
Chapter 2
Market Risk

This chapter begins with the presentation of the regulatory framework. It will help us to
understand how the supervision on market risk is organized and how the capital charge is
computed. Then we will study the different statistical approaches to measure the value-at-
risk and the expected shortfall. Specifically, a section is dedicated to the risk management of
derivatives and exotic products. We will see the main concepts, but we will present the more
technical details later in Chapter 9 dedicated to model risk. Advanced topics like Monte
Carlo methods and stress testing models will also be addressed in Part II. Finally, the last
part of the chapter is dedicated to risk allocation.

2.1 Regulatory framework
We recall that the original Basel Accord only concerned credit risk in 1988. However, the

occurrences of market shocks were more important and the rapid development of derivatives
created some stress events at the end of the eighties and the beginning of the nineties. On 19
October 1987, stock markets crashed and the Dow Jones Industrial Average index dropped
by more than 20% in the day. In 1990, the collapse of the Japanese asset price bubble (both
in stock and real estate markets) caused a lot of damage in the Japanese banking system
and economy. The unexpected rise of US interest rates in 1994 resulted in a bond market
massacre and difficulties for banks, hedge funds and money managers. In 1994-1995, several
financial disasters occurred, in particular the bankruptcy of Barings and the Orange County
affair (Jorion, 2007).

In April 1993, the Basel Committee published a first consultative paper to incorporate
market risk in the Cooke ratio. Two years later, in April 1995, it accepted the idea to
compute the capital charge for market risks with an internal model. This decision is mainly
due to the publication of RiskMetrics by J.P. Morgan in October 1994. Finally, the Basel
Committee published the amendment to the capital accord to incorporate market risks in
January 1996. This proposal has remained the supervisory framework for market risk during
many years. However, the 2008 Global Financial Crisis had a big impact in terms of market
risk. Just after the crisis, a new approach called Basel 2.5 has been accepted. In 2012, the
Basel Committee launched a major project: the fundamental review of the trading book
(FRTB). These works resulted in the publication of a new comprehensive framework in
January 2019 (BCBS, 2019). This is the Basel III framework for computing the minimum
capital requirements for market risk as of January 2022.

According to BCBS (2019), market risk is defined as “the risk of losses (in on- and
off-balance sheet positions) arising from movements in market prices. The risks subject to
market risk capital requirements include but are not limited to:
• default risk, interest rate risk, credit spread risk, equity risk, foreign exchange (FX)
risk and commodities risk for trading book instruments;

• FX risk and commodities risk for banking book instruments.”
37
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The following table summarizes the perimeter of markets risks that require regulatory cap-
ital:

Portfolio Fixed Income Equity Currency Commodity Credit
Trading X X X X X
Banking X X

The Basel Committee makes the distinction between the trading book and the banking
book. Instruments to be included in the trading book are subject to market risk capital
requirements, while instruments to be included in the banking book are subject to credit risk
capital requirements (with the exception of foreign exchange and commodity instruments).
The trading book refers to positions in assets held with trading intent or for hedging other
elements of the trading book. These assets are systematically valuated on a fair value (mark-
to-market or mark-to-model) basis, are actively managed and their holding is intentionally
for short-term resale. Examples are proprietary trading, market-making activities, hedging
portfolios of derivatives products, listed equities, repo transactions, etc. The banking book
refers to positions in assets that are expected to be held until the maturity. These assets
may be valuated at their historic cost or with a fair value approach. Examples are unlisted
equities, real estate holdings, hedge funds, etc.

The first task of the bank is therefore to define trading book assets and banking book
assets. For instance, if the bank sells an option on the Libor rate to a client, a capital
charge for the market risk is required. If the bank provides a personal loan to a client with
a fixed interest rate, there is a market risk if the interest rate risk is not hedged. However, a
capital charge is not required in this case, because the exposure concerns the banking book.
Exposures on stocks may be included in the banking book if the objective is a long-term
investment.

2.1.1 The Basel I/II framework
To compute the capital charge, banks have the choice between two approaches:

1. the standardized measurement method (SMM);

2. the internal model-based approach (IMA).

The standardized measurement method has been implemented by banks at the end of
the nineties. However, banks quickly realized that they can sharply reduce their capital
requirements by adopting internal models. This explained that SMM was only used by a
few number of small banks in the 2000s.

2.1.1.1 Standardized measurement method

Five main risk categories are identified: interest rate risk, equity risk, currency risk,
commodity risk and price risk on options and derivatives. For each category, a capital
charge is computed to cover the general market risk, but also the specific risk. According
to the Basel Committee, specific risk includes the risk “that an individual debt or equity
security moves by more or less than the general market in day-to-day trading and event risk
(e.g. takeover risk or default risk)”. The use of internal models is subject to the approval
of the supervisor and the bank can mix the two approaches under some conditions. For
instance, the bank may use SMM for the specific risk and IMA for the general market risk.
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In this approach, the capital charge K is equal to the risk exposure E times the capital
charge weight K:

K = E ·K

For the specific risk, the risk exposure corresponds to the notional of the instrument, whether
it is a long or a short position. For the general market risk, long and short positions on
different instruments can be offset. In what follows, we give the main guidelines and we
invite the reader to consult BCBS (1996a, 2006) to obtain the computational details.

Interest rate risk Let us first consider the specific risk. The Basel Committee makes the
distinction between sovereign and other fixed income instruments. In the case of government
instruments, the capital charge weights are:

AAA A+ BB+ Below
B−Rating to to to NR

AA− BBB− B−
Maturity 0−6M 6M−2Y 2Y+
K 0% 0.25% 1.00% 1.60% 8% 12% 8%

This capital charge depends on the rating and also the residual maturity for A+ to BBB−
issuers1. The category NR stands for non-rated issuers. In the case of other instruments
issued by public sector entities, banks and corporate companies, the capital charge weights
are:

AAA BB+ Below
BB−Rating to to NR

BBB− BB−
Maturity 0−6M 6M−2Y 2Y+
K 0.25% 1.00% 1.60% 8% 12% 8%

Example 4 We consider a trading portfolio with the following exposures: a long position
of $50 mn on Euro-Bund futures, a short position of $100 mn on three-month T-Bills and
a long position of $10 mn on an investment grade (IG) corporate bond with a three-year
residual maturity.

The underlying asset of Euro-Bund futures is a German bond with a long maturity
(higher than 6 years). We deduce that the capital charge for specific risk for the two sovereign
exposures is equal to zero, because both Germany and US are rated above A+. Concerning
the corporate bond, we obtain:

K = 10× 1.60% = $160 000

For the general market risk, the bank has the choice between two methods: the maturity
approach and the duration approach. In the maturity approach, long and short positions are
slotted into a maturity-based ladder comprising fifteen time-bands (less than one month,
between one and three months, . . . between 12 and 20 years, greater than 20 years). The
risk weights depend on the time band and the value of the coupon2, and apply to the
net exposure on each time band. For example, a capital charge of 8% is used for the net

1Three maturity periods are defined: 6 months or less, greater than 6 months and up to 24 months, more
than 24 months.

2We distinguish coupons less than 3% (small coupons or SC) and coupons 3% or more (big coupons or
BC).
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exposure of instruments (with small coupons), whose maturity is between 12 and 20 years.
For reflecting basis and gap risks, the bank must also include a 10% capital charge to
the smallest exposure of the matched positions. This adjustment is called the ‘vertical
disallowance’. The Basel Committee considers a second adjustment for horizontal offsetting
(the ‘horizontal disallowance’). For that, it defines 3 zones (less than 1 year, one year to
four years and more than four years). The offsetting can be done within and between the
zones. The adjustment coefficients are 30% within the zones 2 and 3, 40% within the zone
1, between the zones 1 and 2, and between the zones 2 and 3, and 100% between the zones
1 and 3. Therefore, the regulatory capital for the general market risk is the sum of the three
components:

K = KOP + KVD + KHD

where KOP, KVD and KHD are the required capital for the overall net open position, the
vertical disallowance and the horizontal disallowance.

With the duration approach, the bank computes the price sensitivity of each position
with respect to a change in yield ∆y , slots the sensitivities into a duration-based ladder
and applies adjustments for vertical and horizontal disallowances. The computation of the
required capital is exactly the same as previously, but with a different definition of time
bands and zones.

Equity risk For equity exposures, the capital charge for specific risk is 4% if the portfolio
is liquid and well-diversified and 8% otherwise. For the general market risk, the risk weight
is equal to 8% and applies to the net exposure.

Example 5 We consider a $100 mn short exposure on the S&P 500 index futures contract
and a $60 mn long exposure on the Apple stock.

The capital charge for specific risk is3:

KSpecific = 100× 4% + 60× 8%
= 4 + 4.8
= 8.8

The net exposure is −$40 mn. We deduce that the capital charge for the general market
risk is:

KGeneral = |−40| × 8%
= 3.2

It follows that the total capital charge for this equity portfolio is $12 mn.

Remark 1 Under Basel 2.5, the capital charge for specific risk is set to 8% whatever the
liquidity of the portfolio.

Foreign exchange risk The Basel Committee includes gold in this category and not in
the commodity category because of its specificity in terms of volatility and its status of
safe-heaven currency. The bank has first to calculate the net position (long or short) of each
currency. The capital charge is then 8% of the global net position defined as the sum of:

3We assume that the S&P 500 index is liquid and well-diversified, whereas the exposure on the Apple
stock is not diversified.
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• the maximum between the aggregated value LFX of long positions and the aggregated
value SFX of short positions and,

• the absolute value of the net position NGold in gold.

We have:
K = 8%× (max (LFX,SFX) + |NGold|)

Example 6 We consider a bank which has the following long and short positions expressed
in $ mn4:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Li 170 0 25 37 11 3 8 33
Si 80 50 12 9 28 0 8 6

We first compute the net exposure Ni for each currency:

Ni = Li − Si

We obtain the following figures:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Ni 90 −50 13 28 −17 3 0 27

We then calculate the aggregated long and short positions:

LFX = 90 + 13 + 28 + 3 + 0 = 134
SFX = 50 + 17 = 67
NGold = 27

We finally deduce that the capital charge is equal to $12.88 mn:

K = 8%× (max (134, 67) + |27|)
= 8%× 161
= 12.88

Commodity risk Commodity risk concerns both physical and derivative positions (for-
ward, futures5 and options). This includes energy products (oil, gas, ethanol, etc.), agricul-
tural products (grains, oilseeds, fiber, livestock, etc.) and metals (industrial and precious),
but excludes gold which is covered under foreign exchange risk. The Basel Committee makes
the distinction between the risk of spot or physical trading, which is mainly affected by the
directional risk and the risk of derivative trading, which includes the directional risk, the
basis risk, the cost-of-carry and the forward gap (or time spread) risk. The SMM for com-
modity risk includes two options: the simplified approach and the maturity ladder approach.

Under the simplified approach, the capital charge for directional risk is 15% of the
absolute value of the net position in each commodity. For the other three risks, the capital
charge is equal to 3% of the global gross position. We have:

K = 15%×
m∑
i=1
|Li − Si|+ 3%×

m∑
i=1

(Li + Si)

4We implicity assume that the reporting currency of the bank is the US dollar.
5The most traded futures contracts are crude oil, brent, heating oil, gas oil, natural oil, rbob gasoline

silver, platinum, palladium, zinc, lead, aluminium, cocoa, soybeans, corn, cotton, wheat, sugar, live cattle,
coffee and soybean oil.
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where m is the number of commodities, Li is the long position on commodity i and Si is
the short position on commodity i.

Example 7 We consider a portfolio of five commodities. The mark-to-market exposures
expressed in $ mn are the following:

Commodity Crude Oil Coffee Natural Gas Cotton Sugar
Li 23 5 3 8 11
Si 0 0 19 2 6

The aggregated net exposure
∑5
i=1 |Li − Si| is equal to $55 mn whereas the gross

exposure
∑5
i=1 (Li + Si) is equal to $77 mn. We deduce that the required capital is

15%× 55 + 3%× 77 or $10.56 mn.
Under the maturity ladder approach, the bank should spread long and short exposures of

each commodity to seven time bands: 0-1M, 1M-3M, 3M-6M, 6M-1Y, 1Y-2Y, 2Y-3Y, 3Y+.
For each time band, the capital charge for the basis risk is equal to 1.5% of the matched
positions (long and short). Nevertheless, the residual net position of previous time bands
may be carried forward to offset exposures in next time bands. In this case, a surcharge
of 0.6% of the residual net position is added at each time band to cover the time spread
risk. Finally, a capital charge of 15% is applied to the global net exposure (or the residual
unmatched position) for directional risk.

Option’s market risk There are three approaches for the treatment of options and
derivatives. The first method, called the simplified approach, consists of calculating sepa-
rately the capital charge of the position for the option and the associated underlying. In the
case of an hedged exposure (long cash and long put, short cash and long call), the required
capital is the standard capital charge of the cash exposure less the amount of the in-the-
money option. In the case of a non-hedged exposure, the required capital is the minimum
value between the mark-to-market of the option and the standard capital charge for the
underlying.

Example 8 We consider a variant of Example 5. We have a $100 mn short exposure on the
S&P 500 index futures contract and a $60 mn long exposure on the Apple stock. We assume
that the current stock price of Apple is $120. Six months ago, we have bought 400 000 put
options on Apple with a strike of $130 and a one-year maturity. We also decide to buy 10 000
ATM call options on Google. The current stock price of Google is $540 and the market value
of the option is $45.5.

We deduce that we have 500 000 shares of the Apple stock. This implies that $48 mn
of the long exposure on Apple is hedged by the put options. Concerning the derivative
exposure on Google, the market value is equal to $0.455 mn. We can therefore decompose
this portfolio into three main exposures:

• a directional exposure composed by the $100 mn short exposure on the S&P 500 index
and the $12 mn remaining long exposure on the Apple stock;

• a $48 mn hedged exposure on the Apple stock;

• a $0.455 mn derivative exposure on the Google stock.
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For the directional exposure, we compute the capital charge for specific and general market
risks6:

K = (100× 4% + 12× 8%) + 88× 8%
= 4.96 + 7.04
= 12

For the hedged exposure, we proceed as previously but we deduce the in-the-money value7:

K = 48× (8% + 8%)− 4
= 3.68

The market value of the Google options is $0.455 mn. We compare this value to the standard
capital charge8 to determine the capital charge:

K = min (5.4× 16%, 0.455)
= 0.455

We finally deduce that the required capital is $16.135 mn.
The second approach is the delta-plus method. In this case, the directional exposure

of the option is calculated by its delta. Banks will also required to compute an additional
capital charge for gamma and vega risks. We consider different options and we note j ∈ Ai
when the option j is written on the underlying asset i. We first compute the (signed) capital
charge for the 4 risks at the asset level:

KSpecific
i =

∑
j∈Ai

Nj ·∆j

 · Si ·KSpecific
i

KGeneral
i =

∑
j∈Ai

Nj ·∆j

 · Si ·KGeneral
i

KGamma
i = 1

2

∑
j∈Ai

Nj · Γj

 · (Si ·KGamma
i

)2
KVega
i =

∑
j∈Ai

Nj · υj · (25% · Σj)

where Si is the current market value of the asset i, KSpecific
i and KGeneral

i are the corre-
sponding standard capital charge for specific and general market risk and KGamma

i is the
capital charge for gamma impact9. Here, Nj , ∆j , Γj and υj are the exposure, delta, gamma
and vega of the option j. For the vega risk, the shift corresponds to ±25% of the implied
volatility Σj . For a portfolio of assets, the traditional netting rules apply to specific and
general market risks. The total capital charge for gamma risk corresponds to the opposite
of the sum of the negative individual capital charges for gamma risk whereas the total cap-
ital charge for vega risk corresponds to the sum of the absolute value of individual capital
charges for vega risk.

6The net short exposure is equal to $88 mn.
7It is equal to 400 000×max (130− 120, 0).
8It is equal to 10 000× 540× (8% + 8%).
9It is equal to 8% for equities, 8% for currencies and 15% for commodities. In the case of interest rate

risk, it corresponds to the standard value K (t) for the time band t (see the table on page 8 in BCBS
(1996a)).
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Example 9 We consider a portfolio of 4 options written on stocks with the following char-
acteristics:

Option Stock Exposure Type Price Strike Maturity Volatility
1 A −5 call 100 110 1.00 20%
2 A −10 call 100 100 2.00 20%
3 B 10 call 200 210 1.00 30%
4 B 8 put 200 190 1.25 35%

This means that we have 2 assets. For stock A, we have a short exposure on 5 call options
with a one-year maturity and a short exposure on 10 call options with a two-year maturity.
For stock B, we have a long exposure on 10 call options with a one-year maturity and a
long exposure on 8 put options with a maturity of one year and three months.

Using the Black-Scholes model, we first compute the Greek coefficients for each option j.
Because the options are written on single stocks, the capital charges KSpecific

i , KGeneral
i and

KGamma
i are all equal to 8%. Using the previous formulas, we then deduce the individual

capital charges for each option10:

j 1 2 3 4
∆j 0.45 0.69 0.56 −0.31
Γj 0.02 0.01 0.01 0.00
υj 39.58 49.91 78.85 79.25

KSpecific
j −17.99 −55.18 89.79 −40.11

KGeneral
j −17.99 −55.18 89.79 −40.11

KGamma
j −3.17 −3.99 8.41 4.64
KVega
j −9.89 −24.96 59.14 55.48

We can now aggregate the previous individual capital charges for each stock. We obtain:

Stock KSpecific
i KGeneral

i KGamma
i KVega

i

A −73.16 −73.16 −7.16 −34.85
B 49.69 49.69 13.05 114.61

Total 122.85 23.47 7.16 149.46

To compute the total capital charge, we apply the netting rule for the general market risk,
but not for the specific risk. This means that KSpecific = |−73.16| + |49.69| = 122.85 and
KGeneral = |−73.16 + 49.69| = 23.47. For gamma risk, we only consider negative impacts
and we have KGeneral = |−7.16| = 7.16. For vega risk, there is no netting rule: KVega =
|−34.85|+ |114.61| = 149.46. We finally deduce that the overall capital is 302.94.

The third method is the scenario approach. In this case, we evaluate the profit and loss
(P&L) for simultaneous changes in the underlying price and in the implied volatility of the
option. For defining these scenarios, the ranges are the standard shifts used previously. For
instance, we use the following ranges for equities:

Si
−8% +8%

Σj
−25%
+25%

10For instance, the individual capital charge of the second option for the gamma risk is

KGamma
j =

1
2
× (−10)× 0.0125× (100× 8%)2 = −3.99
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The scenario matrix corresponds to intermediate points on the 2 × 2 grid. For each cell of
the scenario matrix, we calculate the P&L of the option exposure11. The capital charge is
then the largest loss.

Securitization instruments The treatment of specific risk of securitization positions
is revised in Basel 2.5 and is based on external ratings. For instance, the capital charge
for securitization exposures is 1.6% if the instrument is rated from AAA to AA−. For
resecuritization exposures, it is equal to 3.2%. If the rating of the instrument is from BB+
to BB−, the risk capital charges becomes respectively12 28% and 52%.

2.1.1.2 Internal model-based approach

The use of an internal model is conditional upon the approval of the supervisory au-
thority. In particular, the bank must meet certain criteria concerning different topics. These
criteria concerns the risk management system, the specification of market risk factors, the
properties of the internal model, the stress testing framework, the treatment of the specific
risk and the backtesting procedure. In particular, the Basel Committee considers that the
bank must have “sufficient numbers of staff skilled in the use of sophisticated models not
only in the trading area but also in the risk control, audit, and if necessary, back office
areas”. We notice that the Basel Committee first insists on the quality of the trading de-
partment, meaning that the trader is the first level of risk management. The validation of
an internal model does not therefore only concern the risk management department, but
the bank as a whole.

Qualitative criteria BCBS (1996a) defines the following qualitative criteria:

• “The bank should have an independent risk control unit that is responsible for the
design and implementation of the bank’s risk management system. [...] This unit
must be independent from business trading units and should report directly to senior
management of the bank”.

• The risk management department produces and analyzes daily reports, is responsible
for the backtesting procedure and conducts stress testing analysis.

• The internal model must be used to manage the risk of the bank in the daily basis. It
must be completed by trading limits expressed in risk exposure.

• The bank must document internal policies, controls and procedures concerning the
risk measurement system (including the internal model).

It is today obvious that the risk management department should not report to the
trading and sales department. Twenty-five years ago, it was not the case. Most of risk man-
agement units were incorporated to business units. It has completely changed because of
the regulation and risk management is now independent from the front office. The risk man-
agement function has really emerged with the amendment to incorporate market risks and
even more with the Basel II reform, whereas the finance function has long been developed
in banks. For instance, it’s very recent that the head of risk management13 is also a member
of the executive committee of the bank whereas the head of the finance department14 has
always been part of the top management.

11It may include the cash exposure if the option is used for hedging purposes.
12See pages 4-7 of BCBS (2009b) for the other risk capital charges.
13He is called the chief risk officer or CRO.
14He is called the chief financial officer or CFO.
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From the supervisory point of view, an internal model does not reduce to measure the
risk. It must be integrated in the management of the risk. This is why the Basel Committee
points out the importance between the outputs of the model (or the risk measure), the
organization of the risk management and the impact on the business.

Quantitative criteria The choice of the internal model is left to the bank, but it must
respect the following quantitative criteria:
• The value-at-risk (VaR) is computed on a daily basis with a 99% confidence level. The
minimum holding period of the VaR is 10 trading days. If the bank computes a VaR
with a shorter holding period, it can use the square-root-of-time rule.

• The risk measure can take into account diversification, that is the correlations between
the risk categories.

• The model must capture the relevant risk factors and the bank must pay attention to
the specification of the appropriate set of market risk factors.

• The sample period for calculating the value-at-risk is at least one year and the bank
must update the data set frequently (every month at least).

• In the case of options, the model must capture the non-linear effects with respect to
the risk factors and the vega risk.

• “Each bank must meet, on a daily basis, a capital requirement expressed as the higher
of (i) its previous day’s value-at-risk number [...] and (ii) an average of the daily
value-at-risk measures on each of the preceding sixty business days, multiplied by a
multiplication factor”.

• The value of the multiplication factor depends on the quality of the internal model
with a range between 3 and 4. The quality of the internal model is related to its
ex-post performance measured by the backtesting procedure.

The holding period to define the capital is 10 trading days. However, it is difficult
to compute the value-at-risk for such holding period. In practice, the bank computes the
one-day value-at-risk and converts this number into a ten-day value-at-risk using the square-
root-of-time rule:

VaRα (w; ten days) =
√

10×VaRα (w; one day)
This rule comes from the scaling property of the volatility associated to a geometric Brown-
ian motion. It has the advantage to be simple and objective, but it generally underestimates
the risk when the loss distribution exhibits fat tails15.

The required capital at time t is equal to:

Kt = max
(

VaRt−1, (3 + ξ) · 1
60

60∑
i=1

VaRt−i

)
(2.1)

where VaRt is the value-at-risk calculated at time t and ξ is the penalty coefficient (0 ≤
ξ ≤ 1). In normal periods where VaRt−1 ' VaRt−i, the required capital is the average of
the last 60 value-at-risk values times the multiplication factor16 mc = 3 + ξ. In this case,
we have:

Kt = Kt−1 + mc

60 · (VaRt−1−VaRt−61)

15See for instance Diebold et al. (1998), Daníelsson and Zigrand (2006) or Wang et al. (2011).
16The complementary factor is explained on page 88.
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FIGURE 2.1: Calculation of the required capital with the VaR

The impact of VaRt−1 is limited because the factor (3 + ξ) /60 is smaller than 6.7%. The
required capital can only be equal to the previous day’s value-at-risk if the bank faces a
stress VaRt−1 � VaRt−i. We also notice that a shock on the VaR vanishes after 60 trading
days. To understand the calculation of the capital, we report an illustration in Figure 2.1.
The solid line corresponds to the value-at-risk VaRt whereas the dashed line corresponds
to the capital Kt. We assume that ξ = 0 meaning that the multiplication factor is equal to
3. When t < 120, the value-at-risk varies around a constant. The capital is then relatively
smooth and is three times the average VaR. At time t = 120, we observe a shock on the
value-at-risk, which lasts 20 days. Immediately, the capital increases until t ≤ 140. Indeed,
at this time, the capital takes into account the full period of the shocked VaR (between
t = 120 and t = 139). The full effect of this stressed period continues until t ≤ 180, but this
effect becomes partial when t > 180. The impact of the shock vanishes when t = 200. We
then observe a period of 100 days where the capital is smooth because the daily value-at-
risk does not change a lot. A second shock on the value-at-risk occurs at time t = 300, but
the magnitude of the shock is larger than previously. During 10 days, the required capital
is exactly equal to the previous day’s value-at-risk. After 10 days, the bank succeeds to
reduce the risk of its portfolio. However, the daily value-at-risk increases from t = 310 to
t = 500. As previously, the impact of the second shock vanishes 60 days after the end of
shock. However, the capital increases strongly at the end of the period. This is due to the
effect of the multiplication factor mc on the value-at-risk.

