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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of risk management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
4

4 Keywords
Finance, Risk Management, Applied Mathematics, Statistics

5 Hours
Lectures: 36h, Training sessions: 15h, HomeWork: 30h

6 Evaluation
There will be a final three-hour exam, which is made up of questions
and exercises

7 Course website
http://www.thierry-roncalli.com/RiskManagement.html
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Objective of the course

The objective of the course is twofold:

1 knowing and understanding the financial regulation (banking and
others) and the international standards (especially the Basel Accords)

2 being proficient in risk measurement, including the mathematical
tools and risk models
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Class schedule

Course sessions

September 15 (6 hours, AM+PM)

September 22 (6 hours, AM+PM)

September 19 (6 hours, AM+PM)

October 6 (6 hours, AM+PM)

October 13 (6 hours, AM+PM)

October 27 (6 hours, AM+PM)

Tutorial sessions

October 20 (3 hours, AM)

October 20 (3 hours, PM)

November 10 (3 hours, AM)

November 10 (3 hours, PM)

November 17 (3 hours, PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry, Room 209 IDF
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models

Thierry Roncalli Course 2023-2024 in Financial Risk Management 22 / 1695



Agenda

Tutorial Session 1: Market Risk

Tutorial Session 2: Credit Risk

Tutorial Session 3: Counterparty Credit Risk and Collateral Risk

Tutorial Session 4: Operational Risk & Asset Liability Management
Risk

Tutorial Session 5: Copulas, EVT & Stress Testing
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Textbook

Roncalli, T. (2020), Handbook of Financial Risk Management,
Chapman & Hall/CRC Financial Mathematics Series.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskManagement.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskManagementBook.html
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The need for risk management
Financial regulation

Course 2023-2024 in Financial Risk Management
Lecture 1. Introduction

Thierry Roncalli?

?Amundi Asset Management2

?University of Paris-Saclay

September 2023

2The opinions expressed in this presentation are those of the authors and are not
meant to represent the opinions or official positions of Amundi Asset Management.
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The need for risk management
Financial regulation
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The need for risk management
Financial regulation

The development of financial markets
Financial crises and systemic risk

The development of financial markets

Table: Some financial innovations

1970 Mortgage-backed securities
1971 Equity index funds
1972 Foreign currency futures
1973 Stock options
1979 Over-the-counter currency options
1981 Interest rate swaps
1982 Equity index futures
1983 Equity index options

Interest rate caps/floors
Collateralized mortgage obligations

1985 Swaptions
Asset-backed securities

1987 Path-dependent options (Asian, look-back, etc.)
Collateralized debt obligations

1994 Credit default swaps
2004 Volatility index futures
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The need for risk management
Financial regulation

The development of financial markets
Financial crises and systemic risk

The development of financial markets

Organized markets (on-exchange)

Over-the-counter markets or OTC markets (off-exchange)

Contract Futures Forward Option Swap
On-exchange X X
Off-exchange X X X
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The need for risk management
Financial regulation

The development of financial markets
Financial crises and systemic risk

The development of financial markets

Figure: Notional outstanding amount of exchange-traded derivatives (in $ tn)
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The need for risk management
Financial regulation

The development of financial markets
Financial crises and systemic risk

Financial crises and systemic risk

Table: Some financial losses

1974 Herstatt Bank: $620 mn (foreign exchange trading)
1994 Metallgesellschaft: $1.3 bn (oil futures)
1994 Orange County: $1.8 bn (reverse repo)
1994 Procter & Gamble: $160 mn (ratchet swap)
1995 Barings Bank: $1.3 bn (stock index futures)
1997 Natwest: $127 mn (swaptions)
1998 LTCM: $4.6 bn (liquidity crisis)
2001 Dexia Bank: $270 mn (corporate bonds)
2006 Amaranth Advisors: $6.5 bn (gaz forward contracts)
2007 Morgan Stanley: $9.0 bn (credit derivatives)
2008 Société Générale: $7.2 bn (rogue trading)
2008 Madoff: $65 bn (fraud)
2011 UBS: $2.0 bn (rogue trading)
2012 JPMorgan Chase: $5.8 bn (credit derivatives)
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The need for risk management
Financial regulation

The development of financial markets
Financial crises and systemic risk

Financial crises and systemic risk

Figure: Number of bank defaults in the US
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

International authorities

1 The Basel Committee on Banking Supervision (BCBS)

2 The International Association of Insurance Supervisors (IAIS)

3 The International Organization of Securities Commissions (IOSCO)

4 The Financial Stability Board (FSB)

Table: The supervision institutions in finance

Banks Insurers Markets All sectors
Global BCBS IAIS IOSCO FSB

EU EBA/ECB EIOPA ESMA ESFS
US FDIC/FRB FIO SEC FSOC
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Banking regulation

1988 Publication of “International Convergence of Capital
Measurement and Capital Standards”, which is better
known as “The Basel Capital Accord”. This text sets the
rules of the Cooke ratio.

1996 Publication of “Amendment to the Capital Accord to
incorporate Market Risks”. This text includes the market
risk to compute the Cooke ratio.

2004 Publication of “International Convergence of Capital
Measurement and Capital Standards – A Revisited
Framework”. This text establishes the Basel II framework.

2010 Publication of the Basel III framework.

2019 Publication of “Minimum Capital Requirements for Market
Risk”. This is the final version of the Basel III framework
for computing the market risk.
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Banking regulation

Figure: The huge increase of the number of banking supervision standards
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel I

Cooke ratio:

Cooke Ratio =
C

RWA

where C and RWA are the capital and the risk-weighted assets of the
bank.

A risk-weighted asset is simply defined as a bank’s asset weighted by
its risk score or risk weight (RW):

RWA = EAD ·RW

where EAD is the exposure at default

⇒ Cooke Ratio ≥ 8% (Tier one ≥ 4%)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Risk weight

For categories:

1 RW = 0%
cash, gold, claims on OECD governments and central banks, claims
on governments and central banks outside OECD and denominated in
the national currency

2 RW = 20%
claims on all banks with a residual maturity lower than one year,
longer-term claims on OECD incorporated banks, claims on
public-sector entities within the OECD

3 RW = 50%
loans secured on residential property

4 RW = 100%
others
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Computing the RWA

Example

The assets of a bank are composed of $100 mn of US treasury bonds,
$100 mn of Brazilian government bonds, $50 mn of residential mortgage,
$300 mn of corporate loans and $20 mn of revolving credit loans. The
bank liability structure includes $25 mn of common stock and $13 mn of
subordinated debt.

We obtain the following results:

Asset EAD RW RWA
US treasury bonds 100 0% 0

Brazilian Gov. bonds 100 100% 100
Residential mortgage 50 50% 25

Corporate loans 300 100% 300
Revolving credit 20 100% 20

Total 445

and:

Cooke Ratio =
38

445
= 8.54%
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Amendment to incorporate market risks

Two approaches:

The standardized measurement method (SMM)

The internal model-based approach3 (IMA)

⇒ external weights vs internal model (99% value-at-risk for a holding
period of 10 trading days)

3The use of the internal model-based approach is subject to the approval of the
national supervisor.
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Value-at-risk (VaR)

Figure: Probability distribution of the portfolio loss
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Impact of market risks on the Cooke ratio

The Cooke ratio becomes:

CBank

RWA +12.5×KMR
≥ 8%

We deduce that:
CBank ≥ 8%× RWA︸ ︷︷ ︸

KCR

+ KMR

meaning that 8%× RWA can be interpreted as the credit risk capital
requirement KCR, which can be compared to the market risk capital
charge KMR.
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel II

Table: The three pillars of the Basel II framework

Pillar 1 Pillar 2 Pillar 3

Minimum Capital Supervisory Review Market Discipline
Requirements Process

Credit risk Review & reporting Capital structure
Market risk Capital above Pillar 1 Capital adequacy
Operational risk Supervisory monitor- Models & parameters

ing Risk management
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel II

The new Accord consists of three pillars:

1 the first pillar corresponds to minimum capital requirements, that is,
how to compute the capital charge for credit risk, market risk and
operational risk;

2 the second pillar describes the supervisory review process; it explains
the role of the supervisor and gives the guidelines to compute
additional capital charges for specific risks, which are not covered by
the first pillar;

3 the market discipline establishes the third pillar and details the
disclosure of required information regarding the capital structure and
the risk exposures of the bank.
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel II

Credit risk

The standardized approach (SA)
The internal ratings-based approach (IRB)

Foundation IRB (FIRB or IRB-F)
Advanced IRB (AIRB ou IRB-A)

Market risk

The standardized measurement method (SMM)
The internal model-based approach (IMA)

Operational risk

The Basic Indicator Approach (BIA)
The Standardized Approach (TSA)
Advanced Measurement Approaches (AMA)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel II

SA

FIRB

Credit
Risk IRB AIRB

SMM

Basel II
Market

Risk IMA

BIA

Operational
Risk TSA

AMA

Figure: Minimum capital requirements in the Basel II framework
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel 2.5

2008 Global Financial Crisis ⇒ measures to strengthen the rules governing
trading book capital, particularly the market risk associated to
securitization and credit-related products:

1 the incremental risk charge (IRC), which is an additional capital
charge to capture default risk and migration risk for unsecuritized
credit products

2 the stressed value-at-risk requirement (SVaR), which is intended to
capture stressed market conditions

3 the comprehensive risk measure (CRM), which is an estimate of risk
in the credit correlation trading portfolio (CDS baskets, CDO
products, etc.)

