

3f(0,T) is known at time ¢ = 0.
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For the expected counterparty exposure, we have:
Ele(t) = E [max ( £(0,7) (e(#*%UZ)HGW(t) - 1) o)}
" [max ((f (0,T) e(h=3")teeW®) _ ¢ (o,T)) 0)}
= E [max (4e* — B,0)]
where A = Nf(0,T) ¢ (t,T)el*"27)) B = Nf(0,T) ¢ (t,T) and X ~ N (0,0%t).
Since In A —In B = (p — 30?) t, we obtain:

c2t+nA—InB InA—-InB
G )‘B‘D( G )
= NFO.T)e®T) ("0 (1) - (5(t) —ovi))

EpE(t) = Ae%“2t<1>(

where:

4. We have:

T
CVA(t) = (1-R)x /t — B (u) EpE (u) dS (u)

T
(I1-R) x / Ae™ (TN BB (u) du
t

T
= s x/ e~V =) EpE (u) du
¢

where $ is the credit spread of the counterparty.

5. Syrkin and Shirazi (2015) propose the following approximations: e*! — 1 ~ ut,

o((5+3) ) e )
o((5+3))-o{(2- ) ) o (L)
o = e (o)) e ((

and:

‘We have:

Therefore, an approximation of the CVA is:

T
CVA(t)zstxf(O,T)x/ g (u) du
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() =0 (0, 7) (5 (P8 )0 (1) Vi)

To calculate this approximation, we use a numerical integration method. Syrkin and
Shirazi (2015) provide a second approximation that does not require any integration,
but it seems to be less accurate.

400

300+

2004

MM (t)

—— 907 upper Cl
===- 907 lower Cl

-100+

5

-
-
~—— —————

-2001

FIGURE 4.5: Confidence interval of the mark-to-market

6. All the computations are done using a Gauss-Legendre quadrature of order 128.

(a)

(b)
EpE (¢

We have reported the 90% confidence interval of MtM (¢) in Figure 4.5.
The time profile of EpE (¢) and E [MtM ()] is shown in Figure 4.6. We verify that

) > E [MtM (¢)] and we retrieve the bell-shaped curve of IRS counterparty

exposure.

(d) When

In Figure 4.7, we observe that the approximation of the CVA gives good results.

we calculate the CVA, we consider a risk-neutral probability distribution

Q. This implies that u = 0% is a more realistic value than p = 2%.

4.4.6 Risk contribution of CVA with collateral
1. Since we have MtM; (t) = p; (t) + o5 (t) X;, we deduce that:

MtM (t)

Zwi (i (8) + 04 (t) X)

i=1 =1
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t (in years)

FIGURE 4.6: Comparison of EpE (¢) and E [MtM (¢)]

2.0

CVA(%)

0.5

0.0

Exact solution
~ —==- Approximation

t (in years)

FIGURE 4.7: Approximation of the CVA
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Let p(t) = (u1(t),...,un (t)) be the mean vector of (MtM; (¢),...,MtM, (¢)). Tt
follows that the expected value p,, (t) of the portfolio mark-to-market is equal to:

p (£) = E[MtM ()]
Zwilh’ (t)

= w'p(t)

We define the volatility oy, (¢) of the portfolio mark-to-market:

o2 (t) = var(MtM (1))
= var <Z W;0; (t) Xz)
= Zw E [X7] +szw]az (t)o; (t)E [X;X;]
= waof + Zwm}jm (t) pi
= w'S(tw

where X (t) is the covariance matrix of (MtM; (¢),...,MtM, (¢)) such that:

Zi’j (t) - Pi,jai (t) aj (t>

It follows that:

MtM () = Zwmi (t) + sz‘ai (t) Xi
= i (t) +ou(t) X

where X ~ N (0,1). We deduce that the portfolio mark-to-market is a Gaussian
random variable:

MU (0) ~ N (12 (1).0% (1)
2. We have:
cov (MtM; (t) , MtM (t))
V/var (MtM; (¢)) var (MtM (¢))
E 03 () Xi X2y wyor; (1) X5
i (t)o (t)
E S5 wjo; (1) XX,
o ()

vi(t) =

It follows that:
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where the idiosyncratic risks e; ~ A (0,1) are independent and satisfy ¢; 1 X. We
verify that E [X;] = 0 and:

o’ (Xi) = %) (X)+ (1-17 1) (ei)
= %) +1-77)
1

. If we note e* (t) = max (MtM (¢t) — C'(t),0) and C (t) = max (MtM (¢) — H,0), the

expression of the counterparty exposure is equal to:

e (t) = max (MtM (t) — max (MtM (¢t) — H,0),0)
= MtM(¢)-1{0<MtM(t) < H} + H-1{MtM (t) > H}
We have:
MtM (t) > H < p(t)+oy )z >H
& x>t (H)= w
and:
MM (1) > 0 & 2 > 2* (0) = ~ 22 8
We deduce that:
x* (H)
BpE(tw) = [ (a0 +ou)0)6 () dot
2*(0)

d
H/Z*(H)d)(x) T

We have:
x* (H)

@ = [ 00 oE i

z* (H) z* (H)
o (t) /*(0) ¢ (z) dz + oy (1) /* z¢ (z) dz

and:

[ o@ar=1-o@ )
o (H)

Using the fact that ® (z) + ® (—z) = 1, we finally obtain the following expression:
fiw (t) pw () — H
EpE (t; = , () [ @ B Y i
i) = ) (0(526) -0 (“057) ) +

7 (o226 ) -0 (o)) +
o (I 3
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4. C(t) = 0 is equivalent to impose H = +oc0. Indeed, we verify that:
C(t) = max(MtM(t) — H,0)

max (MtM (¢) — 00,0)

= 0

It follows that:

BOE () = (1) (243 ) +.00 (00 (2543 ) (1.4)

Ow (t) Ow (t)

We have: 5 (0
Hw o

and:

dow (t) (X () w),
O w; o (t)

because we have the following relationship between (X () w), and ; (¢):

E@w), = Z pijoi (t) oj (t) w;

It follows that:

We deduce that:

o (2e) = (220 o (229)

and:
7t (520) =590 (559 7w (529
because ¢ (x) = —x¢ (x). Therefore, the expression of the marginal risk is equal to:
0 E%E (tw) H o ( y )
~w¢<ED£A%3%
f¢@20
e (20) 7 ()
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Finally, the expression of the risk contribution is given by:

RO, — . QEPE(W)
awi

wi(moe (L) sn om0 (220)) s

‘We have:

st - Fm0s (5) om0 (1)

i=1 i=1

I
(S}
A~
Q=
g |
= 3k
~_
g
=
=
) +
< v
A~
Q=
g |
==
~_
(]
&
=
=
Q
=

because:

S u o) = (Z wfé)(t)m,j) i (1)
i=1 i

We conclude that the risk measure EpE (t; w) satisfies the Euler allocation principle.

. We can write:

EpE (t; w) = Ey (t; w) — Es (t; w) + E5 (t; w)

where:
Ei(tw) = ju,(t)® (’jj g;) tow(t)¢ (Z: g)
Batin) = w0 (B0 HY 4o g (D)
Bw) = e (PBeR)

We have:
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It follows that the marginal is equal to:

9 E; (t;w)

0 Es (t;w)

O E; (t;w)
w

0 EpE (t; w)
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The expression of the risk contribution is given by:

e oo (28) (7))
oo (2o (257 o

We have:

- o - ) Nw(t)
2 RE = ) ) (2 (545

= EpE(t,w)— H® (
These risk contributions do not satisfy the Euler allocation principle, meaning that it
is not possible to allocate the CVA capital according to Equation (4.6).

. Type A Euler allocation is given by:

RC; = Efw; MtM, (t)-1{0 < MtM (t) < H}] +
pp E[L{MM () > H}J - B [w; MM, (¢) - 1 {MtM (¢) > H}]
' E [MtM (¢) - 1 {MtM (t) > H}]

Using Equation (4.2), we have:
= wip (t) +wio; ()i (1) X + w0 (8) (/1 =7 (D) &
Since ¢; 1. X, it follows that:
(*) = E [wi MtM; (t) -1 {0 < MtM (t) < H}]
= Efwi (i (8) + 01 (1) X0) - 1{0 < g, (8) + 0 () X < H}]
z* (H) z* (H)
= [ e e et [ wios @) (000 () do +

*(0) z*(0)

z*(H)
/ E [wo ) /1=2 (1) 51} 6 () dz
z*(0)

=0

Il
&
¥
=
7 N
KA
/
Q=
g |&
==
N~
|
KA
N
=
S
q/-\
E |
=
=
| SN—
N~
JF
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and:
(x) = E[L{MtM({) > H}]
= E[1{pw () +owt)X > H}
= / ¢ (z) dz
z* (H)
o M (t) - H
= ¢ ( Ow (t) >
We also have:
(x) = E[MtM(t)-1{MtM(t) > H}|

= E[(p (£) + 0w () X) - 1 {j1as (1) + 0 (£) X > HY]
- / (10 (6) + 00 (£) 2) b () d
o (H)

o0 (22028 o o (21020

and:

(*) = E[w; MtM; (¢) - 1 {MtM (¢) > H}|
= Efwi (i (t) + 0 (1) X)) - 1 {j1, (8) + 0, (6) X > H}]

= [ wm o) dot [ w7026 () ds
z*(H) z*(H)
= wip; (t)P (,uw () - H) +wio; (¢) i (t) ¢ (Mw e H)

ow (1)

Finally, we obtain:

wivi (£) 0 (1) (¢ (;‘: Eg ! (“‘”ﬁ)@)H ) +
ro(=254)
where: = e () 8 (ng(i)(t_) H> + wiry; () o5 (£) § (“wg(i)(t—) H>
and?:

7. The type B Euler allocation is given by:

RC; = Efw, MtM; (¢)-1{0 < MtM (¢t) < H}] +

S MM 2 H}]

4We notice that 1, = Z?:l Vs
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‘We have:

w; MEM; (8)  wip (8) + wiog (8) 7 () X wiog (8) /1 — 7 (t)

= + =
MM () o () + 70 (£) X o () + 70 (1) X
Since ¢; 1. X, it follows that:

| MtM(¢)
[w; (pi (1) +i (t) i (1) X)
o (8) + 0 (1) X

-in'i (t) 1-— ’yi2 (t) ‘
;%w+%mx'“WMﬂﬂm@X2Hﬂma

_ > w. pi (t) + i (t) o (t) 2 d
B /x*(H) z( o (B) + 0y (8) >¢( ) d

Finally, we obtain:

() = E ']l{MtM(t)zH}}

= E

mﬂ%m+%wxzﬂﬂ+

E

R - W)( (5:8”) @(W)%
a0m 0 (6 (22) - (")) +
H/jfmw (% “)Jﬂéii ) o as @)
8. It follows that:
MM = > MM, ()

= Hw (t) + ow (t) X
where X ~ N (0,1). The correlation between X and X is given by:
cov (MtM (t) , XB)

Ow (t> ==

\/var (MtM (t)) var (Xg)
_ E[XE, wioi (t) XiXp]
o (t)
_ E [> i wioi (t) i XpXp] N E |3 wioi (t) /1 - ¢} niXB}
o(t) o (t)
N wioi (1)
- XS0 ¢
We deduce that:
X =0,t) X5 +1— 2% (t)n (4.9)

where the idiosyncratic risk  ~ A (0, 1) is independent from Xp.



Counterparty Credit Risk and Collateral Risk 95

9. Pykhtin and Rosen (2010) notice that all previous computations involve unconditional
expectations, implying that we can derive easily the expected counterparty exposure
E[e(t)] and the corresponding risk contributions RC; by replacing all unconditional
expectations E [Y] where Y is a random variable (MtM; (¢), MtM (¢) and e (¢)) by
conditional expectations E [V | 7 = t] where 7 is the default time of the counterparty.
Following Redon (2006), this is equivalent to calculate the conditional expectation
with respect to the random variable Xp:

E[Y |r=#=E[Y | Xp =B (#)]

where B (t) = ®~! (1 — S (t)) is the default barrier and S (¢) is the survival function
of the counterparty. For conditional means, we have:

pi (¢ | 7 =1) = p; (t) + 0iow (t) B (t)

and:
P (B T =1) = pr (t) + 0w (t) 0w (t) B (1)

For conditional volatilities, it follows that:

Ui(t|T=t):MUi(t)

ow (| T=1t)=1—02 (t)ow (t)

Since the unconditional correlation «; (¢) is equal to cov (X;, X), we have:

and:

(@) = E[X;X]

| (2n + 1= g n) (00 (0 X0 + V= 00)
= oiow () +\/1—gV1—0f () (t]T=1)

where v; (t | 7 = t) is the correlation between 7; and 1 or the conditional correlation:

7 (1) — giow (1)
V1-eiv1-o (1)
To compute EpE (t;w) = E[et (¢) | 7 = t] and RC;, we replace p; (t), pu (t), o5 (t),

Uw(t) and 'Yi(t) by Mi(tlT:t)’ Uw(t‘T:t)’ ai(t|T:t)? Uw(t|7-:t) and
vi (t | 7 =t) in Equations (4.3), (4.4) (4.5), (4.7) and (4.8).

wlt|r=t)=






Chapter 5

Operational Risk

5.4.1 Estimation of the severity distribution

1. (a) The density of the Gaussian distribution ¥ ~ N (p, 0?) is:

9(y) =~ 127T exp <; <y0M>2>

with y = Inx. We deduce that:
2

1 1 (y—p 1
= —_—— X —
@) = - %eXp( 5 (5 )) -

1 1 <1n x — ,u> 2

xo\/ 21 2 o
(b) For m > 1, the non-centered moment is equal to:

> 1 1 /lnx — 2
E[X™] :/ x™ exp | —= ( M) dz
0 zo/ 21 2 (o)

By considering the change of variables y = oc~! (Inz — p) and z = y — mo, we
obtain:

e 1 1
SR e e

oo Vo
o0 1 1,2
— emu % / e—§y +m,<7yd
oo V2T Y
. oo
= M x er™e” / 1 e~ 2(y=mo)’ dy
Lo V2T
oo
b [T (32
oo V2T 2
— 6mu+%m202
We deduce that:
E[X] = ett3o”
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and:

var (X) = E[X?] -E*[X]

2 2
€2M+2U eQ,u-‘rU
2 2
62/L+0 (ea 1)

We can estimate the parameters p and o with the generalized method of moments
by using the following empirical moments:

1.2
hii(u,0) =x; —ett29
u-i—laz 2 2u+02 o2
hig(u,0) = (x; —ettz —e e’ —1

(¢) The log-likelihood function of the sample {x1,...,2,} is:

(po) = D Inf(w)

n n 2
n 9 M 1 Inz; —p
_Elng —§1n27r—i§:1lnxi—§ g <0>

=1

To find the ML estimators /i and &, we can proceed in two different ways:

#1 X ~ LN (p,0?) implies that Y = In X ~ N (u,0?). We know that the ML
estimators i and & associated to Y are:

We deduce that the ML estimators i and & associated to the sample

{z1,...,z,} are:
- Y
= — nr;
8 i3
6 = li(lnm—ﬂf
[ l

#2 We maximize the log-likelihood function:

{1, 6} = argmax £ (1, 0)

The first-order conditions are d,, € (u,0) = 0 and 9, £ (i, 0) = 0. We deduce
that:

1 n
Ol (p,0) = ;Z(lnxi—u) =0
i=1

and:
0 (o) =~ 43
- ,0) = —— —_— =
g g i=1 03
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We finally obtain:

=

n
E In ZT;
i=1

3=

and:

> (na; —p)?

i=1

Q>
Il
S|

2. (a) The probability density function is:

0Pr{X <z}

dx
x_(a""l)

f(x)

For m > 1, we have:

E[X™

I
T
8
&
3
=}
&
L
Q
£
(oW
S

We deduce that:

and:

var (X) = E[X?] —E*[X]

— 7

(a=1)"(a—2)

We can then estimate the parameter o by considering the following empirical
moments:

o

hip(a) = Ty = —— T

The generalized method of moments can consider either the first moment h; 1 (),
the second moment h; 5 (a) or the joint moments (h;1 (), b2 («)). In the first
case, the estimator is:
n
b= izt T

Do Ty —na_
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(b) The log-likelihood function is:
> Inf ()
i=1

= nlha—(a+ 1)Zlnxi +nalnz_
i=1

£ ()

The first-order condition is:

n n
O0n € (a) = n_ Zlnxi —I—Zlnx_ =0
R i=1
We deduce that: .
X
= In =%
n a; n -

The ML estimator is then:
n

Sy (Inz; —Inz_)
3. The probability density function of (i) is:

fla) = 3Pr%)i§x}

5axa7167ﬁz
I'(a)
It follows that the log-likelihood function is:

—nlnT (o) + naln g+ (o — 1)zn:lnxl- —ﬂzn:xi

i=1 i=1

The first-order conditions 0, £ (a, ) = 0 and 93 € (o, B) = 0 imply that:

n(lnﬁ FF/((S))> Jriln:ci()

éf:

£(o, 8)

and:

4. Let Y ~T' (o, ) and X = expY. We have:

fx (z) |dz| = fy (y) |dy|
where fx and fy are the probability density functions of X and Y. We deduce that:

Bayaflefﬁy 1

fX (SU) T (Oé) X 67
_pe (lnsr)o‘f1 g~Blnz
N 2l («)
B (Ina)*

I' () 2P+1
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The support of this probability density function is [0, +00). The log-likelihood function
associated to the sample of individual losses {x1,...,z,} is:

£(a,8) = Inf(x)
i=1

n

=-—-nlnl(a)+nalnf+ (a— 1)Zln(lnzi) - (ﬁJrl)ilnxi
i=1

i=1
(a) Using Bayes’ formula, we have:
Pr{H < X <1}
Pr{X > H}
F(x) - F(H)
1-F(H)

Pr{X<z|X>H} =

where F is the cdf of X. We deduce that the conditional probability density
function is:

fx|X>H) = 0, Pr{X<z|X>H}

_ @
= T(H)X]l{xZH}

For the log-normal probability distribution, we obtain:

1 1 1(Ilnxz—p\2
z| X>H) = X 675( ) dx
fla| X = H) 1—® (IHH?—M> oV2n

1 ,A(M
e 2

v )2dx

= X
S0027T

We note M,, (1, 0) the conditional moment E [X™ | X > H]|. We have:

© pm—l nw—p\2
Mo (,0) = W/ T () gy
H oV2T
oo
= s0></ L o-3(=52) 4ma g,
1

nH OV2T

m +lm2o'2 o0 1 _1
p X emHT2 X e 2 a2 dz
InH OV 2T
1_‘b<lnH—u—mo’2)

o
= €

1—P (lan,u)

The two first moments of X | X > H are then:

my—&-%mzo‘z

1 @(M)
My (p,0) =E[X | X > H] = ’ ohtio?
1-d (m)

and:
1-® <1nH—,u—2¢72>

62u+202
1—® (ln H—u)
o

Mz (p,0) =E[X?| X > H| =
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We can therefore estimate p and ¢ by considering the following empirical mo-

ments:
{ hii(p,0) =2, — My (u,0)
hig (o) = (2 = Ma (1,0))* = (M2 (1, 0) = M3 (1, 0))
(b) We have:
flz|X>H) = 1_f§’()H) x1{z>H}
- =)/ ()
(@) 7
= « 7

The conditional probability function is then a Pareto distribution with the same
parameter o but with a new threshold x_ = H. We can then deduce that the

ML estimator & is:
n

>k Inz) —nlnH

& =

(¢) The conditional probability density function is:

flx|X>H) = %xﬂ{lef}

B Baxaleﬁ:D)/ ooﬂoztaflefﬁt
- (5t )/ [, T

ﬁam(y—le—ﬂw
f;o ﬂata—le—ﬁt dt

We deduce that the log-likelihood function is:
oo
E(a,ﬁ) = nalnf —nln (/ 5ata—1e—5tdt> n
H

(a — 1)zn:ln:vi _62":%
i=1 i=1

5.4.2 Estimation of the frequency distribution

1. We have:

A’I’L
o1 — Ay Y
Pr{N=n}=e"" p

We deduce that the expression of the log-likelihood function is:

T

£(\y) = Y InPr{N =Ny}

t=1

T T
T + (Z Nyt> In Ay = In(Ny,!)

t=1 t=1
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The first-order condition is:

2L(\y) _ 1 (v B
oy Ty (ZN% -0

We deduce that the ML estimator is:

. Considering a quarterly or annual basis has no impact on the capital charge. Indeed,
the capital charge is computed with a one-year time horizon. If we use a quarterly
basis, we have to find the distribution of the annual loss number. In this case, the
annual loss number is the sum of the four quarterly loss numbers:

Ny = Ng, + Ng, + Ng, + Nq,

We know that each quarterly loss number follows a Poisson distribution P (5\@) and

that they are independent. Because the Poisson distribution is infinitely divisible, we
obtain:

Ng, + Ng, + Ng, + Ng, ~P (45\@)

We deduce that the annual loss number follows a Poisson distribution P (5\}/) in both
cases.

. This result remains valid if we consider the first moment because the MM estimator
is exactly the ML estimator.

. Since we have var (P (A)) = A, the MM estimator in the case of annual loss numbers
is:

1 T n?
Ay == Ny, —
' Tt:l : T2

If we use a quarterly basis, we obtain:

1 41 n2
— NZ

= =

fo =
#

»lk‘..<>

There is no reason that \y = 4;\Q meaning that the capital charge will not be the
same.
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5.4.3 Using the method of moments in operational risk models

1. (a) By definition, we have Pr{N (¢) = n} = e=*\"/n!. We deduce that:

E[N(@#)] = Y nxPr{N(t)=n}

(b) We have:

A"

n'

= Y (n(n—1)---(n—m))e

n=0

The term of the sum is equal to zero when n =0,1,...,m. We obtain:

E H(N(t)—z’)} =Y (mn-1)(n-m) _A?:
=0 n=m-+1
—A
nzm:-&-l 77,— _1)
m -~ An—m— 1
A +1 )\n;—&-l _m_1>

Am+1 - Z )\n/

with n’ =n — (m + 1). It follows that:

E [ﬁ (N (t) — z)] = AHleTAA
= >\m+1

We deduce that:
var(N(8) = E[N(t)] ~E2[N (1)
= E[N(®) - N@®)] +EIN(0)] - E2[N (1)
= E[N()(N(t)~ D +E[N ()] ~E* [N ()]
Using the formula (5.1) with m = 1, we finally obtain:

var (N (1)) = XFL4x—)\2
A
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(¢) The estimator based on the first moment is:

. 1 &
A= — N,
T;t

whereas the estimator based on the second moment is:

(a) We have:

E[N (D] E[Xi]

1
Aexp (u + 202>

(b) Because (Z?:l q;i)2 = Zn 72 + ZZ#J Tixj, it follows that:

=11

N(t) N(t) N(¢)
E[S?] = E|Y X7+> ) XiX;
i=0 i#j
= E[NWE[X?] +E[N () (N (1) - DIE[X,X]]
= EINOE[X]] + (E|N(®)°] ~E[N 0)])E[X]E[X,]
We have:
E[N@#)] = A
E [N (t)2] = var (N (£)) + E2[N (£)] = A+ A2
and:
E[X7] = var(X;)+E*[X]]
= 2uto’ <e‘72 — 1) + (e“+%02)2
_ e2p,+202
E [Xz] E [Xj] — 6H+%J2e#+%02
—_ e2p+0'2
We deduce that:
E[S?] = JE[X7]+ (A+ X - N E[X]E[X}]

= AE[X?] + VE[X]E[X}]

A62p+202 _|_ A262#+02
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and:
var(S) = E[S?] —E*[9]
— )\62;¢+202 + )\262,11,—&-02 _ )\2 (e/L-F%O'z)Q
_ )\e2u+202
(c) We have:

E[S] = Act+he”
var (§) = Ae2nt20”

We deduce that:

var (S) Ae2ht20*  go?

E2 [S] T A2e20t02 T )

It follows that:
o =In A+ In(var (5)) — In (E* [9])

and:

p = InE[S] —ln/\—%ch

InE[S] + %m (E* [S]) — gln)\ - %m (var (9))

Let A be an estimated value of . We finally obtain:
1 3.+ 1
i =Inmg + §lnm% - 5111)\ - §lnv5

and

6= \/ln:\—klnvs —lanS
where mg and vg are the empirical mean and variance of aggregated losses.

3. (a) We know that the duration d between two consecutive losses that are larger than
¢ is exponentially distributed with parameter A (1 — F (£)). We deduce that:

£ —
d~¢& ()\ () )
T
(b) We can ask experts to estimate the return time d; for several scenarios ¢; and

then calibrate the parameters A and « using the method of moments and the
following moment conditions:

Eld;] - )\;a =

5.4.4 Calculation of the Basel II required capital

1. In order to implement the historical value-at-risk, we first calculate the daily stock
returns:
Py

R P—
S

-1
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TABLE 5.1: Stock returns R4 s and Rp s (24 first historical scenarios)

RA,s
-2.01 -0.01 -0.73 -0.71 1.79 227 —-0.15 -0.55
—0.43 1.01 0.05 0.32 2.08 =237 -0.55 2.57
0.29 —-254 -0.03 0.00 —-0.90 —-0.03 1.96 —-0.35
RB,S
0.35 —-0.84 0.85 1.40 1.35 1.36 —1.45 —1.95
2.17 1.561 —0.69 1.87 —-0.06 —-1.61 —-1.25 2.20
-1.07 —-285 -0.99 -0.06 -234 -1.31 3.79 —1.46

where P, is the stock price at time ¢. We report the return values for stocks A and B
in Table 5.1. These data are used to simulate the future P&L defined as follows:

I, = 10000 x 105.5 X Ra, +
25000 x 353.0 X Rp,

where R4 s and Rp s are the stock returns of A and B for the s*™M historical scenario.
Table 5.2 gives the values taken by II;. We then calculate the order statistics I1;.050
and deduce that the value-at-risk is equal to:

1
VaRogy (w) = 3 (323072 + 314.695)
$318 883

It follows that the required capital is equal to:

Kur = (3+6) x V10 x VaRggy, (w)
$3.53 mn

TABLE 5.2: Daily P&L (24 first historical scenarios)

Daily P&L II;
9972  —74339 67520 115824 137790 144032
—129857 —178339 186 837 143722  —60767 168 780
16234 —-166679 —116117 221553 —91336 —278402
—87357 —-5671 —215517 —116172 354813 —132741
Order statistic I1,.050

—340656 —323072 —314695 —278402 —277913 —-275118
—268632 —259781 —255936 —252509 —250117 —249523
—243502 —218295 —217514 —217327 —-215517 —211382
—211018 —208061 —192950 —192603 —190993 —189410

. We apply the IRB formulas with the right asset class exposure. For the bank meta-
credit, we have:

1 _ e—50><1% 1— (1 . 675O><1%)
p(PD) = 12% X ﬁ + 24% X 1 — 6750

= 19.28%
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Because the maturity of the meta-credit is one year, the maturity adjustment is equal
to 1. We deduce that:

. 1 (1%) + 1/0.19280! (99.9%)
K = 75%><<I>< T 010

) —75% x 1%
= 9.7%

It follows that:
RW = 12.5 x 9.77% = 122.13%

and:
RWA = 80 x 122.13% = $97.70 mn

We finally obtain:
K =8% % 97.70 = $7.82 mn

For the corporate meta-credit, we proceed in the same way, except that we have to
incorporate the maturity adjustment. We have:

b (PD) = (0.11852 — 0.05478 x In (5%))* = 7.99%

and:
1+ (2—2.5) x0.0799

M =
(M) 1— 1.5 x 0.0799

Using the IRB formula, we obtain IC* = 15.35% and IC = 30.69%. For the SME meta-
credit, we have to be careful when we calculate the correlation. Indeed, we have':

= 1.0908

1 — e—50><2% 1—(1-— 6750><2%
PPME(PD) = 12% x Y 24% x (1 — )
(max (30,5) — 5)
4 1-
o ( 15

For mortgage and retail exposures, we use a one-year maturity. The default correlation
is set equal to 15% for the mortgage meta-credit whereas we consider the following
formula for the retail meta-credit:

1— e—35><4% 1— (1 _ 6735><4%)
p(PD) = 3% X 7_35"'16% X 1_6_35

1—e¢
= 6.21%

All the results are reported in Table 5.3. At the bank level, we then obtain:

RWA = 97.70 4+ 383.65 + 55.95 + 97.87 + 122.80
$757.98
and:
Kcr = 7.82+30.69 + 4.48 + 7.83 + 9.82
= $60.64

n order to simplify the calculation, we assume that the USD/EUR exchange rate is equal to 1.
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TABLE 5.3: Calculation of capital requirements for credit exposures

Exposure b(PD) ¢ (M) p(PD) K> RW RWA K

Bank 0.14 1.00 19.28%  9.77% 122.13% 97.70 7.82
Corporate  0.08 1.09  12.99% 15.35% 191.83% 383.65 30.69
SME 0.11 1.46 14.64%  8.95% 111.91%  55.95 4.48
Mortgage 15.00% 15.66% 195.74%  97.87 7.83
Retail 6.21% 9.82% 122.80% 122.80 9.82

3. We calculate the capital charge for operational risk by Monte Carlo methods. The loss
is equal to:

where L; ~ LN (8,4) and N can take two values (N =5 or N = 10) with:
Pr{N =5} = 60%
Pr{N =10} = 40%

We first simulate the yearly number of operational losses N by inverting the cumulative
density function:

Pr{N <5} = 60%
Pr{N <10} = 100%

Let u, be a uniform random variate for the st simulation. The simulated variate N,
is defined as follows:

5 if us <0.6
Ns = { 10 otherwise

Then, we have to simulate the operational losses Ll(-s) using the probability integral

transform:

U

F(L;)
sy

Li=exp(84+2x & (1))

It follows that:

Let uz(-s) be a uniform random variate. We have:
L —exp (s+2x 070 (ul))
Another way to simulate LES) is to notice that @1 (U) ~ N (0, 1), meaning that:

LES) = exp (8 + 2 x ngs))

where ngs) is a normal random variate N (0, 1). The simulated value of the aggregated

loss is then:
N

Ls _ ZLEG)
i=1
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Let us consider an example. We assume that u, = 0.2837. It follows that Ny = 5.
This means that we have to simulate five operational losses in the year. We obtain
the following figures:

i 1 2 3 Il 5

u'®) 04351  0.0387 02209 0.3594  0.5902
o1 (uf.s)) —0.1633 —1.7666 —0.7692 —0.3600  0.2282
L 215026  87.09 640.05 1451.02 4704.84

The first loss experienced by the bank is $2150.26, the second loss is equal to $87.09,
etc. We deduce that the yearly total loss is equal to $9033.25:

L, = 2150.26 + 87.09 + 640.05 + 1451.02 + 4 704.84
$9033.25

By considering ng simulated values of Ly, the capital charge for operational risk is
given by the 99.9% quantile:

VaRgg.9% = L0.999n5:ns

For instance, if we consider one-million simulation runs, the capital charge corresponds
to the 999 000" order statistic. In our case, we estimate the capital charge with 250
millions of simulation runs and obtain:

Kor = $4.39 mn

Because the required capital is estimated using Monte Carlo methods, there is an
uncertainty on this number. For instance, we have reported the histogram of the VaR
estimator with one-million simulation runs in Figure 5.1. In this case, we obtain:

Pr{4.27 < VaRgg 99 < 4.50} = 90%

4. We deduce that the capital ratio of the bank is equal to:

OBank
RWA +12.5 x KKmr + 12.5 X IKCor
70
757.98 +12.5 x 3.53 + 12.5 x 4.39
= 817%

Cooke ratio

5.4.5 Parametric estimation of the loss severity distribution

1. We consider that the losses follow a log-logistic distribution.

(a) By definition, the probability density function is equal to:

OF (z;, )

f(x;avﬁ): o
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Frequency (in %)
o~

3+
IIII "II“ "I | |

420 425 430 435 440 445 450 455
VaR (in § mn)

o

FIGURE 5.1: Histogram of the VaRgg 9o estimator with ng = 10°

We deduce that:
(8/) (@/@)" " (14 (@/a)’)
(1 + (.75/@)ﬂ)2
(z/0)” (B/a) (w/a)
(1+ (a:/a)ﬁ)z
(8/0) (/a)"”
(14 /)

[ (x50, B)

(b) The definition of the log-likelihood function is:
Clnf) =3 f (0, )
i=1
We deduce that:
LB = nln(3/a)+ (-1 (/) 23 10 (1+ (@/a)’)
i=1 i=1

= nlnﬂ—nﬂlna—l—(ﬂ—l)zlnmi_
i=1

Qiln (1 + (xi/a)ﬁ>
i=1
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Maximizing the log-likelihood function leads the first-order conditions:

0L(a,B) 5 xz/a
oo " Z (zi/a)’

and:

L(a,B) n 7 1n (z;/) B
Tﬂ_f—nlna—l—zmxl 2; 1+ ZEZ/Oé) =0

By assuming that 8 # 0, we deduce that:

n

ZF($i;a75)=

i=1

|3

and:

[ 1 A = i A
ffnlnaJernxl 22 x/a il +QIHQZL&)B:0
1+ ( xz/a = 1+ (zi/a)

We then obtain:

i=1

% +Zlna:i — 22F(mi;a,ﬂ)lnxi =0
i=1
or equivalently:

Z 2F (x50, 0) — 1) Inz; = n
=1 ﬂ

It follows that the ML estimators & and 3 satisfy the following conditions:
S F (26, 8) = n/2
S <2F (xi;&,ﬁ) - 1) Inz; =n/B

Using the sample of loss data, we obtain:

10
2;F (mi;a,ﬁ) — 10.000
and: 0
ﬁ; (2F (xi;a,ﬁ) - 1) Inz; = 9.999

Because the two mathematical terms are equal to n = 10, the first-order condi-
tions of the ML optimization program are satisfied.

We have:

(o, B) > Inf(zia,8) = In(1-F(H;a,p)
i=1 i=1
= nlnﬁ—nﬁlna—l—(ﬁ—l)ilnxi—

ZZln(l—i— 0)’) +nin (1+ (H/a)?)
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5.4.6 Mixed Poisson processes
1. We recall that E[P (A)] = var (P (A\)) = A. We deduce that:
EN@®)] = E[E[N(?)][A]

and:

var (N (t)) =

2. By definition, we have var (A) > 0, which implies that:
var (N (t)) 2 E[N (¢)]

The equality holds if and only if var (A) = 0. We deduce that A must be constant and
we obtain the Dirac distribution:

Pr{A=A}=1
Since we have N (t) ~ P ()), we deduce that:

p(n) = Pr{N()=n)
e—AAn

n!

It follows that:
(n+1)-pn+1)

p(n)
R n!

= (n+1)- TS e
= A
3. (a) We reiterate that:
E(G (a.8)] = 5
and: o
var (G (o, B)) = 7
Using Equations (5.2) and (5.3), we obtain:
EIN@®)] = E[A]
= E[G(a,0)]

= - (5.4)
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and:
var (N (t)) = E[A] +var(A)
= E[g (avﬁ” + var (g (a7ﬂ))

_a,a
BB
a(f+1)
32
(b) By definition of the compound distribution, we have:

AmpMIP@DfQIQWﬁDdA

7 /oo ef)\An 504)\(17167[3)\

_ 6a /OO 67)\(,3+1))\n+a71 dx
n!T («) J

p(n)

dA

We know that:

/ t2te7tdt =T (a)
0

/ tr e = / tr e gt
0 0
/°° (a:)a—l _, dx
= — e _—
o \b b
/ e " dx
0

We deduce that?:

I'(a)
= e
From Equation (5.6), we obtain:
5 TI'(h+a«
p(n) = mrmugimwl
_ I'(n+a) B
T nll(a) B+1)"te
We notice that:
'n+a) = (nt+a-—1)!
nl(a) — nl(a—1)!

I
N
S
+
S o
I
—
~

and:

_B (5)“
(B+1)"" B+1
1

2We use the change of variable x = bt.
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Therefore, Equation (5.7) becomes:

vor = (") (-5) ()

- (" e

n

This is the probability mass function of the negative binomial distribution
NB (r,p) where3 r = aand p =1/ (8 +1).

(c) We have:
n) = (n+1)-p(n+1)
() o)
n—+r
= (n+1) ( > —p) P
(n—i—r—l) (1— p) p"
B (n+7r)!
B (n+7"71)!p
= pn—+pr

4. (a) Since we have E[€ (\)] = A™! and var (€ (\)) = A~2, we obtain:

1
E(N (1) = 1
and:
1 1
var (N (t)) = X + ﬁ
A+1
— e

3 An alternative approach to find the values of r and p consists in match the first two moments. Indeed,

we know that:

EWB(r,p) = 7

and: "
var (WB (r,p)) = —2

We deduce that:

a_ wr a_ pr
1-— T 1—
g(ﬁ+1)p: pr < & Py

B2 (1-p)® B 1—
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(b) We have £ (A\) = G (1,\). We deduce that the compound Poisson distribution is
the negative binomial distribution N B (r,p) where r =1 and p=1/(A+1). In
this case, the expression of the probability mass function becomes:

p(n) = <n+r_1> (1-p) p"

= (1-pp"

We conclude that N (t) has a geometric distribution G (1/ (A + 1)).
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Liquidity Risk
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Chapter 7

Asset /Liability Management Risk

7.4.1 Constant amortization of a loan

1. We have:

n

A
G = §:1+

’L

n—1
1+Z i—o (1+1)
A - uﬂw
A+d) 1= .
- 1—;.” é
1+") @
= w4

where c(, is the capitalization factor:

n

—(1+49)"

(k) -

We deduce that the value of the constant annuity is equal to:

(o)

(144)"
A+ —1'
I T

Cn) =

2. Since Cy = Ny, we have:

A

0

It follows that the constant annuity rate a(,) is given by the following formula:

n) = T ———Tp — T
M1 )T cw

3. At time ¢ = 1, we pay A. The interest payment is equal to I (1) = iNy while the
principal payment is equal to the difference between the annuity and the interest

119



120 Handbook of Financial Risk Management
payment:
P(1) = A-1I(1)
= (am —1) No
(e
1—(1+44)
We deduce that the amount outstanding (or remaining capital) is equal to:

N@1) = No—P(1)

(

( —
- ()

1o

(

1+9)" -1

We also have:

1 A
= - An—1 T
(1+1) ’
Since we have:

(1+d)—(1+i) " (1+0)"" ((l-i-i) - (1+z’)”“>

(I+i)"—1 1+ (1+i)" =1
_ 1 (14" —(1414)°
(14i)"! (1+4)" -1
B 1
R

we conclude that the amount outstanding N (1) is equal to the present value of the
annuity at time ¢ = 1:

N(1)=C(1)
4. More generally, we have:
N({t) = C()
= cm-na
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It follows that:

I(t) = iN(t—1)
1
and:
P(t) = A—1I(t)
1

7.4.2 Computation of the amortization functions S (¢,u) and S* (¢, u)

1. By definition, we have:

S(t,u) = 1{t<u<t+m}

B 1 ifuelt,t+m|
o 0 otherwise

This means that the survival function is equal to one when u is between the current
date t and the maturity date T =t +m. When u reaches T, the outstanding amount
is repaid, implying that S (¢,T) is equal to zero. It follows that:

S*(t,u) =

For the numerator, we have:

I{s<u<s+m}=1 = u<s+m
&S s>u—m

and:
t

/t NP(s)~]l{s§u<s+m}ds:/ NP (s) ds

— 00 u—m

For the denominator, we have:

I{s<t<s+m}=1 = t<s+m
& s>t—m

and:
t

/t NP(s)~]l{s§t<s+m}ds:/ NP (s) ds

—o00 t—m

We deduce that:

[i_ NP (s)ds
[' NP (s) ds

t—m

S*(tu)=1{t<u<t+m}-
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In the case where the new production is a constant, we have NP (s) = ¢ and:

(5] n
5]t

t—u+m
t—t+m

= 1{t<u<t+m}-

= ]l{t§u<t+m}-(

—t
- ]1{t<u<t+m}-(1—“ )
m

The survival function S* (¢,u) corresponds to the case of a linear amortization.

2. If the amortization is linear, we have:

S(t,U)zﬂ{t§u<t+m}_(1_uT;t>

[mNP(s) (1— ums) ds
t NP (s) (1—t_8> ds

In the case where the new production is a constant, we obtain:
t
u—s
/ <1 - > ds
u—m m
t
t—s
/ <1 — > ds
t—m m

We deduce that:

S*(tu)=1{t<u<t+m}-

t—m

S*(tu)=1{t<u<t+m}-

For the numerator, we have:

t J—
/ (1 U S) ds =
u—m m

m2 + u? + 12 4+ 2mt — 2mu — 2tu
2m

(m —u+1t)°
2m

For the denominator, we use the previous result and we set u = t:

t _ _ 2
/ (1 ot 3) ds = (m—t+1t)
t—m m 2m

m
2
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‘We deduce that:

(m—u+1)?

S*(tu) = 1{t<u<t+m} —2M
2

2

—u+tt

= ]1{t§u<t+m}~(mm#

2
u—t
]l{t<u<t+m}-(1— >
m
The survival function S* (¢, u) corresponds to the case of a parabolic amortization.

3. If the amortization is exponential, we have:
S (t,u) = eift Ads — g Au=t)

It follows that: ,
S NP (s)e Mu=9)ds

§* (t,u) = =5
Jo NP (s)ert=s)ds

In the case where the new production is a constant, we obtain:

ffoo e—Mu—s) qg
fioo e—A(t—5) ds
[/\7164(%5)?

—00
- t

[AflefA(tfs)]
e—)\(u—t)

S* (tu) =

— o0

= S(t,u)
The stock amortization function is equal to the flow amortization function.

4. We recall that the liquidity duration is equal to:
D (1) :/ (w—1) f (t,u) du
t

where f (¢,u) is the density function associated to the survival function S (¢, ). For
the stock, we have:

D (1) = / (u— 1) F* (tu) du
¢
where f* (t,u) is the density function associated to the survival function S* (¢, u):

. B fjw NP (s) f (s,u) ds
fritw = ft NP (s)S(s,t) ds

— 00

In the case where the new production is constant, we obtain:

[ w—t) [* f(s,u) dsdu
It _S(s,t)ds

D (t) =
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Since we have fioo f(s,u) ds =S (t,u), we deduce that:

[ (w—1)S (¢, u) du
fioo S (s,t) ds

D*(t) =

5. (a) In the case of the bullet repayment debt, we have:

and:

'D* (t) — t

2| 3

(b) In the case of the linear amortization, we have:

f(t,u):]l{tgu<t+m}-%

and:

V]
Il
|3 3= r\“
+
3
=
SR
Q‘\_/
S
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The numerator and denominator are equal to:

(*) u? . ud +tu2 t2u trm
= —_— = U — — —_—
2 3m m m |,
1 m
= — [3mu2—6mtu—2u3—|—6tu2—6t2u}t+
6m t
1 3 2 3 1 2 3
= — — 3mt* — 2t — (3mt 2t
o (m” =3m ) + 5, (Bmt” +2t7)
2
m
T 6
and:
st 52 ¢
@ =
1 t
= %[SQ—QS(t—m)]tim

We deduce that:

(c¢) For the exponential amortization, we have:
f(tu) = Ae A0

and!:

For the stock duration, we deduce that:

[ (w—1) e U=t dy
fioo e~ At=s) ds

JoS vem v dv

fooo e~ M dv

1

A

D () =

We verify that D (t) = D* (t) since we have demonstrated that S* (t,u) = S (¢, u).