Stress testing Stress testing is a simulation method to identify events that could have
a great impact on the soundness of the bank. The framework consists of applying stress
scenarios and low-probability events on the trading portfolio of the bank and to evaluate
the maximum loss. Contrary to the value-at-risk17, stress testing is not used to compute the

17The 99% VaR is considered as a risk measure in normal markets and therefore ignores stress events.
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required capital. The underlying idea is more to identify the adverse scenarios for the bank,
evaluate the corresponding losses, reduce eventually the too risky exposures and anticipate
the management of such stress periods.

Stress tests should incorporate both market and liquidity risks. The Basel Committee
considers two types of stress tests:

1. supervisory stress scenarios;

2. stress scenarios developed by the bank itself.

The supervisory stress scenarios are standardized and apply to the different banks. This
allows the supervisors to compare the vulnerability between the different banks. The bank
must complement them by its own scenarios in order to evaluate the vulnerability of its
portfolio according to the characteristics of the portfolio. In particular, the bank may be
exposed to some political risks, regional risks or market risks that are not taken into account
by standardized scenarios. The banks must report their test results to the supervisors in a
quarterly basis.

Stress scenarios may be historical or hypothetical. In the case of historical scenarios, the
bank computes the worst-case loss associated to different crisis: the Black Monday (1987),
the European monetary system crisis (1992), the bond market sell-off (1994), the internet
bubble (2000), the subprime mortgage crisis (2007), the liquidity crisis due to Lehman
Brothers collapse (2008), the Euro zone crisis (2011-2012), etc. Hypothetical scenarios are
more difficult to calibrate, because they must correspond to extreme but also plausible
events. Moreover, the multidimensional aspect of stress scenarios is an issue. Indeed, the
stress scenario is defined by the extreme event, but the corresponding loss is evaluated with
respect to the shocks on market risk factors. For instance, if we consider a severe Middle East
crisis, this event will have a direct impact on the oil price, but also indirect impacts on other
market risk factors (equity prices, US dollar, interest rates). Whereas historical scenarios
are objective, hypothetical scenarios are by construction subjective and their calibration
will differ from one financial institution to another. In the case of the Middle East crisis,
one bank may consider that the oil price could fall by 30% whereas another bank may use
a price reduction of 50%.

In 2009, the Basel Committee revised the market risk framework. In particular, it intro-
duces the stressed value-at-risk measure. The stressed VaR has the same characteristics than
the traditional VaR (99% confidence level and 10-day holing period), but the model inputs
are “calibrated to historical data from a continuous 12-month period of significant financial
stress relevant to the bank’s portfolio”. For instance, a typical period is the 2008 year which
both combines the subprime mortgage crisis and the Lehman Brothers bankruptcy. This
implies that the historical period to compute the SVaR is completely different than the
historical period to compute the VaR (see Figure 2.2). In Basel 2.5, the capital requirement
for stressed VaR is:

KSVaR
t = max

(
SVaRt−1,ms ·

1
60

60∑
i=1

SVaRt−i

)

where SVaRt is the stressed VaR measure computed at time t. Like the coefficient mc,
the multiplication factor ms for the stressed VaR is also calibrated with respect to the
backtesting outcomes, meaning that we have ms = mc in many cases.

Specific risk and other risk charges In the case where the internal model does not take
into account the specific risk, the bank must compute a specific risk charge (SRC) using
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FIGURE 2.2: Two different periods to compute the VaR and the SVaR

the standardized measurement method. To be validated as a value-at-risk measure with
specific risks, the model must satisfy at least the following criteria: it captures concentrations
(magnitude and changes in composition), it captures name-related basis and event risks and
it considers the assessment of the liquidity risk. For instance, an internal model built with a
general market risk factor18 does not capture specific risk. Indeed, the risk exposure of the
portfolio is entirely determined by the beta of the portfolio with respect to the market risk
factor. This implies that two portfolios with the same beta but with a different composition,
concentration or liquidity have the same value-at-risk.

Basel 2.5 established a new capital requirement “in response to the increasing amount
of exposure in banks’ trading books to credit-risk related and often illiquid products whose
risk is not reflected in value-at-risk” (BCBS, 2009b). The incremental risk charge (IRC)
measures the impact of rating migrations and defaults, corresponds to a 99.9% value-at-
risk for a one-year time horizon and concerns portfolios of credit vanilla trading (bonds
and CDS). The IRC may be incorporated into the internal model or it may be treated
as a surcharge from a separate calculation. Also under Basel 2.5, the Basel Committee
introduced the comprehensive risk measure (CRM), which corresponds to a supplementary
capital charge for credit exotic trading portfolios19. The CRM is also a 99.9% value-at-risk
for a one-year time horizon. For IRC and CRM, the capital charge is the maximum between
the most recent risk measure and the average of the risk measure over 12 weeks20. We
finally obtain the following formula to compute the capital charge for the market risk under
Basel 2.5:

Kt = KVaR
t + KSVaR

t + KSRC
t + KIRC

t + KCRM
t

where KVaR
t is given by Equation (2.1) and KSRC

t is the specific risk charge. In this formula,
KSRC
t and/or KIRC

t may be equal to zero if the modeling of these two risks is included in
the value-at-risk internal model.

Backtesting and the ex-post evaluation of the internal model The backtesting
procedure is described in the document Supervisory Framework for the Use of Backtesting
in Conjunction with the Internal Models Approach to Market Risk Capital Requirements
published by the Basel Committee in January 1996. It consists of verifying that the internal
model is consistent with a 99% confidence level. The idea is then to compare the outcomes
of the risk model with realized loss values. For instance, we expect that the realized loss
exceeds the VaR figure once every 100 observations on average.

The backtesting is based on the one-day holding period and compares the previous day’s
value-at-risk with the daily realized profit and loss. An exception occurs if the loss exceeds
the value-at-risk. For a given period, we compute the number of exceptions. Depending of the
frequency of exceptions, the supervisor determines the value of the penalty function between

18This is the case of the capital asset pricing model (CAPM) developed by Sharpe (1964).
19This concerns correlation trading activities on credit derivatives.
20Contrary to the VaR and SVaR measures, the risk measure is not scaled by a multiplication factor for

IRC and CRM.
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0 and 1. In the case of a sample based on 250 trading days, the Basel Committee defines three
zones and proposes the values given in Table 2.1. The green zone corresponds to a number
of exceptions less or equal to 4. In this case, the Basel Committee considers that there is no
problem and the penalty coefficient ξ is set to 0. If the number of exceptions belongs to the
yellow zone (between 5 and 9 exceptions), it may indicate that the confidence level of the
internal model could be lower than 99% and implies that ξ is greater than zero. For instance,
if the number of exceptions for the last 250 trading days is 6, the Basel Committee proposes
that the penalty coefficient ξ is set to 0.50, meaning that the multiplication coefficient mc

is equal to 3.50. The red zone is a concern. In this case, the supervisor must investigate the
reasons of such large number of exceptions. If the problem comes from the relevancy of the
model, the supervisor can invalidate the internal model-based approach.

TABLE 2.1: Value of the penalty coefficient ξ for a sample of 250 observations

Zone Number of
ξexceptions

Green 0 – 4 0.00

Yellow

5 0.40
6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00

The definition of the color zones comes from the statistical analysis of the exception
frequency. We note w the portfolio, Lt (w) the daily loss at time t and VaRα (w;h) the
value-at-risk calculated at time t − 1. By definition, Lt (w) is the opposite of the P&L
Πt (w):

Lt (w) = −Πt (w)
= MtMt−1−MtMt

where MtMt is the mark-to-market of the trading portfolio at time t. By definition, we have:

Pr {Lt (w) ≥ VaRα (w;h)} = 1− α

where α is the confidence level of the value-at-risk. Let et be the random variable which is
equal to 1 if there is an exception and 0 otherwise. et is a Bernoulli random variable with
parameter p:

p = Pr {et = 1}
= Pr {Lt (w) ≥ VaRα (w;h)}
= 1− α

In the case of the Basel framework, α is set to 99% meaning that we have a probability of
1% to observe an exception every trading day. For a given period [t1, t2] of n trading days,
the probability to observe exactly m exceptions is given by the binomial formula:

Pr {Ne (t1; t2) = m} =
(
n

m

)
(1− α)m αn−m

where Ne (t1; t2) =
∑t2
t=t1 et is the number of exceptions for the period [t1, t2]. We obtain

this result under the assumption that the exceptions are independent across time. Ne (t1; t2)
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is then the binomial random variable B (n; 1− α). We deduce that the probability to have
up to m exceptions is:

Pr {Ne (t1; t2) ≤ m} =
m∑
j=0

(
n

j

)
(1− α)i αn−j

The three previous zones are then defined with respect to the statistical confidence level
of the assumption H : α = 99%. The green zone corresponds to the 95% confidence level:
Pr {Ne (t1; t2) ≤ m} < 95%. In this case, the hypothesis H : α = 99% is not rejected at
the 95% confidence level. The yellow and red zones are respectively defined by 95% ≤
Pr {Ne (t1; t2) ≤ m} < 99.99% and Pr {Ne (t1; t2) ≤ m} ≥ 99.99%. This implies that the
hypothesisH : α = 99% is rejected at the 99.99% confidence level if the number of exceptions
belongs to the red zone.

TABLE 2.2: Probability distribution (in %) of the number of exceptions (n = 250 trading
days)

α = 99% α = 98%
m Pr {Ne = m} Pr {Ne ≤ m} Pr {Ne = m} Pr {Ne ≤ m}
0 8.106 8.106 0.640 0.640
1 20.469 28.575 3.268 3.908
2 25.742 54.317 8.303 12.211
3 21.495 75.812 14.008 26.219
4 13.407 89.219 17.653 43.872
5 6.663 95.882 17.725 61.597
6 2.748 98.630 14.771 76.367
7 0.968 99.597 10.507 86.875
8 0.297 99.894 6.514 93.388
9 0.081 99.975 3.574 96.963
10 0.020 99.995 1.758 98.720

If we apply the previous statistical analysis when n is equal to 250 trading days, we
obtain the results given in Table 2.2. For instance, the probability to have zero exception
is 8.106%, the probability to have one exception is 20.469%, etc. We retrieve the three
color zones determined by the Basel Committee. The green zone corresponds to the interval
[0, 4], the yellow zone is defined by the interval [5, 9] and the red zone involves the interval
[10, 250]. We notice that the color zones can vary significantly if the confidence level of
the value-at-risk is not equal to 99%. For instance, if it is equal to 98%, the green zone
corresponds to less than 9 exceptions. In Figure 2.3, we have reported the color zones with
respect to the size n of the sample.

Example 10 Calculate the color zones when n is equal to 1 000 trading days and α = 99%.

We have Pr {Ne ≤ 14} = 91.759% and Pr {Ne ≤ 15} = 95.213%. This implies that the
green zones ends at 14 exceptions whereas the yellow zone begins at 15 exceptions. Because
Pr {Ne ≤ 23} = 99.989% and Pr {Ne ≤ 24} = 99.996%, we also deduce that the red zone
begins at 24 exceptions.

Remark 2 The statistical approach of backtesting ignores the effects of intra-day trading.
Indeed, we make the assumption that the portfolio remains unchanged from t−1 to t, which
is not the case in practice. This is why the Basel Committee proposes to compute the loss
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FIGURE 2.3: Color zones of the backtesting procedure (α = 99%)

in two different ways. The first approach uses the official realized P&L, whereas the second
approach consists in separating the P&L of the previous’s day portfolio and the P&L due to
the intra-day trading activities.

2.1.2 The Basel III framework
The finalization of the reform for computing the market risk capital charge has taken

considerable time. After the 2008 crisis, the market risk is revised by the Basel Committee,
which adds new capital charges (Basel 2.5) in addition to those defined in the Basel I
framework. In the same time, the Basel Committee published a new framework called Basel
III, which focused on liquidity and leverage risks. In 2013, the Basel Committee launched a
vast project called the fundamental review of the trading book (FRTB). During long time,
the banking industry believed that these discussions were the basis of new reforms in order
to prepare a Basel IV Accord. However, the Basel Committee argued that these changes are
simply completing the Basel III reforms. As for the Basel I Accord, banks have the choice
between two approaches for computing the capital charge:

1. a standardized method (SA-TB21);

2. an internal model-based approach (IMA).

Contrary to the previous framework, the SA-TB method is very important even if banks
calculate the capital charge with the IMA method. Indeed, the bank must implement SA-TB
in order to meet the output floor requirement22, which is set at 72.5% in January 2027.

21TB means trading book.
22The mechanism of capital floor is explained on page 22.
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2.1.2.1 Standardized approach

The standardized capital charge is the sum of three components: sensitivity-based
method capital, the default risk capital (DRC) and the residual risk add-on (RRAO). The
first component must be viewed as the pure market risk and is the equivalent of the capital
charge for the general market risk in the Basel I Accord. The second component captures the
jump-to-default risk (JTD) and replaces the specific risk that we find in the Basel I frame-
work. The last component captures specific risks that are difficult to measure in practice.

Sensitivity-based capital requirement This method consists in calculating a capital
charge for delta, vega and curvature risks, and then aggregating the three capital require-
ments:

K = KDelta + KVega + KCurvature

Seven risk classes are defined by the Basel Committee: (1) general interest rate risk (GIRR),
(2) credit spread risk (CSR) on non-securitization products, (3) CSR on non-correlation
trading portfolio (non-CTP), (4) CSR on correlation trading portfolio (CTP), (5) equity
risk, (6) commodity risk and (7) foreign exchange risk. The sensitivities of the different
instruments of one risk class are risk-weighted and then aggregated. The first level of ag-
gregation concerns the risk buckets, defined as risk factors with common characteristics.
For example, the bucket #1 for credit spread risk corresponds to all instruments that are
exposed to the IG sovereign credit spread. The second level of aggregation is done by con-
sidering the different buckets that compose the risk class. For example, the credit spread
risk is composed of 18 risk buckets (8 investment grade buckets, 7 high yield buckets, 2
index buckets and one other sector bucket).

For delta and vega components, we first begin to calculate the weighted sensitivity of
each risk factor Fj :

WSj = Sj · RWj

where Sj and RWj are the net sensitivity of the portfolio with respect to the risk factor
and the risk weight of Fj . More precisely, we have Sj =

∑
i Si,j where Si,j is the sensitivity

of the instrument i with respect to Fj . Second, we calculate the capital requirement for the
risk bucket Bk:

KBk =

√√√√√max

∑
j

WS2
j +

∑
j′ 6=j

ρj,j′ WSj WSj′ , 0


where Fj ∈ Bk. We recognize the formula of a standard deviation23. Finally, we aggregate
the different buckets for a given risk class24:

KDelta/Vega =
√∑

k

K2
Bk +

∑
k′ 6=k

γk,k′ WSBk WSBk′

where WSBk =
∑
j∈Bk WSj is the weighted sensitivity of the bucket Bk. Again, we recognize

the formula of a standard deviation. Therefore, the capital requirement for delta and vega
risks can be viewed as a Gaussian risk measure with the following parameters:

1. the sensitivities Sj of the risk factors that are calculated by the bank;

2. the risk weights RWj of the risk factors;

23The variance is floored at zero, because the correlation matrix formed by the cross-correlations ρj,j′ is
not necessarily positive definite.

24If the term under the square root is negative, the Basel Committee proposes an alternative formula.
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3. the correlation ρj,j′ between risk factors within a bucket;

4. the correlation γk,k′ between the risk buckets.

For the curvature risk, the methodology is different because it is based on two adverse
scenarios. We note Pi (Fj) the price of the instrument i when the current level of the risk
factor is Fj . We calculate P+

i (Fj) = Pi
(
Fj + ∆F+

j

)
and P−i (Fj) = Pi

(
Fj −∆F−j

)
the

price of instrument i when the risk factor is shocked upward by ∆F+
j and downward by

∆F−j . The curvature risk capital requirement for the risk factor Fj is equal to:

CVR±j = −
∑
i

(
P±i (Fj)− Pi (Fj)− Si,j · RWCRV

j

)
where Si,j is the delta sensitivity25 of instrument i with respect to the risk factor Fj and
RWCRV

j is the curvature risk weight of Fj . CVR+
j and CVR−j play the role of WSj in the

delta/vega capital computation. The capital requirement for the bucket (or risk class) Bk
is:

K±Bk =

√√√√√max

∑
j

(
max

(
CVR±j , 0

))2 +
∑
j′ 6=j

ρj,j′ψ
(
CVR±j ,CVR±j′

)
, 0


where ψ (CVRj ,CVRj′) is equal to 0 if the two arguments are both negative or is equal
to CVRj ×CVRj′ otherwise. Then, the capital requirement for the risk bucket Bk is the
maximum of the two adverse scenarios:

KBk = max
(
K+
Bk ,K

−
Bk

)
At this stage, one scenario is selected: the upward scenario if K+

Bk > K−Bk or the downward
scenario if K+

Bk < K−Bk . And we define the curvature risk CVRBk for each bucket as follows:

CVRBk = 1
{
K+
Bk > K−Bk

}
·
∑
j∈Bk

CVR+
j +

1
{
K+
Bk < K−Bk

}
·
∑
j∈Bk

CVR−j

Finally, the capital requirement for the curvature risk is equal to:

KCurvature =

√√√√√max

∑
k

K2
Bk +

∑
k′ 6=k

γk,k′ψ
(
CVRBk ,CVRBk′

)
, 0


We conclude that we use the same methodology for delta, vega and curvature risks with
three main differences: the computation of the sensitivities, the scale of risk weights, and
the use of two scenarios for the curvature risk.

The first step consists in defining the risk factors. The Basel Committee gives a very
precise list of risk factors by asset classes (BCBS, 2019). For instance, the equity delta risk
factors are the equity spot prices and the equity repo rates, the equity vega risk factors

25For FX and equity risk classes, Si,j is the delta sensitivity of instrument i. For the other risk classes,
Si,j is the sum of delta sensitivities of instrument i with respect to the risk factor Fj .
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are the implied volatilities of options, and the equity curvature risk factors are the equity
spot prices. We retrieve the notions of delta, vega and gamma that we encounter in the
theory of options. In the case of the interest rate risk class (GIRR), the risk factors include
the yield curve26, a flat curve of market-implied inflation rates for each currency and some
cross-currency basis risks. For the other categories, the delta risk factors are credit spread
curves, commodity spot prices and exchange rates. As for equities, vega and curvature risk
factors correspond to implied volatilities of options and aggregated delta risk factors.

The second step consists in calculating the sensitivities. The equity delta sensitivity of
the instrument i with respect to the equity risk factor Fj is given by:

Si,j = ∆i (Fj) · Fj

where ∆i (Fj) measures the (discrete) delta27 of the instrument i by shocking the equity risk
factor Fj by 1%. If the instrument i corresponds to a stock, the sensitivity is exactly the price
of this stock when the risk factor is the stock price, and zero otherwise. If the instrument i
corresponds to an European option on this stock, the sensitivity is the traditional delta of
the option times the stock price. The previous formula is also valid for FX and commodity
risks. For interest rate and credit risks, the delta corresponds to the PV01, that is a change
of the interest rate and credit spread by 1 bp. For the vega sensitivity, we have:

Si,j = υi (Fj) · Fj

where Fj is the implied volatility.
The third step consists in calculating the risk-weighted sensitivities WSj . For that, we

use the tables given in BCBS (2019). For example, the risk weight for the 3M interest rate
is equal to 1.7% while the risk weight for the 30Y interest rate is equal to 1.1% (BCBS,
2019, Table 1, page 38). For equity spot prices, the risk weight goes from 15% for large
cap DM indices to 70% for small cap EM stocks (BCBS, 2019, Table 10, page 47). The
fourth step computes the capital charge for each bucket. In this case, we need the ‘factor ’
correlations ρj,j′ between the risk factors within the same bucket. For example, the yield
curve correlations between the 10 tenors of the same currency are given in Table 2 on page 38
in BCBS (2019). For the equity risk, ρj,j′ goes from 7.5% to 80%. Finally, we can compute the
capital by considering the ‘bucket’ correlations. For example, γk,k′ is set to 50% between the
different currencies in the case of the interest rate risk. We must note that the values given by
the Basel Committee correspond to a medium correlation scenario. The Basel Committee
observes that correlations may increase or decrease in period of a stressed market, and
impose that the bank must use the maximum of capital requirement under three correlation
scenarios: medium, high and low. Under the high correlation scenario, the correlations are
increased: ρHigh

j,j′ = min (1.25× ρj,j′ , 1) and γHigh
k,k′ = min (1.25× γk,k′ , 1). Under the low

correlation scenario, the correlations are decreased: ρLow
j,j′ = max (2× ρj,j′ − 1, 0.75× ρj,j′)

and γLow
k,k′ = max (2× γk,k′ − 1, 0.75× γk,k′). Figure 2.4 shows how the medium correlation

is scaled to high and low correlation scenarios.

26The risk factors correspond to the following tenors of the yield curve: 3M, 6M, 1Y, 2Y, 3Y, 5Y, 10Y,
15Y, 20Y and 30Y.

27It follows that:

Si,j =
Pi (1.01 · Fj)− Pi (Fj)

1.01 · Fj −Fj
· Fj

=
Pi (1.01 · Fj)− Pi (Fj)

0.01



56 Handbook of Financial Risk Management

FIGURE 2.4: High, medium and low correlation scenarios

Default risk capital The gross jump-to-default (JTD) risk is computed by differentiating
long and short exposures28:

JTDLong = max (N · LGD +Π, 0)

and:
JTDShort = min (N · LGD +Π, 0)

where N is the notional, LGD is the loss given default29 and Π is the current P&L. Then,
we offset long and short exposures to the same obligor under some conditions of seniority
and maturity. At this stage, we obtain net JTD exposures, that can be positive (long) or
negative (short). Three buckets are defined: (1) corporates, (2) sovereigns and (3) local
governments and municipalities. For each bucket Bk, the capital charge is calculated as
follows:

KDRC
Bk = max

 ∑
i∈Long

RWi · JTDNet
i −HBR

∑
i∈Short

RWi ·
∣∣∣JTDNet

i

∣∣∣ , 0
 (2.2)

where the risk weight depends on the rating of the obligor:

Rating AAA AA A BBB BB B CCC NR
RW 0.5% 2% 3% 6% 15% 30% 50% 15%

28A long exposure implies that the default results in a loss, whereas a short exposure implies that the
default results in a gain.

29The default values are 100% for equity and non-senior debt instruments, 75% for senior debt instruments,
25% for covered bonds and 0% for FX instruments.
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and HBR is the hedge benefit ratio:

HBR =
∑
i∈Long JTDNet

i∑
i∈Long JTDNet

i +
∑
i∈Short

∣∣∣JTDNet
i

∣∣∣
At first sight, Equation (2.2) seems to be complicated. In order to better understand this
formula, we assume that there is no short credit exposure and the P&L of each instrument
is equal to zero. Therefore, the capital charge for the bucket Bk is equal to:

KDRC
Bk =

∑
i∈Bk

Ni · LGDi︸ ︷︷ ︸
EADi

· RWi

We recognize the formula for computing the credit risk capital when we replace the exposure
at default by the product of the notional and the loss given default. In the case of a portfolio
of loans, the exposures are always positive. In the case of a trading portfolio, we face
more complex situations because we can have both long and short credit exposures. The
introduction of the hedge benefit ratio allows to mitigate the risk of long credit exposures.

Remark 3 The previous framework is valid for non-securitization instruments. For secu-
ritization, a similar approach is followed, but the LGD factor disappears in order to avoid
double counting. Moreover, the treatment of offsetting differs for non-CTP and CTP prod-
ucts.

Residual risk add-on The idea of this capital charge is to capture market risks which are
not taken into account by the two previous methods. Residual risks concerns instruments
with an exotic underlying (weather, natural disasters, longevity, etc.), payoffs that are not
a linear combination of vanilla options (spread options, basket options, best-of, worst-of,
etc.), or products that present significant gap, correlation or behavioral risks (digital options,
barrier options, embedded options, etc.). We have:

KRRAO
i = Ni · RWi

where RWi is equal to 1% for instruments with an exotic underlying and 10 bps for the
other residual risks.

2.1.2.2 Internal model-based approach

As in the first Basel Accord, the Basel III framework includes general criteria, qualitative
standards, quantitative criteria, backtesting procedures and stress testing approaches. The
main difference concerning general criteria is the introduction of trading desks. According
to BCBS (2019), a trading desk is “an unambiguously defined group of traders or trading
accounts that implements a well-defined business strategy operating within a clear risk
management structure”. Internal models are implemented at the trading desk level. Within
a bank, some trading desks are then approved for the use of internal models, while other
trading desks must use the SA-TB approach. The Basel Committee reinforces the role of the
model validation unit, the process of the market risk measurement system (documentation,
annual independent review, etc.) and the use of stress scenarios.