4 new standardized charges on securitization exposures, which are not
covered by CRM
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel III

In December 2010, the Basel Committee published a new regulatory
framework in order to enhance risk management, increase the stability of
the financial markets and improve the banking industry’s ability to absorb
macro-economic shocks

The Basel III (2010) framework consists of micro-prudential and
macro-prudential regulation measures concerning;

a new definition of the risk-based capital

the introduction of a leverage ratio

the management of the liquidity risk

Basel III also includes (2013-2019):

Revision of MR, CR, CCR, CVA and OR standards

Interest Rate Risk in the Banking Book (IRRBB)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel III

Table: Basel III capital requirements

Capital ratio 2013 2014 2015 2016 2017 2018 2019
CET1 3.5% 4.0% 4.5% 4.5%

CB 0.625% 1.25% 1.875% 2.5%
CET1 + CB 3.5% 4.0% 4.5% 5.125% 5.75% 6.375% 7.0%

Tier 1 4.5% 5.5% 6.0% 6.0%
Total 8.0% 8.0%

Total + CB 8.0% 8.625% 9.25% 9.875% 10.5%
CCB 0%− 2.5%

CET1: Common Equity Tier 1
AT1: Additional Tier 1
T1: Tier 1
T2: Tier 2
CB: Capital Conservation Buffer
CCB: Countercyclical Conservation Buffer (macro-prudential
measure)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel III

Credit Valuation Adjustment (CVA)

Leverage ratio (macro-prudential measure) to prevent the build-up
of excessive on- and off-balance sheet:

Leverage ratio =
Tier 1 capital

Total exposures
≥ 3%

where the total exposures is the sum of on-balance sheet exposures,
derivative exposures and some adjustments concerning off-balance
sheet items
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel III

Liquidity Coverage Ratio (LCR)
The objective of the LCR is to promote short-term resilience of the
bank’s liquidity risk profile:

LCR =
HQLA

Total net cash outflows
≥ 100%

where HQLA is the stock of high quality liquid assets and the
denominator is the total net cash outflows over the next 30 calendar
days

Net Stable Funding Ratio (NSFR)
NSFR is designed in order to promote long-term resilience of the
bank’s liquidity profile:

NSFR =
Available amount of stable funding

Required amount of stable funding
≥ 100%

ASF and RSF are calculated for the next year
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Basel III

Basel III also includes new standards (the Basel IV package):

Credit Risk: revision to SA and IRB approaches

Market Risk: SMM is replaced by SA-TB, IMA is revisited, VaR is
replaced by ES (expected shortfall), etc.

CVA ⇒ SA-CVA and BA-CVA

Operational Risk: BIA, TSA and AMA are replaced by SMA
(Standardized Measurement Approach)

Introduction of capital floors (with respect to SA)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Insurance regulation

Book Value
of Assets

Technical
Provisions

Solvency
Capital

Requirement

Surplus

Figure: Solvency I capital requirement
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The need for risk management
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Insurance regulation

Market Value
of Assets

Technical
Provisions

SCR

(MCR)

Surplus

Best Estimate

Risk Margin

Figure: Solvency II capital requirement
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Insurance regulation

Risk components:

1 Underwriting risk (non-life, life, health, etc.)

2 market risk,

3 Default risk

4 Counterparty credit risk

In the case of the standard formula method, the SCR of the insurer is
equal to:

SCR =

√√√√ m∑
i,j

ρi,j · SCRi ·SCRj + SCROR

where SCRi is the SCR of the risk module i , SCROR is the SCR
associated to the operational risk and ρi,j is the correlation factor between
risk modules i and j .
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Insurance regulation

The solvency ratio is then defined as:

Solvency Ratio =
C

SCR

where C is the capital. This solvency ratio must be larger than 33% for
tier 1 and 100% for the total own funds.
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Market regulation

Europe

2007: MiFID (Markets in Financial Instruments Directive)

2012: EMIR (European Market Infrastructure Regulation)

2014: MiFID2, MiFIR (Regulation in Markets in Financial
Instruments) and PRIIPS (Packaged Retail and Insurance-based
Investment Products)

US

1930s: Securities Act, Securities Exchange Act, Trust Indenture Act,
Investment Company Act, Investment Advisers Act

Securities and Exchange Commission (SEC)

Commodity Futures Trading Commission (CFTC)

2010: Dodd-Frank Wall Street Reform and Consumer Protection Act

Financial Stability Oversight Council (FSOC)
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The need for risk management
Financial regulation

Banking regulation
Insurance regulation
Market regulation
Systemic risk

Systemic risk

2009: Creation of the Financial Stability Board (FSB)

Systemically Important Financial Institutions (SIFIs)

A SIFI can be global (G-SIFI) or domestic (D-SIFI)

Three categories:
1 G-SIBs correspond to global systemically important banks
2 G-SIIs designate global systemically important insurers
3 The third category corresponds to non-bank non-insurer global

systemically important financial institutions (or NBNI G-SIFIs)
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Capital requirements
Statistical estimation of risk measures

Risk allocation
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4The opinions expressed in this presentation are those of the authors and are not
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Capital requirements
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Agenda

Lecture 1: Introduction to Financial Risk Management

Lecture 2: Market Risk

Lecture 3: Credit Risk

Lecture 4: Counterparty Credit Risk and Collateral Risk

Lecture 5: Operational Risk

Lecture 6: Liquidity Risk

Lecture 7: Asset Liability Management Risk

Lecture 8: Model Risk

Lecture 9: Copulas and Extreme Value Theory

Lecture 10: Monte Carlo Simulation Methods

Lecture 11: Stress Testing and Scenario Analysis

Lecture 12: Credit Scoring Models
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Most important dates

19 October 1987: Stock markets crashed and the Dow Jones
Industrial Average index dropped by more than 20% in the day

1988: Publication of the Basel I Accord

1990s: Japanese asset price bubble

1994: Bond market massacre

October 1994: Publication of RiskMetrics by J.P. Morgan

January 1996: Amendment to incorporate market risks (Basel I)

2004: Measuring market risks is the same in Basel II

2008: Global Financial Crisis (GFC)

2009: Basel 2.5

January 2019: Revision of market risk in Basel III (also known as the
fundamental review of the trading book or FRTB)
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Definition

According to the Basel Committee, market risk is defined as “the risk of
losses (in on- and off-balance sheet positions) arising from movements in
market prices. The risks subject to market risk capital requirements
include but are not limited to:

default risk, interest rate risk, credit spread risk, equity risk, foreign
exchange (FX) risk and commodities risk for trading book
instruments;

FX risk and commodities risk for banking book instruments.”

Portfolio Fixed Income Equity Currency Commodity Credit
Trading X X X X X
Banking X X

⇒ trading book 6= banking book
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The Basel I/II framework

To compute the capital charge, banks have the choice between two
approaches:

1 the standardized measurement method (SMM)

2 the internal model-based approach (IMA)

⇒ Banks quickly realized that they can sharply reduce their capital
requirements by adopting internal models
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Standardized measurement method (SMM)

Five main risk categories:

1 Interest rate risk

2 Equity risk

3 Currency risk

4 Commodity risk

5 Price risk on options and derivatives

For each category, a capital charge is computed to cover:

the general market risk

the specific risk
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Standardized measurement method (SMM)

The capital charge K is equal to the risk exposure E times the capital
charge weight K :

K = E · K

For the specific risk, the risk exposure corresponds to the notional of
the instrument, whether it is a long or a short position

For the general market risk, long and short positions on different
instruments can be offset
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The case of equity risk

The capital charge for specific risk is 4% if the portfolio is liquid and
well-diversified and 8% otherwise

For the general market risk, the risk weight is equal to 8% and applies
to the net exposure

Remark

Under Basel 2.5, the capital charge for specific risk is set to 8% whatever
the liquidity of the portfolio
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The case of equity risk

Example

We consider a $100 mn short exposure on the S&P 500 index futures
contract and a $60 mn long exposure on the Apple stock.

The capital charge for specific risk is5:

KSpecific = 100× 4% + 60× 8% = 4 + 4.8 = 8.8

The net exposure is −$40 mn. We deduce that the capital charge for the
general market risk is:

KGeneral = |−40| × 8% = 3.2

It follows that the total capital charge for this equity portfolio is $12 mn.

5We assume that the S&P 500 index is liquid and well-diversified, whereas the
exposure on the Apple stock is not diversified.
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The case of interest rate risk (specific risk)

For government instruments, the capital charge weights are:

AAA A+ BB+
Below

B−Rating to to to NR
AA− BBB− B−

Maturity 0−6M 6M−2Y 2Y+
K 0% 0.25% 1.00% 1.60% 8% 12% 8%

In the case of other instruments (PSE, banks and corporates), the
capital charge weights are:

AAA BB+
Below
BB−Rating to to NR

BBB− BB−
Maturity 0−6M 6M−2Y 2Y+
K 0.25% 1.00% 1.60% 8% 12% 8%
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The case of interest rate risk (specific risk)

Example

We consider a trading portfolio with the following exposures: a long
position of $50 mn on Euro-Bund futures, a short position of $100 mn on
three-month T-Bills and a long position of $10 mn on an investment grade
(IG) corporate bond with a three-year residual maturity.

⇒ Why the capital charge for specific risk is equal to $0, $0 and $160 000?
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The case of interest rate risk (general market risk)

Two methods:

Maturity approach

Duration approach (price sensitivity with respect to a change in yield)
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Internal model-based approach

The use of an internal model is conditional upon the approval of the
supervisory authority:

Qualitative criteria
Independent risk control unit
Daily reports
Daily risk management
Etc.