1We use the change of variable v = u — t.
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6. (a) By definition, we have:

AN (£) = (NP (1) — NP (t — m)) dt

(b) We have:
1{s<t<s+m
Fis.t) = H !
m
It follows that:
t 1t
/ NP (s) f (s,t) ds = —/ 1{s<t<s+m} -NP(s)ds
— 0 mJ_so
1 t
= —/ NP (s) ds
m Ji—m
We deduce that:
1 t
dN (t) = <NP (t)— — NP (s) ds) dt
m Ji—m
(¢c) We have:
f(s,t) = Ae N9
and:

= AN (1)

We deduce that:
dN (t) = (NP (¢t) — AN (t)) dt

7.4.3 Continuous-time analysis of the constant amortization mortgage
(CAM)

1. We have dN (t) = —P (t) dt where A (¢t) = I (t)+ P (¢t) and I (t) = iN (t). We deduce
that:
dN (t) = (iN (t) — A) dt

We know that the solution has the following form?:
. A

N (t) = C@lt + -

1

where C' is a constant. Since N (0) = Ny, we have:

A
C:NO_T

2The solution of y’ (t) = ay (t) + b is equal to:

y(t) = Ce™ — =~
a
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and:
A\ ,, A
N(t) = (NO — > e + =
i i
At the maturity m, we have N (m) = 0, implying that:

(M- 2)emsd g o A J

) erm — 1

We deduce that:

N (t)

N . N
1{t<m}.((NO_160im>ezt+1eoim>

e—i(m—t)

1
1{t<m}N0

1—e—im
because N (t) = 0 when ¢ > m.

2. More generally, we have:

1— efi(terfu)

N(tu)=1{t <u<t+m} N ——70

This implies that:

efi(terfu)

1—
Stu)=1{t<u<t+m}- T =i

and:

S* (¢, u) Jum NP (5) (1 — e7Cmw) ds
7u = .
[l NP (s) (1 —eilstm=0) ds

t—m

If we assume that NP (s) is constant, we have:

t
|:5+ 1'ei(s+mu):|
(3
§*(t,u) = N T
|:S + ‘e—i(s—&-m—t):|
1

t—m
efi(terfu) -1
t+m—u+ -
1

e—im -1
m+ ———
?

i(t+m—u) e ittm—u)
im+e~im —1

3. We have:
Z'efi(t+m7u)

fuw=1{<u<t+m}- T
—e m
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It follows that:

because we have:

m ™ m _iv
. ve e
/ ve'dv = [ - ] - / —dv
0 v 1o o ¢
; m

Il
—
<
SHEY
S
<
[E—1

o

o
—
[E——
< 3

7.4.4 Valuation of non-maturity deposits

1. The current market value of liabilities is the expected discounted value of future cash
flows, which are made up of interest payments ¢ (t) D (t) and deposit inflows 0, D (t):

LozE{
0

/ T e WL () D (1) — 8,D (1) dt] (7.1)
2. Since we have:

/Ooe‘r(t)t(i(t)D(t)—0tD(t)) At = / Ooe‘“”%(t)D(t) dt —
0

OOO
/ e "Wt9,D (t) dt
0

and:

we deduce that:

Ly = IE[ /O T e WG () D () — 0,D () dt]



Asset/Liability Management Risk 129

3. The current value of deposit accounts is the difference between the current value of
deposits Dy and the current value of liabilities Lg:

Vo = Do— Lo
E [ /0 T e O (1) — i (1) D (1) dt}

E [ /0 oy, (t) D (t) dt} (7.3)

where m (t) = r(t) — i (¢) is the margin of the bank. This is the equation obtained
by Jarrow and Van Deventer (1998), who notice that Vp is “the net present value of
an exotic interest rate swap paying floating at i (t) and receiving floating at r (t) on a
random principal of D (t)”.

4. If the margin m (t) is constant, we obtain:

Vo = E [ /0 ety (t) D (t) dt}

= moE [ / e Tt dt] Do
0

= mor Do (7.4)
where ., can be interpreted as the average market rate®:
1
’r' = —=
* T E[reroral
5. The variation of i(t) is equal to a constant « plus a linear correction term
pr(t) —i@):

di (t)
dt

= a+p(r(t)—i(t)
= B+ (- Fi()
It follows that i (¢) is an increasing function of r (¢). Moreover, i (t) decreases (resp.
increases) if a — Bi(t) < 0 (resp. & — Bi(t) > 0). This implies that i (¢) is a mean-
reverting process, where the steady state is io, = S~ 'a. The variation of D (t) is
explained by two components:

dD (¢)

dt

=7(Dos =D (1)) =6(r(t) —i(t))
X0 Ca(t)

31In the case where r (t) is constant, we notice that:

E {/ e~ df}
0

Il
o
3
o
|
l
3
o
o~

Il

ﬂ\’—‘v#
)

<3 |

5

&
[E—
e 3

This justifies that r~ is an average interest rate.
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The first component C (¢) is the traditional mean-reverting adjustment between the
deposit D (t) and its long-term value Do, whereas the second component Cs () is the
negative impact of the excess of the market rate over the savings rate. It follows that:

i(t) = e Plig + ﬁ/ot e Bt=9) (r (s) + g) ds (7.5)

and:

t
Dt)=e"Dy+(1—e ") Doy~ / e =9 (1 (5) —i(s)) ds (7.6)
0
6. In the case where r (t) is constant and equal to rg, we obtain:

¢
i(t) = e Plig+ (a+ Bro) / e P9 g
0

eﬁ(ts)]t
B o

= e_ﬁtio + (1 - E_ﬁt) (7"0 + g)

i + (1— P <r0 n % - 2'0) (7.7)

e Plig + (o + Bro) {

It follows that:

r0-i0 = me (s 0o ()

= e P(rg—ip) — % (1—e) (7.8)
and:
t
D({t) = Do +e " (Dy— Dys)—0d(ro— io)/ e 1(t=5)g=Bs gg 1
0
t
5 / e (1—e77) ds (7.9)
5 Jo

Since we have:
t

t —y(t—s)—Bs
/ o= 1(t=5) =Bs g _ {W}
0 v—8 0

t —y(t—s —v(t—s)—pBs t
/ e=71=9) (1 — ¢=P%) ds = {e i) gmlime) ]
0 0 Y= ﬁ 0

and:

we deduce that:

6 (e7Ft — ety

D(t) = Do +e " (Dy— Dy)— P

ad (1 —e Mt Pt e‘”t)
B Y =5

(ro — o) +
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7. If « is equal to zero and we combine Equations (7.8) and (7.9), we obtain:
et (r(t)—i(t)D(t) = e~ (rot+h)t (ro —i0) Doo +
e~ (ro+B+7)t (7"0 _ io) (Do — Dso) —
§ (e=(ro+20)t _ o= (ro+B+)t)
Y-8

(ro — in)?
It follows that:
/ —(7“0+/3)t ro — 'LO) Do dt +
OOO
0
o 5 (ro+28)t
/ e (7"0 — i0)2 dt +
0
% 5 T0+’Y+ﬁ)t
/ e (ro —io)” dt
0

v—=p

‘We also have:

[e= o+t (rg —ig) Do 1™
Yo = L —(ro+ ) ]0 "
e~ (ot (rg —i0) (Do — Do) 1"
L —(ro+7+8) } 0 N
[ 5o—(ro+28)t (ro — io)? * e o1 +BI (g — )2 oo
—(T0+2ﬂ)(’7—5)] [—(7‘0+7+ﬁ)(’7—5)]

Therefore, the net asset value is equal to:
(ro —i0) Do~ (10 — i0) (Do — Doo)
(ro+5) (ro+v+8)
8 (ro — io)” 8 (ro —io)”
(ro+7+8) (=8 (ro+28)(y—B)
We deduce that the sensitivity of V;; with respect to rg is equal to:

Vo _ (io+B) D  (Do—D )(20+w+ﬂ)
dro (ro + B)° (ro + 7+ B)°
6(ro —io) (ro+io+2(v+5)
(ro+7+8)* (v B)
0 (ro — i0) (ro + +io + 40)

(ro +28)* (v = B)

8. From Equation (7.3), we deduce that:

Vo

(7.10)

(7.11)

aVb _ _7 oo eir(t)t ; .
ar (t) ]E_ /0 t (r(t)—i(t)D(t) dt%
[ e 0 (r () — i (1)
]E:/o arm P20 dt%
B[ e rw-im) %fét)) dt} (7.12)
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De Jong and Wielhouwer (2003) observe that the sensitivity of the net asset value is
the sum of three components: the interest rate sensitivity of the expected discount
margins, the margin sensitivity with respect to the market rate, and the impact of
r (t) on the deposit balance D (t). Since we have:

D -i) _ s
drg

and:
oD@ 8 )

0o v—=8

we deduce that:

ZTVS = —(ro—io)/o te= ot D (t) dt +
oo 1— —pt oo
a/ te~ "ot (6) D (t) dt+/ e tAD (1) dt —
0 B 0
g (’I‘o — ’io) = —(ro+28)t —(ro+B+)t
W/O (6 — € ) dt +
ad > 1— eﬁt>
—(ro+8)t _ o—(ro+)t dt 7.13
e e .
5 ) (5 (719

This sensitivity can be computed analytically, but it is a complex formula with many
terms. This is why it is better to calculate it using the Gauss-Legendre numerical
integration method. The duration of deposits is then defined as:

1 0V
Dp=———"
b VO 87“0

In Figure 7.1, we have represented the deposit rate i (¢) with respect to the time t¢.
We notice that:

. . . . _ o .
tlggol(t) = tlgroloZO“i’(l*@ ﬁt) <T0+620>
«
= 7’0+E

Since the margin is equal to 7 (t) — ¢ (¢), it is natural to assume that o < 0 in order
to verify the condition* i (¢) < 7 (¢). The dynamics of D () is given in Figure 7.2. It
depends on the relative position between Dy and D,. Another important parameter
is the mean-reverting coefficient . In Figure 7.3, we have represented the mark-to-
market V[, its sensitivity with respect to ry and the corresponding duration. We notice
that the normal case where iy < ry corresponds to a negative duration, because the
sensitivity is positive. We explain this result because @ = 0 is not realistic, meaning
that the margin is equal to zero on average. If we assume that « is negative or the
margin is positive, we obtain a positive duration (see Figure 7.4). In particular, we
verify that the duration of deposits is higher when market rates are low.

4This is the arbitrage condition found by Jarrow and van Deventer (1998).
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FIGURE 7.1: Dynamics of the deposit rate i (t)

145 F e

140 | /

4

0.3
0.7

- =7

t (in years)
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FIGURE 7.3: Duration of deposits when « is equal to zero
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FIGURE 7.4: Duration of deposits when the margin is positive
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7.4.5 Impact of prepayment on the amortization scheme of the CAM
1. We deduce that the dynamics of N (t) is equal to:

_iefi(mft)

e—zm

. 1
= —Z’e_l(m_t) (]l {t < m} . N()l_“n) dt
— €

i —i(m—t)
- - N@a@

T e—i(m—1)

2. The prepayment rate has a negative impact on dN (¢) because it reduces the out-
standing amount N (¢):

5 ie—i(m—t) 5 5
3. It follows that:
~ iefi(mft)
dInN (t) = — (l_e_(m_t) +Ap (t)> dt
and:
- - t _je—i(m—s) t
InN (t) —InN (0) = / —F—ds —/ Ap (s) ds
0 1 — e—i(m—s) 0
t t
= |In(1-—e7m=9 ] 7/ A (s) ds
i )=
_ ,—i(m—t) t
= In 1-e , —/)\p(s)ds
1 —e—m 0
and:
~ 1_€—i(m—t) ot ) ds
N(t) = (Nol—e”’l)e Jo xn(e)d
= N (t) Sp (t)

where S,, () is the survival function associated to the hazard rate A, (¢).
4. We have:

- 1—e

—i(t+m—u)
N (t,u)=1{t<u<t+m}- -N(t) .

e—)\p(u—t)

1 —em
this implies that:

—Ap(u—t) _ e*im+(i7)\p)(u7t)

S(tyu)=1{t<u<t+m}-

1 —e—im
and:

. et (u=t) 4 (; — ) ) e—tmt(i=Ap)(u—1)
Ftou)=1{t <u<t+m} 22 Hi ﬁ)e
—e m
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It follows that:

D(t) =

because we have:
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)\ t+m
P / (u—t) e =8 dy +

_ p—im
1—e p

. —im t+m
(= Ap)e™™ / (1 — 1) €A1 g
t

1 —eim

1—e-im 1—e-im
Ap me~ MM T ]
Tem\—n,  x )7
e » :
(l o >‘p) efim me(if)\P)m B e(if)\p)m -1
1—e-im (i—Ap) (i — Ap)°

1 e—im _ e—Apm N 1— e—/\pm
1—e"m i—Ap Ap

m av]m m av
ve €
/ ve®dv = [ ] - / dv
0 (07 0 0 Q

)\p /m ve=r? du + (Z - )\p) e~im /m ,Ue(i—kp)v dv
0 0
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Chapter 9

Model Risk of Exotic Derivatives

9.4.1 Option pricing and martingale measure

1. Since we have:

we deduce that:

It follows that:

(t) dS (t) + ¢ (t) dB (t)
&) dS @) +r(V(t)—¢(t)S(t)) dt
= rV(@)dt+¢(t)(dS () —rS(t) dt)

< S

2. We have:
dS(t) = —re ™S (t) dt+e " dS (t)

= e "(dS(t) —rS(t) dt)
It follows that:

AV () = 7V () dt+ ¢ (t) (dS (t) — S (t) dt)
= 7V (t) dt+e"¢(t) dS (1)

Finally, we deduce that:
dV(t) = —re ™V (t)dt+e " dV (1)

= —re "V () dt+e " (rV (t) dt + e (t) dS (1))

= ¢(t) dS (1)

3. Under the probability measure QQ, we remind that:
dS (t) =rS(t) dt + oS (t) AW (t)
Then, we have:

ds (t) e " (dS (t) — rS (t) dt)
= e oS (t) AW (1)
= oS (t) AW ()

We conclude that S (t) is a martingale. Since dV (t) = ¢ (t) dS (t), V (¢) is also a
martingale. We deduce that:

V(t)=EX [V (T)|F]

141
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and:
V() = e'E%[e "V (T)|F]
e " TTIRR V()| F
4. We have:
dS (t) = pS (t) dt + oS (t) dW (t)
and:
dS(t) = e "t (dS(t) —rS(t) dt)
= (u—7r)S(t)dt+oS(t) dW (t)
We set:

WQ(t):W(t)—i—(u_r)t

g

Using Girsanov’s theorem, we know that W@ (¢) is a Brownian motion under the
probability measure Q defined by:

dQ

ap - MO

SIS ENACSED)

Moreover, we know that M (¢) is an F;-martingale.

5. We have:
V(1) =1{S(T) > K}

and:
S(T) > K < Soe(r—%oz)T-‘rUWQ(T) > K
1 1
s W > = (an—lnSO - (r - 202> T)
g

We deduce that:

V(0) eTTER[1{S(T) > K}]

) >
e TPr{S(T) > K}

_ e (o (1))
= e’“Tcp< T (an lnSO(r;c72>T)>

Therefore, the price of the binary option is:

V(0)=e"Td <U\IF( 2 +rT> aﬁ)
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9.4.2 The Vasicek model

1. We have:
1 ,0%B(t,7) 0B (t,r) 0B(t,r) _
50t ab=r®) = A(t)o) ==+ =2 = (1) B (t.r) =0
and:
B(T,r(T)) =1

2. We remind that the solution of the Ornstein-Uhlenbeck process is:
t
r(t)=roe” " +b(l—e ")+ G’/ e AW (s)
0
It follows that:

T t
7z = / (roe_at +b(1—e) + 0'/ Sl 174 (s)) dt
0

0

e—at T e—at T T t
= ro[— ] +b[t+ ] +a/ /e“(s_t)dW(s)dt
a o a 0 0 0
1—e T Tt
bT + (ro — b) <a) + a/ / e AW (s) dt
0 0

We note I = fOT f(f e5=t) AW (s) dt. Using Fubini’s theorem for stochastic integrals,

we have:
T T
I = / / %) ds dW (t)
o Jt

T 1 _ —a(T—t)
— / 167(11/[/@)
0

a

Since I is a sum of independent Gaussian random variables, it follows that Z is also
a Gaussian random variable.

3. We have:
1—e 0T
E[Z) =bT + (ro —b) (>

a

and:

T 1 efa(Tft) 2
var(Z) = E cr/ dW (t)
0 a
2 T 2
_ i _ —a(T-t)
= 3 ; (1 e ) dt
2 T
_ %/ <17267a(T7t) +672a(T7t)> di
as Jo
o? 2 1
- _(T-2(1- —aT — (1 - —2aT
(12 s amenn)

Another expression is:
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where:
1— efaT

a

ﬂ =
4. We have:

T
B (O,T‘O) _ IEQ |:6 fo r(t)dt

.

Under the probability measure Q, r (¢) is an Ornstein-Uhlenbeck process:

- B[ 7|7

dr(t) = a(b-—r(t)) dt+odW (t)
= a(b—r)dt+o (dAW2(t)—Adt)
= (a(b=r(t)—Xo) dtJrUdWQ(t)
= a(d —r(t)dt+ocdW?(t)
where:
b =b-— A—J
a
It follows that:
B(0,rg) = ¢ X121+ b vart(2)
and:
1 o2 GBQ
_RrQ - — _pT_ _p _
E [Z]+2var@(2) = VT —(ro—b)B+ 2 — (T B-= )
262
= BT p) 4 (-5

o o232
= - (Vo) aeo -
Finally, we obtain:

B(0,79) = exp <_7~05_ (b’— 02) 5 - 0252>

2a?

9.4.3 The Black model
1. We have:
%02F282 (t,F)+0,C(t,F) —rC(t,F) =0
C (7,5 (T)) = max (F (T) — K,0)
2. The Feynman-Kac formula is:
C(0) = e ""E[max (F (T) — K, 0)| Fo]

We know that F'(T) is a log-normal random variable:

F (T) — FoeféajT“rO'(W(T)*W(O))
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We note I = E [max (F (T) — K, 0)| Fy]. We obtain:
o0 N +
I = / (Foe_EUZTJ“’ﬁ“ - K) ¢ (u) du
—o0

/doo (FoeféazTJ”’ﬁ“ - K) ¢ (u) du

= Foe_%C’ZT/ e”ﬁué(u) du—K/ ¢ (u) du
d d

where:
1 . B 1
d=———In=—2+4 -oVT
ovT K 2
We have:
o0
/ o(u)du = 1—®(d)
d
= @ (-d)
and:

oo oo 1
/ eVTug (u) du = / eoVTu=3u" gy
d d

Finally, we deduce that:

co = 7 (Foe_%azTe%‘TzT@ (—d+a\/’f) - K(I)(—d))
= Foe "0 (dy) — Ke " ® (dy)
where: -
1 o 1
= ——In=2 4 ZoVT
dy -~ In—=+ QU\F
and:
1 F 1
dg g\/T n K 20'\/>

. Under the risk-neutral probability measure Q, we have:
dS (t) =S (t) dt + oS (t) AW ()
The price of a future contract on this stock is equal to:

F(t)=e "5 (1)
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Using Ito’s lemma, we deduce that:
dF (t) = —re ™S (t)dt+e " dS (1)
= oge S (t) AW (1)
oF (t) dWQ (t)

We can then apply the Black formula to price an European option on F (¢).

In this case, the PDE representation becomes:

%JQF%%C (t,F)+0,C(t,F) —r(t)C(t,F) =0
It follows that the Feynman-Kac formula is:

C(0)=E l:e_ J3 7045 (P (T) - K, o)’ fo}
Since 7 (t) and F (t) are independent, we obtain:

C(O) - E |:€ fo r(s)ds

= B(0,T) (Fo®(dy) — K® (ds))

.7-"0] -E[max (F (T) — K, 0)| Fo)

We deduce that the discount factor e~"7 is replaced by the current bond price B (0, 7).

If r (¢t) and F (t) are not independent, the stochastic discount exp (— fOTT (s) ds) is

not independent from the forward price F' (T') and we cannot separate the two terms
in the mathematical expectation.

We remind that the price of the zero-coupon bond is given by:

-

The instantaneous forward rate f (¢,T) is defined as follows:

T
B(t,T) = E2 [e Ji s as

_OWB(T)

f(t,T)Z T

We consider that the numéraire is the bond price B (t,7T) and we note Q* the associ-
ated forward probability measure.

(a) We have:
8B(t,T) B 0 Q 7fTT(S)dS
7 = arE e YA
7ftTr(s)ds
_ EQ 86 ‘Ft
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where M (t) = exp ( fg r(s) ds) is the spot numéraire. We consider the change
of numéraire (M (t) — N (¢t) = B (¢,T)) and we obtain:

= —N@®EY [r(1)F]

because N (T) = B (T,T) = 1. Since r (T') = f (T, T'), we deduce that:

oB(t,T) x
g = ~BDEY [f(T.T)| )]
(b) We have:
O lnB(t,T)
f@¢T) = 8T
7 1 9B(T)
- B(@,T) 0T

= EY [f(T,T)|F]

f (¢, T) is then an Fi-martingale under the forward probability measure Q*.
(¢) We know that:

co = E° {efoTT(s)dsmax(f(T,T)K,O)‘fo}

= IE@L{\jg})max(f(T,T)—K,O)‘]-'O}

Using the change of numéraire N (t) = B (¢,T'), we obtain:

« [ N(¢)
— Q _
C(0) E [N(T) max (f (T,T) K,O)‘}"O]
= B(t.T)EY [max (f(1,T) — K,0)| 7|
Using the Black model, we deduce that the price of the option is':
C(0)=B(0,T) (ro®(d1) — K (dz2))

where d; and ds are the two values defined previously.

9.4.4 Change of numéraire and the Girsanov theorem
Part one

1. Using It0’s lemma, we obtain:
dX@®OY@)=X@)dY () +Y (t)dX (t) + (dX (¢),dY (¢))

and:

1 LAY (1) | (Y (1), dY (1)
d( ) Y2 () Y3 ()

1We have f (0,0) = ro.
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2. Let Z (t) be the ratio of X (t) and Y (¢):

Z(t):;(((g

‘We deduce that:

dZ () = X(t)d(yl(t)>+Y1(t)dX(t>+<dX(t>vd( 1(t))>

- Bro( B8 e lp)
AV (1) (dY (b),dY (¢))
WO~y T v >

P

LX) XW v Y0,V 0)

HORE0 Y3 (t)
(dX (t),dY (¢))
Y2 ()
and:
dZ (t) _ dX (¢t) B dY (t) n (dY (t),dY (t)) (dX (¢),dY (t)) (9.1)
Z@t)  X@) Y@ Y2 (t) X (@)Y () '
Part two

1. The Girsanov theorem states that the change of probability only affects the drift and
not the diffusion.

2. We have:
dS(t) = ps@)S(t) dt+og(t)S (1) AW (1)
= ws(t)S ) dt+os(t)S () (AW (t) — g (t) dt)
= (Ws(t) —g()os(t)S(t) dt +os (1) S (t) AW (t)

If follows that:

or:
ps () —ps (
g (t) _ S ( ) ( )
s (t)
Using Girsanov’s theorem, we deduce that the Radon-Nikodym derivative is equal to:
dQ*
Z(t) =
0 = G

_ exp</0tg(s) dWQ(s);/Oth(s) ds)

We know that Z (t) is an F-martingale and we have:

dZ ()

R ICEUAI0
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3. We have: M(0) N ()
Z(t) = N©O) M@

Using Equation (9.1), we have:
dZZ(E;;) = pun (t) dt+on (t) AW (t) —

(ar (8) At + o (1) AWR (1)) +
o2 (1) dt—UN( Yo (t) dt
= (un (t) = pas () dt — oar () (on (t) — ons (2)) dt +
(on u>—oM<»dw@u>
We deduce that:
g(t)=on(t) —om(t)
and:
pn (1) = par (8) + o (t) (on (8) — o (2))

4. Since g (£) = oy (£) — oar (1), it follows that:
ps () = ps(t)+g(t)os(t)
= ps(t)+os(t)(on (1) —on (1)) (9:2)
5. We have:
<‘f((t’;, djj\;[((tt))> —os (B ow (1) dt
and:

<O}95(%)’ dj\Aj(Sft))> =05 (t)op (t) dt

We conclude that Equation (9.2) is equivalent to:
(

We also notice that:

ds (t) N (t) _/dS(t) dZ ()
(Somirm) = (s 70
= o5 (t)(on(t) —onm (1)) dt
and:
() dt ()dt+<(§§t),dln]\]\;((?)>
Part three

1. Using Equation (9.1), we obtain:

dS() _ dS() dN(f) , AN (1).dN (1) (dS(t),dN (1)
Sy St N(@) N2 (1) S(t)N (1)
= r(t)di+og(t) dWS (t)—(r(t) dt + o () AW (t))+
o3 (t) dt — pog (t) o (t) dt
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(a) We have:
dN (t) =7 (t) N (¢) dt
and: .
N (t) _ efo r(s)ds
We deduce that the discounted asset price is:
5 S (t)
) = —=

- fo r(s) dsS (t)

Since oy (t) is equal to zero, it follows that:

ds (1) Q
- =og(t) dWg (t
Sy =05 avED
We conclude that S (t) is an Fp-martingale under the risk-neutral probability
measure Q.
(b) We note:

W) =Wg (t) = Wy ()

The Girsanov theorem gives?:

AW () = dW (¢) — oy (t) dt

and:
AW () = AW (¢) + o (t) dt
We deduce that:
dg(g = (oX(t) —os(W)on (t)) dt + (o5 (t) —on (t)) AW (2)
= (% (t)—os(t)on () dt+ (o5 (t) —on (t)) on (t) dt
(05 (1) —on (1)) AW (2)
= &(t) dw? (1)
where:
G(t)=o0s(t) —on(t)
(¢) Let us introduce the Brownian motion W () such that:
G (t) AW (t) = og (t) AW (t) — o (t) AW (¢)
We have:
52 (1) = 0% (1) — 2p0s (V) on (1) + 0% (1)
We conclude that the risk-neutral dynamics of S (t) is given by:
ds (t)
S(t)

— (0% (1) — pos () ow (1)) dt +& (1) A2 (1)

2In Part two, we have shown that dWQ" (¢)
assume that M (t) = 1, implying that ops (t) =

= dWQ (t) — g (t) dt where g (t) = on (t) — opr (). Here, we
0.
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We now consider the following decomposition:
W3 (t) = pWy (t) + V1 - p* Wy (1)
where W (t) L W (t). We deduce that:

ds (t)
S (t)

= (o (t) = pos (t)on (1)) dt +
(pos (t) — on (£) AW () + o5 (t) /1 — p2 dWE (¢

Since we have:
AW (t) = AW 2 (t) — o (t) dt

we obtain:

U

dS(#)

Sy = Pos (0~ ow () AW (1) 4 o5 (0 VT 2 WS (0

We notice that:

& (t) AW (1) = (pos (t) —on (1) AW () + 05 (t) /1 — p2dWe (¢

We deduce that:

9.4.5 The HJM model and the forward probability measure

1. Since we have:

T2
N(t)=DB(t,T) = o [ e du

we deduce that the Radon-Nikodym derivative is given by:

dQ*  _ M(0)N(T3)
dQ ~ N(T)N(0)
_ e—f0T2 r(t) dtN (T2)
N 0)

o J 2 rm—fo0)at

2. We have seen that the dynamics of the instantaneous spot rate is:

r(t):r(O)—F/Ot <o(s,t)/:o(s,u) du) ds-i—/ota(&t) dwQ (s)

It follows that:

r(t)—f((),t):/ot (a(s,t)/:a(s,u) du) ds—&—/ota(s,t) awe (s)
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Using Fubini’s theorem, we have:

/0T2 (r (1) - £ (0,1)) dt=/OT2

T

(
(
8 (/STQ (g(s,t)/vto(S,u) du) dt) dst
A

J
J

‘We remind that:

T>
a(t,Ty) = f/t a(t,v) dv

_ _/tb (a(t,v)/tva(t,u) du) dv

b(t,Tg):—/TZU(t,v) dv

and:

We deduce that:

T> T> T
r(t) - =— [ a(tTy)dt- ,Ty) dW®
/0 (r(t)— f(0,t)) dt /0 (t,To) dt /0 b(t,To) dW™(t)

Finally, we conclude that:

dQ* _ efT2 a(t,T3) dt+ [ b(t,T2) dWO(t)

0
dQ
3. Since the no-arbitrage condition in the HJM model is:
Lo
a (t,TQ) + ib (t,TQ) =0

we obtain:

dQ™ _ [ emawem-1 [ g at
dQ
where:
g9(t) =0b(t,T3)

The Girsanov theorem states that:
t
W ™) (1) — W (1) - / g(s) ds
0
is a Brownian motion under the forward probability measure Q* (T5). We deduce that:

W @) () = W (1) /t b(s,Ty) ds
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6.
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We have:
AW T2 (1) = AW (t) — b (¢, T») dt

It follows that:
df (t,Ty) = ot,Ty) dt+o(t,Ty) dW? (1)
a(t,Ty) dt + o (t,T1) (dW@* () +b(t, Ts) dt)

(a(t,Th)+o(t,Th)b(t,T2)) dt+o(t,T1) AW Q" (72) t)

Since we have:

T
a (LT 4o (LTb(ET) = a(t,Tl)/ o (1) du —

t

T>
O'(t,Tl)/t o (t,u) du

We conclude that:

T
df (¢t,T1) = — (0’ (t,Tl)/ o (t,u) du> dt + o (¢,Ty) AW Q" (T2) (t)

T

When T5 is equal to 11, we have:
Ty
/ o(t,u) du=0
T

and:
df (t,T1) = o (t,Ty) dW T (1)

We deduce that f(¢t,77) is a martingale under the forward probability measure
Q* (Th).

(a) Let s <t. We have:

B (s,T)

and:

B(t,Ty) B (s, Ty) eJs (70 =40 (. T2)) dusb(uZ2) dW 2 (a)

B(t,T) B(s Tl)ef:( (w)—$b2 (u, 1)) du-+b(u,T1) AW (u)

_ BGT) xew
B (8, Tl)
where:
1 i 2 2
X (s,t) = -5 (b (u,Ty) — b (u7T1)) du +

/ (b (u, Tp) — b (u, T1)) AW ()
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(b) We have: .
AW T (1) = AW (¢) — b (¢, T) dt

We deduce that:

X (s,t) = ;/t (b (u, To) — b (u, T1)) du+

/t (b(u,T) — b (u, Ty)) AW @) () 1

/ (b(u,T2) = b(u,T1)) b (u,T1) du

- _%/ (0 (u, To) = b(u, T1))* du+

/t (b (u,T2) — b (u,Ty)) AW (T (4)

We notice that eX(5) is an exponential martingale:
B [oXe0 7| = X0 21

We conclude that:

B (t,Tz) _ B(SvTQ)eX(s,t)
2\ en 7] = Elpeme s
o B(S,Tg)
o B(S7T1)

9.4.6 Equivalent martingale measure in the Libor market model

1. Since we have:

B (t,T})
— = 14+ (T, —T:)L(,T;,T;
B(t,Tj_,_l) +( J+1 ]) (7 J J+1)
= 1+4,L;(t)
we obtain:
B (t,Tj41) _ 1
B(t,T;)  1+406;L;(t)
It follows that:
B (t,Ti+1) _ B (t,Tk+1) o B (t,Ty) ‘s B (t,Ti12)
B (ta Ti+1) B (thk) B (thk—l) B (taTi+1)
_ ﬁ B(t, Ty+1)
iZii B(t,Tj)
_ ﬁ 1
o LH0L (1)

2. We remind that:
M (t) = B (¢, T;11)
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and:

We have:

‘We deduce that:

155

3. We have:

dlnZ (t) =

B(0,T;41)
d
(B (07 Tk+1) ]:1}_1

k

j—i+1
d(1+6;L; (1))

- *Z 1+6,L; (

Jj=i1+1 )

bsdL (

- _Zl+5L ®)

j=i+1
k

o T+ GL ()

4. We obtain:

t,dmzuw
k

= <’Yz‘ (t) dWlQ* (t) 7 _j:H—l L+ 5J'Lj (t)
1+ 5ij (t)

v (1) 0;L; (1)
110,L; (t)

= — ()
j=i+1
k
= —(t) pij dt
j=it1

. Under the probability measure Q* (T;41), we have:

L (t)
Li(t)

75 (1) 0;L;5 (1)

i (t) dt +; (t) dW?*(Ti

1
1+06,L; (t)

= = > din(1+4;L; (t))

75 (t) 6Ly (1) dWQ*(TjH) (t)
J

dWQ ( J+1)( )>

<dWZQ*(T.;+1) (t) ’dWJQ*(TjJrl) (t)>

(@)
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where p; (t) = 0. In Question 5, Part two, Exercise 9.4.4, we have shown that:

de i(%) = pi (1) dt + 7 (£) awW,d T (@)
where: .
iy (t) dt = p; () dt+< L:((tt)),dl Z(t)>

We deduce that:

d;L; (¢ )
pig () = Z piji (t
et 1+5 L;(t)
(T 1) LT D)
= 7/71 Pi, 573
];1 JJ (TJ+1 T)L(tT Tj+ )
6. If Tiy1 < T;41, we have:
B, Ter1) _ BtTerr) BW.Ti2) BT
B (t,Tiy1) B (t,Tyy2) B (t,Tit3) B (t,Ti1)
_ H B(t,T;)
j=k+1 B (t7TJ+1)
= J] a+6L;@)
j=k+1
We deduce that: 4
B(0,Tit1) 1
Z(t) = 1+6;L
0=gor 11 a+aL)

It follows that:

Lo (&L (1) oty
1 7 = _ = |/‘/ A J
dIn (t) 1+ 5ij (t) d J (t)

and:

= (t) M dt +; (1) dW];@*(Tk-%—l) (t)
: 14 6;L; (t)
Jj=k+1 -

9.4.7 Displaced diffusion option pricing
1. We have:

ds () = (G (t) + 0,6 (t) X (8) + (1) p (8, X (1)) dt +
B(t)o(t,X (1)) AW (1)
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We deduce that:
bS(t) = Ora(t)+ 0B (t) X (1) + B (t) p(t, X (1))

= aaw+as (2D) + s (1 220

(t) (t)
. We have:
5 = aa+os0) (22D ) suws (20 00)
= Qa(t) — (%ﬁ(;)t) +u(t)) at) + (%ﬁ(g) +u(t)) S (t)

meaning that:
{ o (t) = (B 08 (1) + n (1) a(t) =0
BT OB () +u(t) =b

We deduce that:
O (t) —ba(t) =0

and:
a(t) = ape
We also have: 2,5 (1)
5w L0

and:

B(t)= ﬁoefot(b_,“'(s))ds
. We deduce that:
dS (£) =bS (1) dt+ B (1) Vo () (S (t) —a () AW (1)

. We have:
dX (t) = p(t) X (t) dt + o (t) X (t) AW (¢)

and: , ,
X (t) = Xoe Lo (n(9)=40>(s)) ds+ [ o(s) dW(s)

By noticing that Sy = o + B9 X, it follows that:
St) = a(t)+p(t) Xoefot(“(”—%”%))d8+f(f<’<8>dw@<s>

_ aoebt + (SO . 040) efor(b—%UQ(s)) d8+f0 o(s) dWQ(s)

. The payoff of the European call option is:

F(8(T) = (S(T)—-K)"
= ((S (1) - ozoebT) — (K — a()ebT))+

It follows that the option price is equal to:

t
C (to, So) = CBS (S() — o, K — aoebT, / 0'2 (S) dS,T, b, 7‘)
0

157

(9.3)
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9.4.8 Dupire local volatility model

We assume that:
dS (t) = bS (t) dt + o (¢, 5 (t)) S (t) AW (¢)

1. Let C (T, K) be the price of the European call option, whose maturity is 7' and strike
is K. We remind that:

%UQ (T,K) K*0%C (T, K) — bKOgC (T, K) —
OrC(T,K)+ (b—1)C(T,K) =0

‘We deduce that:

A (T, K)
2 . I
o“(T,K) = B (T.K)
where:
A (T,K) = 2bK0xC (T,K) +207C (T, K) —2(b—r)C (T, K)
and:
B'(T,K) = K*0%C (T, K)
2. We have:
C(T,K) = Spe®> T (dy) — Ke "'® (dy)
where:

dy = W (m <f(°> +bT> + %E(T,K)\/f

and dy = dy — X (T, K)VT. We note Cgs (T, K,¥) the Black-Scholes formula. We
have:

OxC(T,K) = 0kCps(T,K,X(T,K))+
Ok X (T, K) dsCps (T, K, % (T, K))

and:

0%C(T,K) = 0%Cps(T,K,%(T,K)) +
20k % (T, K) 8% ;Cps (T, K, % (T, K)) +
0% (T, K) 05Cps (T, K, S (T, K)) +
(0% (T, K))? 03Crs (T, K, 2 (T, K))

The derivative of C (T, K) with respect to the maturity T is equal to:

orC(T,K) = 0rCps(T,K,%(T,K)) +
aTE (T7 K) 620138 (T7 K7 X (T’ K))
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The different Black-Scholes derivatives are®:

OxCps (T,K,Y) = —e "®(dy)
OsCps (T, K, %) = S ITVT¢(dy) = Ke ""VT¢ (dy)

d2)

%Cas (T, K, %) = —rr 9 (ds

K Cs ( ) ‘KT

02Cgs (T, K, %) = e*”%

03 kCrs (T,K,X) = e " dl“;(d?)

orCps (T,K,%) = (b—r) ST (d)) +
- Z¢(d2)>
Ke ™ [ r® (dy) +
e (r (d2) Wia
We deduce that:
A(T,K) = —2bKe "T® (do) + 20K%e " "VT¢ (dy) O (T, K) +

2(b—71) Spe® T (dy) +

—r (T, K) ¢ (da)
2K6 T (T(I) (d2) + m) +
2Ke "I T¢ (dy) 002 (T, K) —

26— 1) (S TD (dy) ~ Ke™ T (d) )

= 20K%2e7"TVT¢ (do) % (T, K) +
Ke " TS(T, K) ¢ (do)
VT
v K¢ (d2)
(T, K)VT

+2Ke "IN T (dy) 0r% (T, K)

A(T,K)

where:

A(T,K) = X*(T,K)+2bKTS (T, K) xS (T, K) +
2T (T, K) 0r% (T, K) (9.4)

We also have:

2
B'(T,K) = e_TTXm+2e_TTW8KE(T,K)+
e "TK3NVT ¢ (d) 0% % (T, K) +
T K3VT (ds) dydy
> (T, K)
v Ko¢(d2)
(T, K)VT

Ok 2 (T, K))?

B(T,K)

3We use the fact that:
So¢ (d1) = Ke™ "¢ (d2)
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where:
B(T,K) = 1+2KVTd0x%(T,K)+ K*T% (T, K)8%% (T, K) +
K2Tdydy (0% (T, K))? (9.5)

We conclude that:

A (T, K)
2 o I

LK) = (T,K)
_ A(TK)
 B(T,K)

where A (T, K) and B (T, K) are given by Equations (9.4) and (9.5).

. We follow the proof given by van der Kamp (2009)*. Let f denote the discounted

payoff function:

F(T,S (1) = e T=9 (S () - K)*
It6’s lemma gives:
df (1,8) = —re "IV (S—K)" dT +bSe " TV1{S > K} dT +
; 2 (7, §) 2~ T=05 (S — K) dT +
o (T,8)Se "™ T D1{S > K} dW?(¢)
where § (2) is the Dirac delta function. We deduce that:

E [df (T,S(T))| F]

orC(T,K) = o7
= re "I VKE[1{S(T) > K}| Fi] +
(b—r)e "TVR[S(T)1{S(T) > K}| F/] +
%e_T(T_t)IE [02 (T, 5 (T)) 8% (T) 8 (S (T) - K)| 7]
. We have:
C(T,K) = E[f(T,S(T))|F]

e "TOR[(S(T) — K)1{S(T) > K}| F]
It follows that:

OkC(T,K) = —e "TOR[1{S(T)> K} F] -
e "TIE[(S(T) — K) 6 (S(T) — K)| F]
= — e "TIE[1{S(T) > K}| F]
and:
9%C(T,K) = e " TR [§ (S (T) — K)| F
‘We notice that:
E[df (T,S(T))| F]
dTr

9rC (T, K) =

4vAN DER KaMP, R. (2009), Local Volatility Modeling, Master of Science Dissertation, University of
Twente.
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Since we have:
E[S(T)1{S(T) > K}]=e"T=9¢C(T,K) + K1{S(T) > K}
we obtain:

orC(T,K) = re"TOKE[1{S(T)> K} F] +
(b—r)E [c (T,K) + e "TDK1{S(T) > K}’ ft} +

%6_T(T_t)Q (T7 K)
We also have:

Q(T.K) = E[o*(T,S(1))S*(T)|S(T) = K] - E[6(S(T) — K)| F]
= E[o*(T,5(T))|S(T) = K] K?e" T D85 (T, K)

We conclude that:

0rC(T,K) = rKogC(T,K)+ (b—r)C(T,K)—
(b—r)KoxC (T, K) +

%E [0 (T,5(T))|S(T) = K] K*0%C (T, K)

and:

%02 (T,K) K?03C (T, K) — bKOxC (T, K) —
OrC (T, K)+ (b—7)C(T,K) =0

(a) Since we have:

So
=In— +bT
x nK+

we deduce that:

T 1

and:
T

1
dgzm—§Z(T,K)\/T

We also notice that:
2

1
’ IS (T, K)T

didy = ————
REST K)T 4

(b) The first derivatives of x = ¢ (T, K) are equal to:

1
aKSO(TvK) = _?

and:
6T30 (Tv K) =b
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It follows that:

= azi (T,l’) aKSD (Tv K)
1 ~
= —?83:2 (T, )
and
GTZ (T, K) = 8Ti (T,@(T, K))

= O (T, x) + b0, % (T, )

We also have:

1 1 -
(T, K) = — 0,2 (T, x) + ﬁaﬁz (T, )

K27"
(c) We deduce that:

where A(T,z) = A(T,K) and B(T,z) = B (T, K). Using Equations (9.4) and

(9.5), we obtain:

and:

TS(T,z) (0.5 (T, z) + 925 (T, x)) +

M

(gﬁi—? (T,z) — iTQSQ (T, x)) (0,

= (1S TS (T2) +
TS (T, z) 925 (T, z) —

[y

= (TS (T, 2) 0,5 (T, z))

S

(d) When T is equal to zero, we obtain:

»2 (0, z)
(1 — 3?2_1 (07-'17) awi (O,.’E))2

¥ (0,2) = <1—W)5(0,x)

)

52(0,z) =

and:

The explicit solution of this equation is:

¥ (0,z) = (/01 5710, zy) dy)

-1

A(T,z) = X*(T,x) —2bT%(T,x)0,% (T, z) +
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We deduce that:
fo y5~=2(0,zy) 0,6 (0, zy) dy

02 (0,z) =
(fo 1 (0, zy) dy)
It follows that:
8,5(0,0) = Magc&(o,o)
(4 an)’
. %amaf (0,0)
9.4.9 The stochastic normal model
1. We have®:
Sy (T,K) = p(T,K)VFK x
1+ LI’ Fy /K + 1555 In* Fy /K
1+ 5 (1- 3 Fo/K) X% (T, K) T + 454 (T, K) T?
2. We have®:
Sy (T,K) = a FKW(Z) X
1+ 214 In® Fy /K + 1555 In* Fy /K
X
1—|—2i( ﬂ) In? FO/K+1920( B) In* Fy/K
—B(2- 2-3
T i 51)f';+ pa”(iﬁwjt ap
24 (FyK) 4 (FyK) 24
where: A
=2 (RK)1=92 22
(0%
and

- LT 2)

I—p
In the sequel, we introduce the notation ¢ (z) = /1 — 2pz + 22.
3. When f is equal to 0, we obtain:

z 2-3p% ,
XNy (T,K) = — 1 T
v =a(175) (14 25577)
v FO
Z—a\/FgKln?
(«/12pz+22+zp>
x(z) =In

where:

and:

I—p

5Hagan et al. (2002), Equation (A.64) on page 101.
6Hagan et al. (2002), Equation (A.69) on page 102.
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4. Since we have: .
lim —— =1
K—=Fo X (2)
we deduce the expression of the ATM volatility:

2 _ 2
Sy (T, Fy) = a (1 4 243'0u2T>

5. We notice that z is a function of K. By introducing the notation z = z (K), we have:
—2p0k z2(K)+22(K)0k z(K)
2y/1-2p2(K)+22(K) + 0k z (K)
V1=2pz(K)+22(K)+2(K)—p
Oxz (K)
V1-=2pz (K)+22(K)

Okx (z(K)) =

and:

Oz (K) = g\/FOaK (\/R(lnFofan))
v nFy VK hK
= VB (W—K‘m>

- v /B In &—1
T oV K K

It follows that:

where:

We deduce that:

owsvra) = o (150 o ()
- (1+2—2§>p2y2T) 2 (m 1;?_1>
ch - (9.6)
(X(Z) X (2) m)
6. We have:
C(T.K) = (Fy — K) @ (d) + ox VT (d)
where:
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7. Using the results of Breeden and Litzenberger (1978), we have:

Q(T,K) = Pr{F(T) < K}
B 0C, (T,K)
When oy is equal to the function Xy (T, K), we deduce that:
QT,K) = 1-2(d)+ (Fo—K)¢(d) - Oxd+

VT¢(d) - OxSn (T, K) — S (T, K)VTde (d) - Oxd
1—®(d)+ ¢ (d) VT -9k SN (T, K)

where g X (T, K) is given by Equation (9.6).