Capital requirement for modellable risk factors Concerning capital requirements,
the value-at-risk at the 99% confidence level is replaced by the expected shortfall at the
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TABLE 2.3: Liquidity horizon (Basel III)

Liquidity class k Liquidity horizon hk
1 10
2 20
3 40
4 60
5 120

97.5% confidence level. Moreover, the 10-day holding period is not valid for all instruments.
Indeed, the expected shortfall must take into account the liquidity risk and we have:

ESα (w) =

√√√√ 5∑
k=1

(
ESα (w;hk)

√
hk − hk−1

h1

)2

where:

• ESα (w;h1) is the expected shortfall of the portfolio w at horizon 10 days by consid-
ering all risk factors;

• ESα (w;hk) is the expected shortfall of the portfolio w at horizon hk days by consid-
ering the risk factors Fj that belongs to the liquidity class k;

• hk is the horizon of the liquidity class k, which is given in Table 2.3 (h0 is set to zero).

This expected shortfall framework is valid for modellable risk factors. Within this frame-
work, all instruments are classified into 5 buckets (10, 20, 40, 60 and 120 days), which are
defined by BCBS (2019) as follows:

1. Interest rates (specified currencies30 and domestic currency of the bank), equity prices
(large caps), FX rates (specified currency pairs31).

2. Interest rates (unspecified currencies), equity prices (small caps) and volatilities (large
caps), FX rates (currency pairs), credit spreads (IG sovereigns), commodity prices
(energy, carbon emissions, precious metals, non-ferrous metals).

3. FX rates (other types), FX volatilities, credit spreads (IG corporates and HY
sovereigns).

4. Interest rates (other types), IR volatility, equity prices (other types) and volatilities
(small caps), credit spreads (HY corporates), commodity prices (other types) and
volatilities (energy, carbon emissions, precious metals, non-ferrous metals).

5. Credit spreads (other types) and credit spread volatilities, commodity volatilities and
prices (other types).

The expected shortfall must reflect the risk measure for a period of stress. For that, the
Basel Committee proposes an indirect approach:

ESα (w;h) = ES(reduced,stress)
α (w;h) ·min

(
ES(full,current)

α (w;h)
ES(reduced,current)

α (w;h)
, 1
)

30The specified currencies are composed of EUR, USD, GBP, AUD, JPY, SEK and CAD.
31They correspond to the 20 most liquid currencies: USD, EUR, JPY, GBP, AUD, CAD, CHF, MXN,

CNY, NZD, RUB, HKD, SGD, TRY, KRW, SEK, ZAR, INR, NOK and BRL.
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where ES(full,current)
α is the expected shortfall based on the current period with the full set

of risk factors, ES(reduced,current)
α is the expected shortfall based on the current period with

a restricted set of risk factors and ES(reduced,stress)
α is the expected shortfall based on the

stress period32 with the restricted set of risk factors. The Basel Committee recognizes that
it is difficult to calculate directly ES(full,stress)

α (w;h) on the stress period with the full set of
risk factors. Therefore, the previous formula assumes that there is a proportionality factor
between the full set and the restricted set of risk factors33:

ES(full,stress)
α (w;h)

ES(full,current)
α (w;h)

≈ ES(reduced,stress)
α (w;h)

ES(reduced,current)
α (w;h)

Example 11 In the table below, we have calculated the 10-day expected shortfall for a given
portfolio:

Set of Period Liquidity class
risk factors 1 2 3 4 5

Full Current 100 75 34 12 6
Reduced Current 88 63 30 7 5
Reduced Stress 112 83 47 9 7

As expected, the expected shortfall decreases with the liquidity horizon, because there are less
and less risk factors that belong to the liquidity class. We also verify that the ES for the
reduced set of risk factors is lower than the ES for the full set of risk factors.

TABLE 2.4: Scaled expected shortfall

k Sck
Full Reduced Reduced Full/Stress Full

Current Current Stress (not scaled) Stress
1 1 100.00 88.00 112.00 127.27 127.27
2 1 75.00 63.00 83.00 98.81 98.81
3
√

2 48.08 42.43 66.47 53.27 75.33
4
√

2 16.97 9.90 12.73 15.43 21.82
5
√

6 14.70 12.25 17.15 8.40 20.58
Total 135.80 117.31 155.91 180.38

Results are given in Table 2.4. For each liquidity class k, we have reported the scaling
factor Sck =

√
(hk − hk−1) /h1, the scaled expected shortfall ES?α (w;hk) = Sck·ESα (w;hk)

(columns 3, 4 and 5) and the total expected shortfall ESα (w) =
√∑5

k=1 (ES?α (w;hk))2. It
is respectively equal to 135.80, 117.31 and 155.91 for the full/current, reduced/current and
reduced/stress case. Since the proportionality factor is equal to 135.80/117.31 = 1.1576,
we deduce that the ES for the full set of risk factors and the stress period is equal to
1.1576 × 155.91 = 180.48. Another way to calculate the ES is first to compute the ES for
the full set of risk factors and the stress period for each liquidity class k and deduce the
scaled expected shortfall (columns 6 and 7). In this case, the ES for the full set of risk
factors and the stress period is equal to 180.38.

32The bank must consider the most severe 12-month period of stress available.
33However, the Basel Committee indicates that the reduced set of risk factors must explain al leat 75%

of the risk in periods of stress.
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The final step for computing the capital requirement (also known as the ‘internally
modelled capital charge’) is to apply this formula:

IMCC = % · IMCCglobal + (1− %) ·
5∑
k=1

IMCCk

where % is equal to 50%, IMCCglobal is the stressed ES calculated with the internal model
and cross-correlations between risk classes, IMCCk is the stressed ES calculated at the risk
class level (interest rate, equity, foreign exchange, commodity and credit spread). IMCC is
then an average of two capital charges: one that takes into account cross-correlations and
another one that ignores diversification effects.

Capital requirement for non-modellable risk factors Concerning non-modellable
risk factors, the capital requirement is based on stress scenarios, that are equivalent to a
stressed expected shortfall. The Basel Committee distinguish three types of non-modellable
risk factors:

1. Non-modellable idiosyncratic credit spread risk factors (i = 1, . . . ,mc);

2. Non-modellable idiosyncratic equity risk factors (j = 1, . . . ,me);

3. Remaining non-modellable risk factors (k = 1, . . . ,mo).
The capital requirement for non-modellable risk factors is then equal to:

SES = SESCredit + SESEquity + SESOther

where SESCredit =
√∑mc

i=1 SES2
i , SESEquity =

√∑me
j=1 SES2

j and:

SESOther =

√√√√%2 ·

(
mo∑
k=1

SESk

)2

+ (1− %2) ·
mo∑
k=1

SES2
k

For non-modellable credit or equity risks, we assume a zero correlation. For the remaining
non-modellable risks, the correlation % is set to 60%. An important issue for computing
SES is the liquidity horizon. The Basel Committee imposes to consider the same values
used for modellable risk factors, with a floor of 20 days. For idiosyncratic credit spreads,
the liquidity horizon is set to 120 days.

Capital requirement for default risk The default risk capital (DRC) is calculated
using a value-at-risk model with a 99.9% confidence level. The computation must be done
using the same default probabilities that are used for the IRB approach. This implies that
default risk is calculated under the historical probability measure, and not under the risk-
neutral probability measure. This is why market-implied default probabilities are prohibited.

Capital requirement for the market risk For eligible trading desks that are approved
to use the IMA approach, the capital requirement for market risk is equal to:

KIMA
t = max

(
IMCCt−1 + SESt−1,

mc

∑60
i=1 IMCCt−i +

∑60
i=1 SESt−i

60

)
+

DRC (2.3)

where mc = 1.5 + ξ and 0 ≤ ξ ≤ 0.5. This formula is similar to the one defined in the Basel
I Accord. We notice that the magnitude of the multiplication factor mc has changed since
we have 1.5 ≤ mc ≤ 2.
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TABLE 2.5: Value of the penalty coefficient ξ in Basel III

Zone Number of
ξexceptions

Green 0 – 4 0.00

Amber

5 0.20
6 0.26
7 0.33
8 0.38
9 0.42

Red 10+ 0.50

Backtesting The backtesting procedure continues to be based on the daily VaR with
a 99% confidence level and a sample of the last 250 observations. Table 2.5 presents the
definition of the color zones. We notice that the amber zone replaces the yellow zone,
and the values of the penalty coefficient ξ have changed. The value of the multiplier mc =
1.5+ξ depends then on the one-year backtesting procedure at the bank-wide level. However,
the bank must also conduct backtesting exercises for each eligible trading desk because of
two reasons. First, the P&L attribution (PLA) is one of the pillars for the approval of
trading desks by supervisory authorities. It is highly reinforced with several PLA tests,
that distinguish actual P&L (including intra-day trading activities) and hypothetical P&L
(static portfolio). Second, if one eligible trading desk is located in the amber zone, the
formula (2.3) is modified in order to take into account a capital surcharge. Moreover, if one
eligible trading desk has more than 12 exceptions34, the bank must use the SA-TB approach
for calculating the capital charge of this trading desk.

2.2 Statistical estimation methods of risk measures
We have seen that Basel I is based on the value-at-risk while Basel III uses the expected

shortfall for computing the capital requirement for market risk. In this section, we define
precisely what a risk measure is and we analyze the value-at-risk and the expected shortfall,
which are the two regulatory risk measures. In particular, we present the three statistical
approaches (historical, analytical and Monte Carlo) that are available. The last part of this
section is dedicated to options and exotic products.

2.2.1 Definition
2.2.1.1 Coherent risk measures

Let R (w) be the risk measure of portfolio w. In this section, we define the different
properties that should satisfy the risk measure R (w) in order to be acceptable in terms of
capital allocation. Following Artzner et al. (1999), R is said to be ‘coherent’ if it satisfies
the following properties:

34The Basel Committee adds a second inclusive condition: the trading desk must have less than 30
exceptions at the 97.5% confidence level. This remark shows that the bank must in fact conduct two
backtesting procedures at the trading desk level: one based at the 99% confidence level and another one
based at the 97.5% confidence level.
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1. Subadditivity
R (w1 + w2) ≤ R (w1) +R (w2)

The risk of two portfolios should be less than adding the risk of the two separate
portfolios.

2. Homogeneity
R (λw) = λR (w) if λ ≥ 0

Leveraging or deleveraging of the portfolio increases or decreases the risk measure in
the same magnitude.

3. Monotonicity
if w1 ≺ w2, then R (w1) ≥ R (w2)

If portfolio w2 has a better return than portfolio w1 under all scenarios, risk measure
R (w1) should be higher than risk measure R (w2).

4. Translation invariance

if m ∈ R, then R (w +m) = R (w)−m

Adding a cash position of amount m to the portfolio reduces the risk by m. This
implies that we can hedge the risk of the portfolio by considering a capital that is
equal to the risk measure:

R (w +R (w)) = R (w)−R (w) = 0

The definition of coherent risk measures led to a considerable interest in the quantitative
risk management. Thus, Föllmer and Schied (2002) propose to replace the homogeneity and
subadditivity conditions by a weaker condition called the convexity property:

R (λw1 + (1− λ)w2) ≤ λR (w1) + (1− λ)R (w2)

This condition means that diversification should not increase the risk.
We can write the loss of a portfolio as L (w) = −Pt (w)Rt+h (w) where Pt (w) and

Rt+h (w) are the current value and the future return of the portfolio. Without loss of
generality35, we assume that Pt (w) is equal to 1. In this case, the expected loss E [L (w)]
is the opposite of the expected return µ (w) of the portfolio and the standard deviation
σ (L (w)) is equal to the portfolio volatility σ (w). We consider then different risk measures:

• Volatility of the loss
R (w) = σ (L (w)) = σ (w)

The volatility of the loss is the standard deviation of the portfolio loss.

• Standard deviation-based risk measure

R (w) = SDc (w) = E [L (w)] + c · σ (L (w)) = −µ (w) + c · σ (w)

To obtain this measure, we scale the volatility by factor c > 0 and subtract the
expected return of the portfolio.

35The homogeneity property implies that:

R
(

w

Pt (w)

)
=
R (w)
Pt (w)

We can therefore calculate the risk measure using the absolute loss (expressed in $) or the relative loss
(expressed in %). The two approaches are perfectly equivalent.
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• Value-at-risk
R (w) = VaRα (w) = inf {` : Pr {L (w) ≤ `} ≥ α}

The value-at-risk is the α-quantile of the loss distribution F and we note it F−1 (α).

• Expected shortfall

R (w) = ESα (w) = 1
1− α

∫ 1

α

VaRu (w) du

The expected shortfall is the average of the VaRs at level α and higher (Acerbi and
Tasche, 2002). We note that it is also equal to the expected loss given that the loss is
beyond the value-at-risk:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

By definition, the expected shortfall is greater or equal than the value-at-risk for a
given confidence level.

We can show that the standard deviation-based risk measure and the expected shortfall
satisfy the previous coherency and convexity conditions. For the value-at-risk, the subaddi-
tivity property does not hold in general. This is a problem because the portfolio risk may
have be meaningful in this case. More curiously, the volatility is not a coherent risk measure
because it does not verify the translation invariance axiom.

Example 12 We consider a $100 defaultable zero-coupon bond, whose default probability
is equal to 200 bps. We assume that the recovery rate R is a binary random variable with
Pr {R = 0.25} = Pr {R = 0.75} = 50%.

Below, we have represented the probability tree diagram of the loss L of the zero-
coupon bond. We deduce that F (0) = Pr {L ≤ 0} = 98%, F (25) = Pr {Li ≤ 25} = 99%
and F (75) = Pr {Li ≤ 75} = 100%.

100

D = 1

R = 75%Pr = 50%

R = 25%Pr = 50%Pr = 2%

D = 0

Pr = 98%

L = 0

L = 25

L = 75

It follows that the 99% value-at-risk is equal to $25, and we have:

ES99% (L) = E [L | L ≥ 25]

= 25 + 75
2

= $50
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We assume now that the portfolio contains two zero-coupon bonds, whose default times are
independent. The probability density function of (L1, L2) is given below:

L1 = 0 L1 = 25 L1 = 75
L2 = 0 96.04% 0.98% 0.98% 98.00%
L2 = 25 0.98% 0.01% 0.01% 1.00%
L2 = 75 0.98% 0.01% 0.01% 1.00%

98.00% 1.00% 1.00%

We deduce that the probability distribution function of L = L1 + L2 is:

` 0 25 50 75 100 150
Pr {L = `} 96.04% 1.96% 0.01% 1.96% 0.02% 0.01%
Pr {L ≤ `} 96.04% 98% 98.01% 99.97% 99.99% 100%

It follows that VaR99% (L) = 75 and:

ES99% (L) = 75× 1.96% + 100× 0.02% + 150 ∗ 0.01%
1.96% + 0.02% + 0.01%

= $75.63

For this example, the value-at-risk does not satisfy the subadditivity property, which is not
the case of the expected shortfall36.

For this reason, the value-at-risk has been frequently criticized by academics. They
also pointed out that it does not capture the tail risk of the portfolio. This led the Basel
Committee to replace the 99% value-at-risk by the 97.5% expected shortfall for the internal
model-based approach in Basel III (BCBS, 2019).

2.2.1.2 Value-at-risk

The value-at-risk VaRα (w;h) is defined as the potential loss which the portfolio w can
suffer for a given confidence level α and a fixed holding period h. Three parameters are
necessary to compute this risk measure:

• the holding period h, which indicates the time period to calculate the loss;

• the confidence level α, which gives the probability that the loss is lower than the
value-at-risk;

• the portfolio w, which gives the allocation in terms of risky assets and is related to
the risk factors.

Without the first two parameters, it is not possible to interpret the amount of the value-
at-risk, which is expressed in monetary units. For instance, a portfolio with a VaR of $100
mn may be regarded as highly risky if the VaR corresponds to a 90% confidence level and a
one-day holding period, but it may be a low risk investment if the confidence level is 99.9%
and the holding period is one year.

We note Pt (w) the mark-to-market value of the portfolio w at time t. The profit and
loss between t and t+ h is equal to:

Π (w) = Pt+h (w)− Pt (w)

36We have VaR99% (L1) + VaR99% (L2) = 50, VaR99% (L1 + L2) > VaR99% (L1) + VaR99% (L2),
ES99% (L1) + ES99% (L2) = 100 and ES99% (L1 + L2) < ES99% (L1) + ES99% (L2).
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We define the loss of the portfolio as the opposite of the P&L: L (w) = −Π (w). At time
t, the loss is not known and is therefore random. From a statistical point of view, the
value-at-risk VaRα (w;h) is the quantile37 of the loss for the probability α:

Pr {L (w) ≤ VaRα (w;h)} = α

This means that the probability that the random loss is lower than the VaR is exactly equal
to the confidence level. We finally obtain:

VaRα (w;h) = F−1
L (α)

where FL is the distribution function of the loss38.
We notice that the previous analysis assumes that the portfolio remains unchanged be-

tween t and t+h. In practice, it is not the case because of trading and rebalancing activities.
The holding period h depends then on the nature of the portfolio. The Basel Committee
has set h to one trading day for performing the backtesting procedure in order to minimize
rebalancing impacts. However, h is equal to 10 trading days for capital requirements in Basel
I. It is the period which is considered necessary to ensure the rebalancing of the portfolio if
it is too risky or if it costs too much regulatory capital. The confidence level α is equal to
99% meaning that there is an exception every 100 trading days. It is obvious that it does
not correspond to an extreme risk measure. From the point of view of regulators, the 99%
value-at-risk gives then a measure of the market risk in the case of normal conditions.

2.2.1.3 Expected shortfall

The expected shortfall ESα (w;h) is defined as the expected loss beyond the value-at-risk
of the portfolio:

ESα (w;h) = E [L (w) | L (w) ≥ VaRα (w;h)]

Therefore, it depends on the three parameters (h, α and w) of the VaR. Since we have
ESα (w;h) ≥ VaRα (w;h), the expected shortfall is considered as a risk measure under
more extreme conditions than the value-at-risk. By construction, we also have:

α1 > α2 ⇒ ESα1 (w;h) ≥ VaRα2 (w;h)

However, it is impossible de compare the expected shortfall and the value-at-risk when the
ES confidence level is lower than the VaR confidence level (α1 < α2). This is why it is
difficult to compare the ES in Basel III (α = 97.5%) and the VaR in Basel I (α = 99%).

2.2.1.4 Estimator or estimate?

To calculate the value-at-risk or the expected shortfall, we first have to identify the risk
factors that affect the future value of the portfolio. Their number can be large or small
depending on the market, but also on the portfolio. For instance, in the case of an equity
portfolio, we can use the one-factor model (CAPM), a multi-factor model (industry risk
factors, Fama-French risk factors, etc. ) or we can have a risk factor for each individual
stock. For interest rate products, the Basel Committee imposes that the bank uses at least

37If the distribution of the loss is not continuous, the statistical definition of the quantile function is:

VaRα (w;h) = inf {x : Pr {L (w) ≤ x} ≥ α}

38In a similar way, we have Pr {Π (w) ≥ −VaRα (w;h)} = α and VaRα (w;h) = −F−1
Π (1− α) where FΠ

is the distribution function of the P&L.
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six factors to model the yield curve risk in Basel I and ten factors in Basel III. This contrasts
with currency and commodity portfolios where we must take into account one risk factor by
exchange rate and by currency. Let (F1, . . . ,Fm) be the vector of risk factors. We assume
that there is a pricing function g such that:

Pt (w) = g (F1,t, . . . ,Fm,t;w)

We deduce that the expression of the random loss is the difference between the current
value and the future value of the portfolio:

L (w) = Pt (w)− g (F1,t+h, . . . ,Fm,t+h;w)
= ` (F1,t+h, . . . ,Fm,t+h;w)

where ` is the loss function. The big issue is then to model the future values of risk factors.
In practice, the distribution FL is not known because the multidimensional distribution
of the risk factors is not known. This is why we have to estimate FL meaning that the
calculated VaR and ES are also two estimated values:

V̂aRα (w;h) = F̂−1
L (α) = −F̂−1

Π (1− α)

and:
ÊSα (w;h) = 1

1− α

∫ 1

α

F̂−1
L (u) du

Therefore, we have to make the difference between the estimator and the estimate. Indeed,
the calculated value-at-risk or expected shortfall is an estimate, meaning that it is a real-
ization of the corresponding estimator. In practice, there are three approaches to calculate
the risk measure depending on the method used to estimate F̂L:

1. the historical value-at-risk/expected shortfall, which is also called the empirical or
non-parametric VaR/ES;

2. the analytical (or parametric) value-at-risk/expected shortfall;

3. the Monte Carlo (or simulated) value-at-risk/expected shortfall.

The historical approach is the most widely used method by banks for computing the capital
charge. This is an unbiased estimator, but with a large variance. On the contrary, the
analytical estimator is biased, because it assumes a parametric function for the risk factors,
but it has a lower variance than the historical estimator. Finally, the Monte Carlo estimator
can produce an unbiased estimator with a small variance. However, it could be difficult to
put in place because it requires large computational times.

Remark 4 In this book, we use the statistical expressions VaRα (w;h) and ESα (w;h) in
place of V̂aRα (w;h) and ÊSα (w;h) in order to reduce the amount of notation.

2.2.2 Historical methods
The historical VaR corresponds to a non-parametric estimate of the value-at-risk. For

that, we consider the empirical distribution of the risk factors observed in the past. Let
(F1,s, . . . ,Fm,s) be the vector of risk factors observed at time s < t. If we calculate the
future P&L with this historical scenario, we obtain:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (w)



Market Risk 67

If we consider nS historical scenarios (s = 1, . . . , nS), the empirical distribution F̂Π is
described by the following probability distribution:

Π (w) Π1 (w) Π2 (w) · · · ΠnS (w)
ps 1/nS 1/nS 1/nS

because each probability of occurrence is the same for all the historical scenarios. To calcu-
late the empirical quantile F̂−1

L (α), we can use two approaches: the order statistic approach
and the kernel density approach.

2.2.2.1 The order statistic approach

Let X1, . . . , Xn be a sample from a continuous distribution F. Suppose that for a given
scalar α ∈ ]0, 1[, there exists a sequence {an} such that

√
n (an − nα)→ 0. Lehmann (1999)

shows that:
√
n
(
X(an:n) − F−1 (α)

)
→ N

(
0, α (1− α)
f2 (F−1 (α))

)
(2.4)

This result implies that we can estimate the quantile F−1 (α) by the mean of the nαth

order statistic. Let us apply the previous result to our problem. We calculate the order
statistics associated to the P&L sample {Π1 (w) , . . . ,ΠnS (w)}:

min
s

Πs (w) = Π(1:nS) ≤ Π(2:nS) ≤ · · · ≤ Π(nS−1:nS) ≤ Π(nS :nS) = max
s

Πs (w)

The value-at-risk with a confidence level α is then equal to the opposite of the nS (1− α)th

order statistic of the P&L:

VaRα (w;h) = −Π(nS(1−α):nS) (2.5)

If nS (1− α) is not an integer, we consider the interpolation scheme:

VaRα (w;h) = −
(
Π(q:nS) + (nS (1− α)− q)

(
Π(q+1:nS) −Π(q:nS)

))
where q = qα (nS) = bnS (1− α)c is the integer part of nS (1− α). For instance, if nS = 100,
the 99% value-at-risk corresponds to the largest loss. In the case where we use 250 historical
scenarios, the 99% value-at-risk is the mean between the second and third largest losses:

VaRα (w;h) = −
(
Π(2:250) + (2.5− 2)

(
Π(3:250) −Π(2:250)

))
= −1

2
(
Π(2:250) + Π(3:250)

)
= 1

2
(
L(249:250) + L(248:250)

)
Remark 5 We reiterate that VaRα (w;h) defined by Equation (2.5) is an estimator with
an asymptotic variance given by Equation (2.4). Suppose that the loss of the portfolio is
Gaussian and L (w) ∼ N (0, 1). The exact value-at-risk is Φ−1 (α) and takes the values 1.28
or 2.33 if α is equal to 90% or 99%. The standard deviation of the estimator depends on
the number nS of historical scenarios:

σ (VaRα (w;h)) ≈
√
α (1− α)

√
nSφ (Φ−1 (α))

In Figure 2.5, we have reported the density function of the VaR estimator. We notice that
the estimation error decreases with nS. Moreover, it is lower for α = 90% than for α = 99%,
because the density of the Gaussian distribution at the point x = 1.28 is larger than at the
point x = 2.33.
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FIGURE 2.5: Density of the VaR estimator (Gaussian case)

Example 13 We consider a portfolio composed of 10 stocks Apple and 20 stocks Coca-Cola.
The current date is 2 January 2015.