Quantitative criteria
The value-at-risk (VaR) is computed on a daily basis with a 99%
confidence level. The minimum holding period of the VaR is 10
trading days. If the bank computes a VaR with a shorter holding
period, it can use the square-root-of-time rule
Relevant risk factors
Sample period: at least one year
The value of the multiplication factor depends on the quality of the
internal model with a range between 3 and 4. The quality of the
internal model is related to its ex-post performance measured by the
backtesting procedure
Stress testing & Backtesting

Thierry Roncalli Course 2023-2024 in Financial Risk Management 70 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

The Basel I/II framework
The Basel 2.5 framework
The Basel III framework

The square-root-of-time rule

The holding period to define the capital is 10 trading days. For that,
banks can compute the one-day VaR and converts it to a ten-day VaR:

VaRα (w ; ten days) =
√

10×VaRα (w ; one day)
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Required capital

The required capital at time t is equal to:

Kt = max

(
VaRt−1, (3 + ξ) · 1

60

60∑
i=1

VaRt−i

)

where VaRt is the 10-day value-at-risk calculated at time t and ξ is the
penalty coefficient (0 ≤ ξ ≤ 1)
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Required capital

Figure: Calculation of the required capital with the VaR
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Backtesting

Definition

Backtesting consists of verifying that the internal model is consistent with
a 99% confidence level

⇒ For instance, we expect that the realized loss exceeds the VaR figure
once every 100 observations on average

Table: Value of the penalty coefficient ξ for a sample of 250 observations

Zone
Number of

ξ
exceptions

Green 0 – 4 0.00

Yellow

5 0.40
6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00
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Statistical approach of backtesting

We note w the portfolio, VaRα (w ; h) the value-at-risk calculated at time
t − 1, and Lt (w) the daily loss at time t:

Lt (w) = −Πt (w) = MtMt−1−MtMt

By definition, we have:

Pr {Lt (w) ≥ VaRα (w ; h)} = 1− α

Let et be the random variable which is equal to 1 if there is an exception
and 0 otherwise. et is a Bernoulli random variable with parameter p:

p = Pr {et = 1} = Pr {Lt (w) ≥ VaRα (w ; h)} = 1− α

Let Ne (t1; t2) =
∑t2

t=t1
et be the number of exceptions for the period

[t1, t2]. We assume that the exceptions are independent across time.

Main result

Ne (t1; t2) is a binomial random variable B (n; 1− α)
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Statistical approach of backtesting

Table: Probability distribution (in %) of the number of exceptions (n = 250
trading days)

α = 99% α = 98%
m Pr {Ne = m} Pr {Ne ≤ m} Pr {Ne = m} Pr {Ne ≤ m}
0 8.106 8.106 0.640 0.640
1 20.469 28.575 3.268 3.908
2 25.742 54.317 8.303 12.211
3 21.495 75.812 14.008 26.219
4 13.407 89.219 17.653 43.872
5 6.663 95.882 17.725 61.597
6 2.748 98.630 14.771 76.367
7 0.968 99.597 10.507 86.875
8 0.297 99.894 6.514 93.388
9 0.081 99.975 3.574 96.963

10 0.020 99.995 1.758 98.720
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Statistical approach of backtesting

Figure: Color zones of the backtesting procedure (α = 99%)
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The Basel 2.5 framework

The required capital becomes:

Kt = KVaR
t + KSVaR

t + KSRC
t + KIRC

t + KCRM
t

where KVaR
t is the VaR capital and KSRC

t (Basel II), and:

KSVaR
t is the Stressed VaR

KIRC
t is the incremental risk charge (IRC), which measures the

impact of rating migrations and defaults

KCRM
t is the comprehensive risk measure (CRM), which

corresponds to a supplementary capital charge for credit exotic
trading portfolios
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The stressed VaR

Definition

The stressed VaR has the same characteristics than the traditional VaR
(99% confidence level and 10-day holing period), but the model inputs are
“calibrated to historical data from a continuous 12-month period of
significant financial stress relevant to the bank’s portfolio”.

⇒ This implies that the historical period to compute the SVaR is
completely different than the historical period to compute the VaR6

6For instance, a typical period is the 2008 year which both combines the subprime
mortgage crisis and the Lehman Brothers bankruptcy
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The Basel III framework

Banks have the choice between two approaches for computing the capital
charge:

1 a standardized method (SA-TB7)

2 an internal model-based approach (IMA)

⇒ SMM is replaced by SA-TB and IMA is revisited

Remark

Contrary to the previous framework, the SA-TB method is very important
even if banks calculate the capital charge with the IMA method. Indeed,
the bank must implement SA-TB in order to meet the output (or capital)
floor requirement, which is set at 72.5% in January 2027:

Kt = max
(
KIMA

t , 72.5%×KSA-TB
t

)
7TB means trading book
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SA-TB

The standardized capital charge is the sum of three components:

1 sensitivity-based capital requirement

2 the default risk capital (DRC)

3 the residual risk add-on (RRAO)

Some comments:

The first component must be viewed as the pure market risk and is
the equivalent of the capital charge for the general market risk

The second component captures the jump-to-default risk (JTD) and
replaces the specific risk

The last component captures specific risks that are difficult to
measure in practice
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Sensitivity-based capital requirement

We have:
K = KDelta + KVega + KCurvature

⇒ a capital charge for delta, vega and curvature risks

7 risk classes:

1 General interest rate risk (GIRR)

2 Credit spread risk(CSR) on non-securitization products

3 Credit spread risk(CSR) on non-correlation trading portfolio
(non-CTP)

4 Credit spread risk(CSR) on correlation trading portfolio (CTP)

5 Equity risk

6 Commodity risk

7 Foreign exchange risk
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Delta and vega risk components

We first begin to calculate the weighted sensitivity of each risk factor
Fj :

WSj = Sj · RWj

where Sj and RWj are the net sensitivity of the portfolio with respect
to the risk factor and the risk weight of Fj

Second, we calculate the capital requirement for the risk bucket Bk :

KBk
=

√√√√√max

∑
j

WS2
j +
∑
j′ 6=j

ρj,j′ WSj WSj′ , 0


where Fj ∈ Bk .
Finally, we aggregate the different buckets for a given risk class:

KDelta/Vega =

√∑
k

K2
Bk

+
∑
k′ 6=k

γk,k′ WSBk
WSBk′

where WSBk
=
∑

j∈Bk
WSj is the weighted sensitivity of the bucket

Bk .
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Delta and vega risk components

The capital requirement for delta and vega risks can be viewed as a
Gaussian risk measure with the following parameters:

1 the sensitivities Sj of the risk factors that are calculated by the bank;

2 the risk weights RWj of the risk factors;

3 the correlation ρj,j′ between risk factors within a bucket;

4 the correlation γk,k′ between the risk buckets.
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Curvature risk component

The curvature risk uses a similar methodology, but it is based on two
adverse scenarios: (1) the risk factor is shocked upward and (2) the risk
factor is shocked downward

The curvature risk is close to the gamma risk that we encounter in the
theory of options
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Practical computation of dela, vega and curvature risks

Three steps:

1 defining the risk factors

2 calculating the sensitivities

3 calculating the risk-weighted sensitivities WSj
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Defining the risk factors

⇒ The Basel Committee gives a very precise list of risk factors by asset
classes

For instance, the equity delta risk factors are the equity spot prices and the
equity repo rates, the equity vega risk factors are the implied volatilities of
options, and the equity curvature risk factors are the equity spot prices

In the case of the interest rate risk class (GIRR), the risk factors include
the yield curve8, a flat curve of market-implied inflation rates for each
currency and some cross-currency basis risks

8The risk factors correspond to the following tenors of the yield curve: 3M, 6M, 1Y,
2Y, 3Y, 5Y, 10Y, 15Y, 20Y and 30Y.
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Calculating the sensitivities

The equity delta sensitivity of the instrument i with respect to the equity
risk factor Fj is given by:

Si,j = ∆i (Fj) · Fj

where ∆i (Fj) measures the (discrete) delta of the instrument i by
shocking the equity risk factor Fj by 1%:

Si,j =
Pi (1.01 · Fj)− Pi (Fj)

1.01 · Fj −Fj
· Fj =

Pi (1.01 · Fj)− Pi (Fj)

0.01

Remark

If the instrument corresponds to a stock, the sensitivity is exactly the
price of this stock when the risk factor is the stock price, and zero
otherwise

If the instrument corresponds to an European option on this stock, the
sensitivity is the traditional delta of the option times the stock price
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Calculating the sensitivities

For the vega sensitivity, we have:

Si,j = υi (Fj) · Fj

where Fj is the implied volatility and υi (Fj) is the vega of the instrument
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Calculating the risk-weighted sensitivities

We use the figures given in BCBS (2019) for the risk weight RWj , the
correlation ρj,j′ and the correlation γk,k′
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Internal model-based approach

A trading desk is “an unambiguously defined group of traders or trading
accounts that implements a well-defined business strategy operating within
a clear risk management structure”.

⇒ Internal models are implemented at the trading desk level, meaning
that some trading desks are approved for the use of internal models, while
other trading desks must use the SA-TB approach
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Capital requirement for modellable risk factors

Main differences with Basel I/II

The value-at-risk at the 99% confidence level is replaced by the expected
shortfall at the 97.5% confidence level. Moreover, the 10-day holding
period is not valid for all instruments

Expected shortfall

The expected shortfall is the average loss beyond the value-at-risk
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Capital requirement for modellable risk factors

Impact of the liquidity

ESα (w) =

√√√√ 5∑
k=1

(
ESα (w ; hk)

√
hk − hk−1

h1

)2

ESα (w ; h1) is the expected shortfall of the portfolio w at horizon 10
days by considering all risk factors

ESα (w ; hk) is the expected shortfall of the portfolio w at horizon hk
days by considering the risk factors Fj that belongs to the liquidity
class k

hk is the horizon of the liquidity class k, which is given below:

Liquidity class k 1 2 3 4 5
Liquidity horizon hk 10 20 40 60 120
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Capital requirement for modellable risk factors

Liquidity buckets

1 Interest rates (specified currencies and domestic currency of the
bank), equity prices (large caps), FX rates (specified currency pairs).

2 Interest rates (unspecified currencies), equity prices (small caps) and
volatilities (large caps), FX rates (currency pairs), credit spreads (IG
sovereigns), commodity prices (energy, carbon emissions, precious
metals, non-ferrous metals).

3 FX rates (other types), FX volatilities, credit spreads (IG corporates
and HY sovereigns).

4 Interest rates (other types), IR volatility, equity prices (other types)
and volatilities (small caps), credit spreads (HY corporates),
commodity prices (other types) and volatilities (energy, carbon
emissions, precious metals, non-ferrous metals).