8. For the density function, we have:
¢(T.K) = —¢(d) Oxd—d¢(d) VT - Oxd- 03y (T, K) +
o (VT - 05 Zx (T, K)

We notice that:

*EN (TvK)\/T* (FO 7K)\/T‘8KEN (TaK)
22 (T,K)T

14+dVT 93y (T,K)

Oxd =

It follows that:

¢ (d)
EN (Ta K) \/T
¢ (d) VT - 0% SN (T, K)

q(T, K) (1+aVT - xS (T, K))2 +

To calculate the probability density function of F(T'), we need to calculate
OkEn (T,K) and 9%3y (T, K). If we use the approximation z = va™! (Fy — K),
we have Oxz = —va~'. We deduce that:

2-3p% , ) 1 z
OrxX T,K = — 1+ T _
w2 (T, K) V( 24 7 X (2)  x2(2)\/1—2pz+ 22

and:

where:

2 z
b= X? (2) (1 —2pz + 22) <x(z)\/1—2pz—|—z2 1) *
z(z—p)
X2 (2) (1 —2pz + 22)

3/2

9. When g = 0, the SABR model becomes:

{ dF (t) = a (t) AW2 (1)
da (t) = va (t) AW ()
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Since we have a (0) = «, we obtain:

o (t) = aefél’%JrVWzQ(t)

and:
dF () = ae 2" tHW2 (0 qi@ (1)
It follows that: .
F(t)=Fy+ a/ e 3V s W () qpQ ()
0

Using the scaling property, we deduce that:

2

vt
F(t)=Fy+ %/ 6_%S+W2(s) dWy (S)
0

where W, (t) and W (t) have the same properties W (t) and W ().

‘We note:
t 1
X(t) = / e”25TW2ls) qiy (s)
0
Ma(t) _ e—%at-ﬁ-aWz(t)
M(t) = e 3"
‘We have:
dX (t) = e~ 2HW2(0) qW, (£) = M () dW; (2)
and:

d(X (t)) = e 122 gt = M (¢)* dt
Using It6’s lemma, we deduce that:

n(n—1)
2

= X" L) M(t) dWy (t) +

dX™(t) = nX"'(t)dX () + X2 () d(X (1))
nr (”2’ D xn=2 (1) b (1) at

Since we have:

dM® (t) = @Mﬂ (t) dt +aM® (t) dWs (t)
we obtain:
d(X™ () Mo(t) = X" (t) dM®(t) + M* (t) dX™ () +d (X" (t), M (1))
= wX" (t) M® (t) dt + aX™ (t) M (t) AWy (t) +
nX"TL(8) M®(t) M (t) AW (t) +
WX”‘Q () M®(t) M (t)* dt +

npaX™ 1 (t) M (t) M (t) dt
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It follows that:

E[dX"@)M*@)] _ ala—1) in a
T = TR () M (1) +
WE [X”‘Z (t) M® (t) M (t)ﬂ +

npal (X" (¢) M® (t) M (t)]

We notice that M® (¢) M (t) = ML (t) and M® (t) M (t)* = M2 (t). We conclude
that:
dvm™e (t)  a(a—1)

= e (t
dt 2 )+

-1
n(n2 )lpn72,a+2 (t) + npa\I/nfl,aqtl (t)

where:
U (t) =E[X" () M ()]

Therefore, the relationship between ¥™® () and the moments of F (¢) is:
E((F (1) - F)") = () om0 (v1)
For n = 0, we have:

vty = E[X°(t) M ()]
E {e—%at—&-an(t)}

eféate%a%

6%a(afl)t

For n = 1, we have:

dwhe (t) ala—1) _, 0
— pla i ,a+1
— e () 4 paw®e (1
B a(a2— 1) Wha (f) 4+ paedalatD
We deduce that?:
t
pla (t) — e%a(afl)t/ 67%a(a71)spa6%a(a+1)s ds
0

For n = 2, we solve the ODE:

% = ww,a () + 20a WL () 4+ WOOF2 (1)
SR R URID
"We remind that the solution of the ODE:
%ﬁt) =af(t)+p6(t)

is equal to:

ft)= e“t/ e B (s) ds
0
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where: 5 ala+n), D (at+1)(a+2),
B() = 2pPac T (0l 1) 4 S

The solution is given by:

t
ala— a(a—1)
U2 () = e 21)t/ e *h(s) ds
0

Mt 2p2a (e(Qa 1)t — |) — 2[)2 & b 1
= - -
e 2 (( 1 ( )

For n = 3 and a = 0, the ODE becomes:

dw30 (¢)

wh2 (¢
& 3WE (1)

= 3pe (e275 — 1)

The solution is then:
T30 (t) = p (% — 3e' + 2)

For n =4 and a = 0, we obtain:

dw+0 (¢)

5 6022 (t)
4p% +1
= 6e! <( P 5+ > (e —1) —2p* (e* — 1))
and: 12
1
o0 (1) = %eﬁt_zpoeBt_g(4p2+1)et+12p26t_4p2+1

‘We deduce that:

=
S
|

5
\

(5) w07

=0

and:

For the third moment, we obtain:

E [(F (t) — F0)3] - (%)3 T30 (121)
_ p%z <63u2t 3¢ty 2)

Finally, the fourth moment is equal to:

(&) w0 )

v

E[(F (- R’
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12. We have:

[\

o2 (F (1)) = (e”Qt - 1)

1 1
(1 + 2%t 4 vt S8 — 1)

12

tw‘ Qw tw‘

2 6
1 1
2 2,2 4,3
= t+ -vt 2
e} ( + 21/ + 61/ >
Using the same approximation method, the skewness coefficient is:
P (63u2t _ 36u2t + 2)

(eu2t _ 1)%
~ 3p1/\/£ + 4pr3t/t

7 (F (1))

whereas the expression of the kurtosis is:

(49 4+ 1) €7 2007 (370 4 1) + (36p% — 6) 0 + 5
72 (F (1) = > 2
5(ev"t —1)
3+ (T+11p%) vt

(1+ Lu2t+ Luag2)?

13. (a) Using the formula given in Question (1), we obtain the following equivalent nor-
mal volatility:

K % 10% 13%
5(T.K)  30% 20% 30%
v (T,K) 251389% 1.99667%  3.41753%

by
D)

(b) The method of least squares gives a = 0.017573, § = 0, v = 1.448791 and
p = 0.383867. We verify that the fitted smile adjust perfectly the three observed
volatilities.

(¢) The cumulative distribution function is shown in Figure 9.1. We notice that
the cdf is not an increasing function when the forward rate is close to zero.
As a result, the density function takes negative value. We deduce that there is
arbitrage opportunities.

(d) Using the formula calculated in Question (8), we obtain Figure 9.2. With the
approximation y/Fp K In % ~ Fy — K, the probability density function becomes
always positive.

(e) The skewness is equal to 10.43, whereas the kurtosis is equal to 1822.60. These
values are very high, meaning that the stochastic normal model is far to be
Gaussian. This result is surprising. However, we can show that the long-term
probability distribution of F' (¢) in the SABR model is non-degenerate contrary
to Black and normal models. For instance, when p is equal to zero, we obtain:

1
221/2

F(00) 2 Fy+ SN (0,1)

where Zj, is a Gamma random variable with parameter k.
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Remark 1 To find the distribution of F (c0), we use the following result® of Donati-Martin
etal. (2001): Let & (t) = — (et + 0B (t) + NT (t) — N~ (t)) where Nt (t ) and N~ ( ) are two

independent Poisson processes and B (t) is a Brownian motion. Let A (¢ fo exp (£ (s)) ds,

X (t) = exp (£(t)) fot exp (—¢ (s)) ds and T, denotes an exponential vamable of parameter
a independent of £ (t). The law po of A(T,) satisfies po = o L*u, where L denotes
the infinitesimal generator of the Markov process X (t). Let us consider the special case
&(t) =oB(t) — ct. We have:

dX (t) = o X (t) dB (t) + ((22 c) X(t)+1> dt

2 1
c=((Z -c)la+1 Op + —0*x20?2
2 2
We deduce that the density function of A (00) is equal to:

ok 0
fa(so) (u) = T (k) ub exp (u)

where 0 = 2/0? and k = 2c/0?. Therefore, we have:

9
Z;

and:

A(o0) 2

where Zy, is the Gamma random variable with parameter k. In the stochastic Gaussian model
with p =0, we have:

{ dF (t) = a (t) F (£)7 a2 (1)
da (t) = va(t) AW2 (t)

where W2 (t) and W (t) are independent. It follows that:

a(t) = aexp (—;y% +vdWy (t))

and:

F(t) = Fo—l—a/texp (—;u s+ vdWy (s)> AW (s)

We deduce that F (t ) L Fo + aW2 ((F (1)) where:

t
/exp WWE( )—V28) ds
0

We have: 0
law
(F(o0)) = Z-
where 6 = 2/ (2w)* = 1/ (2v%) and k = 22/ (2w)? = 1/2. Since we have Wi@ (t) faw
N (0,1)Vt, we conclude that:

law 1
F = F Dl
( ) o+ OZN (O ) 21/221/2

8Donati-Martin, C., Ghomrasni, R.., and Yor, M. (2001), On Certain Markov Processes Attached to Ex-
ponential Functionals of Brownian Motion; Applications to Asian Options, Revista Matematica Iberoamer-
icana, 17(1), pp. 179-193.
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9.4.10 The quadratic Gaussian model
1. We know that the bond price:

T
B(t,T) = EQ [e Jire ds}
is the solution of the following PDE:

%tr (2 ()93 B (t,T) S (t)T>

OxB(t,T)" (a(t) + B (t) X (t))
8B (t,T) —r(t) B(t,

5+ o+

) = 0 (9.7)
with B (T,T) = 1.
2. We assume that the solution of B (¢,7") has the following form:

B(t,T) = exp (—a tT) - BT X0t - XD t,T)X (t))

where I (¢, T) is a symmetric matrix. We obtain:

aB(t,T) . . . .
BaT ~ —0a(t,T)— 0Bt T) X (t)— X ()" 8,1 (t,T) X (t)
and:
oxB(t,T) .
W - _ﬂ (th) —2r (th) X (t)
We deduce that:
B, T)  9x (3XB (t,T)T)
B(t,T) B(t,T)
= —2'(t,T)+
. N R T
(5 (t,T) + 2 (t,T)X(t)) (5 (t,T) + 2D (t,T)X(t))
= 2TV +BET)BET)" +
20 (1, T) X (1) B (,T)" +
2B(LT)X (1) T (1) +
AN (L T) X ()X (1) T (¢,T)
By using the matrix property tr (AB) = tr (BA) if the product BA makes a sense, we

can write Equation (9.7) as follows:

Y ()"

—tr(E(t)f‘( T) +
(1) 2 (t
t, T

t )
%tr(E(t)ﬁ(tT)BtT 5 ( T)+

+2X() LTSS B(t,T)+
2X (1) T T)S()S () T(,T)X (¢

(
(B, 1) +201,7) X (1)) e+ BHX 0
dat,T) =X ) 8,8, T)—X () oLt T)X (t)—
(a O+XO)TBH+X) TH)X (t)) = 0

)
)
X —

)
)
)
)
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We regroup the terms by the polynomial degree in X. For degree 0, we obtain:

—u (SO EnSO")+

S (C0AET AT B0 ) -
BT a ) -0 (6 T) —a() = 0
da(t,T) = —tr(Z(t)Z(t)Tf(t,T))—B(t,T)Ta(t)—i—
SBEDTSOE0 0T - al)

For degree 1, we obtain:

2 (LTS @) B(,T) =B B(1,T)-
o t.T)a(t) - 8t8 tT)-Bt) = 0
a8(t,T) = —B() BT +20 ¢, T)SO ) 3(t,7T) -

2 (8, T) a (t) — B (1)
For degree 2, we obtain:

2, T)S()S(t) D (¢,T) =20 (¢,T) B(t) —
ol (t,T)—=T () = 0

or:

. B (t) must be a diagonal matrix in order to ensure that I' (¢, T) is a symmetric matrix.
Indeed, if we do not consider this hypothesis, we obtain:

o (1, T) = % (Fen+Pen))s@0s0" (Fen)+0En)T) -

(f (t,T)+T (t,T)T> B(t)—T (1)

It follows that the term (f‘ t,T)+T(t, T)T) B (t) is not symmetric.
. We recall that:
dX () = (a(t) + B(t) X (t)) dt + 2 (t) dW@ T (1)

where: .
at)=at)-2OS®) BET)

and:
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It follows that:

. _ t _
Xt = PUxy+ eB(t)/ e PG (s) ds +
0

N t N
B:10) / B3 (5) AW D) (5)
0

We conclude that X (t) is Gaussian under the forward probability measure Q* (T'):
X () ~N (m(0,¢),V (0,t))
We have: .
m (0,t) = B Xg 4 BO) / e Beg (s) ds
that is the solution of the following EDO: ’
dym (0,1) a(t)+ B(t)m(0,t)
at) =S BLT)+
B(t)m (0,t) =25 () S (¢) " T (¢, T) m (0, t)

We also have:

t > B, ~ ~

Vv (07 t) = / eB(t)e_B(S)E (S) » (S)T e_B(S)TeB(t)T ds
0

or:

- - t . -
e POV (0, 1) e BT = / e BEN (s)n(s)" e B gs
0
It follows that:
—B () e BOV (0,¢
e_B(t)BtV (0, t
e BOV (0,0 B@M) e BB = e BOn @) x () e BOT

) e—B(t)T +

e BT

or:

BOVO,)+VO,)B@) +S@)S@t)"
= BOV(0,t)+V(0,t)B(t) —
WwWonren ' soOse) +sose)’

8,5V (Oa t)

In our approach, the dynamics of m (0,t) and V (0,t) are obtained under the forward
probability measure Q* (T'). In the paper of El Karoui et al. (1992a), the dynamics of
m (t,T) and V (¢,T) are obtained under the probability measure Q* (¢,T):

orm(t,T) = a(T)+B(T)mt,T)—2V (t,T)T (T)m(t,T)—
V(t,T)B(T)
oV (t,T) = V(,T)B(T) +B(T)V (t,T)—

2V (t, )T (T)V (t,T) + X (T) = (T) "
The Libor rate L (¢,T;—1,T;) at time ¢ between the dates T;_; and T; is defined by:

1 (BT,
L(tacriflacri) = 5‘_1 < B((t T)l) — 1)

where 5i—1 = Ti — E_l.
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. The payoff of the caplet is given by:

f(X) = 6 LT, T) - K)*
B(t,Ti-1) "
- (B(thi; _(1+6i1K)>
1

- m (B(t,Ti—1)— (1+0;,1K)B (t,Ti))Jr

It follows that the price of the caplet is given by:

Caplet — ]EQ [6_ foTi r(s)ds

BOT) (B(t,Tj—y) —(1+6,_1K)B (t,T»)*]

= B(0,)E¥® [(B (t,Ti-1) — (1+6,1K) B (t,Ti))ﬂ
= B(0,0)E¥ [max (0,9 (X))]
where:
g(x) = exp (*d (t,Ti1) = B(t, Tm)z — T (t,Ti—l)IQ) -
(L+ 8 1K) exp (—a (6, T0) = A(t, T — T (1.T3) 2?)

. We have:

+oo
Caplet = B(0,1) / F(@) 6 (z:m (0,8),V (0,4)) da

— 00

“+o0
- B(O,t)/ max (0, g (2)) & (z:m (0,4),V (0,1)) da

— 00

- B(O,t>/gg<x>¢<x;m<o,t>,v<o,t>> da
= B(O,t)/gh(x) dz

where €& = {z : g (x) > 0} is the exercise domain of the option and:
h(z) =g (x)¢(x;m(0,t),V(0,1))
We note a; = f(t,Ti), b, = f3 (t,T;), ¢; = & (t,T;) and d = 1 + ;1 K. Tt follows that:
g(x) >0 < exp (—ai,1x2 — b1 — ci,l) > dexp (—aixz —bjx — cz-)

o a2t F b4 cioq < ax+bix+c; —Ind
o ar+br+¢>0
where @ = a; — a;_1, b =b; —bi_1, ¢ = ¢; — ¢;_1 — Ind. Let A = b? — 4ac be the

discriminant of the quadratic polynomial. If A < 0 and a > 0, £ = (—o00,+00). If
A<Oanda<0,E=0.IfA>0and a >0, E = (—00,z1] U [xe,+00) where:

_ —b—Vb? —dac
= 2a
and:
. —b+ Vb2 — 4dac
R I
2a

If A>0and a<0, & =[x,
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8. We have:
T2 _—az’—br—c
e 1 2
j — 7672‘/(17771) dg_’;
xy \V2orV

R S 10
= —e dz
/gg1 V2rV

where P (x) is a quadratic polynomial:

P(z) = —L(z—m)g—axQ—bx—c

1 m 2
2y - — —azx’ —bxr—c

vt TV T v

- 1 9 m m?
__L(1f2aVY p (mobVY m? + 2c¢V
T2 v v 2V

We can write P (z) as follows:

1 m m2
P = ——2’+=x——=—¢
() W TV oy
_ 1 N2 -
217( )y -e
where:
N Vv
Vo= 14 2aV
- m — bV
I Y T
i m2 4+ 2¢V _m2
- 2V 2V

We deduce that:

T2 1 1 N2 .
J = / e 2w (@) ¢ qp
o V2rV

<|<i

~ T2 1 1 ~\2
— —5g (x—m)
e —e 27V dx
/Il V 2 V
1 €_E< <x2_m) _¢)<m1_m>>
V14 2aV a4 VUV

x—m 1+2an+Wb—m/V

N v V1+2aV

™
P

We also have:

and:
B m2 + 2V _ ﬁj
2V 2V

m?(1+2aV)  (m—bV)?
2V (1+2aV) 2V (1 +2aV)
2am? + 2bm — b2V

2(142aV)

= c+
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9. The price of the caplet is equal to:

Caplet = B(O,t)/h(x) dz
£
= B(0,t)Z;-1(£) = B(0,t) (1 + ;-1 K) Z; (€)

where:
7 (&) = / e~ QT =AET)e =TT ) (12m (0,¢),V (0,¢)) da
£

Since we can write Z; (£) in terms of J, we obtain an analytical formula of the caplet
price. For instance, if £ = (—o0, 21| U [z, +00), we have:

A

I,(8) = J(d(t,Ti),B(t7Ti),F(t7Ti),m(0,t),V(O,t)7—oo,:c1)+

(@ @T), 81,0 (1) m(0.1).V (0,1), 22, +5)
If € = [x1,x2], Z; (€) becomes:

()= (a (T, B (t.T;) . (t.T;) ,m (0,£),V (0,1) ,xl,xg)

9.4.11 Pricing two-asset basket options

1. Let f(Sy(T),S2(T)) = (nS1(T) + aaS2 (T) — K)* be the payoff of the option.
Using Feynman-Kac representation, we know that:

Co = EC [ J rit g (8,(T) 55 (T))

where:
{ §1(T) = $1 (0) el 27D TV

and (£1,€9) is a standardized Gaussian random vector with p (£1,22) = p. Since the
probability density function of (g1,e2) is equal to:

_ 1 2 2_
h (21, 22) = B e 2(1—02)(“4_%2 2pm12)

2m/1 — p?
we have:

Co=e"T // g (x1,22) h (21, 22) dog das
RQ

where:

2. (a) Since we have:

Aeb'*'C’C—DZO(:)mZllng—é
c A ¢
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we deduce that?:

E (e —D)"] = / (Aetter — D)" ¢ (a) da

Aeb/ e (x) de —
1D b

In Z
D/ ¢ (z) dz
ey

In %7%76

D/ ¢ (z) dz
1D b

c A c

= A3 d (dy) — D® (dy + ¢)

1 A
d1:C<lnD+b>
If A< 0and D > 0, we have:
+

(Aev+e — D) =0

_ Mﬂﬁ/’ ¢ () da —

where:

and:
E[(4e"—D)"] =0

If A< 0and D < 0, we have:

+ +

(Aeb+cs —D) — (_D+Aeb+cs)

and: ,
E [(Ae”“f - D)*} = —D® (—dy —c) + AP (—dy)

If A>0and D <0, we have:

+

(A6b+c€ o D) _ AebJrca - D

and: ,
E |:(Aeb+ca _D)Jr} _ Aeb+%c - D

3. Using the Cholesky decomposition, we have:

g2 = pe1 + /1 — p?e3

where (g1, €3) is a standardized Gaussian random vector with p (¢1, e3) = 0. We deduce
that the pdf of (¢1,¢e3) is given by:

1
W (21,23) = ge_%(ﬁﬂg)

9We recall that:

ecm¢ (x) _ 8%0267%(170)2
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Therefore, we have:

Co=e¢"T // g (x1,23) W' (21, 23) doq dos
R2

where: N
g (x1,23) = (4 (xlz + 95 (z1,73) — K)

g} (21) = a1y (0) et 378) T4 VT
g (21, 23) = a2 (0) e(t27293)THpoavTait/1=p2o2v/ T

It follows that:

e [ < [ (6 o) = (K = g (22" 6 0) dxg) b (w1) day

—~ O

where:
sh(ere) = (2 (0) 7T x
e(b2*%PQU§*%(1*P2)U§)T+ 1-p202V Ty
Since we have S5 > 0 and K* > 0, we deduce that:

CO :/BS (S*,K*,a*,T,b*,r)gb(xl) dx
R

where:
S* = 385 (0) er72V T
K* = K — 18 (0) b1~ 30%) T+ouVTas
o* = 094/1 — p?
b* =by — %pQgg
In this case, the Black-Scholes formula is equal to:
BS (S*, K*,0*,T,b*,r) = 5% ~T® (dy) — K*e "7 ® (dy)

where:

1 S* 1
dy = " 0T | + =o*VT
1 0*\/T<DK*+ )+20\f

dg :dl 7(7*\/T

and:

. Ifa; >0, az < 0and K > 0, we obtain the same formula:
Co :/BS (S*, K*, 0", T,b", 1) ¢ (1) dq
R

with:
BS(S,K,0,T,b,r) = —5*® T (—d)) + K*e "7 ® (—ds)

. In the general case, we can obtain the following options:

E|(S* — K*)7" (call)
E [(alsl (T) + a8, (T) — K)*] = { E|[(E* =59 (put)

E[S*] + K* (e)

0 (0)

where S* > 0 and K* > 0. Table 9.1 shows that we cannot always transform the
two-dimensional integral into a one-dimensional integral.



TABLE 9.1: Pricing basket options with one-dimensional integration

Case a1 as K Type S* K* 1D
#1 4+ + + (call) a1 S1(T) 4 a2S2(T) K

#2 + + - (e) 151 (T) + 959 (T) -K v
#3 —+ — —+ (call) alSl (T) K — O[QSQ (T) \/
#4 4+ — — (call) a5 (T) - K -5 (T)

#5 - 4+ + (call) 2S5 (T) K — o157 (T) N
#6 — 4+ — (call) asSs (T) — K —a181 (T)

#7 — — + (0 v
#8 — — — (put) 01151 (T) + QQSQ (T) K




Chapter 10

Statistical Inference and Model Estimation

10.3.1 Probability distribution of the t¢-statistic in the case of the linear
regression model

.
1. We verify that H' = (X (X"X)'X") =X (X'X)™' X" = H and:
H? = X(X'X) ' X'X(X'X)"'XT
X (XTX) 7' xT
H

Since I, is symetric, we also deduce that L = I,, — H is symetric and idempotent:

L? = (I, -H)(I, - H)
= I, 2H+H?
= I,—-2H+H
= I,—H
2. We have: .
LX = (I, - X (X"X) ' X)X =X - X =0
and:

X'L=(L"X) =@x) =0

We notice that: . .
Y=X3=X(X"X) X'Y=HY

and:

A

U=Y-Y=Y-HY=LY
We deduce that:
U=LY=L(X8+U)=LX3+LU=LU

3. We have:
trace (L) = trace (In -X (XTX)71 XT)
= trace (I,) — trace <X (X'X - XT)

-1

= trace ([,) — trace ((XTX) XTX)

= trace (I,,) — trace (Ix)
= n—K

‘We know that the rank of an idempotent matrix is equal to its trace. We deduce that
rank (L) = trace (L) =n — K.

181
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4. We have: . o
RSS (6) 070 =(LU) (LU)=U'LTLU=U"LU

It follows that:
E[RSS (ﬁ)} - E[UTLU]
= E[trace (U'LU)]|
- E[trace (LUTU)}
= trace (]E [LUTUD
= trace (LE [U'U])

= o?trace (L)

= (n—K)o?
and: (A)
RSS (5
~27
E[a}—E — =0
5. We have:

U'LU = o° ((afn)*U)TL((aIn)*lU)

= ¢*V'LV
Since V'LV is a normalized Gaussian quadratic form, we have:
VLV ~ 2
because v = rank L = n — K. We deduce that:
rss (5)
6 = —— 2
n—K
_ U'LU
- n-K
o2
= V'LV
n—
2
o
T R

6. We have:
cov (B,ﬁ) = E

o7] - e [07]
B

+(X7X) "' XTU) L)'
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7. We deduce that B and 62 are independent, because 62 is a function of U. Moreover,
we have:

A

bi = b ~N(0,1)

\/02 ((XTX)_1>M

and:

It follows that:

10.3.2 Linear regression without a constant

1. We have:
U1 T1,1 T1,K
Y = , X= ,
Yn Tn,1 Tn K
b1 €1
o= | e=]
Bn En

where € ~ N (0,02L,). The sum of squared residuals £ "¢ is' :
ele = (Y-XB)' (Y -XpB)
= Y'Y-8'XTY-Y'XB+8"XTXS
Y'Y-28"XTY+3"X"Xj3
It follows that:
B = argmin ele

= argmin %ﬂ—r (XTX) g—pBT (XTY)

B is the solution of a QP problem with @ = XX and R =XTY.

1We have Y' X8 = (YTXB)T = BTXTY because YT X} is a scalar.
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2. (a) We consider that there is a constant in the explanatory variables and we note
X = ( 1 X, ) where X, is the matrix of exogenous data without the constant.
We write the coefficient 5 as follows:

=(5)

The first-order condition of the previous optimization problem is QB = R or
XTX3 =XTY. We deduce that:

1713, +17X,3, = 1Y
XI]-BO + XIX*B* = XIY
If the residuals are centered, we must verify that 17é =0or 17 (Y — Bol—B*X*) =
0. We have? :
17 (Y - 301—/3’*)(*) — 1TY 1731 -173,X,
= ]_T].B() + 1TX*B* - ]-TBO]- - 1TB*X*
= trace (1T160) + trace (1TX*B*> —
1731 173X,
= trace (1T301> + trace <1T5A*X*> —
1781 —17T3.X,
= 1731 +173.X, —1731 - 173X,
0

Adding a constant in the explanatory variables allows to center the residuals. If
there is no intercept in the linear model, there is no reason that the residuals are
centered.

(b) To center the residuals, we must add the constraint 1Te = 0. We have 1'7¢ =
1TY — 17X, which implies that 1" X3 = 1"7Y. The QP problem becomes:

PN

1
S = argmin §ﬂ—r (XTX) g—pBT (XTY)
st. (1TX)B=(17Y)
We obtain a new QP problem with Q = X'X, R=X'Y, A=1"Xet B =
17Y.
(¢) To transform the implicit constraints, we consider the explicit parametrization:
B=Cy+D

where C' is the orthonormal basis for the kernel of the matrix A = 17X and D
is defined as follows:

D = (ATA)A™B
= X"11'X)'x"11'Y

2We use the following properties:
e trace(a) = a if a is a scalar;
e trace (AB) = trace (BA) if the matrix multiplication BA is defined.
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where (ATA) * is the Moore-Penrose inverse of the matrix AT A. As the dimension
of B is K x 1, the matrices C, v and D have the following dimensions K x (K — 1),
(K —1) x1and K x 1. The objective function becomes then:

FB) = T (XTX)5-58T (XTY)

2
1

= SO+ D) (XTX) (Cy+D)—(Cy+D)" (XTY)

= %WTCTXTXOV + %DTXTX(N + %VTCTXTXD +

1
5DTXTXD —ATC"X'Y -DTXTY

= %J (CTXTXC)v+~4" (CTXTXD-CTXTY) +
(;DTXTXD - DTXTY>
We deduce that: )
4=(CTXTXC) CTXT (Y -XD)

and:
B=cC(CTXTXC)'CTXT (Y —~XD)+D

The analytical solution consists in computing C, D and finally B.

10.3.3 Linear regression with linear constraints
1. (a) We have:
U'u
= (Y-X8)" (Y -Xp)
= (YT -8"X") (Y- X5)
= Y'Y-8'XTY-Y'XB+8"X"XS
= ATX™XB-28"X"Y+Y'Y

RSS (5)

(b) The first-order condition is:

8 RSS (8)

2o X TX3-2TXTY =
R h 0

We deduce that:
B=X"X)"XTY
(¢c) We have:
B = (XTX)'XTY
- (X'X) "X (XB+U)
- B+ (X'X)'X'U
Since X L U, B is an unbiased estimator of /3:
E|f] = E|g+(XX)" XU
= B+ (XTX) E[XTU]
B
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and the variance of 3 is:

(@) - B[6-9 G-
- E[(X"X) ' XTUUTX (XTX) |
- X'x) ' XE[UUT|x(xTx) "

= 2XX) T XTLX(XTX)™

= o (XTX)
2. (a) We have:
B = argminRSS ()
AB=B
s.t. { CB>D
We deduce that:
g = arg min %BT (ZXTX) g—pT (ZXTY)
AB =B
s.t. { CB>D

We obtain a QP program with Q = 2X"X and R = 2X Y.
(b) We obtain 3; = —1.01, 35 = 0.95, 5 = 2.04, B4 = 3.10 and S5 = —0.08.
i If Z?Zl Bi = 1, we have:
A=(1 111 1) and B=1

We obtain 31 = —2.40, B = 1.08, 85 = 0.49, B4 = 2.43 and S5 = —0.60.
ii. If 51 = 52 = 65, we have:

1 100 0 0
A‘<1 000—1) and B‘(o)

We obtain 31 = f2 = fB5 = —0.08, B3 = 2.22 and 34 = 3.17.
iii. If 81 > B2 > B3 > B4 > 5, we have:

1 -1 0 0 0

0 1 -1 0 0

C = 0 0 1 1 0 and D =
-1

0o 0 O 1

OO OO

We obtain 3; = 1.33, 32 = 1.33, B3 = 1.33, B, = 1.33 and 35 = —0.23.
iv. If By < B2 < B3 < Ba < Bs and 37, B = 1, we have:

A=(1 111 1), B=1,

and:
1 1 0 00 0
0 -1 1 0 0 0
C= 0 0 -1 1 0 and D=1,
0 0 0 -1 1 0
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We obtain 81 = —2.63, B2 = 0.91, B3 = 0.91, B4 = 0.91 and S5 = 0.91. The
first-order condition of the QP program is:

QB—R—ATA+CTAc=0

where A 4 is the Lagrange coefficient associated to the equality constraint and
Ac is a vector of dimension 4 x 1 corresponding to the Lagrange coefficient
associated to inequality constraints. Moreover, they verify the Kuhn-Tucker
conditions:

min (Ac,CB — D) =0
Since A4 = —192.36304, we have:

0.0000
3.7244
CTAc=—(QF—R—-ATAs)=| —2.8742
24.7449
—25.5951
We deduce that:
0.0000
o 3.7244
¢ = 0.8501
25.5951

We have:
PN = 587 (XTX) 5 5T (XTY) ~ AT (45— B)

The first-order condition is:

af(B;N)

_ T _ T ATy
—55 = (X'X)- (XTY) - ATA=0

We have then: B . .
B=(X"X) (XTY)-(XTX) A"\
Since A = B, we have:
AXTX) T (XTY)-A(XTX) AT =B
or: 4
A= (axTx) " 4T) (AaxTX) T (XTY) - B)
We deduce that:

fo= (XTX)(XTY) -
(XTX) AT (A(xTX)" AT)_1 (4(x™x)" (XTY) - B)
- Ao (xXTX) AT (axTx) AT)% (48 - B)
To transform the explicit constraints into implicit constraints, we consider the

parametrization:

B=Cy+D
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where C is the orthonormal basis associated to the kernel of A and D =
(ATA)* AT B where (ATA)* is the Moore-Penrose inverse of AT A. The objective
function becomes:

RSS (8)

%ﬁT (XTX)p-p" (XTY)

= % (Cy+D)" (X'X) (Cy+ D)~ (Cy+D)" (XTY)

= % (vTCTXTXCy+DTXTXCH) +
% (v'¢™X'XD+DTXTXD) -

XY -D'XTY

1
= §7T (CTXTXC)y++" (CTXTXD -C'XTY) +
(;DTXTXD - DTXTY>
Therefore we deduce that:
§=(CTXTXC) " CTXT (Y - XD)

and:
B=C(CTX"XC)'CTXT (Y -XD)+D

The expression of the estimator under explicit constraints is:

G

b= (XTX) AT (A(XTX) " AT) - (46~ B)
= (xX'x)"" (1 — AT (AxTX) AT)_l A (XTX)_1> .
—1 —1 —1
(XTY)+ (X7X) AT (A(XTX) A7) B
whereas the expression of the estimator under implicit constraints is:

B = C(CTXTXC)'CTXT (Y- XD)+D
— C(C"X™XC0) T (XTY) +
(1-c(c™X™xC)" CTXTX) D

We also have AC' =0 and D = (ATA)* AT B. For any positive definite matrix
M, we have:

M (1= AT (A AT) aM) = ¢ (¢Tme) T T
and:
(XTX) AT (A(xTX)" AT)il _
(1-c(cTXTXC) " CTXTX) (AT4) AT

We deduce that the two estimators are equivalent.
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(d) If 1 = B2 and B1 = B + 1, we have:

1 =10 0 O 0
A<1 000-1) and B<1>
We deduce that the estimator under explicit constraints is:

oo ) (1-aT () aT) A ).

(XTY) + (XTX) AT (A(xTx) " AT)_l B

0.28040

0.28040

= 2.08942
3.21265
—0.71960

We can write the explicit constraints into implicit constraints:

g = Cy+D
1
0 0 @ %
= 1 0 0 Y2 |+ 0
01 0 V3 0
1 _2
0 0 7 3
We deduce that:
5 = (CTXTXC)' 0T (XTY - XTXD)
2.08942
= 3.21265
—0.09168
We obtain the same solution:
B = Cy+D
0.28040
0.28040
= 2.08942
3.21265
—0.71960

Remark 2 The matrices C and D of the previous f = Cy+ D correspond to the orthonor-
mal matriz of A and the matriz (ATA)*ATB, However, there exist many decomposition
B = Cv+D because the only restriction is that C' is an orthogonal matriz of A. For instance,
if we choose:

8 = Cy+D
1 0 0 0
100 " 0
- lo1o0 v |+ o
00 1 3 0
1 0 0 -1
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we obtain:
5 = (C"X'xC)' T (XTY -X"XD)
0.28040
= | 2.08942
3.21265
and:
B = Cy+D
0.28040
0.28040
= 2.08942
3.21265
—0.71960

10.3.4 Maximum likelihood estimation of the Poisson distribution

1. We have:

0

It follows that:

. We have:

‘We deduce that:

n
Z InPr{Y¥; =y}
i=1

2L\
N2

The variance based on the Information matrix is then:

~

A

o (3) =

If we use the Hessian matrix, we obtain:

var (

We obtain the same expression.

~

A

n

) - s
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10.3.5 Maximum likelihood estimation of the Exponential distribution

1. We have:

£ = ) e
i=1

n

i=1

It follows that:

aL(N) n
i =0 © 3 ;yl_o
a n 1
= )\ = TL = —
Yim1¥i ¥
2. We have:
L) n
AN A2
We deduce that: n
IO =5

The variance based on the Information matrix is then:
R 22
var (A) = —
n
It is equal to the variance based on the Hessian matrix.

10.3.6 Relationship between the linear regression, the maximum likeli-
hood method and the method of moments

1. We have:
n 2
_oon o on oy I~ (yi—alB
L(0) = 21n27r 21110 2§< - >
T
Mg M2 (Y-XB) (Y- XP)
2 2 202
The vector of parameters 6 is:
o—( P
o
2. It follows that:
L) 2X T (Y — XB)
o 202
X'y - XTXp
- e
and: .
oe®) __n  (Y-XB) (Y-Xp)

0 o2 202 204
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We deduce that:

ag(;):o s X'Y-X"X3=0
& f=x"X)'XTY
and:
AT ~
Y-X3) (Y-X3
832(53):0 < _2&2+( )2&4< ):0
A\ T A
o g ¥-XB) (Y-XP)
n

We verify that BML = BoLs and &l%/IL < 6%LS because:

L) (o)

ooLs =

n—K
3. We have:
AC) _XTX
oBopT o2
o*e) 7XT (Y —Xp)
08002 ot
X'u
= — 0—4
*e0) _ n (Y-XB)'(Y-XB)
do2do? 204 of
_ n UU
204 o6
It follows that:
H(0) = ~XTX/o? -XTU/o*
~\ -X"U/o* n/(20*) -UTU/c®
and:
1) = —E[H(0)
- XX /o? E[XTU] /o*
- E[X'U] /o* E[UTU]/o® - %/0o*
B ( X'X/o? 0 )
0 2 /ot
because we have E [XTU] =0and E[U'U] =E [Y1" | u?| = no?. We deduce that:
var () = I(0)7"
_ (2xTX)TT 0
0 204 /n
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Finally, we obtain:
var (8) =62 (X7x) "
and:

n

var (62) =

We notice that the expressions of var BML) and var (ﬁOLS) are similar, but they do

not use the same standard deviation of residuals &.

10.3.7 The Gaussian mixture model

1. We can write Y as follows:

Y =BY,+(1-B)Y,

where B is a Bernoulli random variable independent from Y; and Y5, and whose
parameter is ;. We have:

EVY = E[BY+01-B)Y)']
- F Z@ (BY)" (1= B)Y2)'
- zk: <IZ>E (B! (1= B) )|
=0

Since Y; and Y5 are independent, we have E [(BYl)kfi (1-B) Yg)i:| when ¢ # 0 or
1 # k. It follows that:

E[YY = E[BY]+E|1-B)"v/]
— E[BE[}]+E|(1-B)"|E[v]
= mE[Y{]+mE [Yy]
because B is independent from Y; and Y2, B¥ ~ B (m1) and (1 — B)" ~ B ().
. We deduce that:
ElY] = mE[Y]+mE[Y?]
= M1+ T2
and:
var (V) = E[Y?]-E*[Y]
= mE Y] + mE [Y7] —E*[Y]
Since we know that E [Y?] = u? + o7, we obtain:
var (V) = m (4} +07) +m2 (43 + 03) — (1 + mapn)?
= mot +mos +m (1 —m) (1F + p3) — 2mimappio
=m0} + w03 + mima (1 — p2)?

because m1g =1 — 7.
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3. We remind that E [Y;}] = uf 4 3p;02. It follows that:

E[(Yf]E[Y])?’} = E[Y?¥] = 3E[Y]var (V) — E3[V]
= 1 (4} +3mot) + w2 (4 + 3u203) —
3 (myp1 + m2ap2) (7T10% + M08 + mm2 (p1 — M2)2) -
(m1p1 +7T2M2)3
= mmy(my —m) (m1 — p2)’ + 3mim (11 — pa) (0F — 03)

We deduce that the skewness coefficient is equal to:

o (¥) = T1T2 ((7@ —m1) (1 — p2)’ +3 (1 — p2) (03 — 03))

3/
(maf + w03 + mima (1 — uz)Q)

10.3.8 Parameter estimation of diffusion processes

1. The solution is:
X () = X (5) e(n10") t=)+o W (O =W ()

It follows that:
InX (#) —InX(s) = <,u - 302> (t—s)+o(W(t)—W(s))

Since W (t) — W (s) ~ N (0,t — s), we deduce that the log-likelihood function of the
sample X is:

T

1 g2
L(p,o) = —55 <ln2w+ln(02Ati)+02Ati)
=1
T T
T T 1 1 g2
= T2 -le?— -5 At - - i

g MM T QMg 2;11 2;(;%@

where At; =t; — t;_1 and ¢; is the innovation process:

1
gi=Inw; —Inx;_1 — <,u — 202) At;

2. The solution is:
t
X (t) = X (s) e at=9) 4 p (1 - e*a“*S)) ‘o / e=t=0) QY ()

where:
2

t
—a(t—u) ~ i _ ,—2a(t—s)
/S e dW (u) /\/’<07 50 (1 e ))
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‘We deduce that:

T 2
£(a,bo) = f% Z <1n27r+1n <C2Ta (1 _ e2ami)>) .