The mark-to-market of the portfolio is:

Pt (w) = 10× P1,t + 20× P2,t

where P1,t and P2,t are the stock prices of Apple and Coca-Cola. We assume that the market
risk factors corresponds to the daily stock returns R1,t and R2,t. We deduce that the P&L
for the scenario s is equal to:

Πs (w) = 10× P1,s + 20× P2,s︸ ︷︷ ︸
g(R1,s,R2,s;w)

− Pt (w)

where Pi,s = Pi,t × (1 +Ri,s) is the simulated price of stock i for the scenario s. In Table
2.6, we have reported the values of the first ten historical scenarios39. Using these scenarios,
we can calculate the simulated price Pi,s using the current price of the stocks ($109.33
for Apple and $42.14 for Coca-Cola). For instance, in the case of the 9th scenario, we
obtain:

P1,s = 109.33× (1− 0.77%) = $108.49
P2,s = 42.14× (1− 1.04%) = $41.70

39For instance, the market risk factor for the first historical scenario and for Apple is calculated as follows:

R1,1 =
109.33
110.38

− 1 = −0.95%
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We then deduce the simulated mark-to-market MtMs (w) = g (R1,s, R2,s;w), the current
value of the portfolio40 and the P&L Πs (w). These data are given in Table 2.7. In addition
to the first ten historical scenarios, we also report the results for the six worst cases and the
last scenario41. We notice that the largest loss is reached for the 236th historical scenario at
the date of 28 January 2014. If we rank the scenarios, the worst P&Ls are −84.34, −51.46,
−43.31, −40.75, −35.91 and −35.42. We deduce that the daily historical VaR is equal to:

VaR99% (w; one day) = 1
2 (51.46 + 43.31) = $47.39

If we assume that mc = 3, the corresponding capital charge represents 23.22% of the
portfolio value:

KVaR
t = 3×

√
10× 47.39 = $449.54

TABLE 2.6: Computation of the market risk factors R1,s and R2,s

s Date Apple Coca-Cola
Price R1,s Price R2,s

1 2015-01-02 109.33 −0.95% 42.14 −0.19%
2 2014-12-31 110.38 −1.90% 42.22 −1.26%
3 2014-12-30 112.52 −1.22% 42.76 −0.23%
4 2014-12-29 113.91 −0.07% 42.86 −0.23%
5 2014-12-26 113.99 1.77% 42.96 0.05%
6 2014-12-24 112.01 −0.47% 42.94 −0.07%
7 2014-12-23 112.54 −0.35% 42.97 1.46%
8 2014-12-22 112.94 1.04% 42.35 0.95%
9 2014-12-19 111.78 −0.77% 41.95 −1.04%
10 2014-12-18 112.65 2.96% 42.39 2.02%

Under Basel 2.5, we have to compute a second capital charge for the stressed VaR. If
we assume that the stressed period is from 9 October 2007 to 9 March 2009, we obtain
356 stressed scenarios. By applying the previous method, the six largest simulated losses
are42 219.20 (29/09/2008), 127.84 (17/09/2008), 126.86 (07/10/2008), 124.23 (14/10/2008),
115.24 (23/01/2008) and 99.55 (29/09/2008). The 99% SVaR corresponds to the 3.56th order
statistic. We deduce that:

SVaR99% (w; one day) = 126.86 + (3.56− 3)× (124.23− 126.86)
= $125.38

It follows that:
KSVaR
t = 3×

√
10× 125.38 = $1 189.49

The total capital requirement under Basel 2.5 is then:

Kt = KVaR
t + KSVaR

t = $1 639.03

It represents 84.6% of the current mark-to-market!

40We have:
Pt (w) = 10× 109.33 + 20× 42.14 = $1 936.10

41We assume that the value-at-risk is calculated using 250 historical scenarios (from 2015-01-02 to 2014-
01-07).

42We indicate in brackets the scenario day of the loss.
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TABLE 2.7: Computation of the simulated P&L Πs (w)

s Date Apple Coca-Cola MtMs (w) Πs (w)
R1,s P1,s R2,s P2,s

1 2015-01-02 −0.95% 108.29 −0.19% 42.06 1 924.10 −12.00
2 2014-12-31 −1.90% 107.25 −1.26% 41.61 1 904.66 −31.44
3 2014-12-30 −1.22% 108.00 −0.23% 42.04 1 920.79 −15.31
4 2014-12-29 −0.07% 109.25 −0.23% 42.04 1 933.37 −2.73
5 2014-12-26 1.77% 111.26 0.05% 42.16 1 955.82 19.72
6 2014-12-24 −0.47% 108.82 −0.07% 42.11 1 930.36 −5.74
7 2014-12-23 −0.35% 108.94 1.46% 42.76 1 944.57 8.47
8 2014-12-22 1.04% 110.46 0.95% 42.54 1 955.48 19.38
9 2014-12-19 −0.77% 108.49 −1.04% 41.70 1 918.91 −17.19
10 2014-12-18 2.96% 112.57 2.02% 42.99 1 985.51 49.41
23 2014-12-01 −3.25% 105.78 −0.62% 41.88 1 895.35 −40.75
69 2014-09-25 −3.81% 105.16 −1.16% 41.65 1 884.64 −51.46
85 2014-09-03 −4.22% 104.72 0.34% 42.28 1 892.79 −43.31
108 2014-07-31 −2.60% 106.49 −0.83% 41.79 1 900.68 −35.42
236 2014-01-28 −7.99% 100.59 0.36% 42.29 1 851.76 −84.34
242 2014-01-17 −2.45% 106.65 −1.08% 41.68 1 900.19 −35.91
250 2014-01-07 −0.72% 108.55 0.30% 42.27 1 930.79 −5.31

Remark 6 As the previous example has shown, directional exposures are highly penalized
under Basel 2.5. More generally, it is not always evident that capital requirements are lower
with IMA than with SMM (Crouhy et al., 2013).

Since the expected shortfall is the expected loss beyond the value-at-risk, it follows that
the historical expected shortfall is given by:

ESα (w;h) = 1
qα (nS)

nS∑
s=1

1 {Ls ≥ VaRα (w;h)} · Ls

or:

ESα (w;h) = − 1
qα (nS)

nS∑
s=1

1 {Πs ≤ −VaRα (w;h)} ·Πs

where qα (nS) = bns (1− α)c is the integer part of ns (1− α). We deduce that:

ESα (w;h) = − 1
qα (nS)

qα(nS)∑
i=1

Π(i:nS)

Computing the historical expected shortfall consists then in averaging the first qα (nS)
order statistics of the P&L. For example, if nS is equal to 250 scenarios and α = 97.5%, we
obtain ns (1− α) = 6.25 and qα (nS) = 6. In Basel III, computing the historical ES is then
equivalent to average the 6 largest losses of the 250 historical scenarios. In the table below,
we indicate the value of qα (nS) for different values of nS and α:

α / nS 100 150 200 250 300 350 400 450 500 1000
90.0% 9 14 19 24 29 34 39 44 49 99
95.0% 5 7 10 12 15 17 20 22 25 50
97.5% 2 3 5 6 7 8 10 11 12 25
99.0% 1 1 2 2 3 3 4 4 5 10



Market Risk 71

Let us consider Example 13 on page 68. We have found that the historical value-at-
risk VaR99% (w; one day) of the Apple/Coca-Cola portfolio was equal to $47.39. The 99%
expected shortfall is the average of the two largest losses:

ES99% (w; one day) = 84.34 + 51.46
2 = $67.90

However, the confidence level is set to 97.5% in Basel III, meaning that the expected shortfall
is the average of the six largest losses:

ES97.5% (w; one day) = 84.34 + 51.46 + 43.31 + 40.75 + 35.91 + 35.42
6

= $48.53

2.2.2.2 The kernel approach

Let {x1, . . . , xn} be a sample of the random variable X. In Section 10.1.4.1 on page 637,
we show that we can estimate the empirical distribution F̂ (x) = n−1∑n

i=1 1 {xi ≤ x} by
the kernel estimator:

F̂ (x) = 1
n

n∑
i=1
I
(
x− xi
hhh

)
where I is the integrated kernel function and hhh is the bandwidth.

To estimate the value-at-risk with a confidence level α, Gouriéroux et al. (2000) solves
the equation F̂L (VaRα (w;h)) = α or:

1
nS

nS∑
s=1
I
(
−VaRα (w;h)−Πs (w)

hhh

)
= 1− α

If we consider Example 13 on page 68 with the last 250 historical scenarios, we obtain
the results given in Figure 2.6. We have reported the estimated distribution F̂Π of Π (w)
based on order statistic and Gaussian kernel methods43. We verify that the kernel approach
produces a smoother distribution. If we zoom on the 1% quantile, we notice that the two
methods give similar results. The daily VaR with the kernel approach is equal to $47.44
whereas it was equal to $47.39 with the order statistic approach.

For computing the non-parametric expected shortfall, we use the following result44:

E [X · 1 {X ≤ x}] ≈ 1
n

n∑
i=1

xiI
(
x− xi
hhh

)
Therefore, Scaillet (2004) shows that the kernel estimator of the expected shortfall is equal
to:

ESα (w;h) = − 1
(1− α)nS

nS∑
s=1

ΠsI
(
−VaRα (w;h)−Πs

hhh

)
In the case of the Apple/Coca-Cola example, we obtain ES99% (w;h) = $60.53 and
ES97.5% (w;h) = $45.28. With the kernel approach, we can estimate the value-at-risk and
the expected shortfall with a high confidence level α. For instance, if α = 99.25%, we have
(1− α)ns = 0.625 < 1. Therefore, it is impossible to estimate the VaR or the ES with 250
observations, which is not the case with the kernel estimator. In our example, we obtain
VaR99.75% (w;h) = $58.27 and ES 99.75% (w;h) = $77.32.

43We consider the Gaussian kernel defined by K (u) = φ (u) and I (u) = Φ (u). The estimated standard
deviation σ̂ (Π) is equal to 17.7147, while the bandwidth is hhh = 1.364× n−1/5 × σ̂ (Π) = 8.0027.

44See Exercise 2.4.12 on page 124.



72 Handbook of Financial Risk Management

FIGURE 2.6: Kernel estimation of the historical VaR

Remark 7 Monte Carlo simulations reveal that the kernel method reduces the variance of
the VaR estimation, but not the variance of the ES estimation (Chen, 2007). In practice,
the kernel approach gives similar figures than the order statistic approach, especially when
the number of scenarios is large. However, the two estimators may differ in the presence of
fat tails. For large confidence levels, the method based on order statistics seems to be more
conservative.

2.2.3 Analytical methods
2.2.3.1 Derivation of the closed-form formula

Gaussian value-at-risk We speak about analytical value-at-risk when we are able to
find a closed-form formula of F−1

L (α). Suppose that L (w) ∼ N
(
µ (L) , σ2 (L)

)
. In this case,

we have Pr
{
L (w) ≤ F−1

L (α)
}

= α or:

Pr
{
L (w)− µ (L)

σ (L) ≤
F−1
L (α)− µ (L)

σ (L)

}
= α⇔ Φ

(
F−1
L (α)− µ (L)

σ (L)

)
= α

We deduce that:

F−1
L (α)− µ (L)

σ (L) = Φ−1 (α)⇔ F−1
L (α) = µ (L) + Φ−1 (α)σ (L)

The expression of the value-at-risk is then45:

VaRα (w;h) = µ (L) + Φ−1 (α)σ (L) (2.6)

45We also have VaRα (w;h) = −µ (Π) + Φ−1 (α)σ (Π) because the P&L Π (x) is the opposite of the
portfolio loss L (x) meaning that µ (Π) = −µ (L) and σ (Π) = σ (L).
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This formula is known as the Gaussian value-at-risk. For instance, if α = 99% (resp. 95%),
Φ−1 (α) is equal to 2.33 (resp. 1.65) and we have:

VaRα (w;h) = µ (L) + 2.33× σ (L)

Remark 8 We notice that the value-at-risk depends on the parameters µ (L) and σ (L).
This is why the analytical value-at-risk is also called the parametric value-at-risk. In prac-
tice, we don’t know these parameters and we have to estimate them. This implies that the
analytical value-at-risk is also an estimator. For the Gaussian distribution, we obtain:

V̂aRα (w;h) = µ̂ (L) + Φ−1 (α) σ̂ (L)

In practice, it is extremely difficult to estimate the mean and we set µ̂ (L) = 0.

Example 14 We consider a short position of $1 mn on the S&P 500 futures contract. We
estimate that the annualized volatility σ̂SPX is equal to 35%. Calculate the daily value-at-risk
with a 99% confidence level.

The portfolio loss is equal to L (w) = N × RSPX where N is the exposure amount
(−$1 mn) and RSPX is the (Gaussian) return of the S&P 500 index. We deduce that the
annualized loss volatility is σ̂ (L) = |N | × σ̂SPX. The value-at-risk for a one-year holding
period is:

VaR99% (w; one year) = 2.33× 106 × 0.35 = $815 500
By using the square-root-of-time rule, we deduce that:

VaR99% (w; one day) = 815 500√
260

= $50 575

This means that we have a 1% probability to lose more than $50 575 per day.
In finance, the standard model is the Black-Scholes model where the price St of the asset

is a geometric Brownian motion:

dSt = µSSt dt+ σSSt dWt

and Wt is a Wiener process. We can show that:

lnSt2 − lnSt1 =
(
µS −

1
2σ

2
S

)
(t2 − t1) + σS (Wt2 −Wt1)

for t2 ≥ t1. We have Wt2 −Wt1 =
√
t2 − t1ε where ε ∼ N (0, 1). We finally deduce that

var (lnSt2 − lnSt1) = σ2
S (t2 − t1). Let RS (∆t) be a sample of log-returns measured at a

regular time interval ∆t. It follows that:

σ̂S = 1√
∆t
· σ (RS (∆t))

If we consider two sample periods ∆t and ∆t′, we obtain the following relationship:

σ (RS (∆t′)) =
√

∆t′
∆t · σ (RS (∆t))

For the mean, we have µ̂S = ∆t−1 · E [RS (∆t)] and E (RS (∆t′)) = (∆t′/∆t) · E (RS (∆t)).
We notice that the square-root-of-time rule is only valid for the volatility and therefore for
risk measures that are linear with respect to the volatility. In practice, there is no other
solution and this explains why this rule continues to be used even if we know that the
approximation is poor when the portfolio loss is not Gaussian.
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Gaussian expected shortfall By definition, we have:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

= 1
1− α

∫ ∞
F−1
L

(α)
xfL (x) dx

where fL and FL are the density and distribution functions of the loss L (w). In the Gaussian
case L (w) ∼ N

(
µ (L) , σ2 (L)

)
, we have VaRα (w) = F−1

L (α) = µ (L) + Φ−1 (α)σ (L) and:

ESα (w) = 1
1− α

∫ ∞
µ(L)+Φ−1(α)σ(L)

x

σ (L)
√

2π
exp

(
−1

2

(
x− µ (L)
σ (L)

)2
)

dx

With the variable change t = σ (L)−1 (x− µ (L)), we obtain:

ESα (w) = 1
1− α

∫ ∞
Φ−1(α)

(µ (L) + σ (L) t) 1√
2π

exp
(
−1

2 t
2
)

dt

= µ (L)
1− α [Φ (t)]∞Φ−1(α) + σ (L)

(1− α)
√

2π

∫ ∞
Φ−1(α)

t exp
(
−1

2 t
2
)

dt

= µ (L) + σ (L)
(1− α)

√
2π

[
− exp

(
−1

2 t
2
)]∞

Φ−1(α)

= µ (L) + σ (L)
(1− α)

√
2π

exp
(
−1

2
[
Φ−1 (α)

]2)
The expected shortfall of the portfolio w is then:

ESα (w) = µ (L) +
φ
(
Φ−1 (α)

)
(1− α) σ (L)

When the portfolio loss is Gaussian, the value-at-risk and the expected shortfall are both a
standard deviation-based risk measure. They coincide when the scaling parameters cVaR =
Φ−1 (αVaR) and cES = φ

(
Φ−1 (αES)

)
/ (1− αES) are equal46. In Table 2.8, we report the

values taken by cVaR and cES. We notice that the 97.5% Gaussian expected shortfall is very
close to the 99% Gaussian value-at-risk.

TABLE 2.8: Scaling factors cVaR and cES

α (in %) 95.0 96.0 97.0 97.5 98.0 98.5 99.0 99.5
cVaR 1.64 1.75 1.88 1.96 2.05 2.17 2.33 2.58
cES 2.06 2.15 2.27 2.34 2.42 2.52 2.67 2.89

Remark 9 In the Gaussian case, the Basel III framework consists in replacing the scaling
factor 2.33 by 2.34. In what follows, we focus on the VaR, because the ES figures can be
directly deduced.

46The equality is achieved when (αVaR, αES) is equal to (90%, 75.44%), (95%, 87.45%), (99%, 97.42%),
(99.9%, 99.74%), etc.
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2.2.3.2 Linear factor models

We consider a portfolio of n assets and a pricing function g which is linear with respect
to the asset prices. We have:

g (Ft;w) =
n∑
i=1

wiPi,t

We deduce that the random P&L is:

Π (w) = Pt+h (w)− Pt (w)

=
n∑
i=1

wiPi,t+h −
n∑
i=1

wiPi,t

=
n∑
i=1

wi (Pi,t+h − Pi,t)

Here, Pi,t is known whereas Pi,t+h is stochastic. The first idea is to choose the factors as
the future prices. The problem is that prices are far to be stationary meaning that we will
face some issues to model the distribution FΠ. Another idea is to write the future price as
follows:

Pi,t+h = Pi,t (1 +Ri,t+h)

where Ri,t+h is the asset return between t and t+ h. In this case, we obtain:

Π (w) =
n∑
i=1

wiPi,tRi,t+h

In this approach, the asset returns are the market risk factors and each asset has its own
risk factor.

The covariance model Let Rt be the vector of asset returns. We note Wi,t = wiPi,t the
wealth invested (or the nominal exposure) in asset i and Wt = (W1,t, . . . ,Wn,t). It follows
that:

Π (w) =
n∑
i=1

Wi,tRi,t+h = W>t Rt+h

If we assume that Rt+h ∼ N (µ,Σ), we deduce that µ (Π) = W>t µ and σ2 (Π) = W>t ΣWt.
Using Equation (2.6), the expression of the value-at-risk is47:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

In this approach, we only need to estimate the covariance matrix of asset returns to compute
the value-at-risk. This explains the popularity of this model, especially when the P&L of
the portfolio is a linear function of the asset returns48.

Let us consider our previous Apple/Coca-Cola example. The nominal exposures49 are
$1 093.3 (Apple) and $842.8 (Coca-Cola). If we consider the historical prices from 2014-01-
07 to 2015-01-02, the estimated standard deviation of daily returns is equal to 1.3611% for

47For the expected shortfall formula, we replace Φ−1 (α) by φ
(
Φ−1 (α)

)
/ (1− α).

48For instance, this approach is frequently used by asset managers to measure the risk of equity portfolios.
49These figures are equal to 10× 109.33 and 20× 42.14.
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Apple and 0.9468% for Coca-Cola, whereas the cross-correlation is equal to 12.0787%. It
follows that:

σ2 (Π) = W>t ΣWt

= 1 093.32 ×
(

1.3611
100

)2
+ 842.82 ×

(
0.9468

100

)2
+

2× 12.0787
100 × 1 093.3× 842.8× 1.3611

100 × 0.9468
100

= 313.80

If we omit the term of expected return −W>t µ, we deduce that the 99% daily value-at-risk50
is equal to $41.21. We obtain a lower figure than with the historical value-at-risk, which was
equal to $47.39. We explain this result, because the Gaussian distribution underestimates
the probability of extreme events and is not adapted to take into account tail risk.

The factor model We consider the standard linear factor model where asset returns Rt
are related to a set of risk factors Ft = (F1,t, . . . ,Fm,t) in the following way:

Rt = BFt + εt

where E (Ft) = µ (F), cov (Ft) = Ω, E (εt) = 0 and cov (εt) = D. Ft represents the common
risks whereas εt is the vector of specific or idiosyncratic risks. This implies that Ft and εt
are independent and D is a diagonal matrix51. B is a (n×m) matrix that measures the
sensitivity of asset returns with respect to the risk factors. The first two moments of Rt are
given by:

µ = E [Rt] = Bµ (F)

and52:
Σ = cov (Rt) = BΩB> +D

If we assume that asset returns are Gaussian, we deduce that53:

VaRα (w;h) = −W>t Bµ (F) + Φ−1 (α)
√
W>t (BΩB> +D)Wt

The linear factor model plays a major role in financial modeling. The capital asset pricing
model (CAPM) developed by Sharpe (1964) is a particular case of this model when there is
a single factor, which corresponds to the market portfolio. In the arbitrage pricing theory
(APT) of Ross (1976), Ft corresponds to a set of (unknown) arbitrage factors. They may
be macro-economic, statistical or characteristic-based factors. The three-factor model of

50We have:
VaR99% (w; one day) = Φ−1 (0.99)

√
313.80 = $41.21

51In the following, we note D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
where σ̃i is the idiosyncratic volatility of asset i.

52We have:

Σ = E
[
(Rt − µ) (Rt − µ)>

]
= E

[
(B (Ft − µ (F) + εt)) (B (Ft − µ (F) + εt))>

]
= BE

[
(Ft − µ (F)) (Ft − µ (F))>

]
B>t + E

[
εtε
>
t

]
= BΩB> +D

53For the expected shortfall formula, we replace Φ−1 (α) by φ
(
Φ−1 (α)

)
/ (1− α).
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Fama and French (1993) is certainly the most famous application of APT. In this case, the
factors are the market factor, the size factor corresponding to a long/short portfolio between
small stocks and large stocks and the value factor, which is the return of stocks with high
book-to-market values minus the return of stocks with low book-to-market values. Since
its publication, the original Fama-French factor has been extended to many other factors
including momentum, quality or liquidity factors54.

BCBS (1996a) makes direct reference to CAPM. In this case, we obtain a single-factor
model:

Rt = α+ βRm,t + εt

where Rm,t is the return of the market and β = (β1, . . . , βn) is the vector of beta coefficients.
Let σm be the volatility of the market risk factor. We have var (Ri,t) = β2

i σ
2
m + σ̃2

i and
cov (Ri,t, Rj,t) = βiβjσ

2
m. By omitting the mean, we obtain:

VaRα (w;h) = Φ−1 (α)

√√√√√σ2
m

 n∑
i=1

β̃2
i + 2

∑
j>i

β̃iβ̃j

+
n∑
i=1

W 2
i,tσ̃

2
i

where β̃i = Wi,tβi is the beta exposure of asset i expressed in $. With the previous formula,
we can calculate the VaR due to the market risk factor by omitting the specific risk55.

If we consider our previous example, we can choose the S&P 500 index as the market
risk factor. For the period 2014-01-07 to 2015-01-02, the beta coefficient is equal to 0.8307
for Apple and 0.4556 for Coca-Cola, whereas the corresponding idiosyncratic volatilities
are 1.2241% (Apple) and 0.8887% (Coca-Cola). As the market volatility is estimated at
0.7165%, the daily value-at-risk is equal to $41.68 if we include specific risks. Otherwise, it
is equal to $21.54 if we only consider the effect of the market risk factor.

0 t
• • • • • • • • •

t1 t2 t3 t4 t5 t6 t7 t8

t9

t10

FIGURE 2.7: Cash flows of two bonds and two short exposures

Application to a bond portfolio We consider a portfolio of bonds from the same issuer.
In this instance, we can model the bond portfolio by a stream of nC coupons C (tm) with
fixed dates tm ≥ t. Figure 2.7 presents an example of aggregating cash flows with two
bonds with a fixed coupon rate and two short exposures. We note Bt (T ) the price of a zero-
coupon bond at time t for the maturity T . We have Bt (T ) = e−(T−t)Rt(T ) where Rt (T ) is
the zero-coupon rate. The sensitivity of the zero-coupon bond is:

∂ Bt (T )
∂ Rt (T ) = − (T − t)Bt (T )

54See Cazalet and Roncalli (2014) for a survey.
55We set σ̃i to 0.
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For a small change in yield, we obtain:

∆hBt+h (T ) ≈ − (T − t)Bt (T ) ∆hRt+h (T )

The value of the portfolio is:

Pt (w) =
nC∑
m=1

C (tm)Bt (tm)

We deduce that:

Π (w) = Pt+h (w)− Pt (w)

=
nC∑
m=1

C (tm) (Bt+h (tm)−Bt (tm))

Let us consider the following approximation:

Π (w) ≈ −
nC∑
m=1

C (tm) (tm − t)Bt (tm) ∆hRt+h (tm)

=
nC∑
m=1

Wi,tm∆hRt+h (tm)

where Wi,tm = −C (tm) (tm − t)Bt (tm). This expression of the P&L is similar to this
obtained with a portfolio of stocks. If we assume that the yield variations are Gaussian, the
value-at-risk is equal to:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

where µ and Σ are the mean and the covariance matrix of the vector of yield changes
(∆hRt+h (t1) , . . . ,∆hRt+h (tnc)).

Example 15 We consider an exposure on a US bond at 31 December 2014. The notional
of the bond is 100 whereas the annual coupons are equal to 5. The remaining maturity is
five years and the fixing dates are at the end of December. The number of bonds held in the
portfolio is 10 000.