5 Credit spreads (other types) and credit spread volatilities, commodity
volatilities and prices (other types).
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Capital requirement for modellable risk factors

How to calculate the expected shortfall for a period of stress?

ESα (w ; h) = ES(reduced,stress)
α (w ; h) ·min

(
ES(full,current)

α (w ; h)

ES(reduced,current)
α (w ; h)

, 1

)
where ES(full,current)

α is the expected shortfall based on the current period

with the full set of risk factors, ES(reduced,current)
α is the expected shortfall

based on the current period with a restricted set of risk factors and
ES(reduced,stress)

α is the expected shortfall based on the stress period with
the restricted set of risk factors

Remark

The previous formula assumes that there is a proportionality factor
between the full set and the restricted set of risk factors:

ES(full,stress)
α (w ; h)

ES(full,current)
α (w ; h)

≈ ES(reduced,stress)
α (w ; h)

ES(reduced,current)
α (w ; h)
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Capital requirement for modellable risk factors

Example

In the table below, we have calculated the 10-day expected shortfall for a
given portfolio:

Set of
Period

Liquidity class
risk factors 1 2 3 4 5

Full Current 100 75 34 12 6
Reduced Current 88 63 30 7 5
Reduced Stress 112 83 47 9 7
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Capital requirement for modellable risk factors

Table: Scaled expected shortfall

k Sck
Full Reduced Reduced Full/Stress Full

Current Current Stress (not scaled) Stress
1 1 100.00 88.00 112.00 127.27 127.27
2 1 75.00 63.00 83.00 98.81 98.81

3
√

2 48.08 42.43 66.47 53.27 75.33

4
√

2 16.97 9.90 12.73 15.43 21.82

5
√

6 14.70 12.25 17.15 8.40 20.58
Total 135.80 117.31 155.91 180.38

The scaling factor is equal to Sck =
√

(hk − hk−1) /h1, the scaled
expected shortfall is equal to ES?α (w ; hk) = Sck · ESα (w ; hk) and the

total expected shortfall is given by ESα (w) =
√∑5

k=1 (ES?α (w ; hk))
2
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Capital requirement for modellable risk factors

The final step for computing the capital requirement (also known as the
‘internally modelled capital charge’) is to apply this formula:

IMCC = % · IMCCglobal + (1− %) ·
5∑

k=1

IMCCk

where:

% is equal to 50%

IMCCglobal is the stressed ES calculated with the internal model and
cross-correlations between risk classes

IMCCk is the stressed ES calculated at the risk class level (interest
rate, equity, foreign exchange, commodity and credit spread)
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Other capital requirements

Concerning non-modellable risk factors, the capital requirement is
based on stress scenarios, that are equivalent to a stressed expected
shortfall SES

The default risk capital (DRC) is calculated using a value-at-risk
model with a 99.9% confidence level with the same default
probabilities that are used for the IRB approach
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Capital requirement for the market risk

For eligible trading desks, we have:

KIMA
t = max

(
IMCCt−1 + SESt−1,

mc

∑60
i=1 IMCCt−i +

∑60
i=1 SESt−i

60

)
+DRC

where mc = 1.5 + ξ and 0 ≤ ξ ≤ 0.5

Table: Value of the penalty coefficient ξ in Basel III

Zone
Number of

ξ
exceptions

Green 0 – 4 0.00

Amber

5 0.20
6 0.26
7 0.33
8 0.38
9 0.42

Red 10+ 0.50

Thierry Roncalli Course 2023-2024 in Financial Risk Management 100 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Computation
Options and derivatives

Coherent risk measures

We note R (w) as the risk measure of portfolio w

Coherent risk measure

1 Subadditivity
R (w1 + w2) ≤ R (w1) +R (w2)

2 Homogeneity
R (λw) = λR (w) if λ ≥ 0

3 Monotonicity

if w1 ≺ w2, then R (w1) ≥ R (w2)

4 Translation invariance

if m ∈ R, then R (w + m) = R (w)−m

⇒ Translation invariance implies that:

R (w +R (w)) = R (w)−R (w) = 0
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Some risk measures

The portfolio’s loss is equal to L (w) = −Pt (w)Rt+h (w)

Volatility of the loss

R (w) = σ (L (w)) = σ (w)

Standard deviation-based risk measure

R (w) = SDc (w) = E [L (w)] + c · σ (L (w)) = −µ (w) + c · σ (w)

Value-at-risk

R (w) = VaRα (w) = inf {` : Pr {L (w) ≤ `} ≥ α}

Expected shortfall

R (w) = ESα (w) = E [L (w) | L (w) ≥ VaRα (w)] =
1

1− α

∫ 1

α

VaRu (w) du
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The value-at-risk is not always subadditive

Example

We consider a $100 defaultable zero-coupon bond, whose default
probability is equal to 200 bps. We assume that the recovery rate R is a
binary random variable with Pr {R = 0.25} = Pr {R = 0.75} = 50%.

100

D = 1

R = 25%Pr = 50%

R = 75%Pr = 50%Pr = 2%

D = 0

Pr = 98%

L = 0

L = 25

L = 75

⇒ F (0) = Pr {L ≤ 0} = 98%, F (25) = Pr {Li ≤ 25} = 99% and
F (75) = Pr {Li ≤ 75} = 100%
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The value-at-risk is not always subadditive

The 99% value-at-risk is equal to $25, and we have:

ES99% (L) = E [L | L ≥ 25] =
25 + 75

2
= $50

We now consider two zero-coupon bonds with iid default times:

L1 = 0 L1 = 25 L1 = 75
L2 = 0 96.04% 0.98% 0.98% 98.00%
L2 = 25 0.98% 0.01% 0.01% 1.00%
L2 = 75 0.98% 0.01% 0.01% 1.00%

98.00% 1.00% 1.00%

We deduce that the probability distribution function of L = L1 + L2 is:

` 0 25 50 75 100 150
Pr {L = `} 96.04% 1.96% 0.01% 1.96% 0.02% 0.01%
Pr {L ≤ `} 96.04% 98% 98.01% 99.97% 99.99% 100%

It follows that VaR99% (L) = 75 and:

ES99% (L) =
75× 1.96% + 100× 0.02% + 150 ∗ 0.01%

1.96% + 0.02% + 0.01%
= $75.63
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Value-at-risk

Definition

The value-at-risk VaRα (w ; h) is defined as the potential loss which the
portfolio w can suffer for a given confidence level α and a fixed holding
period h:

Pr {L (w) ≤ VaRα (w ; h)} = α⇔ VaRα (w ; h) = F−1
L (α)

Three parameters are necessary to compute this risk measure:

the holding period h, which indicates the time period to calculate the
loss;

the confidence level α, which gives the probability that the loss is
lower than the value-at-risk;

the portfolio w , which gives the allocation in terms of risky assets and
is related to the risk factors.
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Expected shortfall

Definition

The expected shortfall ESα (w ; h) is defined as the expected loss beyond
the value-at-risk of the portfolio:

ESα (w ; h) = E [L (w) | L (w) ≥ VaRα (w ; h)]

We notice that ESα (w ; h) ≥ VaRα (w ; h)
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Three methods

Let (F1, . . . ,Fm) be the vector of risk factors. We assume that there is a
pricing function g such that:

Pt (w) = g (F1,t , . . . ,Fm,t ;w)

We deduce that the expression of the random loss is equal to:

L (w) = Pt (w)− g (F1,t+h, . . . ,Fm,t+h;w) = ` (F1,t+h, . . . ,Fm,t+h;w)

where ` is the loss function. We have:

V̂aRα (w ; h) = F̂−1
L (α) = −F̂−1

Π (1− α)

and:

ÊSα (w ; h) =
1

1− α

∫ 1

α

F̂−1
L (u) du

1 the historical (or empirical or non-parametric) VaR/ES
2 the analytical (or parametric or Gaussian) VaR/ES
3 the Monte Carlo (or simulated) VaR/ES
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Historical methods

Two approaches:

order statistic approach

kernel approach

Let (F1,s , . . . ,Fm,s) be the vector of risk factors observed at time s < t. If
we calculate the future P&L with this historical scenario, we obtain:

Πs (w) = g (F1,s , . . . ,Fm,s ;w)− Pt (w)

If we consider nS historical scenarios (s = 1, . . . , nS), the empirical
distribution F̂Π is described by the following probability distribution:

Π (w) Π1 (w) Π2 (w) · · · ΠnS (w)
ps 1/nS 1/nS 1/nS
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Order statistic approach

Theorem (HFRM, page 67)

Let X1, . . . ,Xn be a sample from a continuous distribution F. Suppose
that for a given scalar α ∈ ]0, 1[, there exists a sequence {an} such that√
n (an − nα)→ 0. We can show that:

√
n
(
X(an:n) − F−1 (α)

)
→ N

(
0,

α (1− α)

f 2 (F−1 (α))

)

⇒ F̂−1 (α) = X(nα:n)

If ns = 1 000, F̂−1 (90%) is the 900th order statistic

If ns = 2 00, F̂−1 (90.5%) is the 181th order statistic
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Order statistic approach

Figure: Density of the quantile estimator (Gaussian case)
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Application to the value-at-risk

We calculate the order statistics associated to the P&L sample
{Π1 (w) , . . . ,ΠnS (w)}:

min
s

Πs (w) = Π(1:nS ) ≤ Π(2:nS ) ≤ · · · ≤ Π(nS−1:nS ) ≤ Π(nS :nS ) = max
s

Πs (w)

It follows that:
VaRα (w ; h) = −Π(nS (1−α):nS )
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Application to the value-at-risk

Remark

If nS (1− α) is not an integer, we consider the interpolation scheme:

VaRα (w ; h) = −
(
Π(q:nS ) + (nS (1− α)− q)

(
Π(q+1:nS ) − Π(q:nS )

))
where q = qα (nS) = bnS (1− α)c is the integer part of nS (1− α).