=1
1 i 2ae?
2 — o2 (1 _ 672aAt1)
T T o 1<
_ - = o= —2aAt
= ——In27 2ln2a 2;111(1 e )
ae?

where:

. We have:
X(t)—X(s)mp(s, X (s)(t—s)+o(s,X(s))(W(t) =W (s))

We deduce that:

T
1 g2
fE In2 1 i1, Ti—1) At; t
P (n T+ n ( 1, Ti—1) )+ o2 (t¢—1,$i—1)Ati>

i=1

where:e; = x; — x;-1 — p (ti—1,x;—1) At;. In the case of the CIR process, we obtain:

T
T T 1
L(a,b,0) = —§1n27r ) Ino? — 3 E In (z;_1At;)
i=1
T
1 €2
—= —_t 10.1
2 ; sziflAti ( )

where:

Ei=T; —Xj—1 —Q (b — JZi_l) Ati
We assume that X (s,t) = X (t) | X (s) is normally-distributed N (mq (s,t) ,ms (s,t))
where my (s,t) = E[X (s,t)] and ms (s,t) = E [(X (s,t) — my (s,1))?| . Then, we have:

5(9 ;Z<1H2ﬂ'+1nm2(z 17t)+(xi_m1 (tihti))z)

i=1 ma (ti—1,t;)
In the case of the CIR process, we have:
mi (tifl,ti) = xi—le_aAti + b (1 _ e—aAti)

and:

—alAt; _ ,—2aAt; _ ,—alAt; 2
ma (ti1,t;) = o* (Ii—l (e ¢ ) +b(1 ¢ ) >
a 2a
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We deduce that:

T T
l(a,bo) = —§ln27r— 511102 -

T —alt; —2aAt; —alt;\?2
1 Z (e i—e M) (1—e M)
2 i=1 " (xil @ w 2a -

1 <& e?
P e 10.2
2 z; sziflAti ( )

1=

where:
£ =i — xi_1e @At (1 - e*“A“)

When At; — 0, we have e 2t &~ 1 — aAt; and e 298t ~ 1 — 2aAt;. Tt follows that:
(emadti — gm20Ak) (1 —aAt;) — (1 — 2aAt;)

a a
At;

— €

Q

and:

(L—e ™) 1-2(1—aAt) + (1 - 2aAt,)

2a 2a
~ 0

We deduce that m (tz’—h ti) ~ Ti—1 (1 — G,Ati) +abAti, mo (ti—h ti) ~ szi—lAti and
& | Ti—Tj—1 (1 — aAtl) — abAtl
~ Ty — Ti—1 —a(b—xi_l)Ati

We conclude that the log-likelihood functions (10.1) and (10.2) converge to the same
expression when At; — 0.

4. For the geometric Brownian motion, we have E;, | [¢;] = 0and E;,_, [512 — 02Ati] =0.
We deduce that:

hit(p,0) =Inw; —Inazi_y — (p— 30%) At;
hia (p,0) = (Inz; —Inz; g — (u— 307) Ati)Q — 02At,

For the Ornstein-Uhlenbeck process, we can use the same two moment conditions and
the orthogonal condition Ey, | [¢;2;—1] = 0. Finally, we obtain:

hig (0) = x; — ;_1e” A — b (1 — emAk)
hin (0) = (w — w1698 — b (1 — e=a8t))? — 52 (71*6;20'%)
his(0) = (z; — z_1e A — b (1 — e ®A)) 2y
For the CIR process, we proceed as for the OU process:
hia (0) = x; —my (tio1,t:)

hio (0) = (z; — my (ti—lvti))2 —mg (ti—1,t;)
his (0) = (i —my (ti—1,ti)) 251

where:
mi (tz’—hti) = xi_lefaAti +b (1 - efaAti)

e—aAt,; —e 1 e_aAti, 2
ma (tio1,t;) = o (xi_l ( + b( )

and:
—2aAti)

a 2a
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5. If we use the Euler-Maruyama scheme:

X(t) =X (s)~ab—X(s))(t—s)+o|X ()] (W()—W(s)

we obtain:

hz,l (9) T; — My (tl 1,t> )

hio (0) = (x;i —ma (ti—1,t:))" —ma (ti1, ts)

his (0) = (xi_ml(z 1,t)) Tioa

hia (0) = ((xi — my (ti1,t:))° — ma (tiflati)) Ti—1
where:

my (ti—1,ti) = xi1 +a(b—xi-1) Aty

and:

ma (ti—1,t;) = o* \Il'—1|2’Y At;

10.3.9 The Tobit model

1. We note X =X | X > ¢ the truncated random variable. The probability density
function of X is equal to:

where a = 07! (¢ — p). We have?:

]E[X] = 1_;(a)/cooxa\}%exp< ;( O_'U>2> dx
= 1;(0[)/00(#+0y)\/12—exp( ;yz) dy

- v (0 s arsolowi)

= u+ 0>\ () (10.3)

where A («) is the inverse Mills ratio:

3We use the change of variable y = ¢~ ! (z — p).
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‘We have:

E[XQ] = I}{J(Q)/:oﬁmjﬂexp <—; (T>2> dx

- 1_}{)(01)/:0 (u+0y)2 \/12776Xp (-1292) dy
— %{)(a) (MZ/:ngﬁ(y) dy + 20 [ (y)]o +

o /a N ¥’¢ (y) dy)

= w2 +2u0r(a)+ —2 ([—y¢ (W + /:o ¢ (y) dy)

[\)

1-2(a)
= p?+2u0)(a)+ o (14 al(a))

We deduce that:

var (X) = E[X?]-E?[X]
= p?+2u0)(a)+
o2 (1 +aX(a)) — p? = 2uo) (o) — o*M* (a)
= *(1-4(a))

where:

We can show that truncation reduces variance because we have 0 < § (a) < 1.

The censured random variable Y can be written as follows:

~ X if X>c¢
Y_{c if X<ec

‘We have:

EY] = Pr{Y=c}E[Y | X <] +Pr{Y #c}E[X | X > ]
Pr{X<C}c+Pr{XZC}]E[X]
= P(a)c+(1—=P(a) (n+or(a))

We also have:

E[Y? = Pr{V =cE[Y?| X <c|+Pr{Y #cE[X?|X >]
= ®(a)®+(1—@(a))E[X?]
= ®(a)+ (1 -0 () (0 +2u0A(a) + 0% (1+a)(a)))
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‘We deduce that:

var (Y) = E [}72] —E? [)7]
= ®(a)P+(1—-@(a)) (p*+2ucr(a) + 0 (1 + aX(a))) —
®? (a) ¢ = 2@ (a) (1 — @ (a)) (uc + oc (@) —
(1= @ (a))2 (12 + 250 () + 02 ()

— () (1-®(a) + B (a) (1— D () 2
26 (a) 6 () o + (6 () (@ — 6 () + 1 — <>>02—
26 (a) (1 — ® (a)) e — 20 () 6 () e

= ®(a)(1-® () (c—p)’ —24’( )¢ () (c—p)o+
(1- ‘I’(a))(1+)\()( (@) o
= ®(a)(1-®(a))a? —2<I>(a)¢(a)a02+
(1*‘13(04))(1*5(04)* (@) ¢ (@) + A () o
= 0*(1-@(a) (®(a)a® —2® (a) X (a) at
1-6(a)— A(a)¢(a)+>\2(o¢))
(

= (1= (a) (1= 6(a) + (@ = A()@(a))

because we have:

g

—® () A% () = A (a) ¢ (a) + N2 (a) =0

3. In Figures 10.1 and 10.2, we have reported the corresponding probability density
function of the truncated random variable X and the censored random variable Y. We
obtain E [X| = 3.7955, E [X?] = 18.3864, 0 (X) = 1.9952, E [YV] = 2.7627, E [Y?] =
11.9632 and o (Y) = 2.0810. We verify that truncation reduces variance: o (X) <
o (X). In the case of truncation, some observations are excluded, implying that we
observe only a part of the probability density function. In the case od censoring, the
probability density function is a mixture of continuous and discrete distributions. In
particular, we observe a probability mass at the censoring point X = c.

4. We have:
Pr{Y =0} = Pr{Y*<0}
= Pr{z"B+U<0}
= Pr{U < —xTﬁ}

()
ef)

We deduce that the log-likelihood function is equal to:

o) = Xn:(l—di)ln<1—@<xiﬁ>> _

i=1

,Zd <ln27r+1na +< - B) )

i=1

where d; is a dummy variable that is equal to 1 if y; > 0.
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FIGURE 10.1: Frequency (in %) of the truncated random variable
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FIGURE 10.2: Frequency (in %) of the censored random variable
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5. We have: 9 6 (f (z))
5o (1= (f(2)) = —Wf’ ()

and:

We also have:

oe(o 1 Pi 1
8()2—0;(1_@i>$i+(ﬂ;(yi—$;rﬁ)xi:0 (10.4)

and:

where ¢; = ¢ (xj6> ;=P < Tﬁ) and ny =Y . d;.
6. Since 0,¢ () = —x¢ (x), we have:
(

a( ¢ (f () ):¢>(f(x))(¢>(f(af))—f(x)(1—<1>(f(ar))))f’(x)
dx (f () 1—@(f(2))’

It follows that:

aZT (1 ﬁbi) G _¢;i)2 <¢i —(1=2) (iﬁ)) =

0 o 1 o _ ' z B T
902 (1—@) T (1—a) (@“‘I’” (0>)xi d

For the Hessian matrix, we obtain:

?e0) _ 1 b | NI
W o 7;@220(1_(1)7)2 <¢Z(1(I)z)( pu ))l‘zfﬂi —

1
T
? E TiT;

and:

i =

and:

ore0) _ 1 Pi 4
aﬂaag - M)<Z(1—@i)2(1_©z)+

d;=0

Ear () on)
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0 (1\__3
do2 \o3) 205
92 () 1 i xl B
_- 7 = Tt 1—®;) =22
002002 404;)(1_@2_)2 (3( )( 0 )+

() a2

1 T2, N1

We also have:

and:

7. By multiplying the system of equations (10.4) by 37/ (20?), we obtain:

1 bi T 1 Toy . Ta_
203d.—0(1_®i)xiB+204d._1(y1 T; 6)%‘5*0

Combining this result with Equation (10.5) gives:

042 '_mTB Tﬂ""% ( Tﬂ) nq =0

202

We deduce that:

Let D; be the Bernouilli random variable such that:

Pr{D;=1} = Pr{Y” >0}
= PI‘{UZZ—QTZTﬁ}

' (52)
ag

Let ©; be a random variable that is independent from D;. We have:

n 1 n
[za D ST I IR
d;=0 i=1 1 =1
and:
n
E lz Qi ZDiQ =Y $,E [

di=1 1 i=1

By introducting the notation:

T
5=l p
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we obtain:
5”@} 1~ (1—-9) ¢ T
E|——% = — —_—— i — 17(1)1 Z2i) iy —
[aﬁaﬂ‘r 0-22.:1 (17¢)2 (¢ ( ) )
1 & T
) Z bx;x,
i=1
= - Z aixix;r
i=1
where:

1 &
i=— |z —T—— =¥
“ ﬁ(z 1- &, )

Using Equation (10.3), we have:
E[D; (y; —2B8)] = E[D;Uj]

It follows that:

di=1 =1
and: ,
L)
[ 9507 } 2 bi
where:
S S SR v NN
b= 33 ( > +¢,zi> + 0
1 22
= g (0o )
We have:
S w28 = Y (w—a78) (5 -l )
di=1 d;=1
= no’ - Z (yz—m;rﬁ)l";rﬁ
di:].
and:
n 1 2 n 1

We deduce that: ,
aAC) N - '
| 55aaT| - 2.

203
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where:
1 222 3 1 1
“ T T (—3@% 1o @zi) T ogati T adi
1 . 2,2
= —— (2t L T 9,
4ot <¢zzz + ¢izi 1— o, z)

We conclude that the information matrix is equal to:

o - 1[50

( Z?:l aixix? Z?:l bix; )

Yicibiw o Ylc
We retrieve the formula obtained by Amemiya (1973).

We note Yy the nq x 1 vector of the explained variable and X; the ny x K matrices
of explanatory variables when the data are not censured. We also notice that:

ﬁzk(x;rﬁ)

where A is the inverse Mills ratio. The first-order condition (10.4) becomes:
—6XJ Ao + X[ <Y1 — Xlﬁ) -0

where Ag is (n —ny) x 1 vector of inverse Mills ratio and Xg is the (n —ny) x K
matrices of explanatory variables when the data are censured. We deduce that:

(X7 X)) XYy -6 (XX,) 7 X] A
Bi—6 (XlTX1)71 Xg Ao (10.6)

b

It follows that the OLS estimator Bl based on non-censured data is biased.

We apply results obtained in Question 1 to the random variable U with pu = 0,
c=—z"Band a = 071 (c — p). We have:

EY|Y>0 = E[z'8+U|U>—2"p]
= 2'B+E[U|U>—2"p]
z' B
= xTBJra)\(U) (10.7)
and:
EY|Y <0 = E[z'8+U|U<—z'f]

= 2 B+E[U|U < —2"8]
= z' -0\ (mj;ﬁ) (10.8)
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Using Question 2, we obtain:
E[Y] = E[max(z'8+U,0)]
= z'8+E [max (U, —xTﬁ)]

- rse(2)nea (o)
()l 2)

= <I><x;ﬁ>]E[Y|Y>O]

From Equation (10.7), we deduce that the corresponding linear model is:
Y = X5 +0A
and:
B o= (XIXy) XY, -6 (X]Xy) T XJA,
= -6 (XX XT Ay (10.9)

The difference between the estimators (10.6) and (10.9) is the term XA which is
calculated with censored data in the maximum likelihood and non-censored data in the
last approach. However, the estimators (10.6) and (10.9) can not be used in practice
because they depend on ¢ and on the inverse Mills ratio that is a function of B and

P

g.

The ML estimates are SV = 2.8467, M) = 1.0843, MY = 0.9869 and 6ML) =
5.5555. The OLS estimates based on the non-censored data are B(()OLS) = 6.2002,
BA§OLS) = 0.6757, BEOLS) = 0.7979. We verify that:

2.8467
BOLS) _ 5L (X TX )T XTAMY = | 10843 | = pMD)
0.9869
and:
2.7095
BOLS) _ 5L (X TX )T XTAMY = | 10065 | # AME)
1.0522

OLS) _ and the censored data

- XJ A(()ML). This is not the case of the second estimator, which is only based on
non-censored data — $(OF5) and XIAgML). The second estimator is then less efficient
than the ML estimator since it does not use all the information provided by the data.

The ML estimator combines the non-censored data — B (

The conditional predicted value of g is:

. T (ML)
z] fML) — 5(ML) ) %) ify; <0

ok

Yi =

R T g(ML)

T

whereas the unconditional expectation is §; = ; B (ML) ' These values are reported in

Table 10.1.
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TABLE 10.1: Predicted values ¥} and ¢}

) 1 2 3 4 5 6 7 8 9 10
Yi 4.0 0.0 0.5 0.0 0.0 174 18.0 0.0 0.0 9.7
Ur 3.5 —12.7 51 =59 —-59 143 176 —-42 -—-54 4.0
gr —3.0 —12.6 1.6 —-34 =34 142 176 0.8 —24 -14
7 11 12 13 14 15 16 17 18 19 20
Yi 9.7 1.8 6.5 26.1 0.0 5.0 21.6 6.2 9.9 1.4
U5 9.3 5.1 6.2 16.3 -—15.1 3.6 19.6 5.9 9.3 6.4
U5 8.6 1.6 39 163 —-15.1 —-25 19.6 3.4 8.6 4.3
7 21 22 23 24 25 26 27 28 29 30
Yi 5.0 0.0 0.0 18.1 0.0 7.7 0.0 0.0 0.0 4.0
ur 41 =58 -94 157 =33 173 —-62 —-54 —-34 122
g7 —-08 —-32 -—-88 157 3.8 173 -39 -2.3 3.2 12.0
10.3.10 Derivation of Kalman filter equations
1. We have:
dt|t—1 = Ei [at]

= Ei1 [Tiaw—1 + ¢ + Ry

= TEi o]+

= Tidy_qji—1+ce

We introduce the notation d; = oy — &1 It follows that:
0y Tyou—1 + ¢t + Ry — (Ty@y—1—1 + 1)
= T (a1 — &_1p—1) + Reme
and:
. R T
&0, = T, (atfl - Oét—l\t—l) (Oét—l - at—l\t—l) T," +

We deduce that:
Py_q

2. We have:

2T, (Ozt_1 — @t71|t71) ntTRtT +
Ry R}

Ei [(at - dt\tfl) (at - dt\tfl)—r}

TE; [(Oét—l - @t—l\t—l) (Oét—l - OA‘t—l\t—l)T:| T, +

2LE 1 [(qw—1 — &ape—1) n) | RS +

RE; [UtﬁtT] R/
TP 1) T + ReQR/

Ut

yr — Eg 1 [yt]

Yi — Ei1 [Zioy 4 di + €]
Yt — Zt&t|t71 —dy

Zy (o — Qypyo1) + &
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Since &y is a Gaussian vector, v is also Gaussian with:

Eii[vd] = Eeo1 [y — ZeGuyjpn — di]
= ZiEi1 [on — Gypo1] + Eioi [ed]
0
and:
F, = B0 -0)(i—0)]
= Boor |(Ze (00 = de) + ) (Ze (o0 = ) +60) '
= ZEe (o0 dyer) (o0~ o) | 2 + By [ae] ]
= ZPy1Z] + H,
3. We have:
B [ano]] = Eioi |a (Zi (00— ) + o) ']
= B o (of =l 27 + B fone] ]
= Eia [(o0 = dge) (of —ad)] 25+
R {aj — aj‘t_l] z7
= PpaZ/
and:

Qg o Qi
( Ut > N ( Zy (Oét*@t|t—1)+€t )
(% 5) () (zb)
Zy Iy €t — 2G|t —1
— At< o )+Bt
€t

Conditionally to the filtration F;_1, the random vector (a,v4) is a linear combination
Ay X + By of the independent Gaussian random vector X; = (o, €;). We deduce that:

RPN Q-1 Pj—y  Pyaz
vy 0 "\ ZiPyi Fy

4. We deduce that:

OA‘t|t = Et[at]

= E [at | ve = yp — Ztéét\t—l - dt]
Using the standard results of the conditional distribution, we obtain:
Gyl = Qypp—1 + Pt|t71ZtTFfl (ye — ZiGype—1 — dy)

and:
Py =Pyy—1 — P12 F; ' Zu Py
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5. The Kalman filter corresponds to the following recursive equations:

Qg1 = Tily_1;p—1 + ¢4

Pji—1 =T, P11 T, + RiQuR/

v =Yt — Zlypp—1 — di

Fy = ZyPy 12, + H,

Qg = Qypp—1 + Pt|t—1ZtTFt717)t

Pyy = Pyy—1 — P11 Z F7 ' Zy Py

We have:
iy = Tip1Gyp + ceta

Tiy1 (dt\t—l + Pt\t—lthFflUt) + ey
= Tit10upe—1 + ey + Koy

where K; is the gain matrix:
Ky =Ty 1Py Z) F[
Since we have vy = y; — ZyGy—1 — di, we can write the state space model as follows:

Yt = ZQypp—1 + di + vy
Qo1 = Tip1Gyp—1 + cop1 + Koy

If vy = 0, then &1y = Tiy184i—1 + ci+1. Ky indicates how the filter changes the
classical estimation Tj114y;—1 + ¢;+1 when it takes into account innovation errors.
Therefore, K; is the correction matrix of the prediction-correction method.

6. We introduce the process 7; = y:—1 with 79 = 1. Another representation of the state
space model is:
Y¢ = Loy + dyyy + €
ar = Tioap—1 + ceye + Reme

Yt = V-1
We obtain:
{ Yo = Zjog
of =T af  + Ring
where:

Zi=( % d I,)

Tt Ct 0
7= 0 1 0
0 0 O
R O
Ri=( 0o o
0 I,

The state vector becomes af = (ay, V¢, €;) whereas the noise process 0y = (1, €;) is a
Gaussian random vector N (0, Q) where:

* c,
Qt:<g: FItt)
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7. If we apply the Kalman filter to the augmented state space model, we obtain:

@:\tfl = Tt*&;:l\tfl

Pt*\tq = Tt*Pt*fl\tfth*T +RiQf Ry "
Uije1 = Ziafy
UZ( =Yt — gatfl

Fr = Z;Pt*‘t,lsz

d:\t = OA‘t|t71 + PtﬁtqZ;TFt*ilvt*
P* = pP* — p* Z*TFt*flzz(P*

t|t tt—1 tt—14t t|t—1

We have &5 = (&0, 0,0) and:

oo
coco
coo

We assume that Pt*|t has the following structure:

Pt|t 0 V
ﬁt = o 0 O
v,r 0 W,

We deduce that V; = RtC't—r and W; = H;. Finally, we obtain:

-1 = Tely 11t

Pyi1 = T,P_qje1 T, + ReQiR]
Otjt—1 = Zlyp—1 + di

Ut = Yt — ﬁt|t—1

F, = Z;Py_1 2, +2Z,R,C, + H,
Gi = Py12) + RC/]

Gyt = Qyp—1 + G F[ 'y

Py = Pyy1 — GiF G

10.3.11 Steady state of time-invariant state space model

1. We have a; = (y,&¢) and:

= (0 et (5)+(3 )
R

Using the standard SSM notations, we have ¢ = (u, 0),

_ (4 O
r=(% o)

1 (1 0
(IQ*T) _1—¢1<0 1_¢1>

1
= 1—¢1 0
0 1

It follows that:

and:




210 Handbook of Financial Risk Management
The steady state G is then equal to:

b = (L—T)"'¢c

:1—%(31—0@)(5)
()

We also have:

T_ of 11
RQR —(76<1 1)
and:
2 0 0 0
0 0 0 0
ToT=| 4 o9 0 0
0 0 0 0
We obtain:
15% 00 0
- 0 1 0 0
L-T®T) =
(=TT 0 0 1 0
0 0 0 1
and:
vec(Po) = (I41—T®T) "vec(RQRT)
1 2
1—¢2 0
= O’?
o2
o2

We finally deduce that:

~

8

|
7N
Q \Hq
[UESFNLEN
Q Q
MmN Mo
~_—

2. We have a; = (y, ;) and:

0 —6 1
= (00 e ()4 (5
R:

Using the standard SSM notations, we have ¢ = (u, 0),

(0 -6
(0 )

)77t
1

(1,1), Q@ = o2 and:

We obtain:

and:
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‘We have:
I, —-TT=
and:
1 0 0
01 0
vec (Py) = 00 1
0 0 O

Finally, we obtain:

2
|

3. We have oy = (y4,¢) and:

—0
at:<</g1 01

S)
RN
7N

)at1+<g

Using the standard SSM notations, we have ¢ = (p,0), R = (1,1), @ = o7 and:

1 0 0 —6%
010 O
001 0
0 00 1
01\ [ o o (1+67)
0 a2 | o?
0 a2 |~ o?
1 o2 o?

[t
— T
>
=N

)

J+(2)n

2

(& —t
= < 0 0
‘We obtain:
_ 1 1 -0
L-T)'=—— L
(I ) 1—-¢1 ( 0 1-¢ >
and:
I
doo = # 1 _91 © = 1-¢1
1-¢1 \ 0 1—-¢1 0 0
We also have:
¢7 —16y —d16; 67
0 0 0 0
TeT=1 49 0 0
0 0 0 0
It follows that:
1 _ $16: _ 161 63 o2
1—¢32 1—¢7 1—¢3  1—¢32 5
vec (Py) = 0 1 0 0 03
0 0 1 0 03
0 0 0 1 O¢
and:
1—2¢191+9§ 1
Poo = O’? 1—¢1
1 1

4. We have oy = (y4,us) and:

(0 6
=1\ 0 ¢

Q-1+ ( g

211
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Using the standard SSM notations, we have ¢ = (u,0), R = (1,1), Q = 02 and:

‘We obtain:
G — 1 1-6, 60: ey _ o ow
=19 0o 1 0 0
and: )
100 &, , .
01 0 2 o L
vee (Pac) = TR G =] B
001 = 5 -6
1
000 7 =
1

We deduce that:

1 1
2 1-602 1-02
POO = 0¢ 1 ! 1 !
1-07 162

10.3.12 Kalman information filter versus Kalman covariance filter

In what follows, X ! defines the inverse of the square matrix X and Y ! defines the
Moore-Penrose pseudo-inverse of the non-square matrix Y.

1. We have:

(In+ABTC™'B)'A = (I,+AB'C™'B)"" (4"

— (A (In+ABTC'B))"
— (A'+BTCc'B)”
-1

2. If the relationship (Im + ABTC'_lB)
must verify that:

=1, - AB" (C+ BAB—'—)_1 B is true, we

() = (Im+ABTC7'B) (L.~ ABT (C+BABT)"' B)

We have:

(%)

L+ ABTC™'B) (L, — AB™ (C+ BAB") " B)

I, +ABTC™'B) = (I, + ABTC™'B) AB" (B'C+ AB") ™"
-1

(Z )

— (In+AB'C™'B) - (I, + ABTC™'B) AB" (C+ BAB") ' B
(Z ) -
(Z 'B) -

— (I.+AB'C (Im + ABTC™'B) (B™'CBT "A™" + I,,)
Since we have:
In+ABTCT'B = (ABTCT'B) ((ABTC™'B) ™" + 1)

= (ABTCT'B) (BT'CBT AT 4 1,)
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We deduce that:

(x) = (Im+AB'C'B) -
(ABTC'B) (B'CBT A7 41, (BICBT AT 4 Im)il
= (Im+AB'C™'B) - (AB'C™'B)

= m

3. Using Questions 1 and 2, we have:

1

(In+ABTC™'B) A= (A" +B'Cc'B)"

and:
(Im+ABTC™'B)"' =1, — ABT (C+ BAB") ' B
‘We deduce that:

(A +BTC'B) = (In—ABT(C+BABT) ' B)A

A—ABT (C+BABT) ' BA
and:
() = (In+ABTC'B) ' ABTC™!

— (A +BTCc'B) 'BTC!

~ (A-ABT(C+BABT)" BA)BTC!

— ABTC™'—ABT (C+BAB") ' BABTC!

— ABTC™'—ABT (C+BABT)" ((BABT +C)C™' — 1)

— ABTC™'—ABT (C+BAB') ' (BABT +C)C' +

ABT (C+BABT)™

— ABTC'-ABTC'+ABT (C+BABT)

Finally, we obtain the expected result:

(Im+ ABTC'B) ' ABTC™' = ABT (C+ BABT) ™"

4. We have:

m+ D~ 1A) (A+D)™*
A+D) '+ D 'AA+D)"

() = (&
(

= (A+D) '+ D (I, + DA™Y
(
(

1

-1

A+D) + (Im—(Im+DA—1) DA™

)
)

A+D) ' +D '~ D' (AD! +Im)_1
)

D~
= (A+D)'+D'—(A+D)!
= D!
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5. Let V be a covariance matrix. The information matrix I is the inverse of the covariance
matrix V:

I=v-!
This matrix is used in the method of maximum likelihood.

6. The state o?fl , (resp. d:‘ ;1) is the estimator of o normalized by the covariance matrix
given the filtration F; (resp. Fi_1).

7. We have:
Ht|tPt\t71 = Ptﬂlpﬂtfl
= Ptl_tl—l (Im B Pt\tflthFt_IZt)_l Pt\tfl
= Pty (In+ P12 H ' 24) Py
= In+ ZtTHt_lthtlt—l
because:

() = (I PurZ F2)
= I, — PHHZJ <_Ft + ZtPt|t712tT)_1 Zt
= Ip— Pt\tflzt—r (_Ht)_l Zt
= In+ P12 H'Z,

We also have:

-1
(x) = ]It\tpt|t—1ZtT (ZtPt\t—lth-l-Ht)
= (In+Z H'ZiPy1) Z, (Z;Pyy—1 2, + Hy)
— —1
= Z (In+H; ' ZyPyy1Z ) (Ze P12, + Hy)

1

By using Question 4 with A = ZtPt|t_1ZtT and D = H,, we obtain:
-1 _
LiiPip1 2] (ZePya 2 +Hi) =20 H !

8. We have:

_ -1
L = Pt\t—l

(T,PaT," + RtQtR;r)il

-1
_ (Tt}l_l T + RQ.R] )

t—1|t—1

A% _ A
Qplg—1 = Lgje—1G)e—1
= ]It|t—1Ttat—1\t—1

—1 A%
A P TP A P
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Ht‘t == Pt‘_f

_ Ptﬁ (I = Py 2 F' 2)
- t\t 1(I'm+Pt|t 1Z H Zt)

= Ly +2Z H'Z,

Qg = Ht\tdﬂt

= I (@t|t—1 + Pt|t—IZtTFt_1 (yt - Zt@t|t—1))

= Lyt (I — Pt\tflzng;th) Qyp—1 +
Ht\tPt|t71ZtTFt_1yt

= Ot Z H; "y

We deduce that the recursive equations of the Kalman information filter are:

Lje_1 = (Ttﬂt’lw 1TT + RtQthT)

A Kk J— - Ak
O‘t\t—lfﬂt\t—th]It 1t—1%—1]t—1

Lyjp = Typp—r + Z)H; 11215
d:‘t = @:‘t_l + ZtTHt_ Ui

From a numerical point of views, the number of matrix operations is:

e 5 additions, 10 multiplications and 1 inverse for the covariance filter;

e 3 additions, 10 multiplications and 2 inverses for the information filter;

It is not obvious that the computational time is reduced when using the information
filter. Its advantage may be due to the inverse of I;_;;_; that can be more stable
than F,! in some cases.

‘We have:

Z(@)z—%ln 2m) —721n|Ft ZU:F vy

In the case of the Kalman information matrix, we have:

Fy= 20, 2] + H,

_ 1 a*
Ut =Yt — Zth|t 1% t—1
a5 =0
Iy =0

In the case of the Kalman covariance matrix, we set ag ~ N (0, xI,,) where x is a
scalar sufficiently high such that Iy = =!I, ~ 0.
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10.3.13 Granger representation theorem

1. We have:
Y = pu + Ply—1 + &

We deduce that:
Y — Y1 = + Py — Y1 + &

and:
Ay = pe + (P — L) ye—1 + &1

2. We have:
Y=+ Pyr1 + Py + &t

We deduce that:

Ayy = e+ (P — L) yem1 + Poyr—o + &t
= A+ (P + Py — )y — PoAy 1 + &

3. The relationship is true for p = 1 and p = 2. We note:

e = Z’f_l o, I,

and

We notice that:

n» = S g g
i=1 ¢ "
-1
= (ZP o 1 ) + @
i=1
_ —1 /
H(P ) + (I)p
and:
(»)  _ _ p ’
q>i o Zj:i+1 (pj
_ p—l1 / /
= - ZFM P — @),
_ (p—1) /
= O, -,
We prove the relationship by induction. Let us assume that it holds for the order p—1.
We have:
Ayr = Y — Y11

P
= pet Zi:l Diyi—i + et — Y1

p—1
= et Zi:l Piyr—i + et — Y1 + Ppyr—p

_ p—1 _
= + H(P 1)yt—1 + Zi:1 (I)EP I)Ayt—i + €t + q);yt—p

p—1
= e (M =@ )y + > (0P @) Ay +
€t + (I);;ytfp
P

= ¢t n®y, | + Zi:l <I>§p)Ayt_i + e +
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Since <I>§,p) = 0, the value of 7; is equal to:

p—1
o= —®uy1+ Z ) Ay_i — P Ay, + Py
=1
p—1
= —® oy + Z DL (Ye—i — Y—io1) + Ppyi—p
i=1

= Oy 1+ Py —Poyio+ Py o+
e (I);;ytfp + q);ytfp
= 0

It follows that the statement also holds for the order p.

10.3.14 Probability distribution of the periodogram

1. Since a(A;) and b(A;) are the sums of Gaussian random variables, they are also
Gaussian. We have:

3

&=

Ela(A)] =

3

[} S urcos wt)]
t=1
1

n
= Z]E Y] cos (A;t)
N
t=1

I
o

and E [b(\;)] = 0. For the variance, we have:

var (a (A,))

(\/15 Z Yt COS ()\jt)>

% ZE [y7] cos® (\jt) +

t=1

1
- > E [y cos (A;s) cos (A;t)
s#t

02 <
= — ZCOSQ (Ajt)+0
n
t=1
B 12 i <cos (2X;t) + 1)
on 2
t=1

If A; # 0, we obtain:

2 2
(2
lim var(a();)) = 7 4+ % lim ZM

n—o00 2 2w

w‘qw
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We also have:
RN ’
var (b(A;)) = E 7Zyt sin ()\jt)>
v
2 n
Z sin® (\;t)
t=1

(1 - co;(ZAﬂ))

0.2

lim var (b();)) =

n— oo 2

39

0.2
n

M:

~
I
-

f A; # 0, we obtain:

We deduce that a (\) ~ N (0,5 ) and b(A;) ~ A (0,5).

2. We have:
. . RS ~
nl;ngo cov(a(N;),b(N)) = nl;ngo E - 5_1 Ys cos (A;s) tE_l Yy sin ()\jt)]

2 n
= Tblgréo % tzz:l cos (A;t) sin (A;t)

= 0

It follows that a (A;) and b()\;) are asymptotically independent. We conclude that:

2 (@2 () + 0% (A) ~ 3

and:
gly (Aj) ~x3
3. We verify that:
Elr, ()] = e [ = 1, ()
and:
var (I (A))) = fy Eﬁj) var (x3) = f (A))

Since we have:
Pr{0.0506 < x5 < 7.3778} = 95%

we deduce that:

I, (N
Pr {0.0506 < ofv) 7.3778} =95%
fy ()

Finally, we obtain:

Pr{0.27 -1, (\;) < f, (A;) < 39.5- I, (\;)} = 95%
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4. If A\; =0, we obtain:

lim var (a (0))

n—oo

and:

219

n
0.2

n
t=1

1
()
2

var (b(0)) =0

It follows that:

o
and:

2
o2
For a white noise process, we have f, (0)

hypothesis that:

oo £, (0)

We notice that:

lim E[I, (0)] =

n—oo

and:

lim var (I, (0)) =

n—oo

L@ (0) + 12 (0) ~ 2

I, (0) ~ X%

(27) "' o2, Therefore, we can make the

L,0) o

~ X1

£y (0)-E[xi] = £, (0)

£2(0) -var (x3) = 2f7 (0)

10.3.15 Spectral density function of structural time series models

1. We use the canonical representation of state space models. For Model (M1), we have
Zi=1, 00 =, dy =0, Hh =02, T, =1, ¢, =0, Ry = 1 and Q; = o2. For model

(M2), we obtain Z;

0 o2
ctz(o),Rt:Ianthz(O”

2. For Model (M1), we have:
(1-L)y =

n

(1 o),at—(gz),dt—o,ﬂt—a;ﬂ—(é })
0
ol
(e +€0) = (pe—1 +€4-1)
(e — pe—1) + (g0 —€4-1)
e+ (1—L)e;

Since the sum of two stationary processes is stationary, it follows that n; + (1 — L) &,
is stationary. We deduce that the stationary form is S (y:) = (1 — L) y¢. The spectral

density function is equal to:

(=) + isin (~2)[* 02)
+ |1 = (cos A — isin/\)|2a§)
+](1 = cos A) + isin A]? o?)

+ ((1 — cos A\)? + sin? )\) 03)

+ (1 —2cos A + cos® A + sin? A) o7?)
+2(1—cosA)o?)

fsey V) = (@m)! (03;
- ()" (a%;
= (2m)7 " (a,?
= @0 (o
= ()" (a%;
= (2m) ' (o?
= (@2m) ' (o2
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For Model (M2), we have:

1-L)y: = (we+er)— (-1 +ee-1)
= (e — pe—1) + (e — €4-1)
= Bim1+m+ (e —ei-1)

(1 — L) y; is not stationary because the process f; is integrated of order 1. We have:

1-L)?y = (1=L)(Br+m+ (e — 1))
= (Bi=1—Bi—2) + (e —m—1) + (1 — L)Qét
= Ct—1+(1*L)77t+(lfL)25t

Since this is the sum of three independent stationary processes, the stationary form
of y; is equal to S (y¢) = (1 — L) 3. We have*:

(- = poe PPt
= (2(1—cos\))’
= 4(1—cos)\)?

We conclude that:

N = 02—1—2(1 —cos)\)a,27+4(1—cos/\)203
fS(y)( ) 2

In Figure 10.3, we have represented the spectral density functions of Models (M1) and
(M2) when 0. = 0,, = o¢ = 1. We observe that they are similar for low frequencies, and
the difference between the two processes comes from the dynamics on high frequencies.

. ¢ is the stochastic trend, f§; is an AR(1) process that can be viewed as a mean-

reverting component when ¢ < 0 and -, is a stochastic seasonal process. When o, = 0,
we have:
Yeest1+ oo+ Y1+ =0

4 Another way to find this result is to notice that (1 — L)2 =1— 2L+ L2. Therefore, we have:

- ’1 —2e P 4 (e’ :

‘(1 — 671.)\)2 ’

|1 _ 9e—iX +e—2i>\|2

= |(1 —2cos A+ cos2)) + i (2sin X — sin 2))|2

(1 —2cos A+ cos2X)? 4 (2sin A — sin 2X)?

= 1—4cosA+4cos® A+ 2cos2) — 4cos A cos 2X + cos? 2\ +
4sin? X\ — 4sin Asin 2) + sin? 2\

= 6 —4cosA+2cos2) — 4 (cos A cos2A + sin Asin 2)\)

= 6—4cosA+2cos2\ —4cos (A —2)\)

= 6—8cosA+ 2cos2)

= 4—8cosA+2(1+cos2))

= 4—8cos>\+2(1+cos2)\—sin2)\>

= 4—8cosA+4cos? A

= 4(1—cos\)?
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3.5
-7
s
3.0 /
f /
25} /
Model (M1) /
- — — Model (M2) /

0.0 I I I |

0 /4 /2 3n/4 B
A

FIGURE 10.3: Spectral density function of Models (M1) and (M2)

Since we have v4_s + ...+ Y—2 + -1 = 0, we deduce that:

Ve o= = (Yemst1 + oY1)
= Yt—s

We obtain a deterministic seasonal time series, where s represents the period length
of a season. For example, if s = 4, we obtain:

Yt =Vt—4 = Vt—-8 = .-
Vt+1 = V-3 = Vt—-7 = - -~
Y42 = Vt—2 = Vt—6 = - - -

Yt+3 = Vt—-1 = Vt—5 = - -+

The process repeats every four time periods. If o, # 0, we have 411+ ... +v—1 +
e =ws and Y¢_g + ...+ Ye—2 + Y4—1 = wi_1. Therefore, we have:

Ve = wWi— (Y—sqp1+ .o FYo1)
Wy — (Wt—l - ’Yt—s)

= Yoo+ (W —wi1)

We deduce that:

Ei—s[v] = Eioslyi—s + (W —wi—1)]
= VYt—s

It follows that ~; is a stochastic seasonal process.
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5. We have:
zz = (1-L)(1—-L%y
= - LYm+ (I —L)A-L) A+ (1~ L)1 - L) +
(I1-L)1—=L")m
and:

(I-L)A=L%% = (v—"7-1)— (V—s — Yt—s-1)
(vt = ve—s) — (Y2—1 — Vt—s-1)
= (wr—wi-1) — (Wi—1 — wi—2)
Wi — 2w + wi—2

= (1-L)°w

We deduce that:

z = (1-L%)n+(1—-L)(1—-L%)B+
(1—L)(1—L% e + (1 — L)’ w,
If we assume that |¢| < 1, then S; is stationary. Moreover, we know that 7, £, and

wy are stationary. We conclude that z; is stationary and S (y;) = (1 — L) (1 — L®) y,
is a stationary form of ;.

6. Another stationary form of y; is (1 — L®) y;. Indeed, we have:
(1=L)y=(0-L)pu+ (1A=L) B+ (1 - L") e+ (1 - L)w
and:

(I—=L%)pe = p— fre—s

(=1 +ne) — pht—s

Ne + (e—2 +Me—1) — fe—s
= Mm+n-1+.. . +N—s—1

We deduce that (1 — L®) us and (1 — L®) y; are stationary.

7. We note gx (¢ (L)) = |¢ (e’i)‘)|2. We have:

g)\(lfLS) _ ’17(67”‘)82

_ ’1 _ e—isA‘Q

= (1—cossA)’ +sin? s\
= 2(1—cossA)

and:

n((1-L)A-L%) = g(1-L)-gx(1-L"
4(1 —cosA) (1 —cossA)
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We remind that

m(0-o07) = T
1

(1 —¢cos ) + ¢2sin? \
1
1 —2¢cos A + ¢?

We deduce that:
2nfsey (V) = 9a(1=L%) o+ gx (W) ol +
(=L (1= L))o+ gy (1= D)%) 2
= 2(1 —coss)\)ofl +
(4(1 —cosA)(1— cossA)) o2+

1—2¢cos )+ ¢?
4(1 —cos ) (1 —coss\) o2
(4—8008)\—1—40052 )\) o2

‘We have seen that:

n(1=L)(1-L%) = g(1—L—L*+ L")
= 4—4cosA—4cossA+
2cos(s—1)A+2cos(s—1)A

By using the properties of trigonometric functions, we obtain:

g (1—=L)(1-L?) 4 —4cos A —4cossA+

2 (cosshcos A — sinsAsin \) +

2 (cos sAcos A + sin sAsin \)

= 4—4cosA—4cossA+4cossAcos A

4(1—cosA) (1 —cossA)
The spectral density function is then defined as follows:

fsy(N) = 7' (1—cossA)or +
. 2—2008)\+Z;:71(3|j|—2)COS<S—|—j))\ ,
m

1 —2¢cos A + ¢? ot
2771 (1 — cos \) (1 — cos s\) o2
21 (1 —2cos A+ cos? A) o2

10.3.16 Spectral density function of some processes

We note gx (¢ (L)) = | (e7)]%.
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1. We have:
a2
g (1— L% ’1 — (™)

_ ’1 _ e—isx‘z

(1 —cossA\)* 4 sin® s\
2(1 — cossA)

Since we have (1 — L®) y; = &, we deduce that:

2

o
A) = ———
fy( ) QWgA(lfLs)
_ oz
© 4r(1—cos(s)))
2. We have:
2
o
fn) = = NVIL
277((1—e—u) ‘
2
= Tl
2w
2 —d
_ Oe _ 2 2
= 5 ((1 cos \)” + sin )\)
2
= %(2(1—COSA))*d
2 —d
= 05(451112 )\)
2w 2
2 —2d
= Z 2sini
2w 2
because®:
sin? = 1 cos é—é — COs i—i—é
2 2 2 2 2 2
1
= 5(1—(305)\)
3. We have:

z=(1—¢L) ug+ (1—0L) '
We deduce that:

o2 (1 —20cos A+ 6?) o2

u

f=(N)

T (- 2pcosht o) | 2

5We use the following trigonometric identity:

sinasin 8 = % (cos (. — B) — cos (a+ B))
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(a) The simulated time series z is represented in the first panel Figure 10.4. In the
second panel, we also give the periodogram of z:

Loy EOIE 1 ol
== zie
s 2mn 2mn P !
where \; =27 (j — 1) /nand j € {1,...,n}.
Simulation of z,
-6
0O 200 400 600 800 1000
Periodogram 1,(\) Spectral density function f,(A)
6 6
5 5 — True
4 4 === Estimated
3 3
2 2 ~\\
\\
1 I EAN
0 0 ‘
/4 /2 3n/4 m /4 /2 3In/4 m
A A

FIGURE 10.4: The AR(1) + MA(1) stochastic process

(b) The Whittle log-likelihood is equal to:

1 1= L ()
E(¢,0u,9,av)'z—nanW—ijZ:;lnfz(/\j)—*Z _

where \; = 2mj/net j € {0,1,...,n — 1}. With the simulation in Figure 10.4, we
obtain the following estimates: ¢ = 0.755, &, = 0.896, § = 0.120 and &, = 0.595.
The true and estimation spectral density functions are given in the third panel
in 10.4.