Using the US zero-coupon rates56, we obtain the following figures for one bond at 31
December 2014:

tm − t C (tm) Rt (tm) Bt (tm) Wtm

1 5 0.431% 0.996 −4.978
2 5 0.879% 0.983 −9.826
3 5 1.276% 0.962 −14.437
4 5 1.569% 0.939 −18.783
5 105 1.777% 0.915 −480.356

At the end of December 2014, the one-year zero-coupon rate is 0.431%, the two-year zero-
coupon rate is 0.879%, etc. We deduce that the bond price is $115.47 and the total exposure
is $1 154 706. Using the historical period of year 2014, we estimate the covariance matrix

56The data comes from the Datastream database. The zero-coupon interest rate of maturity yy years and
mm months corresponds to the code USyyYmm.
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between daily changes of the five zero-coupon rates57. We deduce that the Gaussian VaR
of the bond portfolio is equal to $4 971. If the multiplicative factor mc is set to 3, the
required capital KVaR

t is equal to $47 158 or 4.08% of the mark-to-market. We can compare
these figures with those obtained with the historical value-at-risk. In this instance, the daily
value-at-risk is higher and equal to $5 302.

Remark 10 The previous analysis assumes that the risk factors correspond to the yield
changes, meaning that the calculated value-at-risk only concerns interest rate risk. Therefore,
it cannot capture all the risks if the bond portfolio is subject to credit risk.

Defining risk factors with the principal component analysis In the previous para-
graph, the bond portfolio was very simple with only one bond and one yield curve. In
practice, the bond portfolio contains streams of coupons for many maturities and yield
curves. It is therefore necessary to reduce the dimension of the VaR calculation. The un-
derlying idea is that we don’t need to use the comprehensive set of zero-coupon rates to
represent the set of risk factors that affects the yield curve. For instance, Nelson and Siegel
(1987) propose a three-factor parametric model to define the yield curve. Another represen-
tation of the yield curve has been formulated by Litterman and Scheinkman (1991), who
have proposed to characterize the factors using the principal component analysis (PCA).

Let Σ be the covariance matrix associated to the random vector Xt of dimension n. We
consider the eigendecomposition Σ = V ΛV > where Λ = diag (λ1, . . . , λn) is the diagonal
matrix of eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ λn and V is an orthornormal matrix. In the
principal component analysis, the (endogenous) risk factors are Ft = V >Xt. The reduction
method by PCA consists in selecting the first m risk factors with m ≤ n. When applied to
the value-at-risk calculation, it can be achieved in two different ways:

1. In the parametric approach, the covariance matrix Σ is replaced by Σ? = V Λ?V >
where Λ? = diag (λ1, . . . , λm, 0, . . . , 0).

2. In the historical method, we only consider the first m PCA factors F?t =
(F1,t, . . . ,Fm,t) or equivalently the modified random vector58 X?

t = V F•t where
F•t = (F?t ,0n−m).

If we apply this extracting method of risk factors to Example 15, the eigenvalues are
equal to 47.299× 108, 0.875× 108, 0.166× 108, 0.046× 108, 0.012× 108 whereas the matrix
V of eigenvectors is:

V =


0.084 −0.375 −0.711 0.589 0.002
0.303 −0.610 −0.215 −0.690 −0.114
0.470 −0.389 0.515 0.305 0.519
0.567 0.103 0.195 0.223 −0.762
0.599 0.570 −0.381 −0.183 0.371


57The standard deviation is respectively equal to 0.746 bps for ∆hRt (t+ 1), 2.170 bps for ∆hRt (t+ 2),

3.264 bps for ∆hRt (t+ 3), 3.901 bps for ∆hRt (t+ 4) and 4.155 bps for ∆hRt (t+ 5) where h corresponds
to one trading day. For the correlation matrix, we get:

ρ =


100.000
87.205 100.000
79.809 97.845 100.000
75.584 95.270 98.895 100.000
71.944 92.110 96.556 99.219 100.000


58Because we have V −1 = V >.
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We deduce that:

F1,t = 0.084×Rt (t+ 1) + 0.303×Rt (t+ 2) + · · ·+ 0.599×Rt (t+ 5)
...

F5,t = 0.002×Rt (t+ 1)− 0.114×Rt (t+ 2) + · · ·+ 0.371×Rt (t+ 5)

We retrieve the three factors of Litterman and Scheinkman, which are a level factor F1,t,
a slope factor F2,t and a convexity or curvature factor F3,t. In the following table, we
report the incremental VaR of each risk factor, which is defined as difference between the
value-at-risk including the risk factor and the value-at-risk excluding the risk factor:

VaR F1,t F2,t F3,t F4,t F5,t Sum
Gaussian 4934.71 32.94 2.86 0.17 0.19 4970.87
Historical 5857.39 −765.44 216.58 −7.98 1.41 5301.95

We notice that the value-at-risk is principally explained by the first risk factor, that is the
general level of interest rates, whereas the contribution of the slope and convexity factors
is small and the contribution of the remaining risk factors is marginal. This result can be
explained by the long-only characteristics of the portfolio. Nevertheless, even if we consider
a more complex bond portfolio, we generally observe that a number of factors is sufficient to
model all the risk dimensions of the yield curve. An example is provided in Figure 2.8 with
a stream of long and short exposures59. Using the period January 2014 – December 2014,
the convergence of the value-at-risk is achieved with six factors. This result is connected to
the requirement of the Basel Committee that “banks must model the yield curve using a
minimum of six risk factors”.

2.2.3.3 Volatility forecasting

The challenge of the Gaussian value-at-risk is the estimation of the loss volatility or the
covariance matrix of asset returns/risk factors. The issue is not to consider the best estimate
for describing the past, but to use the best estimate for forecasting the loss distribution. In
the previous illustrations, we use the empirical covariance matrix or the empirical standard
deviation. However, other estimators have been proposed by academics and professionals.

The original approach implemented in RiskMetrics used an exponentially weighted mov-
ing average (EWMA) for modeling the covariance between asset returns60:

Σ̂t = λΣ̂t−1 + (1− λ)Rt−1R
>
t−1

where the parameter λ ∈ [0, 1] is the decay factor, which represents the degree of weighting
decrease. Using a finite sample, the previous estimate is equivalent to a weighted estimator:

Σ̂t =
nS∑
s=1

ωsRt−sR
>
t−s

where:
ωs = (1− λ)

(1− λnS )λ
s−1

In Figure 2.9, we represent the weights ωs for different values of λ when the number nS of
historical scenarios is equal to 250. We verify that this estimator gives more importance to

59We have Ct (t+ 1/2) = 400, Ct (t+ 1) = 300, Ct (t+ 3/2) = 200, Ct (t+ 2) = −200, Ct (t+ 3) = −300,
Ct (t+ 4) = −500, Ct (t+ 5) = 500, Ct (t+ 6) = 400, Ct (t+ 7) = −300, Ct (t+ 10) = −700, Ct (t+ 10) =
300 and Ct (t+ 30) = 700.

60We assume that the mean of expected returns is equal to 0.
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FIGURE 2.8: Convergence of the VaR with PCA risk factors

the current values than to the past values. For instance, if λ is equal to 0.9461, 50% of the
weights corresponds to the twelve first observations and the half-life is 16.7 days. We also
observe that the case λ = 1 corresponds to the standard covariance estimator with uniform
weights.

Another approach to model volatility in risk management is to consider that the volatility
is time-varying. In 1982, Engle introduced a class of stochastic processes in order to take
into account the heteroscedasticity of asset returns62:

Ri,t = µi + εt where εt = σtet and et ∼ N (0, 1)

The time-varying variance ht = σ2
t satisfies the following equation:

ht = α0 + α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

where αj ≥ 0 for all j ≥ 0. We note that the conditional variance of εt is not constant
and depends on the past values of εt. A substantial impact on the asset return Ri,t implies
an increase of the conditional variance of εt+1 at time t + 1 and therefore an increase of
the probability to observe another substantial impact on Ri,t+1. Therefore, this means that
the volatility is persistent, which is a well-known stylized fact in finance (Chou, 1988).
This type of stochastic processes, known as ARCH models (Autoregressive Conditional
Heteroscedasticity), has been extended by Bollerslev (1986) in the following way:

ht = α0 + γ1ht−1 + γ2ht−2 + · · ·+ γpht−p + α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

In this case, the conditional variance depends also on its past values and we obtain a
GARCH(p,q) model. If

∑p
i=1 γi +

∑q
i=1 αi = 1, we may show that the process ε2

t has a unit

61It was the original value of the RiskMetrics system (J.P. Morgan, 1996).
62See Section 10.2.4.1 on page 664 for a comprehensive presentation of ARCH and GARCH models.
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FIGURE 2.9: Weights of the EWMA estimator

root and the model is called an integrated GARCH (or IGARCH) process. If we neglect the
constant term, the expression of the IGARCH(1,1) process is ht = (1− α)ht−1 + αR2

i,t−1
or equivalently:

σ2
t = (1− α)σ2

t−1 + αR2
i,t−1

This estimator is then an exponentially weighted moving average with a factor λ equal to
1− α.

In Figure 2.10, we have reported the annualized volatility of the S&P 500 index estimated
using the GARCH model (first panel). The ML estimates of the parameters are γ̂1 = 0.8954
and α̂1 = 0.0929. We verify that this estimated model is close to an IGARCH process. In
the other panels, we compare the GARCH volatility with the empirical one-year historical
volatility, the EWMA volatility (with λ = 0.94) and a short volatility based on 20 trading
days. We observe large differences between the GARCH volatility and the one-year historical
volatility, but the two others estimators (EWMA and short volatility) give similar results to
the GARCH estimator. To compare the out-of-sample forecasting accuracy of these different
models, we consider respectively a long and a short exposure on the S&P 500 index. At time
t, we compute the value-at-risk for the next day and we compare this figure with the realized
mark-to-market. Table 2.9 show the number of exceptions per year for the different models:
(1) GARCH(1,1) model, (2) Gaussian value-at-risk with a one-year historical volatility, (3)
EWMA model with λ = 0.94, (4) Gaussian value-at-risk with a twenty-day short volatility
and (5) historical value-at-risk based on the last 260 trading days. We observe that the
GARCH model produces the smallest number of exceptions, whereas the largest number
of exceptions occurs in the case of the Gaussian value-at-risk with the one-year historical
volatility. We also notice that the number of exceptions is smaller for the short exposure
than for the long exposure. This is due to the asymmetry of returns, because extreme
negative returns are larger than extreme positive returns on average.
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FIGURE 2.10: Comparison of GARCH and EWMA volatilities

TABLE 2.9: Number of exceptions per year for long and short exposures on the S&P 500
index

Year Long exposure Short exposure
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

2000 5 5 2 4 4 5 8 4 6 4
2001 4 3 2 3 2 2 4 2 5 2
2002 2 5 2 4 3 5 9 4 6 5
2003 1 0 0 2 0 1 0 1 4 0
2004 2 0 2 6 0 0 0 0 2 1
2005 1 1 2 4 3 1 4 1 6 3
2006 2 4 3 4 4 2 5 3 5 3
2007 6 15 6 10 7 1 9 0 3 7
2008 7 23 5 7 10 4 12 4 3 8
2009 5 0 1 6 0 2 2 2 3 0
2010 7 6 5 8 3 3 5 2 7 3
2011 6 8 6 7 4 2 8 1 6 3
2012 5 1 4 5 0 3 1 2 7 1
2013 4 2 3 9 2 2 2 2 4 1
2014 6 9 7 11 2 2 4 2 2 4
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2.2.3.4 Extension to other probability distributions

The Gaussian value-at-risk has been strongly criticized because it depends only on the
first two moments of the loss distribution. Indeed, there is a lot of evidence that asset returns
and risk factors are not Gaussian (Cont, 2001). They generally present fat tails and skew
effects. It is therefore interesting to consider alternative probability distributions, which are
more appropriate to take into account these stylized facts.

Let µr = E [(X − E [X])r] be the r-order centered moment of the random variable X.
The skewness γ1 = µ3/µ

3/2
2 is the measure of the asymmetry of the loss distribution. If

γ1 < 0 (resp. γ1 > 0), the distribution is left-skewed (resp. right-skewed) because the left
(resp. right) tail is longer. For the Gaussian distribution, γ1 is equal to zero. To characterize
whether the distribution is peaked or flat relative to the normal distribution, we consider the
excess kurtosis γ2 = µ4/µ

2
2−3. If γ2 > 0, the distribution presents heavy tails. In the case of

the Gaussian distribution, γ2 is exactly equal to zero. We have illustrated the skewness and
kurtosis statistics in Figure 2.11. Whereas we generally encounter skewness risk in credit and
hedge fund portfolios, kurtosis risk has a stronger impact in equity portfolios. For example,
if we consider the daily returns of the S&P 500 index, we obtain an empirical distribution63
which has a higher kurtosis than the fitted Gaussian distribution (Figure 2.12).

FIGURE 2.11: Examples of skewed and fat tailed distributions

An example of fat-tail distributions is the Student’s t probability distribution. If X ∼ tν ,
we have E [X] = 0 and var (X) = ν/ (ν − 2) for ν > 2. Because X has a fixed mean and
variance for a given degrees of freedom, we need to introduce location and scale parameters
to model the future loss L (w) = ξ + ωX. To calculate the value-at-risk, we proceed as in
the Gaussian case. We have:

Pr
{
L (w) ≤ F−1

L (α)
}

= α⇔ Pr
{
X ≤

F−1
L (α)− ξ

ω

}
= α

63It is estimated using the kernel approach.



Market Risk 85

FIGURE 2.12: Estimated distribution of S&P 500 daily returns (2007-2014)

We deduce that:

T
(

F−1
L (α)− ξ

ω
; ν
)

= α⇔ F−1
L (α) = ξ + T−1 (α; ν)ω

In practice, the parameters ξ and ω are estimated by the method of moments64. We finally
deduce that:

VaRα (w;h) = µ (L) + T−1 (α; ν)σ (L)
√
ν − 2
ν

Let us illustrate the impact of the probability distribution with Example 13. By using
different values of ν, we obtain the following daily VaRs:

ν 3.00 3.50 4.00 5.00 6.00 10.00 1000 ∞
ω 10.23 11.60 12.53 13.72 14.46 15.84 17.70 17.71

VaRα (w;h) 46.44 47.09 46.93 46.17 45.46 43.79 41.24 41.21

If ν → ∞, we verify that the Student’s t value-at-risk converges to the Gaussian value-at-
risk ($41.21). If the degrees of freedom is equal to 4, it is closer to the historical value-at-risk
($47.39).

We can derive closed-form formulas for several probability distributions. However, most
of them are not used in practice, because these methods are not appealing from a professional
point of view. Nevertheless, one approach is very popular among professionals. Using the
Cornish-Fisher expansion of the normal distribution, Zangari (1996) proposes to estimate
the value-at-risk in the following way:

VaRα (w;h) = µ (L) + z (α; γ1 (L) , γ2 (L))× σ (L) (2.7)

64We have E [ξ + ωX] = ξ and var (ξ + ωX) =
(
ω2ν
)
/ (ν − 2).
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where:

z (α; γ1, γ2) = zα + 1
6
(
z2
α − 1

)
γ1 + 1

24
(
z3
α − 3zα

)
γ2 −

1
36
(
2z3
α − 5zα

)
γ2

1 (2.8)

and zα = Φ−1 (α). This is the same formula as the one used for the Gaussian value-at-risk
but with another scaling parameter65. In Equation (2.7), the skewness and excess kurtosis
coefficients are those of the loss distribution66.

TABLE 2.10: Value of the Cornish-Fisher quantile z (99%; γ1, γ2)

γ1
γ2

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
−2.00 0.99
−1.00 1.68 1.92 2.15 2.38 2.62 2.85
−0.50 2.10 2.33 2.57 2.80 3.03 3.27 3.50

0.00 2.33 2.56 2.79 3.03 3.26 3.50 3.73 3.96
0.50 2.83 3.07 3.30 3.54 3.77 4.00 4.24
1.00 3.15 3.39 3.62 3.85 4.09 4.32
2.00 3.93

Table 2.10 shows the value of the Cornish-Fisher quantile z (99%; γ1, γ2) for different
values of skewness and excess kurtosis. We cannot always calculate the quantile because
Equation (2.8) does not define necessarily a probability distribution if the parameters γ1
and γ2 does not satisfy the following condition (Maillard, 2018):

∂ z (α; γ1, γ2)
∂ zα

≥ 0⇔ γ2
1
9 − 4

(
γ2

8 −
γ2

1
6

)(
1− γ2

8 + 5γ2
1

36

)
≤ 0

We have reported the domain of definition in the third panel in Figure 2.13. For instance,
Equation (2.8) is not valid if the skewness is equal to 2 and the excess kurtosis is equal to 3.
If we analyze results in Table 2.10, we do not observe that there is a monotone relationship
between the skewness and the quantile. To understand this curious behavior, we report the
partial derivatives of z (α; γ1, γ2) with respect to γ1 and γ2 in Figure 2.13. We notice that
their signs depend on the confidence level α, but also on the skewness for ∂γ1 z (α; γ1, γ2).
Another drawback of the Cornish-Fisher approach concerns the statistical moments, which
are not necessarily equal to the input parameters if the skewness and the kurtosis are
not close to zero67. Contrary to what professionals commonly think, the Cornish-Fisher
expansion is therefore difficult to implement.

When we consider other probability distribution than the normal distribution, the dif-
ficulty concerns the multivariate case. In the previous examples, we directly model the loss

65If γ1 = γ2 = 0, we retrieve the Gaussian value-at-risk because z (α; 0, 0) = Φ−1 (α).
66If we prefer to use the moments of the P&L, we have to consider the relationships γ1 (Ł) = −γ1 (Π)

and γ2 (L) = γ2 (Π).
67Let Z be a Cornish-Fisher random variable satisfying F−1 (α) = z (α; γ1, γ2). A direct application of

the result in Appendix A.2.2.3 gives:

E [Zr] =
∫ 1

0
zr (α; γ1, γ2) dα

Using numerical integration, we can show that γ1 (Z) 6= γ1 and γ2 (Z) 6= γ2 if γ1 and γ2 are large enough
(Maillard, 2018).
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FIGURE 2.13: Derivatives and definition domain of the Cornish-Fisher expansion

distribution, that is the reduced form of the pricing system. To model the joint distribu-
tion of risk factors, two main approaches are available. The first approach considers copula
functions and the value-at-risk is calculated using the Monte Carlo simulation method (see
Chapters 11 and 13). The second approach consists in selecting a multivariate probability
distribution, which has some appealing properties. For instance, it should be flexible enough
to calibrate the first two moments of the risk factors and should also include asymmetry
(positive and negative skewness) and fat tails (positive excess kurtosis) in a natural way. In
order to obtain an analytical formula for the value-at-risk, it must be tractable and verify
the closure property under affine transformation. This implies that if the random vector X
follows a certain class of distribution, then the random vector Y = A+BX belongs also to
the same class. These properties reduce dramatically the set of eligible multivariate prob-
ability distributions, because the potential candidates are mostly elliptical distributions.
Such examples are the skew normal and t distributions presented in Appendix A.2.1 on
page 1057.

Example 16 We consider a portfolio of three assets and assume that their annualized re-
turns follows a multivariate skew normal distribution. The location parameters are equal
to 1%, −2% and 15% whereas the scale parameters are equal to 5%, 10% and 20%. The
correlation parameters to describe the dependence between the skew normal variables are
given by the following matrix:

C =

 1.00
0.35 1.00
0.20 −0.50 1.00


The three assets have different skewness profiles, and the shape parameters are equal to 0,
10 and −15.50.
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FIGURE 2.14: Skew normal and t distributions of asset returns

In Figure 2.14, we have reported the density function of the three asset returns68. The
return of the first asset is close to be Gaussian whereas the two other assets exhibit respec-
tively negative and positive skews. Moments are given in the table below:

Asset i µi (in %) σi (in %) γ1,i γ2,i
1 1.07 5.00 0.00 0.00
2 4.36 7.72 0.24 0.13
3 0.32 13.58 −0.54 0.39

Let us consider the nominal portfolio w = ($500, $200, $300). The annualized P&L Π (w) is
equal to w>R where R ∼ SN (ξ,Ω, η). We deduce that Π (w) ∼ SN (ξw, ωw, ηw) with ξw =
46.00, ωw = 66.14 and ηw = −0.73. We finally deduce that the one-year 99% value-at-risk is
equal to $123.91. If we use the multivariate skew t distribution in place of the multivariate
skew normal distributions to model asset returns and if we use the same parameter values,
the one-year 99% value-at-risk becomes $558.35 for ν = 2, $215.21 for ν = 5 and $130.47 for
ν = 50. We verify that the skew t value-at-risk converges to the skew normal value-at-risk
when the number of degrees of freedom ν tends to +∞.

The choice of the probability distribution is an important issue and raises the question
of model risk. In this instance, the Basel Committee justifies the introduction of the penalty
coefficient in order to reduce the risk of a wrong specification (Stahl, 1997). For example,
imagine that we calculate the value-at-risk with a probability distribution F while the true
probability distribution of the portfolio loss is H. The multiplication factor mc defines then
a capital buffer such that we are certain that the confidence level of the value-at-risk will
be at least equal to α:

Pr{L (w) ≤ mc ·VaR(F)
α (w)︸ ︷︷ ︸

Capital

} ≥ α (2.9)

68We also show the density function in the case of the skew t distribution with ν = 1 and ν = 4.
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This implies that H
(
mc ·VaR(F)

α (w)
)
≥ α and mc · VaR(F)

α (w) ≥ H−1 (α). We finally
deduce that:

mc ≥
VaR(H)

α (w)
VaR(F)

α (w)

In the case where F and H are the normal and Student’s t distributions, we obtain69:

mc ≥
√
ν − 2
ν

T−1
ν (α)

Φ−1 (α)

Below is the lower bound of mc for different values of α and ν.

α/ν 3 4 5 6 10 50 100
90% 0.74 0.85 0.89 0.92 0.96 0.99 1.00
95% 1.13 1.14 1.12 1.10 1.06 1.01 1.01
99% 1.31 1.26 1.21 1.18 1.10 1.02 1.01
99.9% 1.91 1.64 1.48 1.38 1.20 1.03 1.02
99.99% 3.45 2.48 2.02 1.76 1.37 1.06 1.03

For instance, we have mc ≥ 1.31 when α = 99% and ν = 3.
Stahl (1997) considers the general case when F is the normal distribution and H is

an unknown probability distribution. Let X be a given random variable. The Chebyshev’s
inequality states that:

Pr {(|X − µ (X)| > k · σ (X))} ≤ k−2

for any real number k > 0. If we apply this theorem to the value-at-risk, we obtain70:

Pr
{
L (w) ≤

√
1

1− ασ (L)
}
≥ α

Using Equation (2.9), we deduce that:

mc =
√

1
1− α

σ (L)
VaR(F)

α (w)

In the case of the normal distribution, we finally obtain that the multiplicative factor is:

mc = 1
Φ−1 (α)

√
1

1− α

This ratio is the multiplication factor to apply in order to be sure that the confidence
level of the value-at-risk is at least equal to α if we use the normal distribution to model
the portfolio loss. In the case where the probability distribution is symmetric, this ratio
becomes:

mc = 1
Φ−1 (α)

√
1

2− 2α
In Table 2.11, we report the values of mc for different confidence levels. If α is equal to 99%,
the multiplication factor is equal to 3.04 if the distribution is symmetric and 4.30 otherwise.

69We recall that the Gaussian value-at-risk is equal to Φ−1 (α)σ (L) whereas the Student’s t value-at-risk
is equal to

√
(ν − 2) /ν ·T−1

ν (α)σ (L).
70We set α = 1− k−2.
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TABLE 2.11: Value of the multiplication factor mc deduced from the Chebyshev’s in-
equality

α (in %) 90.00 95.00 99.00 99.25 99.50 99.75 99.99
Symmetric 1.74 1.92 3.04 3.36 3.88 5.04 19.01
Asymmetric 2.47 2.72 4.30 4.75 5.49 7.12 26.89

Remark 11 Even if the previous analysis justifies the multiplication factor from a statis-
tical point of view, we face two main issues. First, the multiplication factor assumes that
the bank uses a Gaussian value-at-risk. It was the case for many banks in the early 1990s,
but they use today historical value-at-risk measures. Some have suggested that the multipli-
cation factor has been introduced in order to reduce the difference in terms of regulatory
capital between SMM and IMA and it is certainly the case. The second issue concerns the
specificity of the loss distribution. For many positions like long-only unlevered portfolios,
the loss is bounded. If we use a Gaussian value-at-risk, the regulatory capital satisfies71
K = KVaR + KSVaR > 13.98 · σ (L) where σ (L) is the non-stressed loss volatility. This
implies that the value-at-risk is larger than the portfolio value if σ (L) > 7.2%! There is a
direct contradiction here.