In the case where we use 250 historical scenarios, the 99% value-at-risk is
the mean between the second and third largest losses:

VaR99% (w ; h) = −
(
Π(2:250) + (2.5− 2)

(
Π(3:250) − Π(2:250)

))
= −1

2

(
Π(2:250) + Π(3:250)

)
=

1

2

(
L(249:250) + L(248:250)

)
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Application to the value-at-risk

Example

We consider a portfolio composed of 10 stocks Apple and 20 stocks
Coca-Cola. The current date is 2 January 2015.

Remark

Data are available at
http: // www. thierry-roncalli. com/ download/ frm-data1. xlsx
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Application to the value-at-risk

The mark-to-market of the portfolio is:

Pt (w) = 10× P1,t + 20× P2,t

where P1,t and P2,t are the stock prices of Apple and Coca-Cola. We
assume that the market risk factors corresponds to the daily stock returns
R1,t and R2,t . We deduce that the P&L for the scenario s is equal to:

Πs (w) = 10× P1,s + 20× P2,s︸ ︷︷ ︸
g(R1,s ,R2,s ;w)

− Pt (w)

where Pi,s = Pi,t × (1 + Ri,s) is the simulated price of stock i for the
scenario s.
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Application to the value-at-risk

Table: Computation of the market risk factors R1,s and R2,s

s Date
Apple Coca-Cola

Price R1,s Price R2,s

1 2015-01-02 109.33 −0.95% 42.14 −0.19%
2 2014-12-31 110.38 −1.90% 42.22 −1.26%
3 2014-12-30 112.52 −1.22% 42.76 −0.23%
4 2014-12-29 113.91 −0.07% 42.86 −0.23%
5 2014-12-26 113.99 1.77% 42.96 0.05%
6 2014-12-24 112.01 −0.47% 42.94 −0.07%
7 2014-12-23 112.54 −0.35% 42.97 1.46%
8 2014-12-22 112.94 1.04% 42.35 0.95%
9 2014-12-19 111.78 −0.77% 41.95 −1.04%

10 2014-12-18 112.65 2.96% 42.39 2.02%
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Application to the value-at-risk

We calculate the historical risk factors. For instance, we have:

R1,1 =
109.33

110.38
− 1 = −0.95%

We calculate the simulated prices. For instance, in the case of the 9th

scenario, we obtain:

P1,s = 109.33× (1− 0.77%) = $108.49

P2,s = 42.14× (1− 1.04%) = $41.70

We then deduce the simulated mark-to-market
MtMs (w) = g (R1,s ,R2,s ;w)
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Application to the value-at-risk

Table: Computation of the simulated P&L Πs (w)

s Date
Apple Coca-Cola

MtMs (w) Πs (w)
R1,s P1,s R2,s P2,s

1 2015-01-02 −0.95% 108.29 −0.19% 42.06 1 924.10 −12.00
2 2014-12-31 −1.90% 107.25 −1.26% 41.61 1 904.66 −31.44
3 2014-12-30 −1.22% 108.00 −0.23% 42.04 1 920.79 −15.31
4 2014-12-29 −0.07% 109.25 −0.23% 42.04 1 933.37 −2.73
5 2014-12-26 1.77% 111.26 0.05% 42.16 1 955.82 19.72

23 2014-12-01 −3.25% 105.78 −0.62% 41.88 1 895.35 −40.75
69 2014-09-25 −3.81% 105.16 −1.16% 41.65 1 884.64 −51.46
85 2014-09-03 −4.22% 104.72 0.34% 42.28 1 892.79 −43.31

108 2014-07-31 −2.60% 106.49 −0.83% 41.79 1 900.68 −35.42
236 2014-01-28 −7.99% 100.59 0.36% 42.29 1 851.76 −84.34
242 2014-01-17 −2.45% 106.65 −1.08% 41.68 1 900.19 −35.91
250 2014-01-07 −0.72% 108.55 0.30% 42.27 1 930.79 −5.31
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Application to the value-at-risk

If we rank the scenarios, the worst P&Ls are −84.34, −51.46, −43.31,
−40.75, −35.91 and −35.42. We deduce that the daily historical VaR is
equal to:

VaR99% (w ; one day) =
1

2
(51.46 + 43.31) = $47.39

If we assume that mc = 3, the corresponding capital charge represents
23.22% of the portfolio value:

KVaR
t = 3×

√
10× 47.39 = $449.54
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Application to the expected shortfall

Since the expected shortfall is the expected loss beyond the value-at-risk,
it follows that the historical expected shortfall is given by:

ESα (w ; h) =
1

qα (nS)

nS∑
s=1

1 {Ls ≥ VaRα (w ; h)} · Ls

or:

ESα (w ; h) = − 1

qα (nS)

nS∑
s=1

1 {Πs ≤ −VaRα (w ; h)} · Πs

where qα (nS) = bns (1− α)c is the integer part of ns (1− α).

Computation of the ES

We have:

ESα (w ; h) = − 1

qα (nS)

qα(nS )∑
i=1

Π(i :nS )
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Application to the expected shortfall

We have:

ES99% (w ; one day) =
84.34 + 51.46

2
= $67.90

and:

ES97.5% (w ; one day) =
84.34 + 51.46 + 43.31 + 40.75 + 35.91 + 35.42

6
= $48.53

We remind that VaR99% (w ; one day) = $47.39.
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Analytical methods

We speak about analytical value-at-risk when we are able to find a
closed-form formula of F−1

L (α)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 121 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Computation
Options and derivatives

Gaussian value-at-risk

Suppose that L (w) ∼ N
(
µ (L) , σ2 (L)

)
. In this case, we have

Pr
{
L (w) ≤ F−1

L (α)
}

= α or:

Pr

{
L (w)− µ (L)

σ (L)
≤

F−1
L (α)− µ (L)

σ (L)

}
= α⇔ Φ

(
F−1
L (α)− µ (L)

σ (L)

)
= α

We deduce that:

F−1
L (α)− µ (L)

σ (L)
= Φ−1 (α)⇔ F−1

L (α) = µ (L) + Φ−1 (α)σ (L)

The expression of the value-at-risk is then:

VaRα (w ; h) = µ (L) + Φ−1 (α)σ (L)

if α = 99%, we obtain:

VaR99% (w ; h) = µ (L) + 2.33× σ (L)
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Gaussian value-at-risk

Example

We consider a short position of $1 mn on the S&P 500 futures contract.
We estimate that the annualized volatility σ̂SPX is equal to 35%

The portfolio loss is equal to L (w) = N × RSPX where N is the exposure
amount (−$1 mn) and RSPX is the (Gaussian) return of the S&P 500
index. We deduce that the annualized loss volatility is σ̂ (L) = |N| × σ̂SPX.
The value-at-risk for a one-year holding period is:

VaR99% (w ; one year) = 2.33× 106 × 0.35 = $815 500

By using the square-root-of-time rule, we deduce that:

VaR99% (w ; one day) =
815 500√

260
= $50 575
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Gaussian expected shortfall

By definition, we have:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

=
1

1− α

∫ ∞
F−1
L (α)

xfL (x) dx

where fL and FL are the density and distribution functions of the loss L (w)

The Gaussian expected shortfall of the portfolio w is equal to:

ESα (w) = µ (L) +
φ
(
Φ−1 (α)

)
(1− α)

σ (L)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 124 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Computation
Options and derivatives

Proof

ESα (w) =
1

1− α

∫ ∞
µ(L)+Φ−1(α)σ(L)

x

σ (L)
√

2π
exp

(
−1

2

(
x − µ (L)

σ (L)

)2
)

dx

With the variable change t = σ (L)−1 (x − µ (L)), we obtain:

ESα (w) =
1

1− α

∫ ∞
Φ−1(α)

(µ (L) + σ (L) t)
1√
2π

exp

(
−1

2
t2

)
dt

=
µ (L)

1− α
[Φ (t)]∞Φ−1(α) +

σ (L)

(1− α)
√

2π

∫ ∞
Φ−1(α)

t exp

(
−1

2
t2

)
dt

= µ (L) +
σ (L)

(1− α)
√

2π

[
− exp

(
−1

2
t2

)]∞
Φ−1(α)

= µ (L) +
σ (L)

(1− α)
√

2π
exp

(
−1

2

[
Φ−1 (α)

]2)
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Gaussian VaR vs Gaussian ES

The value-at-risk and the expected shortfall are both a standard
deviation-based risk measure. They coincide when the scaling parameters
cVaR = Φ−1 (αVaR) and cES = φ

(
Φ−1 (αES)

)
/ (1− αES) are equal.

Table: Scaling factors cVaR and cES

α (in %) 95.0 96.0 97.0 97.5 98.0 98.5 99.0 99.5
cVaR 1.64 1.75 1.88 1.96 2.05 2.17 2.33 2.58
cES 2.06 2.15 2.27 2.34 2.42 2.52 2.67 2.89
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Linear factor models

When g (Ft ;w) =
∑n

i=1 wiPi,t , the random P&L is equal to:

Π (w) = Pt+h (w)− Pt (w)

=
n∑

i=1

wiPi,t+h −
n∑

i=1

wiPi,t

=
n∑

i=1

wi (Pi,t+h − Pi,t)

We assume that the asset returns are the risk factors :

Pi,t+h = Pi,t (1 + Ri,t+h)

where Ri,t+h is the asset return between t and t + h. In this case, we
obtain:

Π (w) =
n∑

i=1

wiPi,tRi,t+h
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The covariance model

Let Rt be the vector of asset returns. We note Wi,t = wiPi,t the wealth
invested (or the nominal exposure) in asset i and Wt = (W1,t , . . . ,Wn,t).
It follows that:

Π (w) =
n∑

i=1

Wi,tRi,t+h = W>t Rt+h

If we assume that Rt+h ∼ N (µ,Σ), we deduce that µ (Π) = W>t µ and
σ2 (Π) = W>t ΣWt . Therefore, the expression of the value-at-risk is:

VaRα (w ; h) = −W>t µ+ Φ−1 (α)