Chapter 11

Copulas and Dependence

11.4.1 Gumbel logistic copula
1. We recall that the expression of the Gumbel logistic copula is:

U1U2
C (ul, UQ) =

U + U2 — ULU2
We have:

U2 (U1 + ug — U1UQ) — ULU2 (1 — ’LLQ)
(ug +ug — uluQ)2

uj

81 C (ul, UQ) =

(uy + ug — ugus)?
We deduce that the copula density is:

clup,ug) = 8%72 C (u1,us2)
Qs (u1 4 ug — ugun)® — 23 (ug 4 ug — uyus) (1 —uy)

(w1 +ug — U1U2)4

2u1 U

(u1 + ug — uyug)®

2. We have:

1—2u+ C(u,u)
1—u
(I1-2u)(2—u)+u
(I—w)(2—u)
2u? —4u+ 2
u? — 3u + 2

AT (u) =

Using L’Hospital’s rule, it follows that:

2u? —du + 2
AT = Hmw
u—=1 u? — 3u+2

4u — 4

The Gumbel logistic copula has then no upper tail dependence. For the lower tail
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dependence, we obtain:

AT = lim Cluw

u—0 u

- il_% 2u — u?
1
= lim
u—0 2 — 2u
1

2

We verify that it has a lower tail dependence.

11.4.2 Farlie-Gumbel-Morgenstern copula
1. We have:

C(u,0) = C(0,u)=
C(u,l) = C(l,u)=u
0? C (uq, ug)
—_— 146(1-2 1-2
8U18U2 + ( U1)( u2)
As we have —1 <146 (1 — 2uy) (1 — 2ug) < 1, it follows that:
62C (ul,ug) >0
Ou10us -
We deduce that C is a copula function.
2. We have:
A\ —  lim 1—-2u+C(u,u)
u—1- 1—u
1— 2u +u? (1+9(1 —u)z)
= lim
u—1- 1—u
= lim (1—u)(1+6u?
Jim (1= ) (14 6u7)
=0
For the Kendall’s tau, we obtain:
T =
The Spearman’s rho is equal to:
Q =

3. We calculate the conditional copula:
We simulate (Uy,Us) in the following way:
By applying the PIT method, we obtain:

T = p+od 7t (u)

Ty = —Xln(l — ug)
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4. We have:

62 C (Ul,’UQ)
8u18u2
1460 (1—2u1)(1—2u9)

c(up,ug) =

It follows that:

f(z1,22) = c(F1(21),F2(22)) X f2(21) x f1 (1)

- g <1+0 (1—2@ (Ila“» (2672 —1)) x
p (W) o o~ Aw2

L = nlnA—%lnaQ—gIHQW—l—

We deduce that :

n

> <1 +0 (1 — 20 (“(;“)) (2e A7z — 1)> -

n

17 T15— M 2 A -
s () AL

=1

11.4.3 Survival copula

1. We have S(0,0) = 1 and S (00, 00) = 0. We notice that:

07 oS (w1, m2)

< 0
We conclude that S is a survival function.
2. We have:
S1(z1) = S(z1,0)
= oxp(-a)

By noting Uy = Sy (X1), we deduce the expression of the survival copula:

1 1
C(u1,uz) = exp(- <—1nu1—1an+0nu1nu2)>

Inu; +1Inwus

U1 Uy

U Uz exp | 0= =
< U1 +U2)

with & = — Inu.
11.4.4 Method of moments

C(Xth) =0C™ + (1 — 9) (ohs



230 Handbook of Financial Risk Management
1. We have:
F(z1,22) =0 xmax (P (z1) + @ (z2) —1,0) + (1 — ) x min (P (z1), P (22))

It follows that:

E[X; X, = //xlacng(xl,xg)

= fx //xlxg dC™ (@ (x1),® (z1)) +
//xlxg dCT (@ (z1),® (71))

= 6x (-1 X (+1)
= 1-26

We deduce that:
p(X]_,X2> = E[X:[XQ] =1-20
The linear correlation between X; and X» is equal to zero when 6 takes the value 1/2.

2. Using the notations Ny ~ N (0,1) and Ny ~ N (0,1), we obtain:

p(X1,X2) = p(u1+ 01Ny, pz +02Nz)
p<N1,N2>
= 1-260

3. We have:
1- 14 <X17 X2>

0= 5

The MM estimator éMM is then equal to:
1-p

éMM:T

where p is the empirical correlation between X; and Xs.
11.4.5 Correlated loss given default rates

1. As we have z € [0, 1], the parameter v must be positive or equal to zero in order to
have F (0) =0, F(1) =1 and f (z) = v27~! > 0.

2. The expression of the log-likelihood function is:
n
() = Y Inf(w)
i=1
= Z In (yaz) ™
>t (5a7”")

= nlny+(y-— I)Zhlxi
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We deduce the first-order condition:

9£(7)
okt

=0©2+Zlnxi:0
L

We finally obtain the ML estimator:

R 1
ML= > ey Inz;)

3. We have:
1
E[LGD] = / " da
0
1
= 7 / 7 dx
0
sl b
-7 {'Y + J 0
S
y+1
Let & be the empirical mean of the sample {z1,...,2,}. The MM estimator Jnm
satisfies the following equation:
MM _
=7
A + 1
We deduce that:
.
ML= TS

Z:‘L:I i
n—= Z?:l Li

4. In the case z; = 50%, we obtain:

. 1
ML = “mos In2=1.44

and:
Avm = 0.5/ (1 — 0.5) = 1.00

The numerical results are different. For example, we have reported the density function
of the two probability distributions in Figure 11.1.

5. We have: PYex )
Uy, U2 — _
’ — Olnuy Inuy _ 0’112 1DUQ€ O1lnuy Inus
aul
and:
2
0 C(U17U2) :e—Glnul Inusg _elnule—Olnul Inuy 91HU26_01nu1 Inuy

6U18U2

ee—eln w1y Inus + 02 In uy In u2e—01n w1y Inus

= (1 —60—60In (uluZ) -+ 92 an1 IHUQ) e*@lnul In us
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3.0
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\
N
N
~
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1.0 —_—
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0 20 40 60 80 100

LGD (in %)

FIGURE 11.1: Density functions associated to ML and MM estimators

6. The bivariate density function is the equal to:

f(z,y) c(F(x),F(y)) x f(z) x f(y)

= (1 —0—0 (i lnz +ylny) + 6%y 1naclny) X
6—0')/1'72 Inzlny % ’le’h_l « 72y72_1

where 1 and 5 are the parameters associated to the risk classes C; and Cs. It follows
that the log-likelihood function is equal to:

n n
£ = nlny+nlny + (1 — I)Zlnxi + (v2 — I)Zlnyi +
i=1

i=1

Zln (1 —0—0(yiInz; +y2lny) + 02y Inay lnyi) —

i=1

n
07172 Y Inz;lny;
i=1
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7. The first-order conditions are:

oL n -
_— = — 4+ In i + ) 70
9 - ; 91 (71,72, 0)
oL n =
8*}/2 - +; nyz+92(717727 )
e Z": 1+ (yIlnz; +y2Iny) — 207172 Inz;Iny,
290 1—0—0(nnz +y2lny) + Py nz Iny;
Y12 Zln x;Iny;
i=1
with:
( 0) = Zn: (6*12Iny; — ) Ina;
91 (71,72, = 10~ 0(viInz; +y2lny) + 2yiyona; Iny;
02 Zln x;lny;
i=1
n (9271 Inx; — 9) Iny,
) = -
g2 (71,72, ) ; 1—0—0(yiInz; +y2Iny;) + 02y1y Inz; Iny;
o1 i lny,
i=1

When 0 is equal to zero, we have g (71,72,0) = 0. In this case, the estimator 4;
corresponds to the ML estimator 4yr,. When we have 0 # 0, we obtain g1 (y1,72,0) #
0 and 47 # Am1. We obtain this result because more information is available in
the bivariate case. The ML method can then correct the estimator 4y, by taking
into account the dependence function between LGD; and LGDs. For instance, if the
estimated copula is equal to the Fréchet upper copula C™, it is obvious that the two
estimators 47 and 4o are equal, even if the unidimensional ML estimators are not
necessarily equal. Let us consider the following sample:

LGD; (in %) 50 40 60 50 80 90 70 10 40 40
LGD; (in %) 60 50 80 70 8 90 80 30 50 70

We obtain 4y, = 1.31 for C; and ﬁML = 2.18 for Cy. With the bivariate ML method,
we obtain 4; = 0.88, 4 = 1.44 and 6§ = 1.71.

11.4.6 Calculation of correlation bounds

1. We have:
C™ (u1,u2) = max (u; +ug —1,0)
ct (Ul, U2) = Uiu2
C" (ui,u2) = min (uy,us)

Let X7 and X5 be two random variables. We have:
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(i) C(Xy,X5) = C~ if and only if there exists a non-increasing function f such that
we have Xy = f (X1);

(ii) C (X1, X,) = C* if and only if X; and X are independent;

(iii) C(X1,X3) = CT if and only if there exists a non-decreasing function f such
that we have Xy = f (X1).

2. We note Uy =1 —exp (—A7) and Uz = LGD.

(a) The dependence between 7 and LGD is maximum when we have C (7, LGD) =
C™. Since we have U; = Us, we conclude that:

LGD4e ™ —1=0
(b) We know that:
p{T,LGD) € [pmin (T, LGD) , pmax (T, LGD)]

where pmin (7, LGD) (resp. pmax (T, LGD)) is the linear correlation corresponding
to the copula C~ (resp. CT). It comes that:

E[r] =0 (1) %
and:

E[LGD] =

o (LGD) = 1—12

In the case C (T,LGD) = C~, we have U; = 1—Us. It follows that LGD = e=*7.
We have:

E[rLGD] =

[re7]

E
/ >\t>\e—)\t dt
_ / —2)\75 dt
|: _zkt:| 1/00 6_2At dt
2 0

|: €—2>\t :|
2 |,

1
2
1

4\
We deduce that:

pmin (T, LGD) = (4&_2&)/6 112>

V3

2
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In the case C (7,LGD) = C*, we have LGD = 1 — e~*". We have:
E[rLGD] = E[r(1—e*7)]

oo
= / t(l—e M) Ae Mdt
0

= / the Mdt — / the M dt
0 0
— I:_te—kt]oo + /OO e—)\t dt _ i

—At]>® 1
0

A 4
3

4\
We deduce that:

pmax (T, LGD) = (4?;_210/(; 112>
V3
>

We finally obtain the following result:

| %

lp (T, LGD)| <

(c) We notice that |p (,LGD)| is lower than 86.6%, implying that the bounds —1
and +1 can not be reached.

(a) If the copula function of (71, 72) is the Fréchet upper bound copula, 7 and T
are comonotone. We deduce that:

U=U; <= 1- 6_)\17-1 =1- 6_)\27-2

and:

(b) We have Uy =1 — Us. It follows that Sy (71) =1 — Sg (72). We deduce that:
€—>\1‘l‘1 —1— €—>\2‘l’2
and:
—1In (1 — e_)‘Q"'Q)
A

There exists then a function f such that 7 = f (72) with:

T, =

—In (1 — e”‘zt)

Fl)=—

(c) Using Question 2(b), we known that p € [pmin, Pmax] Where pmin and pmax are
the correlations of (71, 72) when the copula function is respectively C~ and C™.
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We also know that p = 1 (resp. p = —1) if there exists a linear and increasing
(resp. decreasing) function f such that 7 = f (72). When the copula is C*, we
have f(t) = %’t and f'(t) = i—f > 0. As it is a linear and increasing function,

we deduce that ppma.x = 1. When the copula is C~, we have:
—In(1—e 2t
Fly— o)
1

and: ot ( /\t)

Age 28 In (1 — e™ 72

f/(t):_ Aot
)\1(1—6 2)

The function f (t) is decreasing, but it is not linear. We deduce that ppyi, # —1
and:

<0

—-1<p<1

When the copula is C~, we know that there exists a decreasing function f such
that Xo = f(X7). We also know that the linear correlation reaches the lower
bound —1 if the function f is linear:

Xo=a+bX,
This implies that b < 0. When X; takes the value +o0o, we obtain:
Xo=a+bx o

As the lower bound of X5 is equal to zero 0, we deduce that a = +oo. This
means that the function f(z) = a + bz does not exist. We conclude that the
lower bound p = —1 can not be reached.

X1+ X5 is a Gaussian random variable because it is a linear combination of the
Gaussian random vector (X1, X2). We have:

E[X1 + Xo] = p1 + pi2

and:
var (X1 + Xo) = 02 + 2poi 09 + 02

We deduce that:
X1+ Xo ~ N (1 + pia, 07 +2poi02 + 03)
We have:

Cov (le7 Yg) = E [Y1Y2} —-E [Yi] E [YQ]
E [eX+%] ~ E[13] B[

We know that eX1+%2 is a lognormal random variable. We deduce that:

1
E [eX1+X2] = exp (E (X1 + Xo] + 5 var (X1 4+ XQ))

2

—  Mit50i guat ol poion

1
= exp <M1 + p2 + = (03 + 2po102 + U%))

We finally obtain:

cov (Y17Y2) — €N1+%J?eu2+§cf§ (epalo'2 _ 1)
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(¢c) We have:

2 2
6H1+%0’1 e#er%Ug (690102 _ 1)

\/62“1"’"% (et — 1) \/62”2""75 (e2 — 1)

ePo1o2 _ |
\/egf—l\/e"g -1

(d) p(Y1,Y2) is an increasing function with respect to p. We deduce that:

/0<Y17)/2> =

p(Y1,Yo) =1<=p=1and o1 =0y

The lower bound of p (Y7, Y3) is reached if p is equal to —1. In this case, we have:

e 7192 —1

= >
\/e“%—l\/e‘fg—l

-1

p(Y1,Y2)

It follows that p (Y1, Ys) # —1.
(e) It is evident that:

epolagt -1
Veott — 1V/es3t — 1

In the case 01 = o2 and p = 1, we have p (S (t),S2 (t)) = 1. Otherwise, we
obtain:

p(S1(t), 52 (t))

i p (S1(1), 92 (1)) = 0
(f) In the case of lognormal random variables, the linear correlation does not neces-

sarily range between —1 and +1.

11.4.7 The bivariate Pareto copula
1. We have:

F1 (Il) = PI‘{Xl le}
= Pr{X; <z, X; < o0}
= F(r1,00)

F1(l‘1) _ 1 01+ x1 _ 0y + oo n
01 0o

(91+x1 +92+OO_1>_Q

We deduce that:

We conclude that Fy (and Fs) is a Pareto distribution.

2. We have:
C(u1,uz) =F (F7 " (u1) , Fy ' (u2))
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It follows that:

We deduce that:

C(Ul,UQ) = 17(171&1)7(17’&2)4’
(=)™ (=)™ 1) -

= upt+uy—1+ <(1 — ul)il/a + (1 — UQ)il/a — 1)7

3. We have:
0C (ui,ua) —1/a —1/a —a-l
e 1—04((1—u1) + (1 —ug) —1) X
1 e
(-2) a-w e e
—a—1
- 1- ((1—u1)_1/a+(1—u2)_1/a71) x

(1 _ ul)—l/o(—l
We deduce that the probability density function of the copula is’:

(92 C (’Uq,UQ)
Bul 8’11,2

= —(—a-1) ((1 — ul)’l/a (- u2)71/a _ 1) —a—2 y

(—1> (1—u2) 7 % (=1) % (1 =)

«

- <a+ 1) ((1 —un) T (1= ug) T 1)_a_2 x

c(up,ug) =

(07

(1 — Uy — ug + U1’IL2>_1/a_1

In Figure 11.2, we have reported the density of the Pareto copula when « is equal to
1 and 10.

I Another expression of ¢ (u1, us) is:

a+1
a

cluru) = () (@ - un) (- u)

((1 - ul)l/a + (1 — u2)1/a _ (1 _ ul)l/& (1 _ u2)1/a)

—a—2
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Tail dependence

— Upper
0.6 === Lower

4. We have:
- = i S@w
u—0t u
=2 lim 9C (u,u)
u—0t  OJdup
—a—1
:2u1i>r61+1— ((1_u)*1/a+(1_u)*1/a_1) (1_u)71/a71
=2 li 1-1
=0
and:
u—1- 1—u
((1 _ u)—l/a + (1 _ u)—l/a . 1) —«
= lim
u—1- 1—u
—a
= dim (1+1-(1-w")
u—1-
= 2—0&

The tail dependence coefficients A~ and AT are given with respect to the parameter
a in Figure 11.2. We deduce that the bivariate Pareto copula function has no lower
tail dependence (A~ = 0), but an upper tail dependence (AT = 27%).

5. The bivariate Pareto copula family cannot reach C~ because A~ is never equal to 1.
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‘We notice that:

lim AT =0
a—r 00

and
lim A\t =1
a—0

This implies that the bivariate Pareto copula may reach C* and C* for these two
limit cases: o — oo and a — 0. In fact, o — 0 does not correspond to the copula CT
because A\~ is always equal to 0.

6. (a) We note U; = Fy (X1) and Us = Fs (X5). X7 and X5 are comonotonic if and
only if:
U, =U;

1_ 0> + Xo —az_l_ 0, + X1\
02 B 61
Oy + X0\ 2 . 0, +X1\
b2 B 61
ay/as
N X2:92<<91;—X1> _1>
1

We know that p (X7, Xo) = 1 if and only if there is an increasing linear relation-
ship between X; and Xs. This implies that:

We deduce that:

Qg
= —1
Q2

(b) X; and X are countermonotonic if and only if:
Uy=1-04
We deduce that:

It is not possible to obtain a decreasing linear function between X; and X5. This
implies that p (X7, Xo) > —1.

(c) We have:
F’ (.’Ehl'z) = C(Fl ($1)7F2 (xQ))

01 + 21 T 02 + o T2
= 1 — —
( 01 ) ( 02 ) -
01 + 1 al/a+ 0y + o az/afl
01 0

—Qx
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The traditional bivariate Pareto distribution F (z1,23) is a special case of
F’' (z1,x2) when:

] = g =«
Using F' instead of F, we can control the tail dependence, but also the univariate
tail index of the two margins.






Chapter 12

Extreme Value Theory

12.4.1 Uniform order statistics
1. Since we have f (z) =1 and F (z) = z, we deduce that:

n! i—1 n—1
o L — A 1
Jim () IO
F'(n+1) .
T@T(n—i+1)
This is the probability density function of the Beta distribution B («, 3) where o =4
and f=n—1i+ 1

2. We have:

i—1 (1 _ x)nfi

E[Xin] = E[B(i,n—i+1)]

3. We have:
var (X;.,) = var(B(i,n—i+1))
of
(a+B)* (a+B+1)
iln—i+1)
(n+1)*(n+2)

4. We have:

Xi:8
1 2 3 4 ) 6 7 8
0.04 0.14 024 034 045 0.55 0.72 0.94
0.12 0.25 0.31 0.32 0.57 0.64 0.69 0.97
0.11 0.17 0.17 0.26 0.50 0.50 0.69 0.85
0.00 0.03 0.15 0.53 0.58 0.77 0.98 0.98
0.15 0.25 046 0.62 065 0.74 085 0.89
0.056 0.07 0.15 0.25 0.65 0.74 0.86 0.93
0.12 0.16 0.33 0.34 0.55 0.61 0.63 0.95
0.01 0.11 0.14 047 0.57 0.82 0.87 0.96
0.27 0.55 0.57 0.68 0.73 0.78 0.83 0.85
0.28 040 0.68 0.89 091 094 0.99 0.99

Sample

© 00 O Uk Wi+

—
o

The empirical and theoretical mean and standard deviation of X;.g are reported in
Table 12.1.
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TABLE 12.1: Empirical and theoretical mean and standard deviation of X;.g

Xi:g E [Xi:n] o (Xi:n) g (Xi:n)
0.1150 0.1111  0.0981 0.0994
0.2130 0.2222 0.1584 0.1315
0.3200 0.3333 0.1918 0.1491
0.4700 0.4444 0.2096 0.1571
0.6160 0.5556  0.1302  0.1571
0.7090 0.6667 0.1333  0.1491
0.8110 0.7778  0.1241 0.1315
0.9310 0.8889 0.0511 0.0994

0 3O Ui W N .

We reiterate that X;.,, ~ B (i,n — ¢ + 1). We deduce that the median statistic follows
a symmetric Beta distribution:

Xk+1:n ~ B(k+ Lk+ 1)

Moreover, we have:

Xim ~ B (i,2k — i)

It follows that the density function of Xj., is right asymmetric if ¢ < k, symmetric
about .5 if i = k + 1 and left asymmetric otherwise.

We consider the change of variable: U = F (X). It follows that U follows a uniform
distribution. Using the previous results, we can deduce that the density function of
Us.,, is right asymmetric if ¢ < k, symmetric about .5 if ¢ = k4 1 and left asymmetric
otherwise. Because F (z) is a symmetric function about z* = F~1(0.5), we conclude
that the density function of Xj., is right asymmetric if ¢+ < k, symmetric about z* if
1=k + 1 and left asymmetric otherwise.

12.4.2 Order statistics and return period

1. We have:
Fon(@) = Pr{max(Xy....,X,) <1}
= Pr{X;<uz....X, <z}
n
= [[Prixi<a}
i=1

- ()

2. The density function of X,,., is equal to:

fom () = Op Frp (2)
- ()

We deduce that the log-likelihood function of a sample (z1,...,2,,) of the order
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statistic X,,.,, is equal to:

b
N | =
7 N\
&8
Q|
=
N———
()

|

Ly = mlnn— %111(27‘(‘) - %11’10’2 -

(n—1)Ind (”“" _“)

=1

g

For each time period n, we calculate £,., and find the estimates fi,,.,, and G,.,. Then
we test the joint hypothesis:

o H1:1 = H2:2 = H3:3 = ... = U
Ho=19 . A A
01:1 =02:2=033=...=0

. The return period is the average period between two consecutive events. It is equal
to: n
T=2=
p

where p is the occurrence probability of the event and n is the unit period measured

in days. We have:

T (Fl () = —— xn

n:mn 170L

We deduce that the return periods are respectively equal to 100, 100, 500 and 2200
days.

. We would like to find the value « that satisfies the following equation:
T (Fagiao (@) = T (F~1(99.9%))

We have: ) 1
x 20 =

— x1
l-«a 1-0.999

‘We deduce that:
oa=1-20x0.001 =98%

12.4.3 Extreme order statistics of exponential random variables

1. Using the Bayes formula, we have:

Pr{r >t(7 > s}
Pr{r > s}

Pr{r >t}

S (t)

S(s)

oMt

Pr{r>t|r>s} =

e—As
— e—)\(t—s)

= Pr{r>t—s}

This implies that the survival function does not depend on the initial time. This
Markov property is especially useful in credit models, because the default time of the
counterparty does not on the past history, for instance the age of the company.
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2. We have:
Pr{min (r,...,7) >t} = PI’{Tl > tﬂ...nTn > t}
ﬁPr {m; >t}
i=1
= exp (— i: /\it>
i=1
and:

Pr{max (7y,...,m,) <t} = Pr{n Stm...ﬂTn St}

Pr{m <t}

Il
=

i=1

-
I

(1— e

—-

«
I
A

We deduce that:
min (71,...,7,) ~ & (Z )\1')
i=1

The distribution of max (71,...,7,) is not a known probability distribution. Let us
consider the case n = 2. We have:

Pr{min (7, 72) =1} = Pr{m <m}

[e%e] t1
= / / )\167)\1151)\267)\27:2 dtl dtQ
0 0
00 t

= / )\16_)‘1t1 (/ )\26_>\2t2 dfg) dty
0

0
o0
= /\16_>\1tl (1 — 6_)\2t1) dtl

OOO o0
= / Are M dty — Al/ emMiFAb gy,
0 0
= 1- M
A1+ A2
DV

We can generalize this result to the case n > 2 and we finally obtain:

: Ai
Pr{mln (Tl, “ee 7Tn) = Ti} = m

3. When 7 and 7; are comonotone, we have Sy (71) = S; (7;). It follows that:

M
Ti =5 T1

Ai
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We note AT = max (A1,...,A,) and A~ = min (Aq,..., \,). We deduce that:

1
— e, — A >t
27 7)\n) 171 =2 }

Pr{min (7y,...,7) >t} = Pr{min(l

and:

I
—
|
@

X
S
/T\

L

2
>a‘>/

= |

-
N——

We finally obtain:
min (71,...,7,) ~ & (A1)

and:
max (71,...,7,) ~ & (A7)

12.4.4 Extreme value theory in the bivariate case
1. An extreme value copula C satisfies the following relationship:
C (uf,ub) = C* (u1,us)
for all ¢t > 0.
2. The product copula C* is an EV copula because we have:
ct (u’i,ug) = ubul

= (uus)’
= [CF(w, uz)]t

For the copula C*, we obtain:

(on (utl,ué) (ul,uQ)
{ ul if ug < ug
ub  otherwise
= (min (u1,uz))"
= [CF (w, )]

However, the EV property does not hold for the Fréchet lower bound copula C~:

C™ (uf,ub) = max (u} +ub —1,0) # max (ug +up — 1,0)



248 Handbook of Financial Risk Management
Indeed, we have C~ (0.5,0.8) = max (0.5 + 0.8 — 1,0) = 0.3 and:

C™ (0.5%,0.8°) = max(0.25+ 0.64 —1,0)
=0
£ 0.3

3. We have:

C (uﬁ,ug)

exp

1/6
( lnu1 (—lnug)e] )
1179
= exp< —tlnuy) +(7tlan) } )
1/6
= exp ( —Inuy)’ 4 (—In UQ)0:| )
o (6—[(—1nu1) +(—1nwusz) ]1/9)t
= Ct (ul, ’LLQ)
4. The upper tail dependence A is defined as follows:

\— lim 1—2u+ C (u1,us2)

u—1+ 1—u

It measures the probability to have an extreme in one direction knowing that we have
already an extreme in the other direction. If A is equal to 0, extremes are independent
and the EV copula is the product copula C*. If X is equal to 1, extremes are comono-
tonic and the EV copula is the Fréchet upper bound copula C*t. Moreover, the upper
tail dependence of the copula between the random variables is equal to the upper tail
dependence of the copula between the extremes.

5. Using L’Hospital’s rule, we have:

A = lim
u—1t 1—u
1= 2u 4 e 20w
= lim
u—1+ 1—u
1—2u+ 2!/
= lim
u—1+ 1—wu
0—2+ 21/9u21/9—1
= lim
u—1t —1
= lim 2 21/6,2/1
u—1+
= 2-2/¢

If 6 is equal to 1, we obtain A = 0. It comes that the EV copula is the product
copula. Extremes are then not correlated. This result is not surprising because the
Gumbel-Houggard copula is equal to the product copula when 6 = 1:

e [Cmu)t e ot (u1,uz)
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6. (a) We have:
t t o t(1—01) t(1—02) . t0 to
C(uf,uh) = u Ug min (uy", ug’?
t t t
) () Cmin (o))
1-6;, 16 o1 .0\
1 ‘ug P min (uf,uf))

(uh u2)

(u
= (u

Ct
(b) If 8, > 65, we obtain:

1—2u+u' =% 0! % min (uf, uf?)

A = lim
u—1+ 1—wu
1 — 2u + ul— 010290
= 1.
ui>l+ 1—u
i 1—2u+u?%
= i
u—1+ 1—wu
. 0—24(2—0y)ut"t
= lim
u—1t -1
= lim 2 —2u'"% 4 gyt b
u—1
= 92

If 6 > 01, we have A = #;. We deduce that the upper tail dependence of the
Marshall-Olkin copula is min (61, 62).

(c) If 61 =0 or #3 = 0, we obtain A = 0. It comes that the copula of the extremes is
the product copula. Extremes are then not correlated.

(d) Two extremes are perfectly correlated when we have 6; = 03 = 1. In this case,
we obtain:

C (u1,u2) = min (u1,uz) = CT (uy, us)

12.4.5 Max-domain of attraction in the bivariate case

1. Let (X1,X2) be a bivariate random variable whose probability distribution is:
F(z1,22) = C(x, x5) (F1 (21) , F2 (22))
We know that the corresponding EV probability distribution is:

G (1, 22) = Clx, x) (G1 (1), G2 (22))

*

where G and G are the two univariate EV probability distributions and C (X1, X2)

is the EV copula associated to C x, x,)-
(a) We deduce that:

G (z1,22) = ct (G1 (21), G (22))
= A (:L’l) \Ill (.’JL‘Q - 1)
= exp(—e ™ +a2—1)
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(b) We have:
G(z1,22) = A(z1)®Pq (1 + %)
= oo 2)7)
(c) We have:
G (z1,22) = ¥y(x;—1)P, (1 + %)

—Q
= exp(x1—1—<1+x2) >
o}

2. We know that the upper tail dependence is equal to zero for the Normal copula when
p < 1. We deduce that the EV copula is the product copula. We then obtain the same
results as previously.

3. When the parameter p is equal to 1, the Normal copula is the Fréchet upper bound
copula CT, which is an EV copula. We deduce the following results:

G (.%'1,.’)3‘2) = min (A (:171) ,‘I’l (1‘2 — 1))

= min (exp (—e™ ') ,exp (z2 — 1)) (a)
G (z1,22) = min (A ), @, <1 + %))
= min (exp e "), exp (— (1 + fj)a>) (b)
G (z1,12) = (lIll x1 — 1), (1+%>)

— min <exp (22— 1), exp (— (1+ f)a» (c)

4. In the previous exercise, we have shown that the Gumbel-Houggard copula is an EV
copula.

(a) We deduce that:

G(z1,20) = e [(CMA@)H=mEi(z-1)]""

— exp <— [e‘”l +(1- xg)"] 1/9)

(b) We obtain:

G (1,20) — 67[(71111\(11))94’(*ln@a(lJr%Q))B]1/9
01/
— _ —Qxl @ afd
exp< [e +<1+a) } )
(¢) We have:
Glrr.m) = o (0TG- +(-mea(i32)]"

— exp ( [(11:1) (1+x2) ]w)
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Monte Carlo Simulation Methods

13.4.1 Simulating random numbers using the inversion method

1. Let u; be a uniform random variate.

(a) We have seen that the quantile function of the distribution function GEV (u, o, £)
has the following expression:

It follows that: -
) _ 91 _(_ ¢
Ti [ ¢ (1 (—Inwu;) )

(b) The cumulative density function of the log-normal distribution LN (p,0?) is

equal to:
Inz —
F(z)= ( nY “)

g

We deduce that:
F ' (u)=exp(p+0® " (u)

To simulate a log-normal random variate, we then use the following algorithm:
z; +exp (u+o® " (u;))

(¢) We have:

1+ (z/a)™”

F-! (u):a(lfuy/ﬂ

To simulate a log-logistic random variate LL («, 3), we use the following trans-
formation:
( u; )1/,3
T; <
1-— Usj

2. (a) Let z; be a random variate simulated from the probability distribution of X. A
straightforward algorithm is to keep all the random variates x;’s that are higher
than the threshold H:

a missing value otherwise

and:

251
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(b) We have:
Fr(z) = Pr{X<z|X>H}
 Pr{X <z X>H}
- Pr{X > H)}
Fx({L‘)—Fx(H)
1-Fx (H)
(c) We have:
Fr(z)=u & FX(z)_FX(H):u

1-Fx (H)
& Fx(2)=u+Fx (H)(1-u)
o z=F (u+Fx(H)(1-u)
It follows that:
F1'(u) =Fx' (u+Fx (H)(1-u)

We deduce that the algorithm to simulate the random variate [; is:
li ¢ Fx' (ui + Fx (H) (1 - ui))

(d) Concerning the first algorithm, we simulate nx values of X, but we only kept on
average n;, = ny (1 — Fx (H)) values of L, meaning that the acceptance ratio
is equal to 1 — Fx (H). For the second algorithm, all the simulated values of w;
are kept. For instance, if Fx (H) is equal to 90% and we would like to simulate
one million of random numbers for L, we have to simulate approximatively 10
millions of random numbers in the first algorithm, that is 10 more times than
for the second algorithm. In this case, the acceptance ratio is only equal to 10%.

(e) When X follows a log-normal distribution LN (u,0?), Algorithm (a) becomes:
l; < exp (u +od! (u,))

with the condition u; > Fx (H) = 95.16%. For Algorithm (b), we have:

l; + exp (M+Uq’_l (“i +(1-u) @ (IDHU_M)>>

In Figure 13.1, we have represented the random numbers [/; generated with the
two algorithms. We observe that only 4 simulated values are higher than H in the
case of Algorithm (a). With Algorithm (c), all the simulated values are higher
than H and it is easier to simulate a random loss located in the distribution tail.

3. (a) Let z; be a simulated value of X;.We have:
T1.p = min (1, ...,%,)

and:

(b) We have:



Monte Carlo Simulation Methods 253
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Uniform random variates

FIGURE 13.1: Simulation of conditional losses L =X | X > H

and:
F! (u) = F! (1 (- u)l/")

We deduce that a simulated value z; of X;., is given by:
r; « F! (1 —(1- ui)l/n>
For the maximum order statistic X,,.,, we have Fy., (z) = F (z)" and:

xj' « F! (@/n)

(¢) In Figure 13.2, we report 1000 simulated values of X1.50 and X50.50 when X; ~

N(0,1).

13.4.2 Simulating random numbers using the transformation method

1. The density function of Y = h (X) is given by the following relationship:

dx
9(y) = f(x) @
We obtain:
B Baxfaflefﬂ/m )
ﬂal‘_a_‘—l@_ﬁ/m
- I'(a)
ﬁayozflefﬁy

I (a)
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FIGURE 13.2: Simulation of X7.50 and X50.50 when X; ~ N (0,1)

It follows that Y ~ G («, 8). To simulate X, we draw a gamma random variate Y and
set X =1/Y.

(a) The density function of X ~ G (v, 8) is equal to:

ﬂama—le—ﬁx

flx) =

I'(a)

In the case a = 1, we obtain:

flx)=pe "
This is the density function of £ (8). To simulate X, we apply the following
transformation:

L
B
where u is a uniform random number.
We know that:
g(n’6> = Zg(lvﬁ)
=1

We deduce that:

g (n’ﬁ) = ZEl
=1

where E; ~ &£ (B) are #d exponential random variables. We deduce that the
probability distribution G (n, 3) can be simulated by:

T —;élnui



Monte Carlo Simulation Methods 255

or:
n
1
T _B In H U;
i=1
where uy,...,u, are 7id uniform random variates.

Let Y ~ G(«,6) and Z ~ G (8,0) be two independent gamma-distributed ran-
dom variables. We have:
§otB
Iv.z (y,2) = Wy

ozflzﬂflefé(yqtz)

We note: v
X:
Y+ Z
and:
S=Y+Z7

It follows that Y = XS and Z = (1 — X) S. The Jacobian of (y,z) = ¢ (x,s) is

then equal to:
s T
Jo = ( -5 1—=x )

Since we have det J, = s, we deduce that:

fxs(zs) = frz(y,z) x|s|
= ﬂ (zs)* (1 —2)s) T e 0%

I'(a) T (B)

_ (La+h) a1q_ 481
- Gmww> =) >X

( 5a+ﬁ SonrBler)
I'(a+p)
= fx(z) fs(s)

It follows that the random variables X and S are independent, X ~ B («, ) and
S ~G((a+p,9).
To simulate a beta-distributed random variate, we consider the following trans-

formation:
Yy

Y+ z

T <

where y and z are two independent random variates from G (o, d) and G (3, 0).

We remind that:

1
o (a20) = e (10) | o
where J,, is the Jacobian associated to the change of variables (z,y) = ¢ (r,0).
We have:
g — [ cos 6 —rsinf
¥\ sinf rcosd
and:

det J, = rcos’f +rsin®f =r
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Since R and © are independent, we have fr o (r,0) = fr (1) fo (6). Moreover, ©
is a uniform random variable and we have:

1
0) = —
Jo (0) 5

We deduce that: Fr ()

_ JrR\F

fxy (z,y) = Y-
We also notice that:
X?24+Y? = R?cos?’O + R?sin?0
= R?

Finally, we obtain the following result:

fr (\/ z? + y2>
xT,Y) = ——F———r
fX,Y ( y) 2ﬂ_\/m
Concerning the density function of X, we have:
< fr (\/ z? + yQ)
/—oo 2w/ 12 + 92

(b) We assume that R = v2E where E ~ £ (1).

fx (z) = dy

i. We have:
Fr(r) = Pr{\/QE < r}
2
- Pr{E < T}
2
= 1—e /2
We deduce that:
fR (’I“) = 8TFR (’I“)
= re /2

ii. We have:

e - /Wﬁ*(vﬁﬂf")d
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We deduce that X ~ A (0,1). By symmetry, we also have Y ~ A (0,1).
Moreover, we notice that X and Y are independent:

e—(ac2+y2)/2

fX,Y (.17, y) = T 5

(&

2T
—2?/2 ,—y?/2
N
= fx (@) fy (y)

ili. We have R = V2F = /—2InU; and © = 27U, where U; and Uy are two
standard uniform random variables. It follows that X and Y defined by:

X =+v/-2InUj cos (27U3)
Y = v—=2InU; sin (27U3)

are two independent standard Gaussian random variables.

(c) We assume that:
2 —v/2

i. It follows that the density function of R is equal to:

—v/2—1
fR(r):r(l—&-?j)

ii. We deduce that the joint density of (X,Y) is:

r 7"2 —v/2-1
fX,Y(xay) = <1+>

2 v

1 2 2\ —v/2-1
- <1+z Rt >

27 v

iii. We notice that fx y(z,y) is an even function of y. We deduce that:
+00 2 2\ —v/2-1
1
/ L (1 + w) dy
oo 2T v
400 2 2 —v/2-1
1
L2 0ez))
0 s v v+x

We consider the following change of variable:

2 -1
uz(l—i— L 2)
vV+x

Ix ()

‘We have:
1
= ——1 2
y \/(u )(VHU)
and:
2
dy = -2 (v +2%) du
2u2\/(u=1 = 1) (v +2?)
1 Vv+a2
= ———n«——du

2u2y/u"l -1
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‘We obtain:

fx(x) = _/1021<<1+1;2)i>—u/2—1

We have:
NS AN C o IO
2 '2)2r  I(%¥+1) 2
_ () vr v
sT(5) 2m
+1

We finally deduce that:

This is the probability density function of the ¢, random variable.

We have:
\/1/ ((1 - u)_2/” — 1)

We deduce that the random variate r; can be simulated using the inversion

method:
ri v ((1—u) ™ =1
v <( ’L) )

where u; is a uniform random variate.
It follows that:

Fi'(u) =

X = \/y ((1 A 1) cos (203
Y = \/1/ ((1 - Ul)_2/y - 1) sin (27U3)

where U; and U; are two independent uniform random variables.

In the Box-Muller algorithm, X and Y are independent. In the Bailey algo-
rithm, this property is not satisfied because:

fxy(z,y) # fx(@)fy(y)
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13.4.3 Simulating random numbers using rejection sampling

1. (a) It follows that:

o - 18
B po—1 (1 _ x)ﬁ—l
- B (o, B)

We deduce that:

W (z) =

and:

The supremum of i (z) is equal to:

| a—1 \*'/ -1\
(“%(a,ﬁ><a+6—2> <a+@—2>

We deduce that:

_T(@+B) (-1 (B-1)""
()T (B) (a+ B —2)*

(b) We have reported the functions f (z) and cg () in Figure 13.3. ¢ takes the value
1.27, 1.78, 8.00 and 2.76. The acceptance ratio is minimum in the third case
when o = 1 and 8 = 8. In fact, it corresponds to the worst situation for the
acceptance-rejection algorithm. Indeed, when one parameter is equal to 1, we
obtain:

_ra+p -t

LI ) E-1""

The acceptance ratio p tends to zero when the second parameter tends to infinity:

1
lim p= lim — =0
B—o0 B—o00 C

(c) The acceptance-rejection algorithm becomes:
i. Generate two independent uniform random variates u; and us;

ii. Calculate v such that:

. _
v= (at+5-2) w1 —uy) !

(a _ 1)04—1 (6 _ 1),8—1

iii. If us < w, accept uy; otherwise, reject ;.
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FIGURE 13.3: Rejection sampling applied to the beta distribution

2. (a) It follows that:

(1—2)"!
B (o, B)

Its maximum is reached at point z* = 0. We deduce that:

I
~ a®B(a,B)

c

(b) We have G (z) = z®. We use the inversion method to simulate X:
x4 ut/e

where u is a uniform random variate.
(c) The acceptance-rejection algorithm becomes:
i. Generate two independent uniform random variates u; and us;

ii. Calculate z = u}/a;

iii. Calculate v such that:

f ()
cg ()

B—1
= (1 — ui/a>

iv. If us < v, accept x; otherwise, reject x.
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G (z) = / %e‘lt‘ dt

— 00

3. (a) We have:

If z <0, we obtain:

If x > 0, we obtain:

We deduce that: 11
G(z)==-+ 5 sign (z) (1 —e™ ")

2
N 1 _ 1
G™" (u) = —sign (u 5 In(1-2]u 5

To simulate the Laplace distribution, we consider the following transformation:

1 1
:cesign(u)ln(l? uD
2 2

where ¢ is a uniform random variate.

and:

(b) We have:
_ [(=)
hio) = g(x)
_ \/560.512+|1:
We have:

. —(x4+1)h(z) ifz<0
h (a:)={ —(@—-1)h(x) ifz>0

There are two maxima: z* = 1. We deduce that:
¢ = max(h(-1),h(1))
/2
_ 205
T
~ 1.32

The functions f (z) and cg (x) are reported in Figure 13.4.
(c) The acceptance-rejection algorithm becomes:

i. Generate two independent uniform random variates u; and usg;
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FIGURE 13.4: Rejection sampling applied to the normal distribution

ii. Calculate z = sign (u; — 0.5)In (1 — 2|u; — 0.5);
iii. Calculate v such that:
f(x)

cg (x)
—0.5(m2—1)+|m|

= e
iv. If up < w, accept x; otherwise, reject x.