2.2.4 Monte Carlo methods
In this approach, we postulate a given probability distribution H for the risk factors:

(F1,t+h, . . . ,Fm,t+h) ∼ H

Then, we simulate nS scenarios of risk factors and calculate the simulated P&L Πs (w)
for each scenario s. Finally, we estimate the risk measure (VaR/ES) by the method of or-
der statistics. The Monte Carlo method to calculate the VaR/ES is therefore close to the
historical method. The only difference is that it uses simulated scenarios instead of histor-
ical scenarios. This implies that the Monte Carlo approach is not limited by the number
of scenarios. By construction, the Monte Carlo VaR/ES is also similar to the analytical
VaR/ES, because they both specify the parametric probability distribution of risk factors.
In summary, we can say that:

• the Monte Carlo VaR/ES is a historical VaR/ES with simulated scenarios;

• the Monte Carlo VaR/ES is a parametric VaR/ES for which it is difficult to find an
analytical formula.

Let us consider Example 16 on page 87. The expression of the P&L is:

Π (w) = 500×R1 + 200×R2 + 300×R3

Because we know that the combination of the components of a skew normal random vector
is a skew normal random variable, we were able to compute the analytical quantile of Π (w)
at the 1% confidence level. Suppose now that we don’t know the analytical distribution of
Π (w). We can repeat the exercise by using the Monte Carlo method. At each simulation s,
we generate the random variates (R1,s, R2,s, R3,s) such that:

(R1,s, R2,s, R3,s) ∼ SN (ξ,Ω, η)

71Because we have 2×mc × 2.33 > 13.98.
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and the corresponding P&L Πs (w) = 500×R1,s+200×R2,s+300×R3,s. The Monte Carlo
value-at-risk is the ns (1− α)th order statistic:

V̂aRα (nS) = −Π(ns(1−α):ns) (w)

Using the law of large numbers, we can show that the MC estimator converges to the exact
VaR:

lim
nS→∞

V̂aRα (nS) = VaRα

In Figure 2.15, we report four Monte Carlo runs with 10 000 simulated scenarios. We notice
that the convergence of the Monte Carlo VaR to the analytical VaR is slow72, because asset
returns present high skewness. The convergence will be faster if the probability distribution
of risk factors is close to be normal and has no fat tails.

FIGURE 2.15: Convergence of the Monte Carlo VaR when asset returns are skew normal

Remark 12 The Monte Carlo value-at-risk has been extensively studied with heavy-tailed
risk factors (Dupire, 1998; Eberlein et al., 1998; Glasserman et al., 2002). In those cases,
one needs to use advanced and specific methods to reduce the variance of the estimator73.

Example 17 We use a variant of Example 15 on page 78. We consider that the bond is
exposed to credit risk. In particular, we assume that the current default intensity of the bond
issuer is equal to 200 bps whereas the recovery rate is equal to 50%.

In the case of a defaultable bond, the coupons and the notional are paid until the issuer
does not default whereas a recovery rate is applied if the issuer defaults before the maturity

72We have previously found that the exact VaR is equal to $123.91.
73These techniques are presented in Chapter 13.
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of the bond. If we assume that the recovery is paid at maturity, we can show that the bond
price under default risk is:

Pt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) (St (T ) + Rt (1− St (T )))

where St (tm) is the survival function at time tm and Rt is the current recovery rate.
We retrieve the formula of the bond price without default risk if St (tm) = 1. Using the
numerical values of the parameters, the bond price is equal to $109.75 and is lower than
the non-defaultable bond price74. If we assume that the default time is exponential with
St (tm) = e−λt(tm−t), we have:

Pt+h =
∑
tm≥t

C (tm) e(tm−t−h)Rt+h(tm)e−λt+h(tm−t−h) +

Ne(T−t−h)Rt+h(T )
(
Rt+h + (1−Rt+h) e−λt+h(T−t−h)

)
We define the risk factors as the zero-coupon rates, the default intensity and the recovery
rate:

Rt+h (tm) ' Rt (tm) + ∆hRt+h (tm)
λt+h = λt + ∆hλt+h

Rt+h = Rt + ∆hRt+h

We assume that the three risk factors are independent and follow the following probability
distributions:

(∆hRt+h (t1) , . . . ,∆hRt+h (tn)) ∼ N (0,Σ)
∆hλt+h ∼ N

(
0, σ2

λ

)
∆hRt+h ∼ U[a,b]

We can then simulate the daily P&L Π (w) = w (Pt+h − Pt) using the above specifications.
For the numerical application, we use the covariance matrix given in Footnote 57 whereas
the values of σλ, a and b are equal to 20 bps, −10% and 10%. In Figure 2.16, we have
estimated the density of the daily P&L using 100 000 simulations. IR corresponds to the
case when risk factors are only the interest rates75. The case IR/S considers that both
Rt (tm) and λt are risk factors whereas Rt is assumed to be constant. Finally, we include
the recovery risk in the case IR/S/RR. Using 10 million simulations, we find that the daily
value-at-risk is equal to $4 730 (IR), $13 460 (IR/S) and $18 360 (IR/S/RR). We see the
impact of taking into account default risk in the calculation of the value-at-risk.

2.2.5 The case of options and derivatives
Special attention should be paid to portfolios of derivatives, because their risk man-

agement is much more complicated than a long-only portfolio of traditional assets (Duffie
and Pan, 1997). They involve non-linear exposures to risk factors that are difficult to mea-
sure, they are sensitive to parameters that are not always observable and they are generally
traded on OTC markets. In this section, we provide an overview of the challenges that arise
when measuring and managing the risk of these assets. Chapter 9 complements it with a
more exhaustive treatment of hedging and pricing issues as well as model risk.

74We recall that it was equal to $115.47.
75This implies that we set ∆hλt+h and ∆hRt+h to zero in the Monte Carlo procedure.
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FIGURE 2.16: Probability density function of the daily P&L with credit risk

2.2.5.1 Identification of risk factors

Let us consider an example of a portfolio containing wS stocks and wC call options on
this stock. We note St and Ct the stock and option prices at time t. The P&L for the holding
period h is equal to:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)

If we use asset returns as risk factors, we get:

Π (w) = wSStRS,t+h + wCCtRC,t+h

where RS,t+h and RC,t+h are the returns of the stock and the option for the period [t, t+ h].
In this approach, we identify two risk factors. The problem is that the option price Ct is a
non-linear function of the underlying price St:

Ct = fC (St)

This implies that:

Π (w) = wSStRS,t+h + wC (fC (St+h)− Ct)
= wSStRS,t+h + wC (fC (St (1 +RS,t+h))− Ct)

The P&L depends then on a single risk factor RS . We notice that we can write the return
of the option price as a non-linear function of the stock return:

RC,t+h = fC (St (1 +RS,t+h))− Ct
Ct

The problem is that the probability distribution of RC is non-stationary and depends on
the value of St. Therefore, the risk factors cannot be the random vector (RS , RC) because
they require too complex modeling.
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Risk factors are often explicit in primary financial assets (equities, bonds, currencies),
which is not the case with derivatives. Previously, we have identified the return of the
underlying asset as a risk factor for the call option. In the Black-Scholes model, the price
of the call option is given by:

CBS (St,K,Σt, T, bt, rt) = Ste
(bt−rt)τΦ (d1)−Ke−rtτΦ (d2) (2.10)

where St is the current price of the underlying asset, K is the option strike, Σt is the
volatility parameter, T is the maturity date, bt is the cost-of-carry76 and rt is the interest
rate. The parameter τ = T − t is the time to maturity whereas the coefficients d1 and d2
are defined as follows:

d1 = 1
Σt
√
τ

(
ln St
K

+ btτ

)
+ 1

2Σt
√
τ

d2 = d1 − Σt
√
τ

We can then write the option price as follows:

Ct = fBS (θcontract; θ)

where θcontract are the parameters of the contract (strike K and maturity T ) and θ are
the other parameters than can be objective as the underlying price St or subjective as the
volatility Σt. Any one of these parameters θ may serve as risk factors:

• St is obviously a risk factor;

• if Σt is not constant, the option price may be sensitive to the volatility risk;

• the option may be impacted by changes in the interest rate or the cost-of-carry.

The risk manager faces here a big issue, because the risk measure will depend on the
choice of the risk factors77. A typical example is the volatility parameter. We observe a
difference between the historical volatility σ̂t and the Black-Scholes volatility Σt. Because
this implied volatility is not a market price, its value will depend on the option model and
the assumptions which are required to calibrate it. For instance, it will be different if we
use a stochastic volatility model or a local volatility model. Even if two banks use the same
model, they will certainly obtain two different values of the implied volatility, because there
is little possibility that they exactly follow the same calibration procedure.

With the underlying asset St, the implied volatility Σt is the most important risk factor,
but other risk factors may be determinant. They concern the dividend risk for equity options,
the yield curve risk for interest rate options, the term structure for commodity options or
the correlation risk for basket options. In fact, the choice of risk factors is not always obvious
because it is driven by the pricing model and the characteristics of the option. We will take
a closer look at this point in Chapter 9.

2.2.5.2 Methods to calculate VaR and ES risk measures

The method of full pricing To calculate the value-at-risk or the expected shortfall of
option portfolios, we use the same approaches as previously. The difference with primary

76The cost-of-carry depends on the underlying asset. We have bt = rt for non-dividend stocks and total
return indices, bt = rt − dt for stocks paying a continuous dividend yield dt, bt = 0 for forward and futures
contracts and bt = rt − r?t for foreign exchange options where r?t is the foreign interest rate.

77We encounter the same difficulties for pricing and hedging purposes.
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financial assets comes from the pricing function which is non-linear and more complex.
In the case of historical and Monte Carlo methods, the P&L of the sth scenario has the
following expression:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (w)

In the case of the introducing example, the P&L becomes then:

Πs (w) =
{
wSStRs + wC (fC (St (1 +Rs) ; Σt)− Ct) with one risk factor
wSStRs + wC (fC (St (1 +Rs) ,Σs)− Ct) with two risk factors

where Rs and Σs are the asset return and the implied volatility generated by the sth scenario.
If we assume that the interest rate and the cost-of-carry are constant, the pricing function
is:

fC (S; Σ) = CBS (S,K,Σ, T − h, bt, rt)

and we notice that the remaining maturity of the option decreases by h days. In the model
with two risk factors, we have to simulate the underlying price and the implied volatility.
For the single factor model, we use the current implied volatility Σt instead of the simulated
value Σs.

Example 18 We consider a long position on 100 call options with strike K = 100. The
value of the call option is $4.14, the residual maturity78 is 52 days and the current price of
the underlying asset is $100. We assume that Σt = 20% and bt = rt = 5%. The objective is to
calculate the daily value-at-risk with a 99% confidence level and the daily expected shortfall
with a 97.5% confidence level. For that, we consider 250 historical scenarios, whose first
nine values are the following:

s 1 2 3 4 5 6 7 8 9
Rs −1.93 −0.69 −0.71 −0.73 1.22 1.01 1.04 1.08 −1.61

∆Σs −4.42 −1.32 −3.04 2.88 −0.13 −0.08 1.29 2.93 0.85

TABLE 2.12: Daily P&L of the long position on the call option when the risk factor is
the underlying price

s Rs (in %) St+h Ct+h Πs

1 −1.93 98.07 3.09 −104.69
2 −0.69 99.31 3.72 −42.16
3 −0.71 99.29 3.71 −43.22
4 −0.73 99.27 3.70 −44.28
5 1.22 101.22 4.81 67.46
6 1.01 101.01 4.68 54.64
7 1.04 101.04 4.70 56.46
8 1.08 101.08 4.73 58.89
9 −1.61 98.39 3.25 −89.22

Using the price and the characteristics of the call option, we can show that the implied
volatility Σt is equal to 19.99% (rounded to 20%). We first consider the case of the single
risk factor. In Table 2.12, we show the values of the P&L for the first nine scenarios. As an
illustration, we provide the detailed calculation for the first scenario. The asset return Rs

78We assume that there are 252 trading days per year.
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is equal to −1.93%, thus implying that the asset price St+h is equal to 100× (1− 1.93%) =
98.07. The residual maturity τ is equal to 51/252 years. It follows that:

d1 = 1
20%×

√
51/252

(
ln 98.07

100 + 5%× 51
252

)
+ 1

2 × 20%×
√

51
252

= −0.0592

and:

d2 = −0.0592− 20%×
√

51
252 = −0.1491

We deduce that:

Ct+h = 98.07× e(5%−5%) 51
252 × Φ (−0.0592)− 100× e5%× 51

252 × Φ (−0.1491)
= 98.07× 1.00× 0.4764− 100× 1.01× 0.4407
= 3.093

The simulated P&L for the first historical scenario is then equal to:

Πs = 100× (3.093− 4.14) = −104.69

Based on the 250 historical scenarios, the 99% value-at-risk is equal to $154.79, whereas the
97.5% expected shortfall is equal to $150.04.

Remark 13 In Figure 2.17, we illustrate that the option return RC is not a new risk factor.
We plot RS against RC for the 250 historical scenarios. The points are on the curve of the
Black-Scholes formula. The correlation between the two returns is equal to 99.78%, which
indicates that RS and RC are highly dependent. However, this dependence is non-linear
for large positive or negative asset returns. The figure shows also the leverage effect of the
call option, because RC is not of the same order of magnitude as RS. This illustrates the
non-linear characteristic of options. A linear position with a volatility equal to 20% implies
a daily VaR around 3%. In our example, the VaR is equal to 37.4% of the portfolio value,
which corresponds to a linear exposure in a stock with a volatility of 259%!

Let us consider the case with two risk factors when the implied volatility changes from
t to t + h. We assume that the absolute variation of the implied volatility is the right risk
factor to model the future implied volatility. It follows that:

Σt+h = Σt + ∆Σs

In Table 2.13, we indicate the value taken by Σt+h for the first nine scenarios. This allows
us to price the call option and deduce the P&L. For instance, the call option becomes79
$2.32 instead of $3.09 for s = 1 because the implied volatility has decreased. Finally, the
99% value-at-risk is equal to $181.70 and is larger than the previous one due to the second
risk factor80.

The method of sensitivities The previous approach is called full pricing, because it
consists in re-pricing the option. In the method based on the Greek coefficients, the idea is
to approximate the change in the option price by the Taylor expansion. For instance, we
define the delta approach as follows81:

Ct+h − Ct '∆t (St+h − St)

79We have d1 = −0.0986, d2 = −0.1687, Φ (d1) = 0.4607, Φ (d2) = 0.4330 and Ct+h = 2.318.
80For the expected shortfall, we have ES97.5% (w; one day) = $172.09.
81We write the call price as the function CBS (St,Σt, T ).
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FIGURE 2.17: Relationship between the asset return RS and the option return RC

where ∆t is the option delta:

∆t = ∂ CBS (St,Σt, T )
∂ St

This approximation consists in replacing the non-linear exposure by a linear exposure with
respect to the underlying price. As noted by Duffie and Pan (1997), this approach is not
satisfactory because it is not accurate for large changes in the underlying price that are
the most useful scenarios for calculating the risk measure. The delta approach may be
implemented for the three VaR/ES methods. For instance, the Gaussian VaR of the call
option is:

VaRα (w;h) = Φ−1 (α)× |∆t| × St × σ (RS,t+h)

TABLE 2.13: Daily P&L of the long position on the call option when the risk factors are
the underlying price and the implied volatility

s Rs (in %) St+h ∆Σs (in %) Σt+h Ct+h Πs

1 −1.93 98.07 −4.42 15.58 2.32 −182.25
2 −0.69 99.31 −1.32 18.68 3.48 −65.61
3 −0.71 99.29 −3.04 16.96 3.17 −97.23
4 −0.73 99.27 2.88 22.88 4.21 6.87
5 1.22 101.22 −0.13 19.87 4.79 65.20
6 1.01 101.01 −0.08 19.92 4.67 53.24
7 1.04 101.04 1.29 21.29 4.93 79.03
8 1.08 101.08 2.93 22.93 5.24 110.21
9 −1.61 98.39 0.85 20.85 3.40 −74.21
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whereas the Gaussian ES of the call option is:

ESα (w;h) =
φ
(
Φ−1 (α)

)
1− α × |∆t| × St × σ (RS,t+h)

If we consider the introductory example, we have:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)
' (wS + wC∆t) (St+h − St)
= (wS + wC∆t)StRS,t+h

With the delta approach, we aggregate the risk by netting the different delta exposures82.
In particular, the portfolio is delta neutral if the net exposure is zero:

wS + wC∆t = 0⇔ wS = −wC∆t

With the delta approach, the VaR/ES of delta neutral portfolios is then equal to zero.

FIGURE 2.18: Approximation of the option price with the Greek coefficients

To overcome this drawback, we can use the second-order approximation or the delta-
gamma approach:

Ct+h − Ct '∆t (St+h − St) + 1
2Γt (St+h − St)2

where Γt is the option gamma:

Γt = ∂2 CBS (St,Σt, T )
∂ S2

t

82A long (or short) position on the underlying asset is equivalent to ∆t = 1 (or ∆t = −1).
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In Figure 2.18, we compare the two Taylor expansions with the re-pricing method when h is
equal to one trading day. We observe that the delta approach provides a bad approximation
if the future price St+h is far from the current price St. The inclusion of the gamma helps
to correct the pricing error. However, if the time period h is high, the two approximations
may be inaccurate even in the neighborhood de St (see the case h = 30 days in Figure 2.18).
It is therefore important to take into account the time or maturity effect:

Ct+h − Ct '∆t (St+h − St) + 1
2Γt (St+h − St)2 + Θth

where Θt = ∂t CBS (St,Σt, T ) is the option theta83.
The Taylor expansion can be generalized to a set of risk factors Ft = (F1,t, . . . ,Fm,t):

Ct+h − Ct '
m∑
j=1

∂ Ct
∂ Fj,t

(Fj,t+h −Fj,t) +

1
2

m∑
j=1

m∑
k=1

∂2 Ct
∂ Fj,t ∂ Fk,t

(Fj,t+h −Fj,t) (Fk,t+h −Fk,t)

The delta-gamma-theta approach consists in considering the underlying price and the ma-
turity as risk factors. If we add the implied volatility as a new risk factor, we obtain:

Ct+h − Ct ' ∆t (St+h − St) + 1
2Γt (St+h − St)2 + Θth+

υt (Σt+h − Σt)

where υt = ∂Σt CBS (St,Σt, T ) is the option vega. Here, we have considered that only the
second derivative of Ct with respect to St is significant, but we could also include the vanna
or volga effect84.

In the case of the call option, the Black-Scholes sensitivities are equal to:

∆t = e(bt−rt)τΦ (d1)

Γt = e(bt−rt)τφ (d1)
StΣt

√
τ

Θt = −rtKe−rtτΦ (d2)− 1
2
√
τ
StΣte(bt−rt)τφ (d1)−

(bt − rt)Ste(bt−rt)τΦ (d1)
υt = e(bt−rt)τSt

√
τφ (d1)

If we consider again Example 18 on page 95, we obtain85 ∆t = 0.5632, Γt = 0.0434,
Θt = −11.2808 and υt = 17.8946. In Table 2.14, we have reported the approximated P&Ls
for the first nine scenarios and the one-factor model. The fourth column indicates the P&L
obtained by the full pricing method, which were already reported in Table 2.12. Π∆

s (w),
Π∆+Γ
s (w) and Π∆+Γ+Θ

s (w) correspond respectively to delta, delta-gamma, delta-gamma-
theta approaches. For example, we have Π∆

1 (w) = 100× 0.5632× (98.07− 100) = −108.69,
Π∆+Γ

1 (w) = −108.69 + 100 × 1
2 × 0.0434 × (98.07− 100)2 = −100.61 and Π∆+Γ+Θ

1 (w) =

83An equivalent formula is Θt = −∂T CBS (St,Σt, T ) = −∂τ CBS (St,Σt, T ) because the maturity T (or
the time to maturity τ) is moving in the opposite way with respect to the time t.

84The vanna coefficient corresponds to the cross-derivative of Ct with respect to St and Σt whereas the
volga effect is the second derivative of Ct with respect to Σt.

85We have d1 = 0.1590, Φ (d1) = 0.5632, φ (d1) = 0.3939, d2 = 0.0681 and Φ (d2) = 0.5272.
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−100.61 − 11.2808 × 1/252 = −105.09. We notice that we obtain a good approximation
with the delta, but it is more accurate to combine delta, gamma and theta sensibilities.
Finally, the 99% VaRs for a one-day holding period are $171.20 and $151.16 and $155.64.
This is the delta-gamma-theta approach which gives the closest result86. If the set of risk
factors includes the implied volatility, we obtain the results in Table 2.15. We notice that
the vega effect is very significant (fifth column). As an illustration, we have Πυ1 (w) =
100× 17.8946× (15.58%− 20%) = −79.09, implying that the volatility risk explains 43.4%
of the loss of $182.25 for the first scenario. Finally, the VaR is equal to $183.76 with the
delta-gamma-theta-vega approach whereas we found previously that it was equal to $181.70
with the full pricing method.

TABLE 2.14: Calculation of the P&L based on the Greek sensitivities
s Rs (in %) St+h Πs Π∆

s Π∆+Γ
s Π∆+Γ+Θ

s

1 −1.93 98.07 −104.69 −108.69 −100.61 −105.09
2 −0.69 99.31 −42.16 −38.86 −37.83 42.30
3 −0.71 99.29 −43.22 −39.98 −38.89 −43.37
4 −0.73 99.27 −44.28 −41.11 −39.96 −44.43
5 1.22 101.22 67.46 68.71 71.93 67.46
6 1.01 101.01 54.64 56.88 59.09 54.61
7 1.04 101.04 56.46 58.57 60.91 56.44
8 1.08 101.08 58.89 60.82 63.35 58.87
9 −1.61 98.39 −89.22 −90.67 −85.05 −89.53
VaR99% (w; one day) 154.79 171.20 151.16 155.64
ES97.5% (w; one day) 150.04 165.10 146.37 150.84

TABLE 2.15: Calculation of the P&L using the vega coefficient

s St+h Σt+h Πs Πυs Π∆+υ
s Π∆+Γ+υ

s Π∆+Γ+Θ+υ
s

1 98.07 15.58 −182.25 −79.09 −187.78 −179.71 −184.19
2 99.31 18.68 −65.61 −23.62 −62.48 −61.45 −65.92
3 99.29 16.96 −97.23 −54.40 −94.38 −93.29 −97.77
4 99.27 22.88 6.87 51.54 10.43 11.58 7.10
5 101.22 19.87 65.20 −2.33 66.38 69.61 65.13
6 101.01 19.92 53.24 −1.43 55.45 57.66 53.18
7 101.04 21.29 79.03 23.08 81.65 84.00 79.52
8 101.08 22.93 110.21 52.43 113.25 115.78 111.30
9 98.39 20.85 −74.21 15.21 −75.46 −69.84 −74.32
VaR99% (w; one day) 181.70 77.57 190.77 179.29 183.76
ES97.5% (w; one day) 172.09 73.90 184.90 169.34 173.81

Remark 14 We do not present here the non-linear quadratic VaR, which consists in com-
puting the VaR of option portfolios with the Cornish-Fisher expansion (Zangari, 1996;
Britten-Jones and Schaefer, 1999). It is called ‘quadratic’ because it uses the delta-gamma
approximation and requires calculating the moments of the quadratic form (St+h − St)2.
The treatment of this approach is left as Exercise 2.4.8 on page 123.

86We found previously that the VaR was equal to $154.79 with the full pricing method.
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The hybrid method On the one hand, the full pricing method has the advantage to
be accurate, but also the drawback to be time-consuming because it performs a complete
revaluation of the portfolio for each scenario. On the other hand, the method based on the
sensitivities is less accurate, but also faster than the re-pricing approach. Indeed, the Greek
coefficients are calculated once and for all, and their values do not depend on the scenario.
The hybrid method consists of combining the two approaches:

1. we first calculate the P&L for each (historical or simulated) scenario with the method
based on the sensitivities;

2. we then identify the worst scenarios;

3. we finally revalue these worst scenarios by using the full pricing method.

The underlying idea is to consider the faster approach to locate the value-at-risk, and then
to use the most accurate approach to calculate the right value.