√
W>t ΣWt
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Example

We consider the Apple/Coca-Cola example. The nominal exposures are
$1 093.3 (Apple) and $842.8 (Coca-Cola). The estimated standard
deviation of daily returns is equal to 1.3611% for Apple and 0.9468% for
Coca-Cola, whereas the cross-correlation is equal to 12.0787%. It follows
that:

σ2 (Π) = W>t ΣWt

= 1 093.32 ×
(

1.3611

100

)2

+ 842.82 ×
(

0.9468

100

)2

+

2× 12.0787

100
× 1 093.3× 842.8× 1.3611

100
× 0.9468

100
= 313.80

We deduce that the 99% daily value-at-risk is equal to:

VaR99% (w ; one day) = Φ−1 (0.99)
√

313.80 = $41.21
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The factor model

CAPM (HFRM, pages 76-77)

APT (HFRM, page 77 and Exercise 2.4.5 page 119)

Application to a bond portfolio (HFRM, pages 77-80)
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Some other topics

Volatility forecasting EWMA, GARCH and SV models (HFRM, pages
80-83 and Section 10.2.4 page 664)

Other probability distributions (HFRM, pages 84-90)

Cornish-Fisher approximation (HFRM, pages 85-87)

VaRα (w ; h) = µ (L) + Z (α; γ1 (L) , γ2 (L))× σ (L)

where:

Z (α; γ1, γ2) = zα+
1

6

(
z2
α − 1

)
γ1+

1

24

(
z3
α − 3zα

)
γ2−

1

36

(
2z3
α − 5zα

)
γ2

1

and zα = Φ−1 (α)
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Monte Carlo methods

We assume a given probability distribution H for the risk factors:

(F1,t+h, . . . ,Fm,t+h) ∼ H

We simulate nS scenarios of risk factors and calculate the simulated
P&L Πs (w) for each scenario s

We calculate the empirical quantile using the order statistic approach

⇒ The Monte Carlo VaR/ES is a historical VaR/ES with simulated
scenarios or the Monte Carlo VaR/ES is a parametric VaR/ES for which
it is difficult to find an analytical formula

Thierry Roncalli Course 2023-2024 in Financial Risk Management 132 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Computation
Options and derivatives

Identification of risk factors

We consider a portfolio containing wS stocks and wC call options on this
stock. We note St and Ct the stock and option prices at time t. We have:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)

If we use asset returns as risk factors, we get:

Π (w) = wSStRS,t+h + wCCtRC ,t+h

where RS,t+h and RC ,t+h are the returns of the stock and the option for
the period [t, t + h]

⇒ Two risk factors: RS,t+h and RC ,t+h?
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Identification of risk factors

The problem is that the option price Ct is a non-linear function of the
underlying price St :

Ct = fC (St)

This implies that:

Π (w) = wSStRS,t+h + wC (fC (St+h)− Ct)

= wSStRS,t+h + wC (fC (St (1 + RS,t+h))− Ct)

⇒ One risk factor: RS,t+h?
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The Black-Scholes formula

The price of the call option is equal to:

CBS (St ,K ,Σt ,T , bt , rt) = Ste
(bt−rt)τΦ (d1)− Ke−rtτΦ (d2)

where:
St is the current price of the underlying asset
K is the option strike
Σt is the volatility parameter,
T is the maturity date
bt is the cost-of-carry9

rt is the interest rate
the parameter τ = T − t is the time to maturity
The coefficients d1 and d2 are defined as follows:

d1 =
1

Σt
√
τ

(
ln

St
K

+ btτ

)
+

1

2
Σt

√
τ and d2 = d1 − Σt

√
τ

9The cost-of-carry depends on the underlying asset. We have bt = rt for
non-dividend stocks and total return indices, bt = rt − dt for stocks paying a continuous
dividend yield dt , bt = 0 for forward and futures contracts and bt = rt − r?t for foreign
exchange options where r?t is the foreign interest rate.
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Identification of risk factors

We can write the option price as follows:

Ct = fBS (θcontract; θ)

where θcontract are the parameters of the contract (strike K and maturity
T ) and θ are the other parameters

St is obviously a risk factor

If Σt is not constant, the option price may be sensitive to the
volatility risk

The option may be impacted by changes in the interest rate or the
cost-of-carry

⇒ The choice of risk factors depends on the derivative contract (volatility
risk, dividend risk, yield curve risk, correlation risk, etc.)
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Methods to calculate VAR and ES risk measures

1 The method of full pricing (option repricing)

2 The method of sensitivities (delta-gamma-vega approximation)

3 The hybrid method
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The method of full pricing

We recall that the P&L of the sth scenario has the following expression:

Πs (w) = g (F1,s , . . . ,Fm,s ;w)− Pt (w)

In the case of the previous example, the P&L becomes then:

Πs (w) =

{
wSStRs + wC (fC (St (1 + Rs) ; Σt)− Ct) with one risk factor
wSStRs + wC (fC (St (1 + Rs) ,Σs)− Ct) with two risk factors

where the pricing function is:

fC (S ; Σ) = CBS (S ,K ,Σ,T − h, bt , rt)

Remark

In the model with two risk factors, we have to simulate the underlying
price and the implied volatility. For the single factor model, we use the
current implied volatility Σt instead of the simulated value Σs .
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Application to the VaR and ES

Example

We consider a long position on 100 call options with strike K = 100. The
value of the call option is $4.14, the residual maturity is 52 days and the
current price of the underlying asset is $100. We assume that Σt = 20%
and bt = rt = 5%. The objective is to calculate the daily 99% VaR and
the daily 97.5% ES with 250 historical scenarios, whose first nine values
are the following:

s 1 2 3 4 5 6 7 8 9
Rs −1.93 −0.69 −0.71 −0.73 1.22 1.01 1.04 1.08 −1.61

∆Σs −4.42 −1.32 −3.04 2.88 −0.13 −0.08 1.29 2.93 0.85

Remark

Data are available at
http: // www. thierry-roncalli. com/ download/ frm-data1. xlsx
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Application to the VaR and ES

⇒ The implied volatility is equal to 20%

For the first scenario, Rs is equal to −1.93% and St+h is equal to
100× (1− 1.93%) = 98.07. The residual maturity τ is equal to 51/252
years. It follows that:

d1 =
1

20%×
√

51/252

(
ln

98.07

100
+ 5%× 51

252

)
+

1

2
× 20%×

√
51

252
= −0.0592

d2 = −0.0592− 20%×
√

51

252
= −0.1491

We deduce that:

Ct+h = 98.07× e(5%−5%) 51
252 × Φ (−0.0592)− 100× e5%× 51

252 × Φ (−0.1491)

= 98.07× 1.00× 0.4764− 100× 1.01× 0.4407

= 3.093

The simulated P&L for the first historical scenario is then equal to:

Πs = 100× (3.093− 4.14) = −104.69
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Application to the VaR and ES

Table: Daily P&L of the long position on the call option when the risk factor is
the underlying price

s Rs (in %) St+h Ct+h Πs

1 −1.93 98.07 3.09 −104.69
2 −0.69 99.31 3.72 −42.16
3 −0.71 99.29 3.71 −43.22
4 −0.73 99.27 3.70 −44.28
5 1.22 101.22 4.81 67.46
6 1.01 101.01 4.68 54.64
7 1.04 101.04 4.70 56.46
8 1.08 101.08 4.73 58.89
9 −1.61 98.39 3.25 −89.22

⇒ With the 250 historical scenarios, the 99% value-at-risk is equal to
$154.79, whereas the 97.5% expected shortfall is equal to $150.04
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The option return RC is not a new risk factor

Figure: Relationship between the asset return RS and the option return RC
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Adding the risk factor Σt

Σt+h = Σt + ∆Σs

Table: Daily P&L of the long position on the call option when the risk factors
are the underlying price and the implied volatility

s Rs (in %) St+h ∆Σs (in %) Σt+h Ct+h Πs

1 −1.93 98.07 −4.42 15.58 2.32 −182.25
2 −0.69 99.31 −1.32 18.68 3.48 −65.61
3 −0.71 99.29 −3.04 16.96 3.17 −97.23
4 −0.73 99.27 2.88 22.88 4.21 6.87
5 1.22 101.22 −0.13 19.87 4.79 65.20
6 1.01 101.01 −0.08 19.92 4.67 53.24
7 1.04 101.04 1.29 21.29 4.93 79.03
8 1.08 101.08 2.93 22.93 5.24 110.21
9 −1.61 98.39 0.85 20.85 3.40 −74.21

⇒ VaR99% (w ; one day) = $181.70 and ES97.5% (w ; one day) = $172.09

Thierry Roncalli Course 2023-2024 in Financial Risk Management 143 / 1695



Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Computation
Options and derivatives

The method of sensitivities

The previous approach is called full pricing, because it consists in re-pricing
the option

In the method based on the Greek coefficients, the idea is to approximate
the change in the option price by a Taylor expansion:

Delta approach

Delta-gamma approach

Delta-gamma-theta approach

Delta-gamma-theta-vega approach

Etc.
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The delta approach

We define the delta approach as follows:

Ct+h − Ct ' ∆t (St+h − St)

where ∆t is the option delta:

∆t =
∂ CBS (St ,Σt ,T )

∂ St
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The delta approach applied to delta neutral portfolios

If we consider the introductory example, we have:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)

' (wS + wC∆t) (St+h − St)

= (wS + wC∆t)StRS,t+h

With the delta approach, we aggregate the risk by netting the different
delta exposures10. In particular, the portfolio is delta neutral if the net
exposure is zero:

wS + wC∆t = 0⇔ wS = −wC∆t

With the delta approach, the VaR/ES of delta neutral portfolios is then
equal to zero

10A long (or short) position on the underlying asset is equivalent to ∆t = 1 (or
∆t = −1).
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The delta-gamma approach

We can use the second-order approximation or the delta-gamma approach:

Ct+h − Ct ' ∆t (St+h − St) +
1

2
Γt (St+h − St)

2

where Γt is the option gamma:

Γt =
∂2 CBS (St ,Σt ,T )

∂ S2
t
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Comparison between delta and delta-gamma approaches

Figure: Approximation of the option price with the Greek coefficients
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Extension to other risk factors

The Taylor expansion can be generalized to a set of risk factors
Ft = (F1,t , . . . ,Fm,t):

Ct+h − Ct '
m∑
j=1

∂ Ct

∂ Fj,t
(Fj,t+h −Fj,t) +

1

2

m∑
j=1

m∑
k=1

∂2 Ct

∂ Fj,t ∂ Fk,t
(Fj,t+h −Fj,t) (Fk,t+h −Fk,t)

The delta-gamma-theta-vega approach is defined as follows:

Ct+h − Ct ' ∆t (St+h − St) +
1

2
Γt (St+h − St)

2 + Θth + υt (Σt+h − Σt)

where Θt = ∂t CBS (St ,Σt ,T ) is the option theta and
υt = ∂Σt CBS (St ,Σt ,T ) is the option vega

⇒ We can also include vanna and volga effects
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The Black-Scholes Greek coefficients

∆t = e(bt−rt)τΦ (d1)

Γt =
e(bt−rt)τφ (d1)

StΣt
√
τ

Θt = −rtKe−rtτΦ (d2)− 1

2
√
τ
StΣte

(bt−rt)τφ (d1)−

(bt − rt)Ste
(bt−rt)τΦ (d1)

υt = e(bt−rt)τSt
√
τφ (d1)

(HFRM, Exercise 2.4.7 page 121)
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Application to the VaR and ES

In the case of our previous example (Slide 82), we obtain ∆t = 0.5632,
Γt = 0.0434, Θt = −11.2808 and υt = 17.8946

We have:

Π∆
1 (w) = 100× 0.5632× (98.07− 100) = −108.69

Π∆+Γ
1 (w) = −108.69 + 100× 1

2 ×0.0434× (98.07− 100)2 = −100.61

Π∆+Γ+Θ
1 (w) = −100.61− 11.2808× 1/252 = −105.09

Πυ
1 (w) = 100× 17.8946× (15.58%− 20%) = −79.09

Π∆+Γ+Θ+υ
1 (w) = −105.90− 79.09 = −184.99
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Application to the VaR and ES

Table: Calculation of the P&L based on the Greek sensitivities

s Rs (in %) St+h Πs Π∆
s Π∆+Γ

s Π∆+Γ+Θ
s

1 −1.93 98.07 −104.69 −108.69 −100.61 −105.09
2 −0.69 99.31 −42.16 −38.86 −37.83 42.30
3 −0.71 99.29 −43.22 −39.98 −38.89 −43.37
4 −0.73 99.27 −44.28 −41.11 −39.96 −44.43
5 1.22 101.22 67.46 68.71 71.93 67.46
6 1.01 101.01 54.64 56.88 59.09 54.61
7 1.04 101.04 56.46 58.57 60.91 56.44
8 1.08 101.08 58.89 60.82 63.35 58.87
9 −1.61 98.39 −89.22 −90.67 −85.05 −89.53
VaR99% (w ; one day) 154.79 171.20 151.16 155.64
ES97.5% (w ; one day) 150.04 165.10 146.37 150.84
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Application to the VaR and ES

Table: Calculation of the P&L using the vega coefficient

s St+h Σt+h Πs Πυ
s Π∆+υ

s Π∆+Γ+υ
s Π∆+Γ+Θ+υ

s

1 98.07 15.58 −182.25 −79.09 −187.78 −179.71 −184.19
2 99.31 18.68 −65.61 −23.62 −62.48 −61.45 −65.92
3 99.29 16.96 −97.23 −54.40 −94.38 −93.29 −97.77
4 99.27 22.88 6.87 51.54 10.43 11.58 7.10
5 101.22 19.87 65.20 −2.33 66.38 69.61 65.13
6 101.01 19.92 53.24 −1.43 55.45 57.66 53.18
7 101.04 21.29 79.03 23.08 81.65 84.00 79.52
8 101.08 22.93 110.21 52.43 113.25 115.78 111.30
9 98.39 20.85 −74.21 15.21 −75.46 −69.84 −74.32
VaR99% (w ; one day) 181.70 77.57 190.77 179.29 183.76
ES97.5% (w ; one day) 172.09 73.90 184.90 169.34 173.81
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The hybrid method

The hybrid method consists of combining the two approaches:

1 we first calculate the P&L for each (historical or simulated) scenario
with the method based on the sensitivities;

2 we then identify the worst scenarios;

3 we finally revalue these worst scenarios by using the full pricing
method.

⇒ The underlying idea is to consider the faster approach to locate the
value-at-risk, and then to use the most accurate approach to calculate the
right value
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The hybrid method

Table: The 10 worst scenarios identified by the hybrid method

i
Full pricing Greeks

∆− Γ−Θ− υ ∆−Θ ∆−Θ− υ
s Πs s Πs s Πs s Πs

1 100 −183.86 100 −186.15 182 −187.50 134 −202.08
2 1 −182.25 1 −184.19 169 −176.80 100 −198.22
3 134 −181.15 134 −183.34 27 −174.55 1 −192.26
4 27 −163.01 27 −164.26 134 −170.05 169 −184.32
5 169 −162.82 169 −164.02 69 −157.66 27 −184.04
6 194 −159.46 194 −160.93 108 −150.90 194 −175.36
7 49 −150.25 49 −151.43 194 −149.77 49 −165.41
8 245 −145.43 245 −146.57 49 −147.52 182 −164.96
9 182 −142.21 182 −142.06 186 −145.27 245 −153.37

10 79 −135.55 79 −136.52 100 −137.38 69 −150.68
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Backtesting

mark-to-model 6= mark-to-market

For on-exchange products, the simulated P&L is equal to:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-market

whereas the realized P&L is equal to:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-market

− Pt (w)︸ ︷︷ ︸
mark-to-market
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Backtesting

For exotic options and OTC derivatives, the simulated P&L is the
difference between two mark-to-model values:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

and the realized P&L is also the difference between two mark-to-model
values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

⇒ Model risk
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Model risk

4 types of model risk:

1 Operational risk

2 Parameter risk

3 Mis-specification risk

4 Hedging risk

(HFRM, Chapter 9, Page 491)
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On the importance of risk allocation

Let us consider two trading desks A and B, whose risk measure is
respectively R (wA) and R (wB). At the global level, the risk measure is
equal to R (wA+B). The question is then how to allocate R (wA+B) to the
trading desks A and B:

R (wA+B) = RCA (wA+B) +RCB (wA+B)

Remark

This question is an important issue for the bank because risk allocation
means capital allocation:

K (wA+B) = KA (wA+B) + KB (wA+B)

Capital allocation is not neutral, because it will impact the profitability
of business units that compose the bank
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Euler allocation principle

We decompose the P&L as follows:

Π =
n∑

i=1

Πi

where Πi is the P&L of the i th sub-portfolio

We note R (Π) the risk measure associated with the P&L

We consider the risk-adjusted performance measure (RAPM) defined
by:

RAPM (Π) =
E [Π]

R (Π)

We consider the portfolio-related RAPM of the i th sub-portfolio
defined by:

RAPM (Πi | Π) =
E [Πi ]

R (Πi | Π)
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Euler allocation principle

Based on the notion of RAPM, Tasche (2008) states two properties of risk
contributions that are desirable from an economic point of view:

1 Risk contributions R (Πi | Π) to portfolio-wide risk R (Π) satisfy the
full allocation property if:

n∑
i=1

R (Πi | Π) = R (Π)

2 Risk contributions R (Πi | Π) are RAPM compatible if there are some
εi > 0 such that:

RAPM (Πi | Π) > RAPM (Π)⇒ RAPM (Π + hΠi ) > RAPM (Π)

for all 0 < h < εi

⇒ This property means that assets with a better risk-adjusted
performance than the portfolio continue to have a better RAPM if their
allocation increases in a small proportion
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Euler allocation principle

Tasche (2008) shows that if there are risk contributions that are RAPM
compatible, then R (Πi | Π) is uniquely determined as:

R (Πi | Π) =
d

dh
R (Π + hΠi )

∣∣∣∣
h=0

and the risk measure is homogeneous of degree 1

If we consider the risk measure R (w) defined in terms of weights, the risk
contribution of sub-portfolio i is uniquely defined as:

RC i = wi
∂R (w)

∂ wi

and the risk measure satisfies the Euler decomposition (or the Euler
allocation principle):

R (w) =
n∑

i=1

wi
∂R (w)

∂ wi
=

n∑
i=1

RC i
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Application to Gaussian risk measures

If we assume that the portfolio return R (w) is a linear function of the
weights w , the expression of the standard deviation-based risk measure
becomes:

R (w) = −µ (w) + c · σ (w) = −w>µ+ c ·
√
w>Σw

where µ and Σ are the mean vector and the covariance matrix of
sub-portfolios

We have:

∂R (w)

∂ w
= −µ+ c · 1

2

(
w>Σw

)−1/2

(2Σw) = −µ+ c · Σw√
w>Σw

The risk contribution of the i th sub-portfolio is then:

RC i = wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
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Application to Gaussian risk measures

We verify that the standard deviation-based risk measure satisfies the full
allocation property:

n∑
i=1

RC i =
n∑

i=1

wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
= w>

(
−µ+ c · Σw√

w>Σw

)
= −w>µ+ c ·

√
w>Σw

= R (w)
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Application to Gaussian risk measures

Gaussian VaR risk contribution:

RC i = wi ·
(
−µi + Φ−1 (α) ·

(Σw)i√
w>Σw

)
Gaussian ES risk contribution:

RC i = wi ·

(
−µi +

φ
(
Φ−1 (α)

)
(1− α)