4. (a) We have:

We deduce that:

h({E) < ﬁ (6(0‘+1) Inz + e(oz-‘rl)lnw) e "
2w
_2h (a+l)lnz —x
I(a)° ‘
2w

T (a)

zOhLle*ﬂC
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We have: )
(z2te ™) = ((a+1) —z)z%e

The maximum is reached at the point z* = a + 1. We deduce that:

c= 2m « atl o—(atl)
F((1)( +1)
(b) We have:
I NCTE) 2\ 7
o= r<1>\/%<”2)
22\ ~3/2
NG ( i )
_ (2+x) 3/2
and:

i - [een

— 00

b

1 x
|1+ —
2( \/2+x2>

We calculate the inverse function G=* (u):

1 T x? 2
1+ — ) =u = (2u—1
2( \/2+x2> To7 )

<3

& 22 =20Qu—-17+2%2u—-1)°

& 2=202u—-1)°+222u—-1)°
2(2u—1)° 1)2

& 2% = )

& G )= L (1‘210‘5)

It follows that we can simulate the Student ¢ distribution with 2 degrees of
freedom by using the following transformation:

V2 (u —0.5)

T <
2

us —u

(¢) In Figure 13.5, we show the acceptance ratio p = 1/¢ for the two algorithms. It is
obvious that algorithm (b) dominates algorithm (a). In particular, the acceptance
ratio tends to 0 when « tends to infinity when we use the Cauchy distribution
as the proposal distribution.

5. (a) We have:

Il

=
X

=

)

w

=
=
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0.9 F

0.8

= Cauchy
===- Student

FIGURE 13.5: Acceptance ratio for the Gamma distribution

(b) We obtain ¢ = 5 x 40% = 2. Therefore, the acceptance ratio is equal to 50% and
we reject one simulation in two. This is confirmed by Figure 13.6, which shows
the number of accepted and rejected values. However, the acceptance ratio is not
the same for each states. For instance, it is equal to 100% for the state, which
has the highest probability, but it can be low for states with small probabilities.

In our experiment, we obtain the following results:

ko fak) fa(k) fr(k) [r(K)
I 49% 97% 161% 325%
2 99% 19.6% 85% 17.1%
3 19.6% 389% 0.0%  0.0%
4 102%  202%  9.2% 18.5%
5  58% 115% 158%  31.9%
sum 50.4% 100.0% 49.6% 100.0%

where f4 (k) and fr (k) are the frequencies of accepted and rejected values, and
f4 (k) and ff (k) are the normalized frequencies. We have rejected 49.6% of
simulated values on average. Among these rejected values, 32.5% comes from the
first state, 17.1% from the second state, etc. We also verify that the empirical
frequencies f} (k) are close to the theoretical probabilities p (k).
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B Accepted
180 | ) Rejected
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FIGURE 13.6: Histogram of accepted and rejected values

13.4.4 Simulation of Archimedean copulas

1. Let f be a function. We note y = f (z). We have dy = 9, f (z) do, x = f~! (y) and
dz =9, f~! (y) dy. We deduce that:

ay fil (y) =

O [ (x)
-
O f (71 (Y))

We then obtain the conditional copula function:
¢’ (u1)
@' (e (o (u1) + ¢ (u2)))

Let v; and vy be two independent uniform random variates. The simulation algorithm
based on the conditional distribution is:

C2\1 (ug |ur) =

Uy = U1
C2|1 (U2 | Ul) = V2
‘We deduce that:

U = U1
= (o (9 (£92)) ~ o)
This is the Genest-MacKay algorithm.

2. We obtain the Gumbel-Hougaard copula:

C (u1,u2) = exp (_ [(_mul)o n (—lnu2)9}1/9>
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3. Using the Gumbel-Hougaard copula, we have ¢ (1) = (= Inu)?, o= (u) = exp (—ul/?)

and ¢ (u) = —fu~' (—Inu)’"'. However, it is not possible to obtain an explicit
formula for ¢'~1 (u). This is why we use a numerical solution 1 (u) for ¢’~* (u). Finally,
we obtain the following simulation algorithm:

U = U1

ug = exp <_ [(_ln (w (%)»9 a (_lnvl)e} Ua)

. We have:

efeul (670u2 o 1)
N R TS I T Y

Co1 (ug | ur) = 01 C(uy,uz) =

We deduce that:
C2\1 (uz |ug) =wv
= 679u1679u2 _ efeul — '1)670 _ ,Uefeul + (efeul _ 1) 670’11,2

& e ((1 —v) e 0w 4 v) =(1-v) e 0 4 ye?

-6 _
o u2:—11n<1+ v(e?~1) )

0 v+ (1 —v)efu

Finally, we obtain the following simulation algorithm:

We have:
p(u)=v
1-6(1-
< In ( u) =
U
& 1-0(1—u)=ue’
_ 1-6
& @ 1(@):u:ev_9
It follows that:
1-0
-1
e (pur) +o(uz) =
exp (ln 179(7};“1) +1In 176(711;“2)) -0
(1 —0)ujus

(1—-60(1—up))(1—06(1—wuz))—0bujus
The denominator is equal to:
D = 1-0(1-u1))1—-0(1—uz2))—Oujusg
1—0(1—up) —0(1—ug) + 6% (1 —up) (1 —us) — Qujusg
1_29+6U1+0u2_9u1u2+92(1_u1)(1_'U/Q)
= (1-6—-1-60)0(1 —uy1)(1—ug)
= 1-0)1—-6(1—u1) (1l —us))
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We finally obtain:

o (@ (u1) + ¢ (u2))

The conditional copula is given by:

81 C (ul,u2)

02\1 (u2 | up)

To find the inverse conditional copula C

uz (1 =60 (1 —wuy) (1 —uz)) — Quyug (1 — us)

Ujuz

T1-0(1—u)(1—u)

(1—60(1—up)(1—up))?
(1 —0)ug + Ou3

(1—0(1—up)(1—up))?
(1 —0)us + Ou3

(1 =04 Ouy + Ouy (1 — uy))?

Cyj1 (uz2 | u1) = v. It follows that:

(1= 0)ug + 0ud = v (1 — 04 Oug + Oug (1 — uy))”

-1
2|17

267

we have to solve the equation

v(1—0+0u)® +
20vus (1 — 0 + Ouy) (1 —uq) +

v0%u2 (1 — uq)?

ap (v, u1) u3 + by (v,u1) ug + co (v,u1) = 0

002 (1 —up)® — 0

200(1—0+0u1)(1—u1)—(1—6) <0

or:
(1 —0)uy + Ou?
We obtain:
where:
ag (v,uq)
by (v, u1)
Co (U7 ul)

v(1—0+9u1)220

We deduce that the solution is equal to:

uy = Wy (U7U1) =

by (v,u1) — /b2 (v,u1) — 4ag (v,u1) cp (v,u1)

20,9 (U7 ul)

Finally, we obtain the following simulation algorithm:

{

Uy = v

ug = ¥y (v2,v1)

6. Using the previous algorithms, we obtain the following simulated random vectors:

Gumbel
=128

Ui

U2

Frank
0=21

Ui

U2

AMH
0=0.6

Ui

U2

0.117
0.607
0.168
0.986
0.765

0.240
0.478
0.141
0.993
0.299

0.117
0.607
0.168
0.986
0.765

0.321
0.459
0.171
0.951
0.192

0.117
0.607
0.168
0.986
0.765

0.351
0.452
0.185
0.930
0.169
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13.4.5 Simulation of conditional random variables

1. Z=(X,Y) is a Gaussian random vector defined as follows:
X g b)) Y
NN T , xx Ty
(Y> ((l‘y> (Zym Sy ))

pe = E[T]
=y + S (@ )

We have:

and:

Ett = Ccov (T)
Zyy - Eywzz_zlzwy

It follows that:
T~N (Ny + Zyarz;ggl (@ = pa) s By — Eyngzlzxy)
Let P;; be the Cholesky decomposition of ¥, — ZyzZ;wl Yy We have:
T = py + By ¥y, (@ — pig) + PuU

where U ~ N (0, I). We deduce the following algorithm to simulate the random vector
T:

(a) We simulate the vector u = (ul, . ,uny) of independent Gaussian random vari-
ates NV (0, 1);

(b) We calculate P the Cholesky decomposition of ¥, — 3,515,

(¢) The simulation of the random vector T is given by:
U4 py + Zyacz;;xl (x* = pe) + Pyu

2. We have:

E [T] [V - 2,5, (X —2%)]
[Y] - 535, (E[X] —2¥)

= Hy — EyrE;ml (Ha — ")

E
E

We deduce that:

T-E [T} =Y —py) - Zy:vz;;wl (X = pa)

and:

cov(T) = E {(Y — py) (Y = uy)T] +
nyzg;xlE |:(X — ) (X = ,Ux)—r} E;;E;x -
2B (Y - ) (X = )| 225,

= Eyy + Eyzzglzngzlz:my - QEymz:;xlEzy

€T

=y — EWE;;ZW
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As T is a linear transformation of the Gaussian random vector Z, we obtain:
T~N (Ny + Eyaczgml (2% = pz) , Byy — Zyzz.;mlzry)

We conclude that 7' = T. We deduce the following algorithm to simulate the random
vector 1"

(a) We simulate the vector v = (uq,...,u,,) of independent Gaussian random vari-
ates NV (0, 1);
(b) We calculate P,, the Cholesky decomposition of 3, ,;

(¢) We simulate the random vector Z:
Z24 py+ Pou

(d) We set © = (21,...,2p,) and y = (zan, .. -7an+ny)-

(e) The simulation of the random vector T is given by:
t—y— EyzE;:cl (l‘ - LE*)

3. We note Z = (ZlaZ27~-~7an) and Zi(zla-H,Zi—l) = i | Zl = Zl,...,Zi_l =

zi—1. Let u = (uq,us,...,u,_ ) be a vector of independent Gaussian random variates
N (0,1). To simulate Z; (z1,...,2i—1), we consider the following iteration from i = 2
to i =mn,:

1
zi 4 it B8 101 (Brie1 — pnse1) +

1
\/Zi,i = i i—18 11 D1,

with:

21 4 p1+ v/ Ewm

4. We obtain the following results:

z1 —0.562 0.437 0.427 0.404 1.984
22 1.963 2.225 2.234 1.287 2.059
zz —0.808 4.013 7.643 —3.471 3.236

13.4.6 Simulation of the bivariate Normal copula

1. P is a lower triangular matrix such that we have ¥ = PPT. We know that:

1 0
P_<p 102)
0 1 P
1—p2 0 1—p2

We verify that:

PPT=<

We deduce that:
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where N1 and Ny are two independent standardized Gaussian random variables. Let
ny1 and ng be two independent random variates, whose probability distribution is
N (0,1). Using the Cholesky decomposition, we deduce that can simulate X in the
following way:
T < N
To + pni + /1 — p?ns
2. We have
C(X1,X3) = C(P(X1),P(X2))
= C(Uy,Us)
because the function ® (x) is non-decreasing. The copula of U = (Uy, Us) is then the
copula of X = (X7, X»).
3. We deduce that we can simulate U with the following algorithm:

Uy < ) (:L‘l) = (nl)
ug < P (x3) = (pnl—&-\/l—p n2>

4. Let X3 be a Gaussian random variable, which is independent from X; and Xs. Using
the Cholesky decomposition, we know that:

X2 :,DX1+\/17P2X3

It follows that:
PI‘{XQSI’2|X1:£E} = Pr{pX1+\/1—p2X3S£C2’X1:£E}

= Pr ngu
V1—p?

Il
&
/N
&
=
|
s
b[\) H
~—

Then we deduce that:
Qg (w1, 22;p) = Pr{X; <z, Xy <ap}

— pX
= PT{X1 <, X3 < W}

V1= p?

— X
Pr{Xlgxl,X3<x2 P21

S ie XH
= /_w1 i) <T/2%> ¢ (z) dz

5. Using the relationships w3 = @ (1), ua = P (z2) and P (x1,22;p) =
C(®(x1),P (x2);p), we obtain:

& (up) 1
e - [ o

_ /O <1>< (uz) ’;I;l >du

= E
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6. We have:
C2\1 (us | Ul) = 0,C (U17u2)
o2 (u2) —p@ 7 (w)
V1—p?

Let v; and vy be two independent uniform random variates. The simulation algorithm
corresponds to the following steps:

Uy = v1
C2|1 (u1,uz) = v2
We deduce that:

Ul < U1
ug P (p<I>_1 (v1) + /1 — p2@~1 (vg))
7. We obtain the same algorithm, because we have the following correspondence:

{ v = <I>(n1)
(%) :<I>(n2)

The algorithm described in Question 6 is then a special case of the Cholesky algorithm
if we take ny = @71 (v1) and ng = @71 (v2). Whereas n; and ny are directly simulated
in the Cholesky algorithm with a Gaussian random generator, they are simulated using
the inverse transform in the conditional distribution method.

13.4.7 Computing the capital charge for operational risk
1. We obtain the following results:

o E[CaRi(a)] o (CaRi(a)) 1Cyy (Caki(a))

90% 251 660 180 0.28%
95% 294030 280 0.37%
99% 414810 885 0.84%
99.9% 708 840 5410 2.99%

where ICg5 ((ﬁl (a)) is the 95% confidence interval ratio:
o (C/aih (a))

10, (ol () =2 074 (97.5%) x — [GaR, (0]

95%

Because this ratio is lower than 5%, we conclude that one million of simulations is
sufficient even if « is equal to 99.9%.

2. The results become:

a E [@2 (04)] o (C/Eﬁ)bz (04)) ICo59% (C/E;Rz (05))

90% 183560 128 0.27%
95% 218950 223 0.40%
99% 332870 916 1.08%
99.9% 662 420 6397 3.7%%

‘We conclude that one million of simulations is sufficient to calculate the capital-at-risk.
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1.4 F Copula Ct
— — Copula C*

0.2 F

0.0 =

In(S1 + S2)

FIGURE 13.7: probability density function of In (S + S2)

3. In Figure 13.7, we have represented the probability density function of In (S + S2)

when the aggregate losses S; and Sy are independent (copula C1) and perfectly
dependent (copula CT). We obtain the following capital-at-risk:

a cT CT  DR(CT[CT)
90% 400240 435220 8.04%
95% 453864 512980  11.52%
99% 605927  TAT680  18.96%

99.9% 993535 1371260  27.55%

where DR (CJ- | C*) is the diversification ratio.

. In Figure 13.8, we have reported the capital-at-risk calculated with the Normal copula

and the Gaussian approximation defined as:

CaR () = 51+52+\/((iﬁal(a)—sl)2+(@T{z(a)—sz)2+...

et 2p ((ﬁl (o) — §1> (@2 (o) — 5’2)

Results are given in Figure 13.9.
Results are given in Figure 13.10.

For a high value of the quantile (o« = 99.9%), the Gaussian approximation overes-
timates (resp. underestimates) the capital-at-risk when the dependence function is
the Normal (resp. ¢1) copula. We obtain this result, because the Student ¢; copula
produces strong dependence when the correlation parameter p is equal to zero. We
conclude that the Gaussian approximation is good in this example, except if the copula
function highly correlates the extreme losses.
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a = 90.07 a = 95.07
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FIGURE 13.8: Capital-at-risk with the Normal copula

a = 90.07% a = 95.07
o 4.4 o 52
o )
%43 x
5.0
4.2
4.8
41
4.6
4.0
3.9 4.4
0 20 40 60 80 100 0 20 40 60 80 100
e (in 7) p (in 7)
a = 99.07 a = 99.97
o 7.5 o 1.4
o o
x * 1.3 P>
7.0
1.2
1.1
6.5
10 @— Copula
: B = Gaussian
6.0 . . . . ) 0.9 . . . . )
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p (in 7) p (in 7)

FIGURE 13.9: Capital-at-risk with the ¢4 copula
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a = 90.07 a = 95.0%
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a = 99.97
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10 @— Copula
: B = Gaussian
. 0.9
0 20 40 60 80 100 0 20 40 60 80 100
p (in 7) p (in 7)

FIGURE 13.10: Capital-at-risk with the ¢; copula

13.4.8 Simulating a Brownian bridge
1. We remind that:
E[W (s) W (t)] = min (s, t)

We deduce that:

S
Wit) | ~N 0|, s ¢ ¢
W (u) 0 t u

2. We rearrange the terms of the random vector in the following way:

W (s) 0 s s s
Ww) | ~N 0|, s w
W (t) 0 s t t

We note:
B(t) ={W () | W (s) = ws, W (u) = wy}

We know that the conditional distribution of W (t) given that W (s) = ws and W (u) =
w,, is Gaussian with:

EB(t)] = 0+(s t)(i i)_l((iﬁu)‘(gw

u—t t—s
== Ws +
U— S U— S

Wy
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war(B(t) = t—(s t)<§ u><t)

and:

o (t=s)(u—1t)
a u—Ss
We deduce that:
—t t— t— —t
B(t): u we + Swu+ %5
u— 8 u— 8 u—Ss

where ¢ is a standard Gaussian random variable. To simulate B (t), we then use the
iterative algorithm based on filling the path and moving the starting point (s, B (s))
at each iteration.

13.4.9 Optimal importance sampling

1.

2.

Let X be a random variate from the distribution N (0,1). We have pyc = ¢ (X)
where ¢ = 1{X > ¢}. We deduce that:

Elpuc] = Efp(X)]

/O:o]l{x>c}¢>(x) dz

/COO¢($) dz
1—®(c)

= D

Recall that var (pmc) = E [p3ic] — E? [puc]. We have!:

Bl = [ ¢ @@ i
= /00 1{z > c}¢(x) dzx
= pioo
It follows that:
var (puc) = p-—p°
= p(l-p)

— () (1- (o))

We notice that pyc is a Bernoulli random variable B (® (¢)).

We note Z the random variate from the distribution N (,u, 02). We have:

s = ¢ (2)L(Z)

We notice that ¢? (z) = 1 {x > c}.
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where £ (Z) is the likelihood ratio:

Lz = 22

Il
Q
@
>
ko)
VR
N | = q
I/~
N
Q|
=
S~
(o]
|
I
N
(V]
~

It follows that:

We deduce that:

— 2
E[ﬁls] = E[]l{ZZC}Ue%(ZT) 7%22]
o 1(z—p\2 1 _
a2
oo P
<1 1.2
= e 2% dz
[
1-®(c)
= p
and:
E[pls] = E[ {Z>C}J e( 2 )*22]
- / % K “)27Z2 dz
We have
1Liz—p 2_22 2= 2uz+pt - 20
2 o B 252
= 120 22 2p . w2
202 1— 202 1 — 252
_ 1—20'2 7] 2 #20.
N 20’2 z ]__20-2 (1_20_2
_ 1—20'2 7’ 2 'u2
- U202 )T 1m202) 1o 202
We note?:
i=
1— 202
and
- o
o=
202 — 1

2We assume that 262 — 1 > 0.
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It follows that:

2 %) 02 B 5
E[ﬁ%s] = eim/ \/%6(12:2 )(zfm) dz

2 oo ~ -
— eil—“ﬁ/ g9 e_%(%)2 dz
e OV2m

2 2 e} _

o — 1 1(z=p)?

= 72@ 1—2a2/ 6_2( 5 ) dz
204 —1 c

2 2 ~
= (10()
02— o
We conclude that3:

var (pis) = 0726*% (1 _d (C(Q(T_l)""“)) S (1—®(e)?

202 — 1 ov20?% -1
The probability distribution of pig is no longer a Bernoulli distribution.

3. We have var (pyc) = 13.48 x 10~%. In Figure 13.11, we report the relationship be-
tween p and var (Prs) for different values of . We find that the minimum value is
approximately obtained for the same value of u:

g ,u* var (ﬁIS) x 10~%  var (ﬁIS) /var (ﬁMC)

0.80 3.158 0.05 0.34%
1.00 3.154 0.06 0.45%
2.00 3.151 0.14 1.03%
3.00 3.151 0.22 1.60%

Therefore, we can make the hypothesis that the optimal value of p does not highly
depend on the parameter o.

4. When o is equal to 1, we obtain:
~ 2
var (pis) = e (1= @ (c+p)) = (1= @ (¢))”

The IS scheme is optimal if the variance var (pg) is minimum. The first-order condition
is then:
0 var (prs)
op

We deduce that the optimal value p* satisfies the following nonlinear equation:
2" (1 =@ (c+p")) =d(c+pu)

In Figure 13.12, we draw the relationship between ¢ and p*. We notice that:

= 2ue’” (1—®(c4p)— e p(c+p)=0

lim p* =c¢

c— 00
We can then consider y = c¢. In Figure 13.12, we also report the variance ratio
var (pig) / var (Pmc) for the two schemes p = p* and p = c¢. We conclude that we
obtain similar variance reduction with the heuristic scheme when ¢ > 1.

3In the case where = 0 and o = 1, we retrieve the formula of the MC estimator:

var (prs) = (12 () — (1 - ®(c)”
= ®(c)— D% (c)
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FIGURE 13.12: Optimal value p* with respect to ¢



Chapter 14

Stress Testing and Scenario Analysis

14.3.1 Construction of a stress scenario with the GEV distribution

1. We recall that:

br {Xm;b" < I} = Pr{X,, < anz+b,}
: = F"(anz+by)
and:
G(z) = nh_)H;o F" (apz + by)
(a) We have:
F" (anz +b,) = (1 Y mn))”

We deduce that:

G (z) = lim <1 - ew)n —e ¢ =A(x)

(b) We have:

We deduce that:

G (z) = lim (1+Tll(x—1))n:e”’_1:\111(x—l)

n—oo

(c) We have:

F" (apz+b,) = 1—

6+ 904_1711/0’1‘ + Ont/o — 9) )

(- (
(- (= nl/ax+n1/a>a>n
(-l

1-—

We deduce that:
G (z) = lim <1 ! (1 T Z)a>n () g, (1 n E)

n—o0 n (0%

279
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The GEV distribution encompasses the three EV probability distributions. This is an
interesting property, because we have not to choose between the three EV distribu-
tions. We have:

o= e (A e e ()]

We deduce that:

L = —glngz_ (?) ;hrl (14.5(331‘;,“)) _

)]

i=1

We notice that:
lim (14 &x)~
£—0

Then we obtain:

lim G (z) = limexp{ {1+£(x—p

e - paof-(2)
- ol )
_ exp(_exP<_<x;u ))

G la)=p—ot? [1 — (—lna)_g}
When the parameter £ is equal to 1, we obtain:
Glla)=p—o0o (1 — (- lnoz)_1>
By definition, we have 7 = (1 — a)_l n. The return period 7 is then associate
to the confidence level @« = 1 —n/T. We deduce that:
R(T) ~G7H(1—n/t)
- (u —0 (1 —(=In(1- n/T))_l))
)
n

We then replace p and o by their ML estimates i and 6.
(b) For Portfolio #1, we obtain:

(a) We have:

Q

252
r (1Y) = — (1% + (21 — 1) X 3%) = —34%
For Portfolio #2, the stress scenario is equal to:
252
r(1Y) = — (10% + (21 — 1) X 2%) =-32%

We conclude that Portfolio #1 is more risky than Portfolio #2 if we consider a
stress scenario analysis.
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14.3.2 Conditional expectation and linearity

1. Using the conditional distribution theorem, we have:

Y - X — g
(o) (52 o
Yy x

where U ~ N (0,1). Tt follows that:
o o
Y = (My - pa:yo_yﬂw) + sz;yX + OyA/ 1- p%yU

— PzyOy
Bo = Hy — =5~ Haz
B = PzyTy

Ox

‘We deduce that:

o=o0y\/1-p32,
2. We have:

m(z) = E[Y|X=uq
E[Bo+ X +0oU | X =z
= Bo+Pr+oE[U] X =a]
= fo+px

because U and X are independent.
3. Since we have Y = By + X + oU, we deduce that:

Yy = €
_ PotBXtoU

P X
where U = eV ~ LN (0,1). Tt follows that:

m(z) = E[Y|X=2]
= eﬁ“:cﬁE[Uﬂ

2
— 650+%U .’E’B

because we have E [U"] =E [e”U] =37, Finally, we obtain:

m () exp (ﬂo + ;ﬂ) P

Py 1 pzyoy
= exp (uy—x;’yuﬁzaj (l—pﬁy)> s
x

4. In the Gaussian case, we notice that the conditional expectation is a linear function.
This is not the case for the lognormal case. The use of ordinary least squares to
compute a conditional stress scenario assumes that the distribution of risk factors are
Gaussian.
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14.3.3 Conditional quantile and linearity

1. Using the conditional distribution theorem, we know that:

Fly| X=2)=N (ﬁ‘ylrvzyy\z)
where:
Hylz = My + ZyzE;zl (7 — p1z)

and:

Eyylz =Dy — Zwa;ggl Yoy

o (’I) = Hy|x + q)il (a) \/ Eyy|£

We deduce that:

2. We have:
G (@) = py+ Bl (@ - ) + 97 (0) /Sy, - Sy Sai S,
= Bo(a)+8'z
where:
Bo (@) = py — Zywz;jﬂl‘ +o7! (@) \/Eyy - Eywzgﬂﬁl Yy
and:

p= Z;zl Zry
3. We reiterate that the conditional expectation is:
_ T
m(z) =00+

where:
Bo = ty — Tya Loy lia
and:
B =35y

It follows that linear regression and quantile regression produce the same estimate (3,
but not the same intercept. Indeed, we have:

Bo (@) = B+ (@) /Sy — £,u Tl

If & > 50%, the intercept of the quantile regression is larger than the intercept of the
linear regression:

Bo (Oé) > fy Ifa> 50%

ﬂo (Oé) = Bo If a = 50%

50 (Oé) < ﬂo If o < 50%

We conclude that the median regression coincides with the linear regression if (X,Y)
is Gaussian.

4. We know that Z = @~ (F, (1)) ~ N (0,1). It follows that (X, Z) is Gaussian. The
expression of the conditional quantile of Z is then:

qZ (z) = Bo (@) + BTz



Stress Testing and Scenario Analysis 283
Since we have Z = ! (1 — e_M) and:

In(l1-—9(2))
A

T=—

we conclude that the conditional quantile of the default time is:

_ln (1 - ® (ﬂo (o) + BTJJ))
A

a5 (x) =
5. By definition, we have PD = F, (7). We deduce that:
Qo (@) =@ (B0 (0) + 8T )
6. By construction, p is the correlation between Z = ®~! (F, (7)) and X. We note .

and ¥,, = 02 the mean and variance of Z. Since, we have ¥,, = po,0., we deduce
that:

ﬂO (Oé) = Mz — ZZZZ;;MI + (I)_l (CY) \/Zzz - szzaztlzzz
Oz —1 (PJmUZ)z
= W= p—pa TP (a)y[0F - —F
[ (o

g _
= pz—p— e+ (@) 02 /1 = p?
Oy

and:

Because!' u, =0 and o, = 1, we finally obtain:
4" (x) = @(fy(a)+ 5 )

® (uz +pzi (x = pz) + 27" (@) 02/1 PQ)

x

® (‘I’_l (@) V1-p?+ p(x;:’”))

7. We observe that the conditional quantile of the default probability is not linear with
respect to the risk factor X. However, we notice that @~ (¢ (z)) is a linear function
of X. This is why we may use the following quantile regression in order to stress the
default probability:

' (PD)=Bo+B X +U

where X is a set of risk factors.

UIndeed, F7 (r) ~ Upg,3j and @1 (Upg 1)) ~ N (0,1).






Chapter 15

Credit Scoring Models

15.4.1 Elastic net regression

1. (a) Let f (/) be the objective function. We have:

N |

Ao o
f8) = <YfX5)T<YfX5)+5;6k

= %BTXTX5 - ATXTY + %YTY + %ﬂTﬂ
= %ﬂ (XX +Mg)B-B"XTY + %YTY
We deduce that:
9f(B)
op
The first order condition dg f () = 0 implies that:

= (XX +Ag)B-XTY

Bridgc — (XTX + )\IK)_l XTY
(b) We recall that 5 = (XTX)f1 XTY. We deduce that:

(XTX + >\IK) Bridge _ (XTX) Bols _ XTY

and:
frdse — (XTX 4 Ax) <(XTX)—1)*1BOIS
- (X)) (xTx+ )JK)>_1 Bols
= (I +x (XT><)’1)_1 Bots (15.1)
(c) Tt follows that:
E|[9] - E [(IKJr)\(XTX)l)_lBO‘S]

-1

= (+2(xX™x)7") 8
where [ is the true value. If E {Bridge} = 3, we obtain:

(i + 2 (XTx)‘l)f1 —Ix & Ix+AXTX) =1k

& A(XTX) =0
< A=0

285
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From Equation (15.1), we deduce that:
var (ﬁridgc) = (IK + A (XTX)_l)il var (BOIS) (IK + A (XTX)_1)7
= o (I +A (XTX)”)_1 (X7X) " (Ix + A (XTX)”)_1

= (XX 4 ) (I AXTX) )

= o (I + A (XTX)” )(XTX—F)\IK))_l

= 0'2

(
- o2 (XTx+)\2 XTx) +2/\IK)71
(X X+Q)

where: .
Q=N (X"TX)  +2Mg

Since @ is a symmetric positive definite matrix, we have:
(X'X+Q) = (XTX)
where > is the positive definite ordering. Finally, we obtain:
var (BOIS) = var (Bridge>

We have:

>
|

Xléridge

= XXX+ M) XY
- HY

where H = X (XX + Alx) ' XT. We deduce that:
afmet) — g (X (XTX 4+ M) X
= b (XX +2k) T XTX)
We consider the singular value decomposition X = USV T where U and V are

two orthonormal matrices, and S is a diagonal matrix that is composed of the
singular values (s1,...,5x). We have XX = V.S?V T and:

XX+ X = VSV 4 AvVT
= V(S®+ k) VT

It follows that (XX + M) !

=V (82 + M) VT and:
(XTX 4+ M) XX = V(24 Mg) VIVSVT
— V(S +Mk) SV

We finally obtain:

A"l\.’)

K
df(model Z
S

k=1



(f)
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If X is an orthonormal matrix, we have XTX = Ik and:

Bridge _ (IK + )\IK)_l Bols
BOIS
14+
Since we have var (Bridge> =02 (Ig + Q)_1 and Q = AIx + 2M\ g, we deduce
that:

2

Aridge _ g
var (4% EPESOE
1 pols
= var ;
(1+A)° ()
Concerning the model degree of freedom, we obtain:
K
1 K
f(model) — —
d Z 14X 14+
k=1
We have:
FB) = S(Y-XB) (Y -Xp)+

> N =

K K
5 <042|5k+(104)2513>

k=1
1
= BT(X'X+A1-a)Ig)B-BTXTY + 5YTY+
K
Ao
5 Z 1B
k=1

We note A = ( Ix —Ig ) We introduce the parameter vector § = (87, 37)
such that 3 = 87 — 87, 87 > 0 and 8~ > 0. We notice that:

K K
Mol = YOI -8
k=1 k=1
K K
= D B+ B
k=1 k=1
= 176
Since we have § = A0, it follows that:
f(p) = laTAT (XX +A(1—a)lx) A0 —
Ao

0TATXTY + YTY+— (671)

The corresponding QP program is then:

A

1
# = argmin §9TQ9 —-0'R
uc. >0

where Q = AT (XTX +A(1—a)Ix) Aand R= ATXTY + %041
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(b) Results are given in Figure 15.1.

—fs
0.9 0.9
@, - @, -
e
0.6 e 0.6 "
P
0.3f 0.3t 7
4
s
0.0 —— 0.0 -
0.0 02~~04 "UF=.08 1.0 00 02 VW~ 068 _ 1.0
-0.3 T -0.3 o

FIGURE 15.1: Comparison of lasso, ridge and elastic net estimates

15.4.2 Cross-validation of the ridge linear regression

1. The objective function is equal to:

LN = (Y -XB)T (Y- X8)+ 2574

N~ N~

(Y'Y -28"XTY + 8" (XTX + M) B)
The first order condition d3 L (8; A) = 0 is equivalent to:
~X'Y+ (X"X +\g)B=0
We deduce that:
B=(XTX+Mg) XY
2. We have:

ﬁ—i = (XLX_l + )\IK) ! X—_riY—i
= (XTX-—azz + /\IK)_l (XY — z;y,)
= (Q- xixT)_l (XTY — 2:)

i
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where Q = XX 4+ M. The Sherman-Morrison-Woodbury formula! leads to:
@-w))t = @i (

— Q1+<

L -1, T-1
1-— x;'—lel> @ mw Q

1 _ _
1-— hi) @ 1me1TQ 1

where h; = x;'—Qflxi = :r;r (XTX + )\IK)fl ;. We can now obtain a formula that

A

relates the ridge estimators f_; and B Indeed, we have:

PN

Ao = QXY - Q 'y +
Q_lxﬂiTQ_IXTY Q7 'mz/ Q7!
1= h 1= h
T
- A =1, o Z; A hl )
= B-Q 'z (yz l—hiﬁ+ l—hiy’>

= pB- Cf_li: ((1 —hi)yi —x] B+ hiyi)

(XTX + )\IK) -t z;U;
1—h;

TilYi

where 4; = y; — xIB
3. We notice that:

Uj—i = Yi = Yi,—i

Press = — > (v~ Gi0)’

1Suppose u and v are two vectors and A is an invertible square matrix. It follows that:

1

(A+uvT)_l =A"1_— TroTA T oA,

A T A
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5. Let H(\) = X (XTX + )Jn)_l X T be the hat matrix?. By considering the singular
value decomposition X = USV' T, we obtain:

XX = vsuTusv'
= vsvT

and:
XX+, =V (S*+Mg) V'

It follows that:
dfmede) () = trace H ()
= trace (X (XX + AIx) X7
= trace ((XTX + )\1'1()71 XTX)
Since we have:
(XTX+AL) ' XTX = (V(S24+ M) V) vs2vT
= (V) TS24 aIk) TV tvs2y T
= V(S*+ k) S2VT
we finally obtain:

df(modeD (y) = trace( L(S% 4 Ak) 1SQVT)

= trace

(
- mce(

(V'
(5 L) ST (v
(

S? 4+ Ay 52)

k=
We verify the properties df™°4°D (0) = K and df™°4e) (00) = 0.

6. Since we have ¥ = H(A)Y and U = (I, —H()))Y, we can express the PRESS

statistic as:
2
1 (A)) Y),
Press = n Z ( (In —H(N);,

whereas the generalized cross-validation statistic is defined by:

GCV = li (((In H(f‘))Y)z)Q

nia L=h

where h =n~! S H(X), ;. We verify that the generalized cross-validation statistic
corresponds to the PRESS statistic where the elements H ()), ; are replaced by their

2H transforms Y into ¥ (pronounced “y-hat”).



Credit Scoring Models 291

mean h. We have:

n

1ok o= S -HO),,

i=1

= %trace (I, —H(\))

K
1 <n sy )
- K &2

nk_l K s+
1 sk-i-)\ - Ks3
B n £ (s2+N)

_ Li n—K sk—l—n)\

1 >
e 2 Gy Y
n — Sk n
(e e )
K —2
_ 2 (n — K) sj +nA 3

The effect of A on the GCV statistic is not obvious since we have:
A= RSS(B(V) 7

and:
K

(n— K)si +n\
A= Z ———
— sp+ A
7. Since we have 1 — h = n~! trace (I,, — H())), the GCV statistic is equal to:

2
% (n‘l trace (jn -H (A))) RSS (ﬁ ()\))

= n(trace (I, — H()\)) *RSS (B ()\))

GOV =

From the Woodbury formula, we have?:

—1

L,-H(\) = L,-XX'X+Mg) X'

XX\
= |1,

3The Woodbury matrix identity is:

(A+BCD) ' =A"' —A"'B(C™' + DAT'B) DA™
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Let \; be the eigenvalues of the (n x n) symmetric real matrix XX . We have:

n

trace (I, — H()) = ; <1 * AA) i

LD
:Z)\—i-)\i
it Z
A

=K+

i=1
K
P e
i=1
K
;)\Jr)\i +(n—K)

because the last n — K eigenvalues \; are equal to 0. Moreover, we have A\, = s3.
Finally, we obtain®:

GCVn(nKJrZ 21A> RSS(B( )) (15.3)

8. The values of B,i when A is equal to 3 are reported in Table 15.1. In the last row,
we have also given the ridge estimate B calculated with the full sample. Using the
values of §; —;, @; i, 4; and h; (see Table 15.2), we obtain® Press = 0.29104 and
GCV = 0.28059.

15.4.3 K-means and the Lloyd’s algorithm

1. We have:
K
i — 2 1* = > (win — k)
k=1
K K
= D ik Z? —2meak
k): : =
and:

K K K
12 _ _
i —z||” = Zzzzk + Zx?k) - QZ%W(@
k=1 k=1 k=1

4We verify that Equations (15.2) and (15.3) are equivalent, because we have:

K K
1 (n— K)s2 +n\ 1 (n—K) (s2 4+ ) + KX
KX win - T kX :

~ si—}-/\ K si—&-/\

5We have h = 0.24951, s1 = 58.71914, so = 51.42980, s3 = 45.83216, s4 = 37.91501 and s5 = 26.61791.
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TABLE 15.1: LOOCV ridge estimates 5_;

Bi,—i B2,—i B3,—i Ba,—i Bs,—i
1.2274 —0.9805 0.1298 —0.4923 0.0398
1.2307 —0.9865 0.1357 —0.4946 0.0415
1.2335 —0.9827 0.1362 —0.4925 0.0410
1.2303 —0.9876 0.1355 —0.4957 0.0417
1.2296 —0.9849 0.1358 —0.4948 0.0420
1.2300 —0.9851 0.1361 —0.4941 0.0422
1.2335 —0.9870 0.1287 —0.4898 0.0476
1.2219 —0.9838 0.1357 —0.5047 0.0463
911.2281 —-0.9844 0.1382 —0.5005 0.0445
10 | 1.2319 —0.9889 0.1401 —0.4912 0.0444
11 1 1.2299 —0.9856 0.1353 —0.4938 0.0430
12 | 1.2300 —0.9849 0.1355 —0.4950 0.0411
13 1 1.2280 —0.9817 0.1320 —-0.4974 0.0407
14 1 1.2307 —0.9855 0.1365 —0.4965 0.0427
15| 1.2314 —0.9839 0.1360 —0.4937 0.0426
16 | 1.2285 —0.9861 0.1390 —0.4944 0.0393
17 | 1.2289 —0.9843 0.1346 —0.4958 0.0390
18 | 1.2246 —0.9855 0.1370 —0.4892 0.0426
19 | 1.2267 —0.9878 0.1356 —0.4920 0.0443
20 | 1.2459 —0.9890 0.1386 —0.4830 0.0358

£ |1.2301 —0.9854 0.1358 —0.4941 0.0420

.

0 O Ui Wi

TABLE 15.2: Computation of Qi,fi, ’ﬁi’,i, u; and h;

~.

Yi Ui, —i Ui, U h;

—-23.0 —-22.3270 —-0.6730 —0.5130 0.2378
—21.0 —21.2041 0.2041 0.1796 0.1201
-5.0 —5.4804 0.4804 0.3950 0.1778
—39.6 —39.7745 0.1745 0.0857 0.5091
5.8 5.7076 0.0924 0.0828 0.1040
13.6 13.5376 0.0624 0.0525 0.1582
14.0 14.7404 —0.7404 —-0.4168 0.4371
—-5.2 —4.3994 -0.8006 —0.5534 0.3087
9 6.9 7.5607 —0.6607 —0.5306 0.1970
10| =52 —5.6244 0.4244 0.3106 0.2681
11 0.0 —0.0913 0.0913 0.0595 0.3483
12 3.0 3.2119 —-0.2119 —-0.1974 0.0682
13 9.2 8.9014 0.2986 0.1664 0.4428
14 26.1 26.3478 —0.2478 —0.1842 0.2568
15| —6.3 —6.4835 0.1835 0.1192  0.3506
16 11.5 10.9309 0.5691 0.4763 0.1631
17 4.8 4.3120 0.4880 0.4360 0.1065
18 35.2 34.4379 0.7621 0.5531 0.2742
19 14.0 13.2528 0.7472 0.6633 0.1123
20 | —21.4 —22.5438 1.1438 0.7438 0.3497

OO UL W N+
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where T,

-2
nY iy lzi — 2|

and:

S1

S2
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ntY " wie. We note Sp = 37 Z?Zl |a; — 2;]|* and Sy =
. We deduce that:

Iy (Zx,ﬁzxﬂ_sz,m )

=1 j=1

n

K n
> % DO (@ 4% — 2mika)

k=17 i=1 j=1

n K n K
— nzzzzz,k+ Z;i’k) 2lezxzkx(k)

i=1 k=1

We conclude that S; =

2. Using the previous result, we have:

= Z Z s — 2o ||” = n; Z s — 21

C(i)=j C(i’) C(i)=j

where z; and n; is the mean vector and the number of observations of Cluster C;.

3. The first-order conditions are:

where:

Since we have:

8f(:u‘17"'nu7lc)
O

=0 forj=1,...,n¢c

ne
2
f(,ula"'v,unc)zznj Z ||J?1—,LLJ||

=1 ()=
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it follows that:

af(ﬂla" '7/1/7740)
O

— oy Y (n ) =0

C(i)=3

We deduce that pf = (u}l, .. ,M;K) where:

Finally, we verify that the optimal solution is pj = ;. The Llyod’s algorithm exploits
this result in order to find the optimal partition.

4. In Figure 15.2, we have reported the classification operated by K-means, LDA and
QDA. We notice that the unsupervised K-means algorithm gives the same result as
the supervised LDA algorithm.

Observation QDA prediction
7 7
o o
6 ° 3 6 [
° )
5 ° . 5 % .
‘o @@ am ‘o #® am
o 3 |@ o 3|@
b I T e &%t
2 u aA AAA A 2 (YN L, A
; A, A ; A, A
1 A, 1 A
0 1 2 3 4 5 6 0 2 3 4 5 6
X4 ®Class C, X4
.. B Class C, .
LDA prediction AClass Cj K—means prediction
7 7
| o 0@ | o 0@
o o) o o)
4 | 4 |
° °
A TS
)l b %" )l v %"
2 A 2 A
1 A R 1 A M
0 4 4 0 4 4
1 4 1 La
0 1 2 3 4 5 6 0 2 3 4 5 6
X X

FIGURE 15.2: Comparison of LDA, QDA and K-means classification

15.4.4 Derivation of the principal component analysis®

1. We have:

var(Z1) = var (B X)
BIEp

6The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002).
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The objective function is to maximize the variance of Z; under a normalization con-
straint”:
B = argmaxf'Y8
st. BTg=1

The Lagrange function is then equal to:
L(B:x) =886 (875 -1)

Since, the first derivative dg £ (8; A1) is equal to 2X8 — 2A1 8, we deduce that the
first-order condition is:
Ef1 = Mp (15.4)

or:
E-MIk)5 =0

It follows that (7 is an eigenvector of ¥ and \; is the associated eigenvalue. Moreover,
we have:

var (Z1) = () 2p
- )\

Maximizing var (Z1) is then equivalent to consider the eigenvector $; that corresponds
to the largest eigenvalue.