TABLE 2.16: The 10 worst scenarios identified by the hybrid method

i
Full pricing Greeks

∆− Γ−Θ− υ ∆−Θ ∆−Θ− υ
s Πs s Πs s Πs s Πs

1 100 −183.86 100 −186.15 182 −187.50 134 −202.08
2 1 −182.25 1 −184.19 169 −176.80 100 −198.22
3 134 −181.15 134 −183.34 27 −174.55 1 −192.26
4 27 −163.01 27 −164.26 134 −170.05 169 −184.32
5 169 −162.82 169 −164.02 69 −157.66 27 −184.04
6 194 −159.46 194 −160.93 108 −150.90 194 −175.36
7 49 −150.25 49 −151.43 194 −149.77 49 −165.41
8 245 −145.43 245 −146.57 49 −147.52 182 −164.96
9 182 −142.21 182 −142.06 186 −145.27 245 −153.37
10 79 −135.55 79 −136.52 100 −137.38 69 −150.68

In Table 2.16, we consider the previous example with the implied volatility as a risk
factor. We have reported the worst scenarios corresponding to the order statistic i : nS
with i ≤ 10. In the case of the full pricing method, the five worst scenarios are the 100th,
1st, 134th, 27th and 169th. This implies that the hybrid method will give the right result
if it is able to select the 100th, 1st and 134th scenarios to compute the value-at-risk which
corresponds to the average of the second and third order statistics. If we consider the
∆ − Γ − Θ − υ approximation, we identify the same ten worst scenarios. It is perfectly
normal, as it is easy to price an European call option. It will not be the case with exotic
options, because the approximation may not be accurate. For instance, if we consider our
example with the ∆−Θ approximation, the five worst scenarios becomes the 182th, 169st,
27th, 134th and 69th. If we revaluate these 5 worst scenarios, the 99% value-at-risk is equal
to:

VaR99% (w; one day) = 1
2 (163.01 + 162.82) = $162.92

which is a result far from the value of $180.70 found with the full pricing method. With the
10 worst scenarios, we obtain:

VaR99% (w; one day) = 1
2 (181.15 + 163.01) = $172.08
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Once again, we do not find the exact value, because the ∆−Θ approximation fails to detect
the first scenario among the 10 worst scenarios. This problem vanishes with the ∆−Θ−υ
approximation, even if it gives a ranking different than this obtained with the full pricing
method. In practice, the hybrid approach is widespread and professionals generally use the
identification method with 10 worst scenarios87.

2.2.5.3 Backtesting

When we consider a model to price a product, the valuation is known as ‘mark-to-
model’ and requires more attention than the mark-to-market approach. In this last case,
the simulated P&L is the difference between the mark-to-model value at time t+ 1 and the
current mark-to-market value:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-market

At time t+ 1, the realized P&L is the difference between two mark-to-market values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-market

− Pt (w)︸ ︷︷ ︸
mark-to-market

For exotic options and OTC derivatives, we don’t have market prices and the portfolio is
valuated using the mark-to-model approach. This means that the simulated P&L is the
difference between two mark-to-model values:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

and the realized P&L is also the difference between two mark-to-model values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

In the case of the mark-to-model valuation, we see the relevance of the pricing model in
terms of risk management. Indeed, if the pricing model is wrong, the value-at-risk is wrong
too and this cannot be detected by the backtesting procedure, which has little signification.
This is why the supervisory authority places great importance on model risk.

2.2.5.4 Model risk

Model risk cannot be summarized in a unique definition due to its complexity. For
instance, Derman (1996, 2001) considers six types of model risk (inapplicability of modeling,
incorrect model, incorrect solutions, badly approximated solution, bugs and unstable data).
Rebonato (2001) defines model risk as “the risk of a significant difference between the mark-
to-model value of an instrument, and the price at which the same instrument is revealed to
have traded in the market”. According to Morini (2001), these two approaches are different.
For Riccardo Rebonato, there is not a true value of an instrument before it will be traded on
the market. Model risk can therefore be measured by selling the instrument in the market.
For Emanuel Derman, an instrument has an intrinsic true value, but it is unknown. The
proposition of Rebonato is certainly the right way to define model risk, but it does not
help to measure model risk from an ex-ante point of view. Moreover, this approach does

87Its application is less frequent than in the past because computational times have dramatically decreased
with the evolution of technology, in particular the development of parallel computing.
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not distinguish between model risk and liquidity risk. The conception of Derman is more
adapted to manage model risk and calibrate the associated provisions. This is the approach
that has been adopted by banks and regulators. Nevertheless, the multifaceted nature of
this approach induces very different implementations across banks, because it appears as a
catalogue with an infinite number of rules.

We consider a classification with four main types of model risk:

1. the operational risk;

2. the parameter risk;

3. the risk of mis-specification;

4. the hedging risk.

The operational risk is the risk associated to the implementation of the pricer. It concerns
programming mistakes or bugs, but also mathematical errors in closed-form formulas, ap-
proximations or numerical methods. A typical example is the use of a numerical scheme
for solving a partial differential equation. The accuracy of the option price and the Greek
coefficients will depend on the specification of the numerical algorithm (explicit, implicit or
mixed scheme) and the discretization parameters (time and space steps). Another example
is the choice of the Monte Carlo method and the number of simulations.

The parameter risk is the risk associated to the input parameters, in particular those
which are difficult to estimate. A wrong value of one parameter can lead to a mis-pricing,
even though the model is right and well implemented. In this context, the question of
available and reliable data is a key issue. It is particularly true when the parameters are
unobservable and are based on an expert’s opinion. A typical example concerns the value of
correlations in multi-asset options. Even if there is no problem with data, some parameters
are indirectly related to market data via a calibration set. In this case, they may change
with the specification of the calibration set. For instance, the pricing of exotic interest rate
options is generally based on parameters calibrated from prices of plain vanilla instruments
(caplets and swaptions). The analysis of parameter risk consists then of measuring the
impact of parameter changes on the price and the hedging portfolio of the exotic option.

The risk of mis-specification is the risk associated to the mathematical model, because
it may not include all risk factors, the dynamics of the risk factors is not adequate or the
dependence between them is not well defined. It is generally easy to highlight this risk,
because various models calibrated with the same set of instruments can produce different
prices for the same exotic option. The big issue is to define what is the least bad model. For
example, in the case of equity options, we have the choice between many models: Black-
Scholes, local volatility, Heston model, other stochastic volatility models, jump-diffusion,
etc. In practice, the frontier between the risk of parameters and the risk of mis-specification
may be unclear as shown by the seminal work of uncertainty on pricing and hedging by
Avellaneda et al. (1995). Moreover, a model which appears to be good for pricing may not
be well adapted for risk management. This explains that the trader and the risk manager
can use sometimes two different models for the same option payoff.

The hedging risk is the risk associated to the trading management of the option portfolio.
The sales margin corresponds to the difference between the transaction price and the mark-
to-model price. The sales margin is calculated at the inception date of the transaction. To
freeze the margin, we have to hedge the option. The mark-to-model value is then transferred
to the option trader and represents the hedging cost. We face here the risk that the realized
hedging cost will be larger than the mark-to-model price. A typical example is a put option,
which has a negative delta. The hedging portfolio corresponds then to a short selling on
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the underlying asset. Sometimes, this short position may be difficult to implement (e.g.
a ban on short selling) or may be very costly (e.g. due to a change in the bank funding
condition). Some events may also generate a rebalancing risk. The most famous example is
certainly the hedge fund crisis in October 2008, which has imposed redemption restrictions
or gates. This caused difficulties to traders, who managed call options on hedge funds and
were unable to reduce their deltas at this time. The hedging risk does not only concern
the feasibility of the hedging implementation, but also its adequacy with the model. As an
illustration, we suppose that we use a stochastic volatility model for an option, which is
sensitive to the vanna coefficient. The risk manager can then decide to use this model for
measuring the value-at-risk, but the trader can also prefer to implement a Black-Scholes
hedging portfolio88. This is not a problem that the risk manager uses a different model than
the trader if the model risk only includes the first three categories. However, it will be a
problem if it also concerns hedging risk.

In the Basel III framework, the Basel Committee highlights the role of the model vali-
dation team:

“A distinct unit of the bank that is separate from the unit that designs and
implements the internal models must conduct the initial and ongoing validation
of all internal models used to determine market risk capital requirements. The
model validation unit must validate all internal models used for purposes of the
IMA on at least an annual basis. [...] Banks must maintain a process to ensure
that their internal models have been adequately validated by suitably qualified
parties independent of the model development process to ensure that each model
is conceptually sound and adequately reflects all material risks. Model validation
must be conducted both when the model is initially developed and when any
significant changes are made to the model” (BCBS, 2019, pages 68-69).

Therefore, model risk justifies that model validation is an integral part of the risk man-
agement process for exotic options. The tasks of a model validation team are multiple and
concern reviewing the programming code, checking mathematical formulas and numerical
approximations, validating market data, testing the calibration stability, challenging the
pricer with alternative models, proposing provision buffers, etc. This team generally oper-
ates at the earliest stages of the pricer development (or when the pricer changes), whereas
the risk manager is involved to follow the product on a daily basis. In Chapter 9, we present
the different tools available for the model validation unit in order to assess the robustness
of risk measures that are based on mark-to-model prices.

Remark 15 It is a mistake to think that model risk is an operational risk. Model risk is
intrinsically a market risk. Indeed, it exists because exotic options are difficult to price and
hedge, implying that commercial risk is high. This explains that sales margins are larger
than for vanilla options and implicitly include model risk, which is therefore inherent to the
business of exotic derivatives.

2.3 Risk allocation
Measuring the risk of a portfolio is a first step to manage it. In particular, a risk measure

is a single number that is not very helpful for understanding the sources of the portfolio risk.
88There may be many reasons for implementing more simple hedging portfolios: the trader may be more

confident in the robustness, there is no market instrument to replicate the vanna position, etc.
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To go further, we must define precisely the notion of risk contribution in order to propose
risk allocation principles.

Let us consider two trading desks A and B, whose risk measure is respectively R (wA)
and R (wB). At the global level, the risk measure is equal to R (wA+B). The question is
then how to allocate R (wA+B) to the trading desks A and B:

R (wA+B) = RCA (wA+B) +RCB (wA+B)

There is no reason that RCA (wA+B) = R (wA) and RCB (wA+B) = R (wB) except if there
is no diversification. This question is an important issue for the bank because risk allocation
means capital allocation:

K (wA+B) = KA (wA+B) + KB (wA+B)

Capital allocation is not neutral, because it will impact the profitability of business units
that compose the bank.

Remark 16 This section is based on Chapter 2 of the book of Roncalli (2013).

2.3.1 Euler allocation principle
According to Litterman (1996), risk allocation consists in decomposing the risk portfolio

into a sum of risk contributions by sub-portfolios (assets, trading desks, etc.). The concept
of risk contribution is key in identifying concentrations and understanding the risk profile of
the portfolio, and there are different methods for defining them. As illustrated by Denault
(2001), some methods are more pertinent than others and the Euler principle is certainly
the most used and accepted one.

We decompose the P&L as follows:

Π =
n∑
i=1

Πi

where Πi is the P&L of the ith sub-portfolio. We note R (Π) the risk measure associated
with the P&L89. Let us consider the risk-adjusted performance measure (RAPM) defined
by90:

RAPM (Π) = E [Π]
R (Π)

Tasche (2008) considers the portfolio-related RAPM of the ith sub-portfolio defined by:

RAPM (Πi | Π) = E [Πi]
R (Πi | Π)

Based on the notion of RAPM, Tasche (2008) states two properties of risk contributions
that are desirable from an economic point of view:

1. Risk contributions R (Πi | Π) to portfolio-wide risk R (Π) satisfy the full allocation
property if:

n∑
i=1
R (Πi | Π) = R (Π) (2.11)

89We recall that R (Π) = R (−L).
90This concept is close to the RAROC measure introduced by Banker Trust (see page 2).



106 Handbook of Financial Risk Management

2. Risk contributions R (Πi | Π) are RAPM compatible if there are some εi > 0 such
that91:

RAPM (Πi | Π) > RAPM (Π)⇒ RAPM (Π + hΠi) > RAPM (Π) (2.12)

for all 0 < h < εi.

Tasche (2008) shows therefore that if there are risk contributions that are RAPM compatible
in the sense of the two previous properties (2.11) and (2.12), then R (Πi | Π) is uniquely
determined as:

R (Πi | Π) = d
dhR (Π + hΠi)

∣∣∣∣
h=0

(2.13)

and the risk measure is homogeneous of degree 1. In the case of a subadditive risk measure,
one can also show that:

R (Πi | Π) ≤ R (Πi) (2.14)
This means that the risk contribution of the sub-portfolio i is always smaller than its stand-
alone risk measure. The difference is related to the risk diversification.

Let us return to risk measure R (w) defined in terms of weights. The previous framework
implies that the risk contribution of sub-portfolio i is uniquely defined as:

RCi = wi
∂R (w)
∂ wi

(2.15)

and the risk measure satisfies the Euler decomposition:

R (w) =
n∑
i=1

wi
∂R (w)
∂ wi

=
n∑
i=1
RCi (2.16)

This relationship is also called the Euler allocation principle.

Remark 17 We can always define the risk contributions of a risk measure by using Equa-
tion (2.15). However, this does not mean that the risk measure satisfies the Euler decompo-
sition (2.16).

Remark 18 Kalkbrener (2005) develops an axiomatic approach to risk contribution. In
particular, he shows that the Euler allocation principle is the only risk allocation method
compatible with diversification principle (2.14) if the risk measure is subadditive.

If we assume that the portfolio return R (w) is a linear function of the weights w, the
expression of the standard deviation-based risk measure becomes:

R (w) = −µ (w) + c · σ (w)
= −w>µ+ c ·

√
w>Σw

where µ and Σ are the mean vector and the covariance matrix of sub-portfolios. It follows
that the vector of marginal risks is:

∂R (w)
∂ w

= −µ+ c · 1
2
(
w>Σw

)−1 (2Σw)

= −µ+ c · Σw√
w>Σw

91This property means that assets with a better risk-adjusted performance than the portfolio continue to
have a better RAPM if their allocation increases in a small proportion.
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The risk contribution of the ith sub-portfolio is then:

RCi = wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
We verify that the standard deviation-based risk measure satisfies the full allocation prop-
erty:

n∑
i=1
RCi =

n∑
i=1

wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
= w>

(
−µ+ c · Σw√

w>Σw

)
= −w>µ+ c ·

√
w>Σw

= R (w)

Because Gaussian value-at-risk and expected shortfall are two special cases of the stan-
dard deviation-based risk measure, we conclude that they also satisfy the Euler allocation
principle. In the case of the value-at-risk, the risk contribution becomes:

RCi = wi ·
(
−µi + Φ−1 (α) ·

(Σw)i√
w>Σw

)
(2.17)

whereas in the case of the expected shortfall, it is equal to:

RCi = wi ·

(
−µi +

φ
(
Φ−1 (α)

)
(1− α) ·

(Σw)i√
w>Σw

)
(2.18)

Remark 19 Even if the risk measure is convex, it does not necessarily satisfy the Eu-
ler allocation principle. The most famous example is the variance of the portfolio return.
We have var (w) = w>Σw and ∂w var (w) = 2Σw. It follows that

∑n
i=1 wi · ∂wi var (w) =∑n

i=1 wi · (2Σw)i = 2w>Σw = 2 var (w) > var (w). In the case of the variance, the sum of
the risk contributions is then always larger than the risk measure itself, because the variance
does not satisfy the homogeneity property.

Example 19 We consider the Apple/Coca-Cola portfolio that has been used for calculating
the Gaussian VaR on page 68. We recall that the nominal exposures were $1 093.3 (Apple)
and $842.8 (Coca-Cola), the estimated standard deviation of daily returns was equal to
1.3611% for Apple and 0.9468% for Coca-Cola and the cross-correlation of stock returns
was equal to 12.0787%.

In the two-asset case, the expression of the value-at-risk or the expected shortfall is:

R (w) = −w1µ1 − w2µ2 + c
√
w2

1σ
2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

It follows that the marginal risk of the first asset is:

MR1 = −µ1 + c
w1σ

2
1 + w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

We then deduce that the risk contribution of the first asset is:

RC1 = −w1µ1 + c
w2

1σ
2
1 + w1w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2
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By using the numerical values92 of Example 19, we obtain the results given in Tables 2.17
and 2.18. We verify that the sum of risk contributions is equal to the risk measure. We
notice that the stock Apple explains 75.14% of the risk whereas it represents 56.47% of the
allocation.

TABLE 2.17: Risk decomposition of the 99% Gaussian value-at-risk
Asset wi MRi RCi RC?i
Apple 1093.3 2.83% 30.96 75.14%

Coca-Cola 842.8 1.22% 10.25 24.86%
R (w) 41.21

TABLE 2.18: Risk decomposition of the 99% Gaussian expected shortfall
Asset wi MRi RCi RC?i
Apple 1093.3 3.24% 35.47 75.14%

Coca-Cola 842.8 1.39% 11.74 24.86%
R (w) 47.21

2.3.2 Application to non-normal risk measures
2.3.2.1 Main results

In the previous section, we provided formulas for when asset returns are normally dis-
tributed. However, the previous expressions can be extended in the general case. For the
value-at-risk, Gouriéroux et al. (2000) show that the risk contribution is equal to93:

RCi = R (Πi | Π)
= −E [Πi | Π = −VaRα (Π)]
= E [Li | L (w) = VaRα (L)] (2.19)

Formula (2.19) is more general than Equation (2.17) obtained in the Gaussian case. Indeed,
we can retrieve the latter if we assume that the returns are Gaussian. We recall that the
portfolio return is R (w) =

∑n
i=1 wiRi = w>R. The portfolio loss is defined by L (w) =

−R (w). We deduce that:

RCi = E [−wiRi | −R (w) = VaRα (w;h)]
= −wiE [Ri | R (w) = −VaRα;h (w)]

Because R (w) is a linear combination of R, the random vector (R,R (w)) is Gaussian and
we have: (

R
R (w)

)
∼ N

((
µ

w>µ

)
,

(
Σ Σw
w>Σ w>Σw

))
92We set µ1 = µ2 = 0.
93See also Hallerbach (2003).
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We know that VaRα (w;h) = −w>µ+ Φ−1 (α)
√
w>Σw. It follows that94:

E [R|R (w) = −VaRα (w;h)] = E
[
R | R (w) = w>µ− Φ−1 (α)

√
w>Σw

]
= µ+ Σw

(
w>Σw

)−1 ·(
w>µ− Φ−1 (α)

√
w>Σw − w>µ

)
and:

E [R|R (w) = −VaRα (w;h)] = µ− Φ−1 (α) Σw
√
w>Σw

(w>Σw)−1

= µ− Φ−1 (α) Σw√
w>Σw

We finally obtain the same expression as Equation (2.17):

RCi = −wi
(
µ− Φ−1 (α) Σw√

w>Σw

)
i

= −wiµi + Φ−1 (α)
wi · (Σw)i√
w>Σw

In the same way, Tasche (2002) shows that the general expression of the risk contribu-
tions for the expected shortfall is:

RCi = R (Πi | Π)
= −E [Πi | Π ≤ −VaRα (Π)]
= E [Li | L (w) ≥ VaRα (L)] (2.20)

Using Bayes’ theorem, it follows that:

RCi = E [Li · 1 {L (w) ≥ VaRα (L)}]
1− α

If we apply the previous formula to the Gaussian case, we obtain:

RCi = − wi
1− αE [Ri · 1 {R (w) ≤ −VaRα (L)}]

After some tedious computations, we retrieve the same expression as found previously95.

2.3.2.2 Calculating risk contributions with historical and simulated scenarios

The case of value-at-risk When using historical or simulated scenarios, the VaR is
calculated as follows:

VaRα (w;h) = −Π((1−α)nS :nS) = L(αnS :nS)

Let RΠ (s) be the rank of the P&L associated to the sth observation meaning that:

RΠ (s) =
nS∑
j=1

1 {Πj ≤ Πs}

94We use the formula of the conditional expectation presented in Appendix A.2.2.4 on page 1062.
95The derivation of the formula is left as an exercise (Section 2.4.9 on page 123).
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We deduce that:
Πs = Π(RΠ(s):nS)

Formula (2.19) is then equivalent to decompose Π((1−α)nS :nS) into individual P&Ls. We
have Πs =

∑n
i=1 Πi,s where Πi,s is the P&L of the ith sub-portfolio for the sth scenario. It

follows that:

VaRα (w;h) = −Π((1−α)nS :nS)

= −ΠR−1
Π ((1−α)nS)

= −
n∑
i=1

Πi,R−1
Π ((1−α)nS)

where R−1
Π is the inverse function of the rank. We finally deduce that:

RCi = −Πi,R−1
Π ((1−α)nS)

= Li,R−1
Π ((1−α)nS)

The risk contribution of the ith sub-portfolio is the loss of the ith sub-portfolio corresponding
to the scenario R−1

Π ((1− α)nS). If (1− α)nS is not an integer, we have:

RCi = −
(

Πi,R−1
Π (q) + ((1− α)nS − q)

(
Πi,R−1

Π (q+1) −Πi,R−1
Π (q)

))
where q = qα (nS) is the integer part of (1− α)nS .

Let us consider Example 13 on page 68. We have found that the historical value-at-risk
is $47.39. It corresponds to the linear interpolation between the second and third largest
loss. Using results in Table 2.7 on page 70, we notice that R−1

Π (1) = 236, R−1
Π (2) = 69,

R−1
Π (3) = 85, R−1

Π (4) = 23 and R−1
Π (5) = 242. We deduce that the second and third order

statistics correspond to the 69th and 85th historical scenarios. The risk decomposition is
reported in Table 2.19. Therefore, we calculate the risk contribution of the Apple stock as
follows:

RC1 = −1
2 (Π1,69 + Π1,85)

= −1
2 (10× (105.16− 109.33) + 10× (104.72− 109.33))

= $43.9

For the Coca-Cola stock, we obtain:

RC2 = −1
2 (Π2,69 + Π2,85)

= −1
2 (20× (41.65− 42.14) + 20× (42.28− 42.14))

= $3.5

If we compare these results with those obtained with the Gaussian VaR, we observe that
the risk decomposition is more concentrated for the historical VaR. Indeed, the exposure on
Apple represents 96.68% whereas it was previously equal to 75.14%. The problem is that
the estimator of the risk contribution only uses two observations, implying that its variance
is very high.
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TABLE 2.19: Risk decomposition of the 99% historical value-at-risk
Asset wi MRi RCi RC?i
Apple 56.47% 77.77 43.92 92.68%

Coca-Cola 43.53% 7.97 3.47 7.32%
R (w) 47.39

We can consider three techniques to improve the efficiency of the estimator RCi =
Li,R−1

Π (nS(1−a)). The first approach is to use a regularization method (Scaillet, 2004). The
idea is to estimate the value-at-risk by weighting the order statistics:

VaRα (w;h) = −
nS∑
s=1

$α (s;nS) Π(s:nS)

= −
nS∑
s=1

$α (s;nS) ΠR−1
Π (s)

where $α (s;nS) is a weight function dependent on the confidence level α. The expression
of the risk contribution then becomes:

RCi = −
nS∑
s=1

$α (s;nS) Πi,R−1
Π (s)

Of course, this naive method can be improved by using more sophisticated approaches such
as importance sampling (Glasserman, 2005).

In the second approach, asset returns are assumed to be elliptically distributed. In this
case, Carroll et al. (2001) show that96:

RCi = E [Li] + cov (L,Li)
σ2 (L) (VaRα (L)− E [L]) (2.21)

Estimating the risk contributions with historical scenarios is then straightforward. It suffices
to apply Formula (2.21) by replacing the statistical moments by their sample statistics:

RCi = L̄i +
∑nS
s=1

(
Ls − L̄

) (
Li,s − L̄i

)∑nS
s=1

(
Ls − L̄

)2 (
VaRα (L)− L̄

)
where L̄i = n−1

S

∑nS
s=1 Li,s and L̄ = n−1

S

∑nS
s=1 Ls. Equation (2.21) can be viewed as the

estimation of the conditional expectation E [Li|L = VaRα (L)] in a linear regression frame-
work:

Li = βL+ εi

96We verify that the sum of the risk contributions is equal to the value-at-risk:
n∑
i=1

RCi =
n∑
i=1

E [Li] + (VaRα (L)− E [L])
n∑
i=1

cov (L,Li)
σ2 (L)

= E [L] + (VaRα (L)− E [L])
= VaRα (L)
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Because the least squares estimator is β̂ = cov (L,Li) /σ2 (L), we deduce that:

E [Li|L = VaRα (L)] = β̂VaRα (L) + E [εi]

= β̂VaRα (L) +
(
E [Li]− β̂E [L]

)
= E [Li] + β̂ (VaRα (L)− E [L])

Epperlein and Smillie (2006) extend Formula (2.21) in the case of non-elliptical distri-
butions. If we consider the generalized conditional expectation E [Li|L = x] = f (x) where
the function f is unknown, the estimator is given by the kernel regression97:

f̂ (x) =
∑nS
s=1K (Ls − x)Li,s∑nS
s=1K (Ls − x)

where K (u) is the kernel function. We deduce that:

RCi = f̂ (VaRα (L))

Epperlein and Smillie (2006) note however that this risk decomposition does not satisfy the
Euler allocation principle. This is why they propose the following correction:

RCi = VaRα (L)∑n
i=1RCi

f̂ (VaRα (L))

= VaRα (L)
∑nS
s=1K (Ls −VaRα (L))Li,s∑n

i=1
∑nS
s=1K (Ls −VaRα (L))Li,s

= VaRα (L)
∑nS
s=1K (Ls −VaRα (L))Li,s∑nS
s=1K (Ls −VaRα (L))Ls

In Table 2.20, we have reported the risk contributions of the 99% value-at-risk for Apple
and Coca-Cola stocks. The case G corresponds to the Gaussian value-at-risk whereas all the
other cases correspond to the historical value-at-risk. For the case R1, the regularization
weights are $99% (2; 250) = $99% (3; 250) = 1

2 and $99% (s; 250) = 0 when s 6= 2 or s 6= 3.
It corresponds to the classical interpolation method between the second and third order
statistics. For the case R2, we have $99% (s; 250) = 1

4 when s ≤ 4 and $99% (s; 250) = 0
when s > 4. The value-at-risk is therefore estimated by averaging the first four order
statistics. The cases E and K correspond to the methods based on the elliptical and kernel
approaches. For these two cases, we obtain a risk decomposition, which is closer to this
obtained with the Gaussian method. This is quite logical as the Gaussian distribution is a
special case of elliptical distributions and the kernel function is also Gaussian.