We have:
var (Zs) = var (B, X)
= B %h
Using Equation (15.4), we deduce that the covariance is:
cov(Z1,Z:) = B LB
= B B (15.5)

The objective function is then to maximize the variance of Z, under the constraints
of normalization and independence between Z; and Zs:

B = argmaxj' X8
BTB=1
s.t. { ﬂlTﬁ —0

The Lagrange function has the following expression:
L(Bira, ) =BT8B— X (815 1) — @B B
We deduce that the first-order condition is:
2¥Ps — 222 — 1 =0

It follows that:
Bl (2582 — 2Xaf2 — pB1) = 4/ 0 =0

7Joliffe (2002) notices that the solution is 81 = oo without this normalization.
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or:

261 BBs — 202 B2 — @B B1 =0

Since the 1%t and 2°¢ PCs are uncorrelated, Equation (15.5) implies that 8, $8s = 0
and 3] B2 = 0. We deduce that —pB3] 31 = 0 or ¢ = 0 because 3, #; = 1. In this case,

the first-order condition becomes:

Again, (85 is an eigenvector of ¥ and Ay is the associated eigenvalue. Maximizing
the variance of the second PC is then equivalent to consider the eigenvector (o that

YB2 = oo

corresponds to the second largest eigenvalue®.

15.4.5 Two-class separation maximization

1. The total scatter matrix is equal to:

n

Y (i =) (@i — )"

i=1

Zx:c QﬂixT+nﬂﬂT
i=1
Zx ] —npp’

For the within-class scatter matrix, we obtain:

Sw

M&

S;

<.
Il
a

(i — fy) (i —

Mx

1i€C;

(Z zia] = nflifly

ieC

T A AT
it —E nfj i

14€C; j=1

<.
I

Mu

Jj=1

M&

J

sz Z”J”J“a

8We cannot use the first eigenvector because ,81T 2 must be equal to zero.
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Concerning the between-class scatter matrix, we deduce that:
J
N ava T
Sp = Y (i — i) (i — )
J
= > (myiyi] —2nipi) +nipp’)
J
= Dby = 20) ngi] +nit!
j=1 j=1

J
= D myiya) =24 (ni") +npp”
j=1

<

= D _nihip) —nap”
j=1
because nji = Z}le n;f;. It follows that:

n J J
Sw+Sp = (D wal =Y miin] |+ D i) —nap’
i—1 J=1 j=1

n

T AnT
E Tix; — npf
i=1

= S
2. We have: R R
p= Nyt + nafio
ni + no
It follows that:
S s nyfi1 + nafly B nifi1 + naflz
= H ni + no ni + no
_ nfin + Nafly — nifly — nafiz
ni + no
) ~ N
= i (fn — f2)
and: -
fio == (fi2 — fi1)
We deduce that:
N A\ /A T . A\ /A T
Sp = ni(fn—f) (i —p) +n2(fe—A) (A — )
2
. na A A Nga T
= m (m +n2> (fn — i) (11 — i) +
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and?:
BTSpf = nffiz BT (1 — fiz) (i — fi2) " B
_ T:f; (8T — BT fia) (BT fur — BT fia)
= % (8T — BT fin)”
= n?f; (fin — fi2)”

where fi; is defined as:

ﬂj:%Zyi:%ZﬂT”:ﬂT niziﬂz =8"py

T iec; 7 iec; 7 iec;

3. We have: .
S; =Y (w0 — i) (xi — i)
’iECj
and:

B'S;pB

BT (wi— ) (e — )" B

i€Cy

= Y (FTwi-8T)

i€Cy

We deduce that:

B'SwB = BT (S1+8S2)p
B7S18+ BS,p

=2 =2
= Sl + 82

4. We have:
BTSpp
BTSwp
- ~\2
ning  (fi1 — fiz)
ni+ny 57+ 33

J(B) =

We finally obtain the following optimization program:

(f{l — fi2)”

B* = arg max =
§1 + 85

In order to separate the class C; and Co, we would like that (i — /12)2 is the largest,
meaning that the projected means must be as far away as possible. At the same time,
we would like that the scatters §2 and 33 are the smallest, meaning that the samples
of each class are close to the corresponding projected mean.

9because BT iy — B fio is a scalar.
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5. At the optimum, we know that:

Spf = ASw i
We have:
Spf = (i — i) (i — ) B
= (i = i) (8T — BT )
= (i — fi2)
where:
y= n:“T”jw (BT — B fiz)

We deduce that:
ASw B =7 (fin — fi2)
or:

8= }savl (fir — fi2)

It follows that the decision boundary is linear and depends on the direction ji; — fio.
Since we have J (') = J (B) if 8’ = ¢f, we can choose the following optimal value:

B =Sy} (fir — i)

We have:
Sw = S1+8S»
- 16.86  8.00 + 21.33 18.33
B 8.00 18.00 18.33 18.83
_ 38.19 26.33
B 26.33 36.83
and:

Sp — ( 0.89 —3.10 )
—-3.10 10.86
The equation Spf = ASw [ is equivalent to S;(}Sgﬁ = MAB. The largest eigen-
value of the matrix S;‘}SB is equal to 0.856, and the associated eigenvector is
B* = (0.755,—0.936). We deduce that the scores of the 13 observations are —1.117,
—2.990, —3.352, —0.544, 1.147, —1.843, —0.907, 0.755, 0.573, 2.083, 0.392, 0.784, and

—0.152. We have u; = —1.372 and i; = 0.739. It follows that 4 = —0.317. The
assignment decision is then:

5 < —031T=iec(’;
s; > —0317T=1i¢€ Co

We observe that the 5" observation is incorrectly assigned to Class Co, because its
score 1.147 is larger than —0.317.
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15.4.6 Maximum likelihood estimation of the probit model
1. The probit model is defined by:
p=Pr{Y=1|X=2}=0(z'p)
We deduce that the log-likelihood function is equal to:

£(8) = > WPr{Vi =y}
=1

- Faonra)

=1

|

(1—-y)In(1 —p;) +y;Inp;

i=1

|

s
Il
-

(1-y)In(1— @ (z/B)) + v In® (z] B)

2. We have:

94 (B)
9 B

= —(1-w)

Jix (B) =

¢ (x] B) wik n K (z B) @ik
1-0 (2 8) " @2 )

We deduce that:

— (=) ® (2] B) +y; (1 = (z/5))
® (2 8) (1 - (af5))

-8 (@7 8) o e78)

® (2] ) (1-2(x[8))""

It follows that the score vector is equal to:

Jix (B)

" (g — @ (2] ) ¢ (] B)
SO =3 S TTH (=2 &)

T

3. The (k,7) element of the Hessian matrix is:

| 024 ()
Hy; (B) = ; 0 B0 B;

We have ¢’ (z) = —z¢ (z) and:

() = 35068 (=269

= ¢ (@i B)zi; (1= (2 B)) = @ (2 B) & (i B) 7,

= (1-20(2/B)) ¢ (] B) wi

() = a% (i — @ (7 B)) & («7 )

= - (yz - (x;rﬁ)) o} (%Tﬂ) (x;rﬂ) Tij — ¢2 (%Tﬁ) Tij

= (~yz/ B+ (z/B)z!B— 0 (z]B)) ¢ () B)zi;

¢ (x;rﬁ) Tik

301
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‘We note: ) )
eI (-0 (] 8) (9
t ¢ (x] B) @i jwi d B0 B;
and: ) )
5 28 (e @l)
¢ (] B)
We obtain:

A = (~yx! B+ @ (x]B) a0 (x)B)) @ (2] B) (1 - (2] B)) -

(yi — @ (¢ 8)) (1 —2@ (2] B)) ¢ (] B)

= —y® (z/B)a) B+ @ (z]B) /B -2 () B) ¢ (2] B) +
y:®% (2] B) x] B — % (2] B) 2] B+ @ (2] B) ¢ (x] B) —
yid (] B) + @ (] B) ¢ (] B) + 2y:® (x] B) ¢ (x B) —
207 (2 B) ¢ (2] B)

= O (2 B) (—=/ B) +* (¢/ B) (L +wi) x| B— o (2] B)) +
@ () B) yi (—x/ B+2¢ (¢ B)) — vio (2 B)

Y
¢

and:
Bi = yi(o(a]B) +a] % (a7 5) (1 - ® (o] 9)) +
(1= y:) 6 (2] B) — 2l B (1= @ (] B)) @ (2] B)
= ¥ (xjﬂ) +y;® (x;rﬂ) (fﬂzTﬁ) - 2y; (fszﬁ) ¢ (x;rﬁ) -
2y;®% (2] ) (2] B) + 1:®* (] B) & (] B) +
yi®® (2 B) (x] B) + @ (2] B) ¢ (2] B) —
y; ®* (xjﬁ) 10) (xjﬁ) — 2 (a:lTﬁ) (xjﬁ) +
o (2] 8) (2] B) + yi®® (2] B) (x] B) — vi®* (] B) (] B)
= (¢ B) (2] 8) + @* (2] 8) (- (L +9:) 2] B+ ¢ (2] B)) +
® (2 B) yi (« B — 20 (2] B)) +vid (] B)
Since B; = —A;, we deduce that:

"2 924, (B)
H(B) = ;aﬁam
G els
LA ey )
_ ¢(%Tﬂ) R
;B e @ray )

= —ZHI(.Z‘ x)
i=1

4. The Newton-Raphson algorithm becomes:

-1
Bist1) =By = H' (B5)) S (Bs))
where 3, is the value of 8 at the step s. We may initialize the algorithm with the
OLS solution By = (XTX) ™' XTY.
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15.4.7 Computation of feed-forward neural networks

1. We have u;p, = > 02, Bukxix or U = XBT where U is a n X n, matrix, X is a
n X n, matrix and § is a n, X n, matrix. Then, we apply the non-linear transform
Zih = fu,» (u;p) or we perform the element-by-element function Z = f, . (U) where
Z is a n X n, matrix. The calculation of v; ; = ZZ; Vj,n%,n 18 equivalent to compute
V = Z~T where V is a n x n, matrix and v is a ny X n, matrix. Finally, we have
yj (2:) = foy (vij) or Y = f., (V) where Y is a n x n, matrix. It follows that:

A

Y = fz,y(‘/)

= Jfay (Z'VT)
= foy (fo: (U)7T)
= foy (for (XBT)AT)

2. If fo.(2) = f.y (2) = 2, we deduce that:
Y =X8"7" = XA

where A = (75)T is a ngy x n, matrix. The least squares loss is then equal to:

LO) = Y3 £, 0)

n Ny

= ZZ% (y; (z:) — yi,j)2

i=1 j=1

- %trace ((¥ —Y)T (v-v))

= % trace (XA —-Y)T (XA-Y))

We deduce that:

Y

= argmin % trace (XA -Y)T (XA -Y))
= (XTX)'XTY

and:
AB=AT =Y X (XTX)"!

We conclude that it is not possible to estimate 5 and « separately because it depends
on the rank of the different matrices. Indeed, A has n, x n, parameters whereas the
product 73 has n, (ng +n,) parameters. In particular, the model is overidentified

when:

Ng XN

n, > —24
Ng + Ny

Otherwise, we obtain a constrained linear regression:
N 1 .
(ﬁ,v) = argmmitrace((XA—Y) (XA-Y))
st. yB=A"
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3. Using chain rule, we have:

0L (0)  0&(yy (x:),9i ) Oyjr (z:) Qvy jv

9%jn yjr (w;) v 0vjn

We notice that:

8111‘7]'/ _ Zi,h lfj = j/
10 otherwise

It follows that:

dL;;(0)
87;;1 =¢ (yj (1) ,yz‘,j) f;,y (Uz‘,j) Zih
and:
0L; 0 (6)
il 2Y S
3%‘,h
We also have:
9L ;(9) _ 0¢ (yj () ,vi,5) Oyj (x3) Oviy O2zip Ougp
0 Bh.k dyj (x;) 0vij O0zinO0uip OPBhi

= & (yj (@), 9ij) fLy i) Vinfs,. (Win) i

Finally, we deduce that:

oL (0
(‘3'(y ) =(Gyy© Gy,v)T Z
and: 9L 0)
0B = ((Gyy ©Gyu)7) © Gz,u)T X
where 0, L (0) is a ny x n, matrix, G, , = ¢’ (f/, Y) is a n xn, matrix, Gy, = f, , (V)

is a n x n, matrix, 9gL (0) is a n, x n, matrix and G, , = f2, . (U) is a n X n, matrix.

2

. We have:

and:

1 1
T 1tec <1_1+e—2)
= [ A-f()

It follows that f., (vij) = foy (ig) (1= foy(vig)) = wj (@) (1 —y;(x;)) and
fg’” (win) = fo,z (Uin) (1 — for (win)) = zin (1 — 2n). We also have:

and:

‘We deduce that:
0L;;(0)

Do (yj () = yij) vy (23) (1 =y (@) zion
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and:
oL; (0
9Li; (0) _ (Y; (i) = yii) s (@) (1= y5 () Vinzin (1= 2in) @ik
0 Bh.k

The matrix forms are:

and:

op
where G (Y) =Yo <1an,

. We have:
£@y)=—(ymg+ (1 -y)n(l-7)
and:
. A )
_ -y -ya-9)
§(1—9)
I
9(1—19)
We deduce that:
oL (0) (y (x:) — i) N (Y
e (g Ty
= (y(z:) —vi) zin
and:
aaﬁ/é‘h(? _ . (Sj)((xll)_y%;))y () (1 =y (z;)) YhZi,h (1- Zi,h) Tik

(v (xs) —yi) ywzin (L — 2zin) Tk

The matrix forms are:

-
and:
85/;0) - (((Y— Y) 7) ©Z6o(1- Z))TX

. In the case of the softmax activation function, the value of y; (z;) is equal to:

yi (i) = foy(viy)

evii
Z;'l/C:1 evid’
This implies that y; (x;) depends on y;/ (x;):
nc nc Vi ch eVisi
evi.i _
D Ui (@) = svio iy = s gny =
i=1 o et et

The loss function is additive with respect to the index 7, but not with respect to the
index j.
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7. We have:

It follows that:

We also have:

We deduce that:

and:

We notice that:

() =

Handbook of Financial Risk Management

e~i
f (Z]) Z?[C;l ez]/
8f (Zj) B er Z’}/C;l ezj/ _ esz

) - 2
0z (Z?/Clej)
e* (Z;L/C1€7 — e~ )
Dol e 3N e

6Zj 62]‘
= 1—
nc nc 241
} =1 € Zi! j'=1 e

= [(z) A= [(2))

Of(z) _ et
= ——
0zj (Z;}chl er/,)

Z;L/? | ez " Z?/§’=1 er//
= —f(z)f()

& (yjr (x3) ,yi) Oy (x4)

8yjl (l‘,) 8Ui)j
Yij 0y (i) yij 0y ()
yj (@) Qviy  f=yp (@) Ovig
Yi,j yv,
= f (vig) (1= f (vig)) T f (vig) f (vigr)
Yi (xl) J #J

Z/J

Iy () (1= gy (w2)) (a5) yjr ()

yJ( i) ]#]

—yig (L =y () +y5 () Y vigr

J'#J

no

~Yig Y5 (@) Y vy

i'=1

;) — Yi,j
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because'® 37 | y; ;= 1. We deduce that:

DLO) {3 08l (1)) §2 Dy ) Dy
9%jn o Qv (@) o= Ovigr 9

nzc 0& (y;r (x:) ,yi,57) Oyjr (xl)z

h
= Oy (@) duij "

o O& (yjr (x:),yi7) Oyyr (x7)
— Z J J J

Zi,h
j'=1 8?/]’ (331) avm v
= (5 (i) — yij) zin
and:
9L (6) _ ic: & (yjr () yw Z Ay (3) Ovijr O 2zip Ouip
8ﬁh,k J=1 ay] xz 7 81/1 g aZLh 8uz,h 8ﬁh,k
nc
ag(yj ‘rz yz] ay] LUZ
= Y hTik
_72::1 ay] xl Z 81},7_7// J v
_ < - 0& (yjr (x3) ,yi,50) Oyjr (x4)
= Z Z Dy () Dv. | TinTik
j//:1 j'=1 y] 7 7,7
nc
= Z (Y (25) = yigrr) Vi n | ik
j/I:1
nc
= Z (yj (@) = Yiz) Vin | ik
j=1

The matrix forms are then:

and:

oL () N T
= ((v - Y) ) X
98 (( 7
8. We have g, ,uin =1, Oy, ,vi; = 1 and 9y, . vi; = ik We note fy the vector of
dimension n, x 1, 79 the vector of dimension n, x 1 and +y, the matrix of dimension
ny X ng. If there is a constant between the x’s and the z’s or between the z’s and the

y’s, we have:

oL (6
85(0) = (((Gyy ©Gyw)7) © GZ,u)T 11
and: 9L (6)
97 = (Gy,y © Gy,v)T Lo
In the case of direct links between the z’s and the y’s, we obtain:
9L(0) T
PR = (Gyy © Gyo)

10 All values y;,;+ are equal to zero except one value that is equal to one.
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15.4.8 Primal and dual problems of support vector machines
Hard margin classification

1. We note 8 = (Bo, 8) the (1 + K) x 1 vector of parameters. The objective function is
equal to:

1
F6) = 31813
= 1eTQe—aTR
2
0 0/
o= (o 1)

and R = 014 . The constraints y; (BO + xlTﬂ) > 1 are equivalent to y; 30 +yiz; 8 > 1.
The matrix form C > D is defined by:

where:

Yyr Yirtia - Y1T1K
=1 : : :
Yn YnTn,a - Yndn,K

and D =1,,.

2. The associated Lagrange function is:
1
L(Bo o) = 518l (W +y© X5 —1,)

= SR (@Ty) oo WO XA +aT,

— % ||5||§ - Bo (Z aiyi> a7 (Z Oéiyixi> + Zai
=1 i=1 i—1

where a > 0y, is the vector of Lagrange multipliers. The first-order conditions are:

8‘5(60aﬁ7a) _ & P
T 0g ;azyz—O

and:

%f%o‘) =8> aww; = 0x

i=1
3. At the optimum, we deduce that 8 = > | a;y;z; and the objective function of the
dual problem is:

T
1 n n n

L (o) = 9 (Z ai%‘%’) ( aiyi$i> —bBo (Z Oéi?!i) -
i=1 i=1 i=1

n T n n
<Z aiyixi> (Z aiyimi) + Z o
i=1 i=1 i=1
n 1 n T n
= Z ; — 5 (Z ai%%‘) (Z Oéiyiﬂfi>
i=1 =1 =1

n n

n
= ) oi— % SN aioguiyia @
=1

i=1 j=1
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Then, we have:

n n n
A 1 T
& = arg maXZai 35 Z Zaiajyiiji Ty
i=1 i=1 j=1
st. a>0,

because the Lagrange multipliers «; are positive.

. It follows that:

= arg min — ZZalajyzyjm T;— Zal

11]1

Since we have 1" | a; = a1, and:

n n
ZZ ajylij T; =« Ta
i=1 j=1

where T; ; = y;y;z, x;, we deduce that:

1
a = argminiaTI‘a—aTln

st. a>0,

. We notice that:
C0>D < -Co<-D

By applying the direct computation, we deduce that:
1
& = argmin iaTQ*a —a' R
st. a>0,
where:

Q* — CQflcT

B 0 of \ ' T
_ C(oK 1K> c

Y1 11 o0 Y11k T
o . . . . o0 OK .
= : : : 0x Ix
Yn YnTna - YnTn K
T
Yy yiTia o Y1T1K
Yn YnTna1 - Ynln K
= oo(y'y)+T
where I'; ; = yiijiT:cj and:
R* = -CQ'R+D
-CQ7'o+1,
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Finally, we obtain:
1
& = argmin iaT (oo (yTy) + I‘) a—a'l,
s.t. a>0,

The singularity of the matrix Q does not allow to define a proper dual problem. In
particular, we observe a scaling issue of the Lagrange coefficients. This is why we
reintroduce the constraint Y. ; a;y; = 0, and replace the previous dual problem by:

1
& = argminiaTFa—aTln

T
y'a=0
s.t. {aZOn

Soft margin classification with binary hinge loss

1.

2.

We note 6 = (8o, 5, ) the (1 + K + n) x 1 vector of parameters. The objective function
is equal to:

1 n
f©) = FIBlE+CY &
i=1

1
= §9TQ6 —0"R
where: . .
0 0y 0,
Q= 0x Ix Ogrxn
On OnXK 0n><n
and:

. Or41
R= ( —Cc 1, )

The constraints y; (o + x; 8) > 1 — & are equivalent to y;80 + y;z;] B + & > 1. The
matrix form C6 > D is defined by:

Y1 yiTi1 o 1Tk 1 0
C: . . .

Yn YnTn,1 - YnTn,K 0 1

and D = 1,,. The bounds &; > 0 can be written as 6§ > 0~ where:

- —0oQ - ]-1+K
o)
The associated Lagrange function is:

Lo f&aN) = SIBIE+CY 6

i=1

Zaz (vi (Bo+ 2 B) =1+ &) ZA@

i=1
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where a; > 0 and A; > 0. The first-order conditions for 5y and g are the same:

w = —imyi =0
i=1

9 Bo
and:
9L (Bo, B; @) -
—Fas =P iYiri =0
35 B ;a yizi = Ok
The first-order condition for & is:
9L (Bo,Br) _
B T C-1,—a—A=0,

It follows that:
L)) = LY(@)+CY &= aibi— Y Nk
i=1 =1 =1

= L)+ ) & ([C—ai—N)
i=1
= L'(a)

because of the first-order condition for &;. The objective function of the dual problem
is then the same as previously, and does not depend on the Lagrange multipliers .
However, \; > 0 and C — a; — A\; = 0 implies that C' — a; > 0 or o; < C. Finally, we
obtain the following dual problem:

1
& = argminiozTFa—olen

T
y'a=0
s.t. {OngagC-ln

. Previously, the support vectors correspond to observations such that «; # 0. Here,
the support vectors must also verify that & = 0, implying that A\; # 0 or «; # C.
Therefore, support vectors corresponds to training points such that 0 < «; < C.

. The Kuhn-Tucker conditions are min (\;, ;) = 0. We also have \; = C— ;. If oy = C,
then A\; = 0 and &; > 0. Otherwise, we have A; > 0 and &; = 0 in the case where a;; < C.
The two constraints y; (50 + ac;rﬁ) >1—¢&; and & > 0 implies that:

fiZl—yi(ﬁo-inTB)

At the optimum, we deduce that:

£ = max (071 —Yi (Bo +£EZT/5A’)>

. In Figure 15.3, we have represented the optimal values of gy, 51, B2, Z?Zl & and the
margin M with respect to C'. We notice that the paths are not smooth. We verify that
the soft margin classifier tends to the hard margin classifier when C — oo. In Figure
15.4, we show the optimal hyperplane when C = 0.07. We verify that the soft margin
classifier has a larger margin than the hard margin classifier.
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FIGURE 15.4: The hard margin classifier when C' = 0.07
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Soft margin classification with squared hinge loss

1. We note 8 = (5o, 3,€) the (1 + K + n)x1 vector of parameters. The objective function

is equal to:
1 n
FO) = Sl +Cy &
i=1
L T
= 59 QO—0'R
where:

0 0 0,
Q=1 0k Ix  Ogxn
0, Onxx 2C - I

and R = 014k +n. The inequality and bound constraints are the same as the ones we
have found for the binary hinge loss.

2. The associated Lagrange function is:
1 n
L(Bo.f & N) = Bl +CY € -

i=1

Zaz yi (Bo+a] B) —1+&) ZA@

=1
where a; > 0 and A; > 0. The first-order conditions for 5y and 3 are:

L (Bo. B; ) :72":%:0
=1

9 Bo
and:
L (Bo, Biax) - _
EY =4 ;azyzxz =0g
The first-order condition for & is:
hland Gd Ui Rt RV ANENY) =\ =
¢ CéE—a—-A=0,

The Kuhn-Tucker conditions are min (A;,§;) = 0, implying that X\;§; = 0. This is
equivalent to impose that 2C'-{ —a =0, or & = Qi It follows that:

2C
2 e e = oMY LMo
sz O‘l& )\zgz = 0(20) 04120 0 Ez
o? o?
T 1Cc  2C
_ad
o 4C
and:
* * 1 - 2
LY (a,\) = L (a)—E;al
1 1
_ T1 20 Ta— —aT
a1, 2a o 4Ca «
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Finally, we obtain the following dual problem:

1 1
& = argmin §aT (F + 2C’In> a—a'l,
T, _
s.t. y a=0
a>0,

This is a hard margin dual problem with a ridge regularization of the I" matrix.

3. In Figure 15.5, we have represented the optimal values of By, f1, B2, > .i; & and the
margin M with respect to C'. We notice that the paths are smooth. We verify that
the soft margin classifier tends to the hard margin classifier when C' — oc.

o 1
2.50 -0.0
2.25
~0.2
2.00
1.75 ~0.4
1.50
~0.6
1.25
100 ‘ ‘ ‘ ‘ R ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 0 2 4 6 8 10
c c
82 Teg and M2
0.25 pmammenmameamm————————— 12
0.20 10
8
0.15 — I
6 - M
0.10
4
‘\
0.05 5 t
0.00 0
0 2 4 6 8 10 0 2 4 6 8 10
c c

FIGURE 15.5: Convergence of soft margin classification with squared hinge loss

4. We obtain BO = 0.853, Bl = —0.371 and Bl = 0.226. The optimal values of «; and &;
are given in Table 15.3.

TABLE 15.3: Soft margin classification with squared hinge loss (C' = 1)

i 1 2 3 4 5 6 7 8
0.00 040 1.39 0.00 1.09 0.00 0.14 0.99

&;
&
1 9 10 11 12 13 14 15 16 17
Q;
3

Soft margin classification with ramp loss

1. We have represented the four loss functions in Figure 15.6. The 0-1 loss function is not
convex. The binary hinge loss function is convex, but not always differentiable. The
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squared hinge loss function is convex and everywhere differentiable. Finally, the ramp
loss function is bounded. The last three functions can be viewed as an approximation
of the 0-1 loss function. Graphically, the ramp loss function is the best approximation.

e

1.75 4
& — 01
" #—— Binary hinge
1.50 '; dasecee Squared hinge
% ==+ Ramp
1.25 |

1.00 pom =r e ==

0.75
0.50 | |
|
0.25 I
I
0.00 I Ao = _ s & Lol
-1.0 -05 0.0 0.5 1.0 15 2.0
FIGURE 15.6: Comparison of SVM loss functions
2. We have:

L (z5,y) = min (1, L5 (25, 7))
= min (1, max (0,1 —y; (ﬂOJFx 5)))
= maX(O,l—yi (50‘*‘95;5))_
max (0, —y; (B0 + mz—rﬁ))
— LM (g ) — LN (2, 40)

It follows that £™P is not convex, making the optimization problem tricky.

LS-SVM regression
1. We note 8 = (5o, 3,€) the (1 + K + n) x 1 vector of parameters. The objective function

is equal to:
1 n
rO) = lslz+cy &
=1
= %QTQG —0"R
where:

0 0 0,
Ox Ik Oxxn

O
|
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and R = 014 g4n. Let Y = (y;) and X = (z, %) be the output vector and the design
matrix. The equality constraint is A9 = B where:

A=(1, X I,)
and B=Y.

2. The associated Lagrange function is:
1 n
2
L(Bo,B.&a) = SIBI+CY_ &+
i=1
> ai(yi—Bo—x/B-&)
i=1

The first-order conditions for 8y and S are:

QLG Gio) _ 5,
=1

9 Bo
and:
0L (Bo, B; ) -
o =By e =0
95 15} ;a T K
The first-order condition for £ is:
oL (/807 ﬂv O[)
B —— 2 . — e n
e C-&—a=0

Since we have a'1,, = 0, 3 = X Ta and ¢ = a/ (2C), the objective function of the
dual problem is equal to:

* 1 -
£(a) = lBla+C) &+
i=1

> i =By ai— <Zaz$j> B=> i
i=1 i=1 i=1 i=1

= A +CETE+aTY —fyaT1l, - A -aTe

1 + Cc + T a’a

= —= — y - — —
20 Ot g ata 2C

1 T
= a'Y - 3 (aTXXTa) — %
Finally, we obtain the following dual problem:
a = argmin}a—r XXT—i—iI a—a'Y
2 207"

s.t. aTln =0

3. We also have 3 = X T&. In this problem, all the training points are support vectors.
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We deduce that BO =n! 2?21 (yi — x:B) and fl =y — BO — x;rﬁA We verify that
the residuals are centered:

125 — 15 (- ho—aTh)

e-SVM regression

1. We note 0 = (8o, 8,£~,€T) the (1 + K + 2n) x 1 vector of parameters. The objective
function is equal to:

FO) = SIBE+CY (6 &)

=1

1
= 5evTQe —-0'R
where:
0 0} 04,
Q=1 Ox Ix O x2n
02, O2pxkx  O2px2n
and:
0
_ Ox
E=1 _c,
-C-1,

The constraints By + ] 8 —y; < e+ & and y; — fBo — v/ <e+ §i+ are equivalent to
—Bo—z] B+E& > —yi—eand By + ] B+E >y —e. The matrix form CO > D is
defined by:

_ _]—n -X In Onxn
C N ( ]—n X 0n><n In )

and:
-Y—-¢-1,
D( Y—5-1n>

The bounds & > 0 and fi'" > 0 can be written as 8 > 6~ where - =
(_OO : 11+K7 0n7 On)

2. We introduce the Lagrange multipliers a; > 0, a:r >0,A; >0and )\Z‘." > ( associated
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the four inequality constraints. The associated Lagrange function is:

LO) = FIBE+CY (6 +&) -

i=1

ZOQ_ (e+& —Bo—z!B+y)—

i=1

n
daf (e+& + o+l B—ui) -
=1

i A& =N
=1

i=1

The first-order conditions for 8y and 3 are:

and:

We deduce that:

and:
f=XT (a+ — a_)

The first-order condition for £~ and £ are:

oL() o
and: 0

9L _ + +

de+ =C 1, —« AT =0,

This implies that:
C=a; +A; =af +)\

It follows that:

(x) = Za;(a—i—f{—ﬁo—xjﬁ—&-yi)—&-

i=1

STaf (e+& +Bo+ ! B—u)
=1

= ¢e(a” —|—oz+)—r 1, — fBo (e — oﬁ)—r 1, —

(Of — Oz+)TXﬁ+ (OF —a+)TY+

n n
dar& +> afef
=1 =1
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We also have:

n n

CY (& +gh) = oY g +ed g
=1 =1 =1

n

= D (a7 +A0)& +> (o + X)) &
i=1 i=1
Since (o™ — a+)T X = BT, the objective function of the dual problem becomes:

£ = SIBE-c(@ +a") 14478 (@ —a") Y
= —%ﬁTﬁ—g(of—l—oﬁ)Tln—(oz_—oﬁ')TY

Since we have A\; >0, \f >0,C-1,—a~ =\~ =0, and C -1, —at — A\t =0,,
we deduce that o;; < C and a;r < C. Finally, we obtain the following dual problem:

{a=,at} = argmin% (o —oﬁ)TXXT (= —a®) +

E(a_—l—oﬁ)Tln—&—(a_—oﬁ)TY
1) (a=—at)=0
s.t. 0, <o <C-1,
0n§a+§01n

3. We note 6 = (o, a™) the 2n x 1 vector of parameters. The QP objective function is
equal to:

)= %GTQQ ~-0"R

where:
0= XXT —xxT
L =xxT bo'd

-Y—-¢-1,
R= ( Y—-¢-1, >
The equality constraint is A9 = B where A= (1] -1} ) and B = 0. The bounds
are 0~ = 03, and 07 = C - 1,,.

and:

4. We have:

W
Il
b
4|
=)
i
O
<

min (a; e +& —fo—a] f+y) =0
(f e+& +Bo+a]B—y)=0
min()\;,ﬁf) =
. ( :

We also remind that C = a; + A, = o + Af. The set SV~ of negative support
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vectors corresponds then to the observations such that 0 < a; < C. In this case, we
have e + & — fo—x; B+yi = 0and £ = 0. We deduce that By = y; +¢ — 2, 3 when
i € SY~. The set SV of positive support vectors corresponds to the observations
such that 0 < o < C. In this case, we have € + & + By + 2/ B — y; = 0 and & = 0.
We deduce that 8y = Y — € — x;rﬁA when i € SVT. Finally, we obtain:

B Dicsv- <yi te— ac;'—/@’) + 2 iesv+ (yz —&- 37:3)
0= nsy— + nsy+

where ngy- and ngy+ are the number of negative and positive support vectors.

5. If oy < C, we have A\, > 0 and & = 0. Otherwise, we have A\;7 = 0 and £ > 0.
More precisely, we have € +§; — By — ] B+y; =0 or

~

§f=—<yi+€—ﬁo—$jﬁ)

If o < C, we have A} > 0 and & = 0. Otherwise, we have A\]” = 0 and & > 0.
More precisely, we have € + 52" +Bo+z] B —yi=0or:

& =yi—e—Po—= B
6. When ¢ is equal to zero, the term ¢ (o™ + oﬁ’)—r 1,, disappears in the objective function
of the dual problem:

T

—L()=5 (o —ah) XxT (e —at)+(a”—a™) Y

N —

By setting § = a™ — a~, we obtain the following QP problem:

5 = arg min %6XXT5 -5y
" 1,6=0
Sl 01, <6<C 1,

The bounds are obtaineg by corgbining the inequalities 0,, < o~ < (C' -1, and 0,, <
at < C-1,. We have 3 = X T0. The set SV of support vectors corresponds to the
observations such that —C' < §; < C. It follows that:

~ 1 ~
Bo=—13" (ni—2/5)
SV iesy
where ngy is the number of support vectors. Moreover, we have:
6 =1 i~ -0} oo (0. (u— fo—275))
and:

é;r =1 {Sl = C’} - max <O,yi —Bo —a?;r,@)

15.4.9 Derivation of the AdaBoost algorithm as the solution of the ad-
ditive logit model

The following derivation comes from Section 10.4 in Hastie et al. (2009).
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. The objective function is equal to:
L (B fs)) = ZE (> G(s—1) (1) + By frs) ()
i=1

n
- Ze—yi(g(sfm(xi)w(s)f(s)(oai))

i=1

n
_ § wivse_yiﬁ(s)f(s)(wi)
=1

where the expression of w; ; is equal to:

- e*yiﬁ(s—m(m)
. Since we have y; f(4) (z;) = 1if y; = yi,s and y; f(s) (v;) = —1if y; # y;,s, we obtain:

L (/3(8)7 f(s)) = Z wi7se_yi,8(s)f(s>(mi) -1 {yz = yi,s} +

i=1

n
Z wi,se_yiﬂ(s)ﬂs)(wi) -1 {yz # yi,s}
=1

n
— B Zwm Ay = ym} +

i=1

n
eﬁ(s) Zwi,s -1 {yl 7é yi,s}

i=1

‘We notice that:
n n n
Zwi,s -1 {yi = yi,s} = Zwi,s - Zwi,s -1 {yi 7é yi,s}
i=1 i=1 i=1

It follows that:

n n
e e szs + (P — e7P0) sze L {y: # yis}

=1 =1

n n
_ (e—B(S) + (ems) _ 6—5(5)) Zi:l wi,sn- 1 {il/z S yzs}> Zwm
i=1

L (Bs), fis))

D1 Wis

(€% — e PO) Ligy +e770) Y wis
i=1

where L, is the error rate:

S wis - L{yi # yis}
Z?:l Wi, s

. It follows that the minimum is reached when:

dL (Bs): fs))
08

L) =

=0
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We have:
0L (Bs): f15)

op = ("0 +e7P0) Ly — e P@) D wis

i=1
We deduce that:
(eB(s) + e—ﬁ(s)) £(S) —_e B =0

If we consider the change of variable a = ¢”=) > 0, we obtain:

1 1
(Oz—‘r)ﬁ(s)—:o
(0% «

or:
o2 - 1L
Ls)
The solution is:
N O
Ls)

The optimal value of 3, is then:

) 1L \'?
g = I(—~Y
P n( L(s) >

. We have:

s—1
i (@) = D Bl @) + B fis (2)
s'=1

= G-1) (@) + By fis) (@)
It follows that:

Wioy1 = e Y @)

e*yiﬁ(s—l)(I)*yiﬁ(s)f(s) (z4)
— wi#e*yiﬁ(s)f(s)(fi)

Using the fact that —y; f(s) (2:) = 2-1 {y; # 9i,s} —1, the expression of w; 11 becomes:

Wil = wi7562ﬁ<s)1{yi¢yi,s}6—5(3)
_ wi’sews'ﬂ{yi7é@i,s}e_ﬂ(s)

where:

The normalized weights are then:
w; Sews-ﬂ{y#@i,s}e—ﬁ(s)

Z?:l wi/,sews'l{yi#@i’,s}e*é(s)

w; gewsil{yi#@i,s}

Z;:l wi/’sews']l{yi/?éﬂi/,s}

Wi, s+1 =
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5. The AdaBoost model can be viewed as an additive model, which is estimated using the
forward stagewise method and the softmax loss function. However, there is a strong
difference. Indeed, the solution f(,) is given by:

f(s) = arg min Z wi7se_“"*']l{y7"¢f5(””‘)}

i=1

because —yiB(s)f(s) (x;) = 23(5) L {y; A yist — 3(5) and:

£ (3@), f(s>) = 700 Yy e v YY)

i=1

In the AdaBoost algorithm, the objective function for finding f(s) is exogenous.

15.4.10
1. (a)

(b)

Weighted estimation

We have:
0 = argmax £, (0)

The Jacobian matrix is:
Juw (0) =w' © J(0)

where J (0) is the Jacobian matrix associated to the unweighted log-likelihood
function £(0) = >, £; (9). For the Hessian matrix, we have:

Hw (9) = ZwiHi ((9)
i=1

where H; (0) is the unweighted Hessian matrix:

820, () 924, () 92, ()
960,00, 00,00,6;(0) 060,00k
92 () 92 () 9L ()
Hz(ﬂ): 06500, 060500, 060500k
820, () 924, () 924, ()
0000, 00k 0065 00k 005

The least squares loss function becomes:

3

n Y

Lo ) =Y w5 (0 e) — i)

i=1

We also have:

0Ly (9)
9y

= (Gyy© Gy,v)T (wo Z)
and:
9Ly (0)
B
where the matrices Gy, Gy v, G.u, Z, X and «y are those defined in Exercise
15.4.7 on page 303.

= (Gyy © Gy} 7) ©Go) ' (w O X)
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The cross-entropy loss function becomes:
Ly(0)=— sz (yilny; (i) + (1 — ;) (1 — Iny; (2:)))
i=1

We also have:

L) o
and:
P ((7-v))ezou-2) o

where the matrices f’, Y, Z, X and v are those defined in Exercise 15.4.7 on
page 303.

The soft margin classification problem becomes:
N I TP
{0,8,€} = argmin g |35 +C 3wk

fori=1,...,n

ot {yi(ﬁwx?ﬁ)zl—&
g0

For the primal problem, the difference concerns the vector R:

_( Og41
()
For the dual problem, the difference concerns the bounds:

1

& = argmin-a'Ta—a'l,

ot yTazo
o 0, <a<Cw

It follows that the support vectors corresponds to training points such that 0 <
a; < Cw;.

Hard margin classification assumes that the training set is linearly separable.
So, there is no impact of weights on the solution. This is why it is impossible
to introduce weights in the objective function of the hard margin classification
problem.
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Technical Appendix

A.4.1 Discrete-time random process

1. (a) We have 2o € {0} and Fy = {0}. For t = 1, x; can take the value 0 or 1. We
deduce that z; € {0,1} and F; = {{0},{1},{0,0},{0,1}}. Similarly, we have
x9 € {0,1,2} and:

{0}, {1},{2},{0,0} ,{
B{ {0,0,0},{0,0,1

)

{0,2},{1,1},{1,2}, }

0,1},
},{0,1,1},{0,1,2}

(b) We have! E[|X (t)|] = t\/2/7 < co. It s < t, we have:
E[Xt |./T"S] = E[Xt,]_ +€t |]:3}
= E[X,+ T een | R

= E[X, | RI4+E[S e | A

= x,+0

= J]S
We deduce that X, is a martingale.
2. We have:

Xt = ¢Xp1+¢&
= ¢(¢Xi—2+ei-1) + &y
= ¢2Xt—2 + P+ ey

oo
= E ¢n5t7n
n=0
because lim,, o, ¢™ = 0.

(a) We have:
E[X?] = Y ¢"El.,)
n=0

00
— 0_2 Z ¢2n
n=0

0.2

s

< o0

ISee Question 1(c) of Exercise A.4.2.

325
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Vt € Z, we have E[X;] =E Y07 ) ¢™e—,] = 0. We deduce that:
E[X:] = E[X]

Y (s,t) € Z with t > s and Vu > 0, we have:

[ oo [eS)
E [Xs+uXt+u] = E Z ¢n€s+u—n Z ¢n5t+u—n‘|

= E Z¢ Estu—n Z ¢5t+u n]

n=t—s

= E Z ¢n55+u7n Z ¢t_8+n55+un]

n=0

Z ¢2n §+un‘|

— (bt ST

(btfs
-2
= E[X,X{

We deduce that X, is a weak-sense stationary process.

(b) We have:
lP’{XteA}—/v —¢2 (_(1_(15):5> dz

202
The probability P{X; € A} does not depend on ¢t. We deduce that:
P{X: € A} =P{X, € A}
(¢) We have:
E[Xi | Fio1] = E[pXi—1+er | Fioi]
= ¢w
7é Tt—1

It follows that X; is a Markov process only if ¢ is equal to 0.
(d) We have:

E[X?] = E [(et + est_l)ﬂ
= (1 + 92) o?
< o0
YVt € Z, we have E[X;] = E[e; + 0e,_1] = 0. We deduce that E[X;] = E[X,].
Y (s,t) € Z with t > s and Yu > 0, we have:
E[XsuXivu] = El(Estu+02siu—1) (Etru + 08t1u—1)]
= E [‘Ss+u€t+u] +0E [5s+u71€t+u] +
oE [5s+u€t+u—1] + 92E [53+u—15t+u—1]
(1+6%) 02 ift=s
= fo? if [t—s/=1
0 if [t—s|>1



Technical Appendix

Since we have E [X 1 Xttu] = E[X:X¢], we conclude that X; is a weak-sense

327

stationary process. It is easy to show that the probability P{X,; € A} does not
depend on t. This implies that X} is a strong-sense stationary process. We have:

E[X; | Fi-1]

£
4

E ey + Oer—1 | Fia]
Oes_1
er—1+0ei_o

Tt—1

The MA(1) process is not a Markov process.

A.4.2 Properties of Brownian motion

1. (a) We have:

E[W (#)]

(b) We assume that s < ¢t. We have:

cov (W (s) W ()

(¢c) We have:

E[w @)

and:

EW (t) | Fi

Ws

/.

E[W (s) + (W (t) = W (s)) | Fs]
E[W (s) | F] +E[W () = W (s) | Fs]
ws +0
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2. We only consider h — 01 because the case h — 0~ is symmetric. We have?:

_ -1 L oo
P{W ({t+h)-W (@) >ec} = 2 _m\/ﬂexp< 2hx>dx
0 2
= 2/ ! ¢~ 3 (Vhy+e) Vhdy
—oo V2mh

9 62 0 W2 ye
Vaew (~5) [
We note f (y) = —% - % We have:

") = —y —

Therefore, f (y) is an increasing function on | —oo, —h~1/2¢] and a decreasing function
on [—h*1/2570]. We deduce that:

52

<
~ 2h

0 2
y*  ye
LT ) ay<c
[oow(-5-37) s

where C € R*. It follows that:

0<f(y)

and:

o< r v e -l sy (<)

and:
0< lim P{|W (t+h) W(t)|>5}<c\/3 lim e e
im — — lim exp | —=—
= h—07t - T h—0+ P 2h
Since limy,_,o+ exp (—%) = 0, we deduce that:

hlirg+P{|W(t+h)—W(t)|>5}:0
3. We have:
E[W?(t)] =t
and:
E[W2(0)]F] = E[(W@®)-W()+W ()| 7]
= E[W () | F| +2E[(W (1) - W (s) W (5)| F] +
E[W(6) - W ()| 7]
= 0+0+(t—2s)

t—s

2We use the change of variable y = h=1/2 (z — ¢).
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If X ~ N(0,1), we know that E[X?®| = 0 and E[X?*] = 3. We deduce that
E[W3(t)] =0 and:

EW*®)] = E [(tlﬂj\/ (0, 1))4]
= 3¢
We remind that E [exp (N (i, 02))] = exp (1 + 0.502). We deduce that:
E V0] = et

and:

E [ew(t)

;S} E {eW(s)JrW(t)—W(s)

7|

— MR [eW(t)—W(s)

]—'S}
_ W(s)gh(t-s)

R (t=5)W(s)

. If X ~N(0,1) and n € N*, we have:

E [in} (2n o 1) E X2(n—1):|
= (@2n—1)(2n—3)E [Xz(n_m]
= (2n-1)(2n—3)---5-3-1-E[X?]
= (2n—1)N

and:
E [Xn+1] =0

where n!! denotes the double factorial. We can also show that:

(2n)!
2n — 1) =
(2n =Dl = 2
It follows that:
2n (2n) n

and:
E W™t ()] =0

For an even integer n, we deduce that:

E[W™ ()] = 2/’(111/2),16/

whereas for an odd integer n, E[W™ (¢)] is equal to 0.
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A.4.3 Stochastic integral for random step functions

1. We note (x) = f; (af + Bg) (t) AW (t). We have:

() = (af + Bg) (t:) (W (tiya) = W (t3))

BY g (t:) (W (tixr) = W (1)

o b
- a/ 0 dW(t)+6/ g (t) AW (1)

We conclude that the stochastic integral verifies the linearity property. We now intro-
duce the following partition:

a=ty<t1 < - <tpg=c<---<t, <b

We deduce that:

i
L

b
/ FOAW ) = S 7)) W (ti) — W (1)

|
[ ]

I () (W (tig1) — W (t:)) +

Il
I .
il
— o

f () (W (tivr) =W (i)

™

s
I
S

b
- [ dw<t>+/ £ (t) AW (1)

It follows that the Chasles decomposition property holds.

2. We have:
b n—1
EV 10 dW(t)} - E Zf(m)(W(:sm)—W(ti))]
a i=0
= SR (1) (W (tn) — W (1))
1=0

= DB ()] -EW (tir) - W (1))

N
Il
<
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We note (x) =E {f: () dW (t) f:g (t) dW (t)} We have:

() = B |7 W (tan) — W (1)) S g (1) (W (t100) W(tm]
=0 i=0
= E{sz (tie) = W (t)) (W (tj51) W(tm]
i=0 j=0
= ZE[f ) (W (ti42) = W (1))°] +
QZIE ) (W (tig1) = W () (W (tj41) — W ()]
We deduce that:
() = ZE E[(W(tm)—wunf +
2ZE JE(W (tin) = W (8)) (W (t502) = W (t))]

Zf ] z+1_t)]

E / fg() dt]

This result is known as the Itd isometry property. It is particularly useful for comput-
ing the covariance between two Ité processes X (t) and X5 (¢):

b b

/ o1 (1) AW () / s (1) dW(t)]
b

/ o1 (t) s (1) dt]

where o1 (t) and o9 (¢) are the diffusion coefficients of X; (¢) and X5 (¢).

E[(/ £ dW<t>> ] -
E? [ [ o aw <t>]

cov (X1 (t), X1 (t)) = E

E

3. We remind that:

ar (/ £t dw (t))



332 Handbook of Financial Risk Management

b b
Var</ f(t)dW(t))zE /f(t)Zdt1—02

Since the mathematical expectation and the Riemann-Stieltjes are both linear, we

conclude that:
b b
var (/ @) dw (t)) :/ E[f?(¢)] dt

A.4.4 Power of Brownian motion

It follows that:

1. We apply the It6 formula with p(t,2) = 0, o (t,2) = 1 and f (t,z) = 2. Since we
have O, f (t,z) =0, O, f (t,z) = 2z and d2f (t,z) = 2, we deduce that:

w2 () = df (W (1)

<O+2W(t)x0+;><2><1) dt + (2W () x 1) dW (¢)
= dt+2W (t) dW (1)

/OtdWQ(s)_/Otder2/OtW(s) dW (s)

Wz(t):H—Q/OtW(s) dW (s)

2. It follows that:

and:

Therefore, we obtain:

I(t) /O W (s) dW (s)
1
= 5 (W2 (t) —t)

If follows that the expected value is equal to:

E{/OtW(s)dW(s)} = E{l(W2(t)—t)}

2
= 0
Concerning the variance, we obtain:
t 1 ,
var (/0 W (s) dW (s)) = var (2 (W2 (t) — t))
1
7 var (W2 (1))
= LEW ] - W2 0)
Lo o
= (3t* — t?)

| T
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We also notice that we can directly find this result by using the It6 isometry property:

wr( [ Wi awe) = E tW(s)dW(s)Q
([worm) = s[([womwe)]
= [Ew ) as
- /Otsds

e

2

3. We use the function f(t,z) = a™. We have d;f (t,z) = 0, 0,f (t,z) = nz"~! and
O2f (t,x) =n(n— 1) 2" 2. The Itd formula gives:

AWn (t) = df (&, W (1))
= %n(nq)W(t)"*Q dt +nWmL () dW (2) (A1)

4. Since I, (t) is an It6 integral, we have:
E[I,(t)]=0

and?:

var (I, (t))

/O tIE (W2 (s)] ds
- /Ot (22732!! s ds
- (22733!! /Ot s ds

_ (2TL)' n+1
27 (n+ 1)!

Finally, we obtain the following values of var (I, (t)):

n 1 2 3 4 5 6
var (I, (1)) t* 0 2t 21¢° 3245 1485¢°

5. In Question 4 of Exercise A.4.2, we have shown that:
El.(®)] = E[W" ()]
th/Z if n is even
if n is odd
Let us assume that n is odd. We have:
var (J, () = E[W*"(1)]
(2n)!

ALY

n

3We use the result obtained in Question 4 of Exercise A.4.2.
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In the case where n is even, we deduce that:

6. We have:

If n is odd, we deduce that:

If n is even, we deduce that:

var (J, (t))

E[K, (1)]

t n!

2y
/o 2/ (nfo)1”

n! t
0 "2 4
27/2 <n/z>!/o e

n! [ P y
37 o) [ 1,

n! t"/2+1
972 (nfa + 1)]

7. Concerning the second non-central moment, we have:

by using Fubini’s theorem. The challenge lies in computing the term E [W™ (s) W™ (u)].
We face two difficulties. First, W" (s) and W™ (u) are not independent. Therefore, the
covariance involves the power series of W (s). Second, we must distinguish the case
s < u and u > u. This is why it is long and tedious to compute the variance for high

order n.

E

E

E

(w0
([ o) ([ a)]

:/Ot /Ot W™ () W™ (u) dsdu]

Handbook of Financial Risk Management

/Ot /OtIE (W (s) W" (u)] dsdu
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8. In the case n = 1, we obtain:

E[K:(t)] = // | dsdu

</ win 50 ds) du

([ o s [ o) ) a
( sds+ uds)
(“w )

I
S— S —— —3

\

| — |
@‘:w

+
w‘gm
oo‘:
—_
[}

w|

and:

var (K1 (t))

E[K7 (1)) —E* [Ky (1))

= éﬁ
For n =2 and s < u, we have:
W2 (s)W? (w) = (W (s) =W (0)* (W (u) = W (0))”
= (W (s) =W (0))* (W (s) = W (0) + W (u) = W (s))*
= (W (s) =W (0))* +2(W (s) = W (0))* (W (u) = W (s)) +
(W (s) = W (0)* (W (u) = W (s))*
W

Since W (s) — W (0) and W (u) —
obtain:

s) are two independent random variables, we

E [W?2(s) W2 (u)] 352 +2-0+s(u—s)

252 + us

We deduce that:

E [K3 (1) E (W2 (5) W (u)] dsdu

\

0 0

(/ 25 Jrus der 2u Jrus) ds> du
0
t<

1
[ udt + th u4]
3 0

2s + us 2u s+1us2 t du
3 2 u

I
o ST o o

4
2t 4+ 2ut2 3u3) du

74
= ¢
12
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and:

var (K3 (1) = E[K3 ()] — E*[Ks (1)

— }t‘l
3
For n = 3 and s < u, we have:
W)W ) = (W (s) =W (0)) (W (u) = W (0))°
= (W (s) =W (0))> (W (s) = W (0) + W (u) = W (s))°
= (W (s) =W (0))" +3(W (s) = W (0)” (W (u) = W (s)) +
3(W (s) = W (0))" (W (u) = W (s5))” +
(W (s) = W (0))* (W (u) = W (s))°
It follows that:
6! 41
E[W3 (s) W3 (w)] = <?.m§>+ﬁ-0+3~<?.m3)(u—$+ﬂ
= 6s°+ 9us?
We deduce that:
2 = e sdu
E[K3(1)] = /O/OE ] dsd
= s us?) ds u? 4+ 9u?s) ds | du
= Z;té (65 +9 d<+A(6 +9 )d)d
= §s us® u’s 9u2s2 t u
= /0 {2 +3 6 + 5 ]u> d

—6u? —|—6u3t—|— u t2> du

~+
cmc» /\/_\/_\

—|—3ut—|—3u t
2 2 0

I
m\@.ﬁc\

and:

var (K3 (1) = E[K3 ()] - E*[Ks (1)

= 2t5
5
9. Using Equation (A.1), we deduce that:
t

I, () = /W” s) dW (s)

— n+1 / Wn 1
n+ 1

- 1J@>f (1
T on1H 2
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and:
Ju(t) = W™ (t)
1 ! n—2 ‘ n—1
— 5n<n—1>/0W <s>ds+n/0W (s) AW (s)
_ @Kn_m)mh_l(t)

We also have:

K, (t) = /0 Wn (s) ds
2

2

= mJnJrQ (t) — m]n+1 (t)

A.4.5 Exponential of Brownian motion

1. We apply the It6 formula with u(t,2) = 0, o (t,z) = 1 and f (t,z) = e*. Since we
have 0, f (t,z) = 0, 0. f (t,z) = % and 92 f (t,x) = €%, we deduce that:

deW® = df (¢, W ()
= %ew(t) dt + VO aw (¢)

and:

¢ ¢ ¢
/ de"(®) = 1/ e ds —|—/ eV AW (s)
0 2Jo 0

1t ¢
eV =1 4 5/ e ds —|—/ eV dw (s)
0 0

It follows that:

or:

X(t)=1+ %Y (t)+ Z (t) (A.2)

Nl=
I
=}
(oW
s
=

>
=

I

2. X (t) = e"® is lognormal random variable with E[X (¢)] = e
e?t — e, In the case Z (t) = fg V() dW (s), we have:

and:

var (Z (t)) =
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In the case of Y (t) = [} ¢"(®) ds, we have:

EY (1))

I
O\H‘
=
|
9]

=

=
o
VA

I
[N}
/
('D

[N
o~
\
—_
N—

and?:

S+

(o) (f o)

t
/ E W () +W( “>] ds du
0

/ ez(s+u+2mm(e u)) dsdu

t
/ e2(35+u) d5+/ 2 (s+3u) ds) du
0 u

[62<3s+u} N [26;<s+3u>r) du

[}

3

(
(

I |
S—S—S—s—s— F

W
(e
Wl

I
Wl

It follows that:

var (Y (t))

Il
=
1
VS
—
=
o
VA
N————
[\v}
| |
I
=
(V)
—
=
w

4We have E [W (s) + W (u)] = 0 and:

var (W (s) + W (u)) = s + v + 2min (s, u)
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3. From Equation (A.2), we deduce that:

cov(Y(t),Z(t) = i var (Y (t)) + var (Z (t)) — var (X (¢))
= i (;th — 4e! + ?e%t — 2) + % (th 1) —
(2 — ¢t
= —%e% + %e%t -1

Finally, we obtain:
—1/3¢%t 4 4/3¢"/? — 1
\/(1/3e2t — et + 8/3e'/> — 1) (e*t — 1)

In Figure A.1, we have reported the correlation p (Y (t), Z (t)) with respect to the
time.

p(Y (1),2(1) =

-0.55

—0.60

-0.65

-0.70

-0.75

—-0.80

-0.85

—0.90 L I L I L I L I L I L I L i L i L i L i

FIGURE A.1: Correlation between fot ") ds and fot eV AW (s)

A.4.6 Exponential martingales

1. We have z, = X (s) = V() and:
E [ew(t) | ]:S}

E {evv(swvv(t)—vv(s) | ;S}

— JWOER {ewa)—ms) | fs}
_ eW(s)e%(tfs)

4 o,
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Therefore, X (t) is not a martingale.

2. The previous question suggests that m (t) is equal to e~ 2!, We have:

M) =

It follows that:
E[M () | Fs]

= €

_1
oSt W)

eW(t)—%t

= E [ew(t)_%t | .7:5}

- K [eW(s)JrW(t)—W(s)—gt | ]_-S]

eW(s)e%(t—s)e—%t

W(s)—%s

M (s)

3. By applying Itd’s lemma with f (t,y) = e¥, we obtain:

dM (t)

1 1
(—263/(“92 (t)+ 56””92 (t)) dt 4+ e¥Wg (t) AW (t)

= M(t)g(t)dW(t)

It follows that:

M(t)— M(0) =

/0th (s)

/O M (s) g (s) W (s)

(A.3)

Since g () is not random, we deduce that Y (¢) is a Gaussian process. We have:

and:

var (Y (t))

We deduce that:

E[M(t) | Fo] =

I
C\ﬁ
Q
S
—
Vo)
S~—
(o}
V2]

t t

o3 Jy 7w dut [T g(u)dW(u) |

E [ J2 P dut [T o aw ) | fj
(s)e L P durs [1oPw du

M
M (s)

We conclude that M (t) is a martingale.
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4. We notice that M (0) = 1. From Equation (A.3), we have:

t
M) =1+ / M (s) g (s) dIW (s) (A.4)
0
Since fot M (s) g (s) AW (s) is an Ito integral, we deduce that M (t) is a Fy-martingale.
We say that M (t) is the exponential martingale of X (t) = ¢ () and we have:
E[M@)] =1

We also notice that Equation (A.4) is related to the martingale representation theo-
rem:

M<t>=E[M<o>1+/O £(s) AW (s)
where f (s) = M (s) g (s).

A.4.7 Existence of solutions to stochastic differential equations

1.

We have p(t,2) =1+« and o (¢,2) = 4. Tt follows that:

@t z) —pty)l = 1+az—1-y
< 1-fz—y
and:
lo(t,z) —o(t,y)|=4—4] = 0
< 1|z —y

We deduce that K7 = 1. Using the Cauchy-Schwarz inequality, we also have:

it z)=1+z[ < |1+ [z
< 4-(1+ o)
and:
lo(t,x)] =
< 41+ )

We deduce that K9 = 2. We deduce that there exists a solution to the SDE and this
solution is unique.

‘We have:
|/1,(t7.’£)—/1,(t,y)| = |a’(b_x)_a’(b_y)|
= la| |z -y
and:
lo(t,x) —o(t,y)] = |cz— cy|
= | |z -y

By applying the Yamada-Watanabe theorem with K = |a| and h(u) = |c|u, we
conclude that the solution exists and is unique.
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A.4.8 1t6 calculus and stochastic integration

1. We consider the transform function:

Y(t) = [f(tX()
= 1+ X () - X(0)

We have 0, f (t,z) =z, O, f (t,z) =1+t and 92f (t,x) = 0. It follows that:

av (1) = (X(t) (1 +1) ffg) dt+(1+t)%+tdW(t)
= dW (¥)
and Y (0) = X (0) — X (0) = 0. We deduce that Y (t) = W (¢) and:
X (0)+W(t)
X ()= 1+t

2. Using f (t,z) = x5* — 2%, we have O,.f (t,z) = 0, Dpf (t,x) = 22 and J2f (t,x) =
—2273. Tt follows that:

X(t) 12X%(t) X2 (1)
v = (X2<t>‘2X3<t>)d”X2<t>
— AW (1)

dw ()

and Y (0) = 0. We deduce that Y (t) = W (¢) and:

1
X-1(0) — W (¢)

dX (1) — —</0t1ide(s)) dt+(1:§> aw ()
- 1(/0t1_tdW(s)> di + dw (1)

X (t) =

3. We have:

1-—t¢ 1—s
X (1)

4. We have f(t,z) = (1—t) "'z, Of (t,x) = (L—8) %z, Ouf (t,x) = (1—1)"" and
O2f (t,x) = 0. It follows that:

_ X)) X 1
av () = ((1_t)2 (1_t)2> dt + — dWW (1)

We deduce that:

Y(t)—Y(O):/O L aw(s)

1-s
Since we have X (0) = 0, it follows that Y (0) = 0 and:

Y(t):A 1iSdW(s)
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5. Using Ito’s lemma, we have:
1

X 0) = (00 (17 (0) + 027 (17 (1)) 40,1 (.37 (1) a3 (1)
Since X (t) is a martingale, it satisfies the martingale representation theorem:

t

X (t)=E[X (0)] +/ Z (s) AW (s)
0

where Z (t) is a Fi-adapted process. We deduce that:
Z(t) =0 f (t, W (t))

and:

Of W)  192f(tW (1)

=0
ot 2 0x?
Then, X (t) is a Fi-martingale if this condition is satisfied.
6. In the case of the cubic martingale, we have f (t,x) = x® — 3tx, O.f (t,z) = —3z,

O f (t,x) = 32% — 3t, O2f (t,x) = 6z and:

Of(t,W(t) 10> f(t,W(t)
ot 2 0 x?

_3W (t) + %6W (t)
= 0

In the case of the quartic martingale, we have f (t,z) = x* — 6t2® + 3t2, 0, f (t,z) =
—622% + 6t, O, f (t,x) = 4a3 — 12tx, 02 f (¢t,z) = 122 — 12t and:

Af (W (t) [ 19 f(t,W (1))
ot 2 0 2

1
= —6W? () +6t+ 5 (12W2 (¢) — 12t)
=0

We conclude that the necessary condition is satisfied for the cubic and quartic mar-
tingales.

7. We note f (t,z) = e'/?cos(z). Since we have 0,f (t,z) = 3e'/?cos (z), 0, f (t,x) =
—et%sin (x), 02f (t,x) = —e'/? cos (), we obtain:

1 1
dX (t) = (Qet/2 cos W (t) — §et/2 cos W (t)) dt — et/2sin W (t) dW (t)

It follows that: .
X)) =1 —/ e*/?sin W (s) dW (s)
0

X (t) is an Itd integral. Moreover, we verify the condition:

te!

o

IN

2
e2sin W (s)’ ds}

ANVAN

Then, we deduce that X (t) = e*/2 cos W (t) is a martingale.
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A.4.9 Solving a PDE with the Feynman-Kac formula
1. The function g (¢) = 1 satisfies the Novikov condition:

E [exp (;/Oth (s) dsﬂ .

We deduce that Z (t) = W (t) — fot ds is a Brownian motion under the probability
measure Q defined by:

% exp(/otdW(s)—;/Otds)

V(-4

Since we have dZ (t) = dW (¢t) — dt, we finally obtain that:
dX (1) = dt+dZ(t)+dt
2dt +dZ (t)

2. Under the natural filtration F;, we have:
XG)=X@@)+6G-t)+(W(E) -W({°)

and®:
E[X(5)|FA]=2+(B-1)

If we now consider the filtration G; generated by the Brownian motion Z (), we obtain:
XG)=XH+26B-6)+(Z((B)—Z (1)

and:
E[X(5)|G]=x+2(5—1%)
We deduce that:

E[X(5)|G] = x+2(5-0)
= z+10

3. We notice that:
=0V (t,x) + 10V (t,z) # AV (t,xz) +4

where A; is the infinitesimal generator of X (f) with respect to the filtration F;.
Therefore, we cannot apply the Feynman-Kac formula. However, by changing the
probability measure, we have:

LV (ha) +3V (ha) = %82V(t,z)+28xV(t,x)+4
— AV (ta) 4

where Aj is the infinitesimal generator of X (¢) with respect to the filtration G;. We

5We note X (t) = .
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can then apply the Feynman-Kac formula and we have®:
®3d ° °3d
Vt,e) = E X(5)€7ft ° —|—/ 4 (eft u) ds‘ Qt]
t

5
= 350 E[X (5) Gl + / 467360 4

t

4 5
= e B0 RE[X (5) G + [_36—3(54)}
t
4
= (z+10-2t)e3 1+ 3 (1—e¥"19)
given that X (t) = x. We check the terminal condition:
4
V(5,2) = (z+10—2x5)e?5 154 3 (1 —e3x5715)
= =z
We also have:
OV (t,x) = 3(x+8—2t)e* 15
0,V (t,x) = ¢371°
02V (t,x) = 0
It follows that V (¢, x) satisfies the PDE:
—OV (t,x)+3V (t,x) = —3(x+8-2t)e P +4(1-€¥"1)+
3(x+10 —2t) 310
— 2e3t—15 +4

= %aﬁv (t, ) + 20,V (t,z) +4

. If the terminal value is V (T, z) = e*, we obtain:
5 5 s
E [ex(5)e—ft 3ds +/ 4 (e—ft Sdu) ds
t

— 36—t R [ex(5)’gt} i g (1 _ 6—3(5—15))

V(t,x)

g

We have:
X(5)| G~ N (z+10—2t,5—1)

We deduce that:
E [ex(s)‘ Qt} — rtl0-2t+5(5-1)

ez+12.5—2.5t

6 At the initial date t = 0, we have:

4
-15 —15
V(0,z) = (x+10)e +§(1—e )
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We finally obtain the following solution”:

Vita) = e—3(5—1) | gu 125250 4 g (1 _ e—3(5—t))
— eT25+05t % (1- €3t715)

‘We check the terminal condition:

4
V(5,z) = e —25+0.5x5 3 (1 _ e3x5—15)
= e:E
We also have:
OV (t,z) = 0.5¢%—2-5+0.5t _ 4 3t—15
axv (t, J?) —_ 6x72‘5+0.5t
aQV (t J,‘) _ em—2.5+0.5t

It follows that V (¢, z) satisfies the PDE:
—0,V (t,x) + 3V (t,x) = 2.5e° 2505 4
= (.5e® 25105t 4 9 x—2.540.5t | 4

_ %agv (t,2) + 20,V (t,2) + 4

A.4.10 Fokker-Planck equation
1. If we consider the following PDE:

{ —0V (t,x) = 56202V (t,x) + (a (b — 2)) 0,V (¢, x)
V(T,z)=1{x =z7}

the solution is given by the Feynman-Kac formula:
Vit,e) = E[L{X(T)=2r}|X(t) ==z
= P{XT)=or|X({t) =2}

We have:
Orla(b—2)U (t,z)] = —aU (t,z) + a (b — z) 0, U (t,x)

and:
92 [0°U (t,2)] = 0?02U (t, )

We deduce that the Fokker-Planck equation is:

{ U (t,x) = aU (t,z) — a(b—x) 8,U (t,x) + 10202U (t, z)
U(0,2) =1{x =x0}

7At the initial date t = 0, we have:

V(0,x) = e*725 ¢ g (1 - 6715)
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In Figure A.2, we have represented the probability density function P {X (1) = z | X (0) = 0}
using the two approaches. For that, we solve the two PDE using finite difference meth-
ods. Let uf, be the numerical solution of U (¢;, ¥,,). By construction, we have:

ul, = P{X(t;) =z, | X(0) }de
= P{X (1) =2 | X (0) =0} &

where h is the spatial mesh spacing meaning. Therefore, we have to divide the numer-
ical solution by & in order to obtain the density.

Analytical solution

35
3.0
2.5
2.0
1.5
1.0
0.5
00 04 02 00 0.2 0.4 0.6
Feynman—Kac solution Fokker—Planck solution
3.5 3.5
3.0 3.0
2.5 2.5
2.0 2.0
1.5 1.5
1.0 1.0
0.5 0.5
00 -0.4 -02  -0.0 0.2 0.4 0.6 00 -0.4 -02 -0.0 0.2 0.4 0.6

FIGURE A.2: Density function of the Ornstein-Uhlenbeck process

2. The solution is given by the Feynman-Kac PDE:

=0,V (t,x) = 2022?02V (t,z) + pzd,V (t, x)
V(T,z)=1{z=z7}

and the Fokker-Planck equation:

{ U (t,z) = 1022202U (t,x) + (2022 — pz) 0,U (t, ) + (02 — p) U (¢, z)
U0,z) =1{x =x0}

because:
0y [pzU (t,x)] = pU (t,x) + pxo,U (¢, x)

and:
92 [0°2%U (t,z)] = 20°U (t,2) + 40°20,U (t,2) + 0°2*92U (t,z)

In Figure A.3, we have represented the probability density function P {X (1) = z | X (0) = 0}
using the two approaches.
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FIGURE A.3: Density function of the Geometric Brownian motion

A.4.11 Dynamic strategy based on the current asset price

1.

‘We have:

dv(t) = n(t)dS ()
= [(S@)u(t,S (1) dt+ f (S (1) o (8,5 (1) dW (1)

. We notice that 9, F (z) = f (z) and §2F (x) = f' (z). Using Itd’s lemma, we have:

2
(o) = (Gen@SO)+ 500 €50) s
oF
557 (t,S(t)) dW (¢)

We deduce that:

AV () = F(SE)utS ) dt+ F(S®)oS(0) W (D) +
oI (S ()% (1,5 (1)) d

Since we have:

it follows that:
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We deduce that:
1 (T
V(T)-V(0) = Y(T)—Y(O)—§/0 fr(S ()0 (¢, S () dt
= PE@)-FEO) -3 [ £50)0050)

Finally, we obtain:

5(T) T
V() = V<o>+/ﬂ f(sc)dxi/o F(S (1) 0 (1,5 () dt

) 2
= G(T+C(T
where: s
G(T)zV(O)—I—/ f(x) dz
S(0)
and:

O AL CEIORT

The first term G (T') can be interpreted as the option profile of the dynamic strategy
at the maturity date, whereas C (T) is the cost associated to the continuous trading
strategy.

I F(S(E) =14{S(t) > Si}, we have:

5 [ S(T)-S(0) ifS.<S(T)
/5(0) “DS*}‘“—{ S, —8(0) i S(T)<S,

and:

fi@)=—d(x—5,)

where 0 (z) is the Dirac delta function. By assuming that V (0) = S (0), we deduce
that:

1 T
V) =S+ (S-S, 5 [ 550500 (1.5 (0)
0
The option profile of this strategy is the underlying asset plus a put option where the
strike is equal to S*. The cost of the stop-loss strategy is equal to:

T
C(T) = %/0 5(S(t)—S,) o (t,S(t)) dt

< 0

CIEF(S (1) = 1{S (t) < S,}, we have:

5 [ S(T)-S(0) ifS(T)<S,
/S(O) ]l{:z:<S*}dg:_{ S, —S(0) if S(T) > S,

and:

f(x)=06(x— 5,
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Use the results of the previous question, we have:

V(T):S(T)—(S(T)—S*)Jr—f—%/o §(S(t) —S,) o2 (t,S () dt

The option profile of the stop-gain strategy is the underlying asset minus un call
option where the strike is equal to S,. The cost of the strategy is positive, because
if we cross the gain level (S () > S,), we obtain an additional positive P&L that is
equal to S (t) — S..

(a) We buy the asset (n (t) > 0) when the asset price S (t) is below the price target
Ss. And we sell the asset (n (t) < 0) when the asset price S (¢) is above the price
target S,. This is a contrarian or mean-reverting strategy.

(b) We have:
S(T) _ S(T)
/ mS* xd:z: = mS, [lnx—x]
5(0) T S S(0)
_ S(T)
= mS*lnm—m(S(T)—S(O))
and: g
P ()= -m
We deduce that:
V(T)-V(0) = mS,(InS( ) lnS’()) m (S (T)—S(0) +

s, / (550 g,
(¢c) When we have o (¢, 5 (t)) = o (t) S (t), we obtain:

B S(T) m T
V(T)—V(O)—mS*an—m(S(T)—S(O))+§S*/O

and:

C(T) = %s* IV (T)

where IV (T') is the integrated variance:

(d) When the asset volatility o (t) is low, the trend of the asset price is strong. It
means that the asset price can continuously increase or decrease. This is the bad
scenario for the strategy. The good scenario is when the asset price crosses many
times the target price S,. This is why the strategy is more performing when the
realized volatility is high. In Figure A.4, we have illustrated the strategy when
the asset price follows a geometric Brownian motion and the target price is equal
to the initial price®. We notice that the number of times that S (¢) crosses S
increases with the volatility. Therefore, the vega of the strategy is positive.

8We have Sy = S (0) = 100.
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FIGURE A.4: Impact of the volatility on the mean-reverting strategy

A.4.12 Strong Markov property and maximum of Brownian motion

1. We have:
Pr{W () >z} =Pr{W(t)>az, M) >a}+Pr{W () >z, M(t) <z}
Since M (t) > W (t), we have Pr{W (t) > z, M (t) < z} = 0 and:

Pr{W (1) 22} = Pr{W(f)>e M) >}
= Pr{W@)>x|M(@t) >z} Pr{M(t) >z}
= Pr{W@) >z|71 <t} -Pr{M(t) >z}

Using the strong Markov property, we also have:

Pr{W @) >z|m <t} = Pr{W{)—W(r)>0|m <t}
= Pr{W(m+t—"1p)—W(r) 20|71 <t}
Pr{W(t—1)>0]|7 <t}

‘We deduce that:

and:

I

[\
7 N\

=

I

A
7N\
SSER
~———— 8
~—
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2. Let z=x —y > 0. We have:

Pr{W(t) 22z -y} = Pr{W(t)za+2zM(t)=a}+
Pr{W(t)>a+2z M(t) <z}
Pr{W(t)>x+2z M(t) >z}
Indeed, we have:

Pr{W({¢)>z+2M(t) <z}=0
because z > 0. It follows that:

Pr{W(t) > 2z -y} = Pr{W()>z+2zM() =z}
= Pr{Wi(m+t—1)—Wi(m)>2z|M(@{) >a}-
Pr{M(t) >z}

Using the strong Markov property and the symmetry of the Brownian motion, we
deduce that:

Pr{W (7, Te) = W) > 2 | M (t) > x}
= Pr{W (r t—Tw) W (ry) >z |1 <t}
= Pr{W({t—m)>z|7 <t}
= PI‘{W(t—Tm)f_Z|Tz<t}
= Pr{W{)<xz—z|M(()>ux}
We conclude that:

Pr{W({t)>2xc—y} = Pr{W{)<z—z|M(t)>a} Pr{M(t) >z}
= Pr{W({t)<z—2z M) >ux}
= Pr{W(t) <y M(t) =z}
3. The joint density function of (M (t),W (t)) is defined as follows:
07 Pr{W (1) <y, M () > «}

We have:
Pr{W(t)<y,M(t) >z} = Pr{W(t)>2z—y}
- - 20 —y
= e (77
We deduce that:
OPr{W () <y M) >z} 2 (2z—y
F =70 (57

It follows that:

f(z,y)

Il

|
v Qe
/T\
S
<
—
g
Sl
5
~
N
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4. WQ(t) = ut + W (t) is a standard Wiener process under the probability measure Q
defined by?:

T = o (- get)
= exp (—MWQ (t) + ;/ft)
It follows that:
forx x) (@y) = f(MW@’WQ) (:9) ‘ig

B 1, (2m—y)\/§ (Qx—y)2
= e (- gt) ity Lew (50
- (2r—y) /2 1, (2z-y)°
= Tam \ GO gt T

5. To compute the density of Mx (t), we use the fact that it is the marginal’® of
f(MX,X) (z,y):

T
furx () = / forg x) (2,y) dy
— 00
T
= \/Tt/ (th;y)e#yf%;ﬂt—%dy
m —00
T T
= \/7<|:6My—§u2t—(“2ty)2:| _N/ eMy_%;ﬂt_(%;ty)? dy)
Tt
oo oo
xT
= \/76%—%;&%_(“27)2 B ,u/ \/7(3%_;“%_(%;,)2 ay
7t o Vot
xr
= ie_% _M/ \/7€”y_;”2t_(212,,y)2dy
V2t VTt

Using the change of variable z = t=/2 (y — ut — 2x), we have:

x 2 2
1,2, (2z—y)
/ \[ ety = dy
—eo VT

—x—pt

2/ Vi —1 =37 4,
e V27

—x — ut
= 2Ty =
(=)
Finally, we obtain:

9Using notations used to state the Girsanov theorem, we have g (t) = p.
10We have:

d

9 eny—gu

—)2 N2 _ N2
. 2 oop)? ey 3nt- @oow?® (2z —y) oy~ L u?e— G20
Y
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6. We verify that:

OF (x) 0 Pr{Mx (t) <z}
oz or

) )
) e
= fux ()

Moreover, we have F' (0) = 1 and F (oc0) = 1. We conclude that F' (z) is the probability
distribution of My (t).

A.4.13 Moments of the Cox-Ingersoll-Ross process

1. We recall that:
ElY (v,Q]=v+(¢
We deduce that:

1 (4ab —a
E [X (t)] = - <U2 + Cxp€ t>
(1—e ) o? (4dab 4a Cat
= —— |+ ————uxpe
4a 02 (1—e"9)g2

= e %+ (1 — e_“t)

2. We recall that:
var (¥ (1,0)) = 2 (v + 20)
We deduce that:

2 (4ab
var (X (1)) = — (a2 + Zngeat)
2\ o
_ (-t fdab  8a L,
B 8a? o2 (1—e%)g? 0

. —at\2 2 b 1 —at
= (176 )0’ <2a+(1_€_at)al'0€ )

a2
e—zat)+02b(1_€ at)
a a 2

3. We recall that:

We deduce that:

4ab 8
X)) = |— +3cz eat>
71 (X (1)) ( o2 0 \/(4aba—2 + 2cxoe—“t)3

_ o (Bwoe " +b (1 — e %)) 2(1 —e—at)
Va (2zpe=at + b (1 — e~at))®
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The excess kurtosis coefficients of Y (v, () is equal to:

_ 12 (v 4+ 4¢)
72 (Y(V7C)) - (V—FQC)Q

It follows that:
1202 (4ab + 4co?zge ")
(4ab + 2co?zge—t)?
302 (1 — e~ %) (4mge~ % + b (1 — e~%))
a(woe=at + b (1 — e—at))?

72 (X (1) =

A.4.14 Probability density function of Heston and SABR models
1. The Fokker-Planck equation is:
OU (t,w1,02) = —0q [pz1U (¢, 21, 32)] — Oy [a (b — 22) U (¢, 21, 2)] +
%a; 225U (£, 21, 22)] + %aﬁz [0%25U (¢, 21, 22)] +
P02

T1,T2 [lex?U (t7 :Cl) mQ)]

The first-order derivatives are:

Oy [ U (t,21,22)] = pux10,,U (t, 21, 22) + pU (t, 21, 22)
6£2 [a(bfl‘g)U(t,l’l,wg)] = G,(b*l?g)asz(t,‘Tl,‘Ig)7aU(t,I’1,ZL'2)

The second-order derivatives are:

8%1 [$%$2U(t,l‘1,$2)] = x?xzaﬁlU(t,xl,xg) +4x1290,, U (t, 21, x2) +
QZ‘QU (t,l‘l,.’lﬁ2>
8%2 [U2$2U(t,$1,x2)] = 02‘%2832(](15,%1,.%2) +20’26I2U(t,$1,$2)
and:
8317@ [O’l’lﬂng(t,ZL’l,Ig)] = a:clxgé)zth (t,.Tl,l'Q) -+

ox10,,U (t,21,22) +
02905, U (t,x1,x2) + oU (t, 21, x2)

We deduce that:
1 1
U (t,x1,x2) = ixfmgale(t,xl,xg) + 502x28§2U(t,x1,x2) +

pox12207, ,,U (t,21,22) +
(2x9 + po — p) 2105, U (t, 1, 72) +
(02 + poxg —a(b— (Eg)) 0z, U (t,z1,22) +

(ata2+po—p)U(t 1, 22)
2. The Fokker-Planck equation is:
1 1
U (t,x1,m2) = 5@%1 {x%ﬁang(t,xl,xz)} + 53; [szgU(t,xl,xg)] +

pd? [z/xfng (¢, zl,xg)}

T1,T2
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The second-order derivatives are:
82 [zl 23U (t, 561,1'2)] = xl 93282 (t,z1,22) +

4@%?67% 05, U (t,x1,22) +

2826 = 1) ay" 23U (t, 31, 22)
92, [V?23U (t,z1,22)] = 122302 U (t,21,22) +

42290,,U (t, 21, 22) +

20°U (t, 21, x2)

and:
851 o {V:cfoU(t $1,$2)i| = V:Eleaﬁl U (tx1,22) +

21/:101 290,,U (t,m1,12) +
Buxf_lxgﬁsz (t,z1,22) +
25Vx’f_1x2U(t,x1,m2)

‘We deduce that:

1 1
WU (t,x1,22) = 5951 33282 (t,x1,22) + §V2£L'%(932U(t,.%‘1,.’)’;2) +

prITy x2831 To (tvxlaxQ) +
2 (Bz17 To + pu) zfazgarlU (t,z1,22) +
(21/2 + pﬁuw?_lxg) 2202, U (t, 21, 22) +

(ﬂ (28 —1)x7 P22ty 2pﬁum1 2) U(t,x1,22)

When £ is equal to 1, we obtain:

1 1
U (t,x1,22) = 23:1 282 (t,z1,22) + 21/ x232 U (t,z1,z2) +
pl/xlz28§1 U (t, 21, 22) +

2 (wy + pv) 21220, U (t, 21, 22) +
(20° + pras) 220,,U (¢, 21, 22) +
(23 + 12 + 2pvao) U (t, 21, 22)

3. We have reported the probability density function of Heston and SABR models in
Figures A.5 and A.6.

A.4.15 Discrete dynamic programming

1. (a) We have five states s(k) € {1,1.5,2,2.5} and eight control values c(k) €
{1,2,3,4,5,6,7,8}. We deduce that:

1.141 1.108 1.075 1.038 1.000
1.121 1.343 1.563 1.782 2.000
1.842 2.134 2425 2.714 3.000
2.759 3.071 3.382 3.691 4.000
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and:

W NN
W NN

W NN
W W NN

3

For instance, we have J (2,2) = (J)3 , = 2.134 because s3 = 2 and k = 2.
(b) We deduce that 7 (1,1) = 1.141.
(c) We notice that ¢* (1) = 1if s(1) =1, ¢* (1) =2if s(1) = 1.5 or s
(1) =3if s(1) =25, ¢*(2) =1if s(1) =1, ¢ (2) = 2 if s(1) = 1.5, etc.
When k is small, the objective function is mainly explained by —¢ (c (k) — s (k N2,

(c
Therefore, maximizing f (k, s (k),c(k)) implies that ¢* (k) = s (k). This is why
¢* (k) cannot be greater than or equal to 4.

1) =2,

100
75

50

J(1 ,Sk)

25

=25 0
0 10 20 30 40 50 0 25 50 75 100

Sk

FIGURE A.7: Values taken by J (k, s (k)) and ¢* (k)

2. (a) We have represented J (k, s (k)) in the first panel in Figure A.7.

(b) In the second panel, we have reported J (1, s (k)). The maximum is reached for
s (k) = 39.

(c¢) In the third panel, we have reported the optimal control ¢* (k) when s (k) is
equal to 3, 13 and 22. We notice that ¢* (k) ~ s (k) when k =1 and ¢* (k) = 25

when k = 100. The case k = 1 has been explained in Question 1(c). In the case
k = 100, we have:

f (k78 (k) 7C(k‘)) ~ — lns( + ﬁC +'Y\/7 sin s(k)

b
s (k)

Therefore, maximizing f (k, s (k), c(k)) implies that ¢* (k) = max c; = 25.
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A.4.16 Matrix computation
1. (a) We have A = QTQ* where:
0.737 —0.553 —0.390
Q=1 0526 0.107 0.844
0.425  0.826 —0.370
et :
1.761  0.000 0.000
T=1 0000 -0.143 0.000
0.000  0.000 0.581
(b) We obtain:
3.693 1.617 1.682
e = 1.617 2.805 0.820
1.682 0.820 1.887
and:
—0.3714+0.961¢  0.512 —0.185¢  0.989 — 1.435i
InA= 0.512 — 0.185¢ —0.251+0.036¢  0.124 + 0.277¢
0.989 — 1.435¢  0.124 4+ 0.277¢ —1.302 + 2.145i
(c) We have:
iA | —iA
cos A = e te ™
and: A ia
sind =5
2
Therefore, we can calculate cos A and sin A from the matrix exponential. We
obtain:
0.327 —0.406 —0.391
cosA=| —0.406 0.554 —0.216
—0.391 —-0.216  0.756
and:
0.573 0.209 0.451
sinA= | 0.209 0.661 0.036
0.451 0.036 0.155
We have:

cos? A+sin?A =14

(d) For transcendental functions f (z), we have f(A) =

\/x, we obtain:

0.836 + 0.115:¢
0.264 — 0.0227
0.525 — 0.173:

0.264 — 0.022:¢
0.910 + 0.004:
0.059 + 0.033:

A1/2 —

Qf(T) Q. Using f (z) =

0.525 — 0.173:
0.059 + 0.033:
0.344 + 0.258:

2. The eigenvalues of ¥ are —0.00038, 0.00866, 0.01612 and 0.05060. ¥ is not a positive

semi-definite matrix because one eigenvalue is negative.

where:
0.19378 0.04539 0.01365
Ay = 0.04539 0.13513 —0.03221
0.01365 —0.03221 0.02740
—0.01440 —0.03445 —0.02833

We have ¥ = (A1 4 i4y)?

—0.01440
—0.03445
—0.02833

0.08866
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and:
0.00024 —0.00073 —0.00184 —0.00083

—0.00073  0.00224  0.00563  0.00255
—0.00184  0.00563  0.01417  0.00642
—0.00083  0.00255  0.00642  0.00291

Ay =

‘We deduce that the nearest covariance matrix is:

0.04000  0.01499  0.00196 —0.00602

S 42— 0.01499  0.02254 —0.00364 —0.00745
! 0.00196 —0.00364  0.00278 —0.00237
—0.00602 —0.00745 —0.00237  0.01006

3. We obtain p (B) = C5 (—25%). This is the lower bound of constant correlation matrix.
More generally, we have:

p(Cr (1)) = Cy (17)

where * = max (r,—1/(n —1)). If r < =1/ (n — 1), the nearest correlation matrix is
then the lower bound.

4. We obtain:

1.0000
0.6933 1.0000
p(C)=1 0.6147 0.4571 1.0000
0.2920 0.7853 0.0636 1.0000
0.7376 0.2025 0.7876 —0.0901 1.0000