TABLE 2.20: Risk contributions calculated with regularization techniques
Asset G R1 R2 E K
Apple 30.97 43.92 52.68 35.35 39.21

Coca-Cola 10.25 3.47 2.29 12.03 8.17
R (w) 41.21 47.39 54.96 47.39 47.39

97f̂ (x) is called the Nadaraya-Watson estimator (see Section 10.1.4.2 on page 641).
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Example 20 Let L = L1 +L2 be the portfolio loss where Li (i = 1, 2) is defined as follows:

Li = wi (µi + σiTi)

and Ti has a Student’s t distribution with the number of degrees of freedom νi. The depen-
dence function between the losses (L1, L2) is given by the Clayton copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ

For the numerical illustration, we consider the following values: w1 = 100, µ1 = 10%,
σ1 = 20%, ν1 = 6, w2 = 200, µ2 = 10%, σ2 = 25%, ν2 = 4 and θ = 2. The confidence level
α of the value-at-risk is set to 90%.

FIGURE 2.19: Density function of the different risk contribution estimators

In Figure 2.19, we compare the different statistical estimators of the risk contribution
RC1 when we use nS = 5 000 simulations. Concerning the regularization method, we con-
sider the following weight function applied to the order statistics of losses98:

$L
α (s;nS) = 1

2hnS + 1 · 1
{
|s− qα (nS)|

nS
≤ h

}
It corresponds to a uniform kernel on the range [qα (nS)− hnS , qα (nS) + hnS ]. In the first
panel, we report the probability density function of RC1 when h is equal to 0% and 2.5%.
The case h = 0% is the estimator based on only one observation. We verify that the variance

98This is equivalent to use this weight function applied to the order statistics of P&Ls:

$α (s;nS) =
1

2hnS + 1
· 1
{ |s− qᾱ (nS)|

nS
≤ h
}
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of this estimator is larger for h = 0% than for h = 2.5%. However, we notice that this last
estimator is a little biased, because we estimate the quantile 90% by averaging the order
statistics corresponding to the range [87.5%, 92.5%]. In the second panel, we compare the
weighting method with the elliptical and kernel approaches. These two estimators have a
smaller variance, but a larger bias because they assume that the loss distribution is elliptical
or may be estimated using a Gaussian kernel. Finally, the third panel shows the probability
density function of RC1 estimated with the Gaussian value-at-risk.

The case of expected shortfall On page 70, we have shown that the expected shortfall
is estimated as follows:

ESα (L) = 1
qα (nS)

nS∑
s=1

1 {Ls ≥ VaRα (L)} · Ls

or:

ESα (L) = − 1
qα (nS)

nS∑
s=1

1 {Πs ≤ −VaRα (L)} ·Πs

It corresponds to the average of the losses larger or equal than the value-at-risk. It follows
that:

ESα (L) = − 1
qα (nS)

qα(nS)∑
s=1

Π(s:nS)

= − 1
qα (nS)

qα(nS)∑
s=1

ΠR−1
Π (s)

= − 1
qα (nS)

qα(nS)∑
s=1

n∑
i=1

Πi,R−1
Π (s)

We deduce that:

RCi = − 1
qα (nS)

qα(nS)∑
s=1

Πi,R−1
Π (s)

= 1
qα (nS)

qα(nS)∑
s=1

Li,R−1
Π (s)

In the Apple/Coca-Cola example, we recall that the 99% daily value-at-risk is equal to
$47.39. The corresponding expected shortfall is then the average of the two largest losses:

ESα (w; one day) = 84.34 + 51.46
2 = $67.90

For the risk contribution, we obtain99:

RC1 = 87.39 + 41.69
2 = $64.54

99Because we have:
Π(1:250) = −87.39 + 3.05 = −84.34

and:
Π(2:250) = −41.69− 9.77 = −51.46
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and:
RC2 = −3.05 + 9.77

2 = $3.36

The corresponding risk decomposition is given in Tables 2.21 and 2.22 for α = 99% and
α = 97.5%. With the new rules of Basel III, the capital is higher for this example.

TABLE 2.21: Risk decomposition of the 99% historical expected shortfall
Asset wi MRi RCi RC?i
Apple 56.47% 114.29 64.54 95.05%

Coca-Cola 43.53% 7.72 3.36 4.95%
R (w) 67.90

TABLE 2.22: Risk decomposition of the 97.5% historical expected shortfall
Asset wi MRi RCi RC?i
Apple 56.47% 78.48 44.32 91.31%

Coca-Cola 43.53% 9.69 4.22 8.69%
R (w) 48.53

FIGURE 2.20: Probability density function of the RC1 estimator for the 99% VaR and
97.5% ES

In Figure 2.20, we report the probability density function of the RC1 estimator in the
case of Example 20. We consider the 99% value-at-risk and the 97.5% expected shortfall with
nS = 5 000 simulated scenarios. For the VaR risk measure, the risk contribution is estimated
using respectively only one single observation and a weighting function corresponding to a
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uniform window100. We notice that the estimator has a smaller variance with the expected
shortfall risk measure. Of course, we can always reduce the variance of ES risk contributions
by using the previous smoothing techniques (Scaillet, 2004), but this is less of an issue than
for the value-at-risk measure.

2.4 Exercises
2.4.1 Calculating regulatory capital with the Basel I standardized mea-

surement method
1. We consider an interest rate portfolio with the following exposures: a long position

of $100 mn on four-month instruments, a short position of $50 mn on five-month
instruments, a long position of $10 mn on fifteen-year instruments and a short position
of $50 mn on twelve-year instruments.

(a) Using BCBS (1996a), explain the maturity approach for computing the capital
requirement due to the interest rate risk.

(b) By assuming that the instruments correspond to bonds with coupons larger than
3%, calculate the capital requirement of the trading portfolio.

2. We consider the following portfolio of stocks:

Stock 3M Exxon IBM Pfizer AT&T Cisco Oracle
Li 100 100 10 50 60 90
Si 50 80

where Li and Si indicate the long and short exposures on stock i expressed in $ mn.

(a) Calculate the capital charge for the specific risk.
(b) Calculate the capital charge for the general market risk.
(c) How can the investor hedge the market risk of his portfolio by using S&P 500

futures contracts? What is the corresponding capital charge? Verify that the
investor minimizes the total capital charge in this case.

3. We consider a net exposure Nw on an equity portfolio w. We note σ (w) the annualized
volatility of the portfolio return.

(a) Calculate the required capital under the standardized measurement method.
(b) Calculate the required capital under the internal model method if we assume

that the bank uses a Gaussian value-at-risk101.
(c) Deduce an upper bound σ (w) ≤ σ+ under which the required capital under

SMM is higher than the required capital under IMA.
(d) Comment on these results.

100We set h = 0.5% meaning that the risk contribution is estimated with 51 observations for the 99%
value-at-risk.

101We consider the Basel II capital requirement rules.
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4. We consider the portfolio with the following long and short positions expressed in $
mn:

Asset EUR JPY CAD Gold Sugar Corn Cocoa
Li 100 50 50 50 60 90
Si 100 100 50 80 110

(a) How do you explain that some assets present both long and short positions?
(b) Calculate the required capital under the simplified approach.

5. We consider the following positions (in $) of the commodity i:

Time band 0−1M 1M−3M 6M−1Y 1Y−2Y 2Y−3Y 3Y+
Li (t) 500 0 1 800 300 0 0
Si (t) 300 900 100 600 100 200

(a) Using BCBS (1996a), explain the maturity ladder approach for commodities.
(b) Compute the capital requirement.

2.4.2 Covariance matrix
We consider a universe of there stocks A, B and C.

1. The covariance matrix of stock returns is:

Σ =

 4%
3% 5%
2% −1% 6%


(a) Calculate the volatility of stock returns.
(b) Deduce the correlation matrix.

2. We assume that the volatilities are 10%, 20% and 30%. whereas the correlation matrix
is equal to:

ρ =

 100%
50% 100%
25% 0% 100%


(a) Write the covariance matrix.
(b) Calculate the volatility of the portfolio (50%, 50%, 0).
(c) Calculate the volatility of the portfolio (60%,−40%, 0). Comment on this result.
(d) We assume that the portfolio is long $150 on stock A, long $500 on stock B and

short $200 on stock C. Find the volatility of this long/short portfolio.

3. We consider that the vector of stock returns follows a one-factor model:

R = βF + ε

We assume that F and ε are independent. We note σ2
F the variance of F and D =

diag
(
σ̃2

1 , σ̃
2
2 , σ̃

2
3
)
the covariance matrix of idiosyncratic risks εt. We use the following

numerical values: σF = 50%, β1 = 0.9, β2 = 1.3, β3 = 0.1, σ̃1 = 5%, σ̃2 = 5% and
σ̃3 = 15%.
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(a) Calculate the volatility of stock returns.
(b) Calculate the correlation between stock returns.

4. Let X and Y be two independent random vectors. We note µ (X) and µ (Y ) the vector
of means and Σ (X) and Σ (Y ) the covariance matrices. We define the random vector
Z = (Z1, Z2, Z3) where Zi is equal to the product XiYi.

(a) Calculate µ (Z) and cov (Z).
(b) We consider that µ (X) is equal to zero and Σ (X) corresponds to the covariance

matrix of Question 2. We assume that Y1, Y2 and Y3 are three independent
uniform random variables U[0,1]. Calculate the 99% Gaussian value-at-risk of the
portfolio corresponding to Question 2(d) when Z is the random vector of asset
returns. Compare this value with the Monte Carlo VaR.

2.4.3 Risk measure
1. We denote F the cumulative distribution function of the loss L.

(a) Give the mathematical definition of the value-at-risk and expected shortfall risk
measures.

(b) Show that:

ESα (L) = 1
1− α

∫ 1

α

F−1 (t) dt

(c) We assume that L follows a Pareto distribution P (θ, x−) defined by:

Pr {L ≤ x} = 1−
(
x

x−

)−θ
where x ≥ x− and θ > 1. Calculate the moments of order one and two. Interpret
the parameters x− and θ. Calculate ESα (L) and show that:

ESα (L) > VaRα (L)

(d) Calculate the expected shortfall when L is a Gaussian random variableN
(
µ, σ2).

Show that:
Φ (x) = −φ (x)

x1 + φ (x)
x3 + . . .

Deduce that:
ESα (L)→ VaRα (L) when α→ 1

(e) Comment on these results in a risk management perspective.

2. Let R (L) be a risk measure of the loss L.

(a) Is R (L) = E [L] a coherent risk measure?
(b) Same question if R (L) = E [L] + σ (L).

3. We assume that the probability distribution F of the loss L is defined by:

Pr {L = `i} =
{

20% if `i = 0
10% if `i ∈ {1, 2, 3, 4, 5, 6, 7, 8}

(a) Calculate ESα for α = 50%, α = 75% and α = 90%.
(b) Let us consider two losses L1 and L2 with the same distribution F. Build a joint

distribution of (L1, L2) which does not satisfy the subadditivity property when
the risk measure is the value-at-risk.
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2.4.4 Value-at-risk of a long/short portfolio
We consider a long/short portfolio composed of a long position on asset A and a short

position on asset B. The long exposure is equal to $2 mn whereas the short exposure is
equal to $1 mn. Using the historical prices of the last 250 trading days of assets A and B,
we estimate that the asset volatilities σA and σB are both equal to 20% per year and that
the correlation ρA,B between asset returns is equal to 50%. In what follows, we ignore the
mean effect.

1. Calculate the Gaussian VaR of the long/short portfolio for a one-day holding period
and a 99% confidence level.

2. How do you calculate the historical VaR? Using the historical returns of the last 250
trading days, the five worst scenarios of the 250 simulated daily P&L of the portfolio
are −58 700, −56 850, −54 270, −52 170 and −49 231. Calculate the historical VaR for
a one-day holding period and a 99% confidence level.

3. We assume that the multiplication factor mc is 3. Deduce the required capital if the
bank uses an internal model based on the Gaussian value-at-risk. Same question when
the bank uses the historical VaR. Compare these figures with those calculated with
the standardized measurement method.

4. Show that the Gaussian VaR is multiplied by a factor equal to
√

7/3 if the correlation
ρA,B is equal to −50%. How do you explain this result?

5. The portfolio manager sells a call option on the stock A. The delta of the option is
equal to 50%. What does the Gaussian value-at-risk of the long/short portfolio become
if the nominal of the option is equal to $2 mn? Same question when the nominal of
the option is equal to $4 mn. How do you explain this result?

6. The portfolio manager replaces the short position on the stock B by selling a call
option on the stock B. The delta of the option is equal to 50%. Show that the Gaussian
value-at-risk is minimum when the nominal is equal to four times the correlation ρA,B .
Deduce then an expression of the lowest Gaussian VaR. Comment on these results.

2.4.5 Value-at-risk of an equity portfolio hedged with put options
We consider two stocks A and B and an equity index I. We assume that the risk model

corresponds to the CAPM and we have:

Rj = βjRI + εj

where Rj and RI are the returns of stock j and the index. We assume that RI and εj are
independent. The covariance matrix of idiosyncratic risks is diagonal and we note σ̃j the
volatility of εj .

1. The parameters are the following: σ2 (RI) = 4%, βA = 0.5, βB = 1.5, σ̃2
A = 3% and

σ̃2
B = 7%.

(a) Calculate the volatility of stocks A and B and the cross-correlation.
(b) Find the correlation between the stocks and the index.
(c) Deduce the covariance matrix.



120 Handbook of Financial Risk Management

2. The current price of stocks A and B is equal to $100 and $50 whereas the value of
the index is equal to $50. The composition of the portfolio is 4 shares of A, 10 shares
of B and 5 shares of I.

(a) Determine the Gaussian value-at-risk for a confidence level of 99% and a 10-day
holding period.

(b) Using the historical returns of the last 260 trading days, the five lowest simulated
daily P&Ls of the portfolio are −62.39, −55.23, −52.06, −51.52 and −42.83.
Calculate the historical VaR for a confidence level of 99% and a 10-day holding
period.

(c) What is the regulatory capital102 if the bank uses an internal model based on
the Gaussian value-at-risk? Same question when the bank uses the historical
value-at-risk. Compare these figures with those calculated with the standardized
measurement method.

3. The portfolio manager would like to hedge the directional risk of the portfolio. For
that, he purchases put options on the index I at a strike of $45 with a delta equal to
−25%. Write the expression of the P&L using the delta approach.

(a) How many options should the portfolio manager purchase for hedging 50% of the
index exposure? Deduce the Gaussian value-at-risk of the corresponding portfo-
lio?

(b) The portfolio manager believes that the purchase of 96 put options minimizes
the value-at-risk. What is the basis for his reasoning? Do you think that it is
justified? Calculate then the Gaussian VaR of this new portfolio.

2.4.6 Risk management of exotic options
Let us consider a short position on an exotic option, whose its current value Ct is equal to

$6.78. We assume that the price St of the underlying asset is $100 and the implied volatility
Σt is equal to 20%.

1. At time t+1, the value of the underlying asset is $97 and the implied volatility remains
constant. We find that the P&L of the trader between t and t + 1 is equal to $1.37.
Can we explain the P&L by the sensitivities knowing that the estimates of delta ∆t,
gamma Γt and vega103 υt are respectively equal to 49%, 2% and 40%?

2. At time t + 2, the price of the underlying asset is $97 while the implied volatility
increases from 20% to 22%. The value of the option Ct+2 is now equal to $6.17. Can
we explain the P&L by the sensitivities knowing that the estimates of delta ∆t+1,
gamma Γt+1 and vega υt+1 are respectively equal to 43%, 2% and 38%?

3. At time t + 3, the price of the underlying asset is $95 and the value of the implied
volatility is 19%. We find that the P&L of the trader between t+ 2 and t+ 3 is equal
to $0.58. Can we explain the P&L by the sensitivities knowing that the estimates of
delta ∆t+2, gamma Γt+2 and vega υt+2 are respectively equal to 44%, 1.8% and 38%.

4. What can we conclude in terms of model risk?
102We assume that the multiplication factor mc is equal to 3.
103Measured in volatility points.
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2.4.7 P&L approximation with Greek sensitivities
1. Let Ct be the value of an option at time t. Define the delta, gamma, theta and vega

coefficients of the option.

2. We consider an European call option with strike K. Give the value of option in the
case of the Black-Scholes model. Deduce then the Greek coefficients.

3. We assume that the underlying asset is a non-dividend stock, the residual maturity of
the call option is equal to one year, the current price of the stock is equal to $100 and
the interest rate is equal to 5%. We also assume that the implied volatility is constant
and equal to 20%. In the table below, we give the value of the call option C0 and the
Greek coefficients ∆0, Γ0 and Θ0 for different values of K:

K 80 95 100 105 120
C0 24.589 13.346 10.451 8.021 3.247
∆0 0.929 0.728 0.637 0.542 0.287
Γ0 0.007 0.017 0.019 0.020 0.017
Θ0 −4.776 −6.291 −6.414 −6.277 −4.681

(a) Explain how these values have been calculated. Comment on these numerical
results.

(b) One day later, the value of the underlying asset is $102. Using the Black-Scholes
formula, we obtain:

K 80 95 100 105 120
C1 26.441 14.810 11.736 9.120 3.837

Explain how the option premium C1 is calculated. Deduce then the P&L of a
long position on this option for each strike K.

(c) For each strike price, calculate an approximation of the P&L by considering the
sensitivities ∆, ∆− Γ, ∆−Θ and ∆− Γ−Θ. Comment on these results.

(d) Six months later, the value of the underlying asset is $148. Repeat Questions
3(b) and 3(c) with these new parameters. Comment on these results.

2.4.8 Calculating the non-linear quadratic value-at-risk
1. Let X ∼ N (0, 1). Show that the even moments of X are given by the following

relationship:
E
[
X2n] = (2n− 1)E

[
X2n−2]

with n ∈ N. Calculate the odd moments of X.

2. We consider a long position on a call option. The current price St of the underlying
asset is equal to $100, whereas the delta and the gamma of the option are respectively
equal to 50% and 2%. We assume that the annual return of the asset follows a Gaussian
distribution with an annual volatility equal to 32.25%.

(a) Calculate the daily Gaussian value-at-risk using the delta approximation with a
99% confidence level.

(b) Calculate the daily Gaussian value-at-risk by considering the delta-gamma ap-
proximation.

(c) Deduce the daily Cornish-Fisher value-at-risk.



122 Handbook of Financial Risk Management

3. Let X ∼ N (µ, I) and Y = X>AX with A a symmetric square matrix.

(a) We recall that:

E [Y ] = µ>Aµ+ tr (A)
E
[
Y 2] = E2 [Y ] + 4µ>A2µ+ 2 tr

(
A2)

Deduce the moments of Y = X>AX when X ∼ N (µ,Σ).
(b) We suppose that µ = 0. We recall that:

E
[
Y 3] = (tr (A))3 + 6 tr (A) tr

(
A2)+ 8 tr

(
A3)

E
[
Y 4] = (tr (A))4 + 32 tr (A) tr

(
A3)+ 12

(
tr
(
A2))2 +

12 (tr (A))2 tr
(
A2)+ 48 tr

(
A4)

Compute the moments, the skewness and the excess kurtosis of Y = X>AX
when X ∼ N (0,Σ).

4. We consider a portfolio w = (w1, . . . , wn) of options. We assume that the vector of
daily asset returns is distributed according to the Gaussian distribution N (0,Σ). We
note ∆ and Γ the vector of deltas and the matrix of gammas.

(a) Calculate the daily Gaussian value-at-risk using the delta approximation. Define
the analytical expression of the risk contributions.

(b) Calculate the daily Gaussian value-at-risk by considering the delta-gamma ap-
proximation.

(c) Calculate the daily Cornish-Fisher value-at-risk when assuming that the portfolio
is delta neutral.

(d) Calculate the daily Cornish-Fisher value-at-risk in the general case by only con-
sidering the skewness.

5. We consider a portfolio composed of 50 options in a first asset, 20 options in a second
asset and 20 options in a third asset. We assume that the gamma matrix is:

Γ =

 4.0%
1.0% 1.0%
0.0% −0.5% 1.0%


The actual price of the assets is normalized and is equal to 100. The daily volatility
levels of the assets are respectively equal to 1%, 1.5% and 2% whereas the correlation
matrix of asset returns is:

ρ =

 100%
50% 100%
25% 15% 100%


(a) Compare the different methods to compute the daily value-at-risk with a 99%

confidence level if the portfolio is delta neutral.
(b) Same question if we now consider that the deltas are equal to 50%, 40% and

60%. Compute the risk decomposition in the case of the delta and delta-gamma
approximations. What do you notice?
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2.4.9 Risk decomposition of the expected shortfall
We consider a portfolio composed of n assets. We assume that asset returns R =

(R1, . . . , Rn) are normally distributed: R ∼ N (µ,Σ). We note L (w) the loss of the portfolio.
1. Find the distribution of L (w).

2. Define the expected shortfall ESα (w). Calculate its expression in the present case.

3. Calculate the risk contribution RCi of asset i. Deduce that the expected shortfall
verifies the Euler allocation principle.

4. Give the expression of RCi in terms of conditional loss. Retrieve the formula of RCi
found in Question 3. What is the interest of the conditional representation?

2.4.10 Expected shortfall of an equity portfolio
We consider an investment universe, which is composed of two stocks A and B. The

current price of the two stocks is respectively equal to $100 and $200, their volatilities are
equal to 25% and 20% whereas the cross-correlation is equal to −20%. The portfolio is long
on 4 stocks A and 3 stocks B.

1. Calculate the Gaussian expected shortfall at the 97.5% confidence level for a ten-day
time horizon.

2. The eight worst scenarios of daily stock returns among the last 250 historical scenarios
are the following:

s 1 2 3 4 5 6 7 8
RA −3% −4% −3% −5% −6% +3% +1% −1%
RB −4% +1% −2% −1% +2% −7% −3% −2%

Calculate then the historical expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

2.4.11 Risk measure of a long/short portfolio
We consider an investment universe, which is composed of two stocks A and B. The

current prices of the two stocks are respectively equal to $50 and $20. Their volatilities are
equal to 25% and 20% whereas the cross-correlation is equal to +12.5%. The portfolio is
long on 2 stocks A and short on 5 stocks B.

1. Gaussian risk measure

(a) Calculate the Gaussian value-at-risk at the 99% confidence level for a ten-day
time horizon.

(b) Calculate the Gaussian expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

2. Historical risk measure
The ten worst scenarios of daily stock returns (expressed in %) among the last 250
historical scenarios are the following:

s 1 2 3 4 5 6 7 8 9 10
RA −0.6 −3.7 −5.8 −4.2 −3.7 0.0 −5.7 −4.3 −1.7 −4.1
RB 5.7 2.3 −0.7 0.6 0.9 4.5 −1.4 0.0 2.3 −0.2
D −6.3 −6.0 −5.1 −4.8 −4.6 −4.5 −4.3 −4.3 −4.0 −3.9

where D = RA −RB is the difference of the returns.
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(a) Calculate the historical value-at-risk at the 99% confidence level for a ten-day
time horizon.

(b) Calculate the historical expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

(c) Give an approximation of the capital charge under Basel II, Basel 2.5 and Basel
III standards by considering the historical risk measure104.

2.4.12 Kernel estimation of the expected shortfall
1. We consider a random variable X. We note K (u) the kernel function associated to

the sample {x1, . . . , xn}. Show that:

E [X · 1 {X ≤ x}] = 1
n

n∑
i=1

∫ x−xi
hhh

−∞
xiK (u) du+

1
n

n∑
i=1

∫ x−xi
hhh

−∞
hhhuK (u) du

2. Find the expression of the first term by considering the integrated kernel function
I (u).

3. Show that the second term tends to zero when hhh→ 0.

4. Deduce an approximation of the expected shortfall ESα (w;h).

104We assume that the multiplicative factor is equal to 3 (Basel II), and the ‘stressed’ risk measure is 2
times the ‘normal’ risk measure (Basel 2.5).
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