·
(Σw)i√
w>Σw

)
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Application to Gaussian risk measures

block

We consider the Apple/Coca-Cola portfolio that has been used for
calculating the Gaussian VaR. We recall that the nominal exposures were
$1 093.3 (Apple) and $842.8 (Coca-Cola), the estimated standard
deviation of daily returns was equal to 1.3611% for Apple and 0.9468% for
Coca-Cola and the cross-correlation of stock returns was equal to
12.0787%.
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Application to Gaussian risk measures

Table: Risk decomposition of the 99% Gaussian value-at-risk

Asset wi MRi RC i RC?i
Apple 1093.3 2.83% 30.96 75.14%

Coca-Cola 842.8 1.22% 10.25 24.86%
R (w) 41.21

Table: Risk decomposition of the 99% Gaussian expected shortfall

Asset wi MRi RC i RC?i
Apple 1093.3 3.24% 35.47 75.14%

Coca-Cola 842.8 1.39% 11.74 24.86%
R (w) 47.21
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Application to non-normal risk measures

Generalized formulas

The risk contribution for the value-at-risk is equal to:

RC i = E [Li | L (w) = VaRα (L)]

The risk contribution for the expected shortfall is equal to:

RC i = E [Li | L (w) ≥ VaRα (L)]

⇒ These formulas can easily be applied to historical and Monte Carlo risk
measures (HFRM, pages 109-116)
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Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Application to Gaussian risk measures
Application to non-normal risk measures

Calculating the Gaussian VaR risk contribution

Asset returns are assumed to be Gaussian:

R ∼ N (µ,Σ)

The portfolio’s loss is equal to:

L (w) = −R (w) = −
n∑

i=1

wiRi = −w>R

We notice that:
Li = −wiRi

and:

E [Li | L (w) = VaRα (w ; h)] = −wiE [Ri | L (w) = VaRα (w ; h)]
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Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Application to Gaussian risk measures
Application to non-normal risk measures

Calculating the Gaussian VaR risk contribution

We have: (
R

L (w)

)
=

(
In
−w>

)
R

and: (
R

L (w)

)
∼ N

((
µ

−w>µ

)
,

(
Σ −Σw
−w>Σ w>Σw

))
We would like to calculate:

RC i = −wiE [Ri | L (w) = VaRα (w ; h)]
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Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Application to Gaussian risk measures
Application to non-normal risk measures

Conditional distribution in the case of the normal
distribution

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σx,x Σx,y

Σy ,x Σy ,y

))
We have:

Y | X = x ∼ N
(
µy |x ,Σy ,y |x

)
where:

µy |x = E [Y | X = x ] = µy + Σy ,xΣ−1
x,x (x − µx)

and:
Σy ,y |x = cov (Y | X = x) = Σy ,y − Σy ,xΣ−1

x,xΣx,y
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Capital requirements
Statistical estimation of risk measures

Risk allocation

Definition
Application to Gaussian risk measures
Application to non-normal risk measures

Calculating the Gaussian VaR risk contribution

Since VaRα (w ; h) = −w>µ+ Φ−1 (α)
√
w>Σw , we have:

E [R | L (w) = VaRα (w ; h)] = E
[
R | L (w) = −w>µ+ Φ−1 (α)

√
w>Σw

]
= µ− Σw

(
w>Σw

)−1 ·(
−w>µ+ Φ−1 (α)

√
w>Σw −

(
−w>µ

))
= µ− Φ−1 (α) Σw

√
w>Σw

(w>Σw)
−1

= µ− Φ−1 (α)
Σw√
w>Σw

and:

RC i = −wi

(
µ− Φ−1 (α)

Σw√
w>Σw

)
i

= −wiµi + Φ−1 (α)
wi · (Σw)i√

w>Σw
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Capital requirements
Statistical estimation of risk measures

Risk allocation

Exercises

Value-at-risk

Exercise 2.4.2 – Covariance matrix
Exercise 2.4.4 – Value-at-risk of a long/short portfolio
Exercise 2.4.4 – Value-at-risk of an equity portfolio hedged with put
options

Expected shortfall

Exercise 2.4.10 – Expected shortfall of an equity portfolio
Exercise 2.4.11 – Risk measure of a long/short portfolio

Options and derivatives

Exercise 2.4.6 – Risk management of exotic options
Exercise 2.4.7 – P&L approximation with Greek sensitivities
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Statistical estimation of risk measures

Risk allocation

References

Basel Committee on Banking Supervision (1996)
Amendment to the Capital Accord to Incorporate Market Risks,
January 1996

Basel Committee on Banking Supervision (2009
Revisions to the Basel II Market Risk Framework, July 2009

Basel Committee on Banking Supervision (2019)
Minimum Capital Requirements for Market Risk, January 2019.

Roncalli, T. (2020)
Handbook of Financial Risk Management, Chapman and Hall/CRC
Financial Mathematics Series, Chapter 2.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 174 / 1695



The market of credit risk
Capital requirement
Credit risk modeling

Course 2023-2024 in Financial Risk Management
Lecture 3. Credit Risk

Thierry Roncalli?

?Amundi Asset Management11

?University of Paris-Saclay

September 2023

11The opinions expressed in this presentation are those of the authors and are not
meant to represent the opinions or official positions of Amundi Asset Management.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 175 / 1695



The market of credit risk
Capital requirement
Credit risk modeling
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

The loan market

⇒ Banking intermediation (retail banks and corporate investment banks)
6= financial market of debt securities (money market, bonds, notes, etc.)

Counterparties

Sovereign

Financial

Corporate

Retail

Products

Mortgage and housing debt, consumer
credit (auto loans, credit cards,
revolving credit), student loans

Revolving credit facilities (for
corporates), corporate loans and other
credit lines

⇒ Differences in terms of products and maturities (retail 6= corporate)

Credit decision process

Segmentation (retail banking)

Pricing of the credit spread (commercial and investment banking)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

The loan market

Figure: Credit debt outstanding in the United States (in $ tn)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

The loan market

Figure: Credit to the private non-financial sector (in $ tn)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

The bond market

Issuance 6= outstanding:

Primary market

Secondary market

Three main sectors

Central and local governments

Financials

Corporates
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Statistics of the bond market

Table: Debt securities by residence of issuer (in $ bn)

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2017

Canada

Gov. 682 841 1 149 1 264
Fin. 283 450 384 655
Corp. 212 248 326 477
Total 1 180 1 544 1 863 2 400

France

Gov. 1 236 1 514 1 838 2 258
Fin. 968 1 619 1 817 1 618
Corp. 373 382 483 722
Total 2 576 3 515 4 138 4 597

Germany

Gov. 1 380 1 717 2 040 1 939
Fin. 2 296 2 766 2 283 1 550
Corp. 133 174 168 222
Total 3 809 4 657 4 491 3 712

Italy

Gov. 1 637 1 928 2 069 2 292
Fin. 772 1 156 1 403 834
Corp. 68 95 121 174
Total 2 477 3 178 3 593 3 299
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Statistics of the bond market

Table: Debt securities by residence of issuer (in $ bn)

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2017

Japan

Gov. 6 336 6 315 10 173 9 477
Fin. 2 548 2 775 3 451 2 475
Corp. 1 012 762 980 742
Total 9 896 9 852 14 604 12 694

Spain

Gov. 462 498 796 1 186
Fin. 434 1 385 1 442 785
Corp. 15 19 19 44
Total 910 1 901 2 256 2 015

UK

Gov. 798 1 070 1 674 2 785
Fin. 1 775 3 127 3 061 2 689
Corp. 452 506 473 533
Total 3 027 4 706 5 210 6 011

US

Gov. 6 459 7 487 12 072 17 592
Fin. 12 706 17 604 15 666 15 557
Corp. 3 004 3 348 3 951 6 137
Total 22 371 28 695 31 960 39 504
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Statistics of the bond market

Figure: US bond market outstanding (in $ tn)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Statistics of the bond market

Figure: US bond market issuance (in $ tn)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Statistics of the bond market

Figure: Average daily trading volume in US bond markets (in $ bn)
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Bond pricing (without default risk)'
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Figure: Cash flows of a bond with a fixed coupon rate
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Bond pricing (without default risk)

The price of the bond at the inception date t0 is the sum of the present
values of all the expected coupon payments and the par value:

Pt0 =

nC∑
m=1

C (tm) · Bt0 (tm) + N · Bt0 (T )

where Bt (tm) is the discount factor at time t for the maturity date tm
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Bond pricing (without default risk)

If we take into account the accrued interests, we have:

Pt + ACt =
∑
tm≥t

C (tm) · Bt (tm) + N · Bt (T )

Here, ACt is the accrued coupon:

ACt = C (tc) · t − tc
365

and tc is the last coupon payment date with c = {m : tm+1 > t, tm ≤ t}

Pt + ACt is called the ‘dirty price’

Pt is called the ‘clean price’
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Impact of the term structure

3 main movements:

1 The movement of level corresponds to a parallel shift of interest rates.

2 A twist in the slope of the yield curve indicates how the spread
between long and short interest rates moves.

3 A change in the curvature of the yield curve affects the convexity of
the term structure.
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The market of credit risk
Capital requirement
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The loan market
The bond market
Securitization and credit derivatives

Impact of the term structure

Figure: Movements of the yield curve
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The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Yield to maturity

The yield to maturity y of a bond is the constant discount rate which
returns its market price:∑

tm≥t

C (tm) e−(tm−t)y + Ne−(T−t)y = Pt + ACt

The sensitivity S is the derivative of the clean price Pt with respect to the
yield to maturity y :

S =
∂ Pt

∂ y = −
∑
tm≥t

(tm − t)C (tm) e−(tm−t)y − (T − t)Ne−(T−t)y

⇒ It indicates how the P&L of a long position on the bond moves when
the yield to maturity changes:

Π ≈ S ·∆y
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The loan market
The bond market
Securitization and credit derivatives

Yield to maturity

Example

We assume that the zero-coupon rates are equal to 0.52% (1Y), 0.99%
(2Y), 1.42% (3Y), 1.80% (4Y) and 2.15% (5Y). We consider a bond with
a constant annual coupon of 5%. The nominal of the bond is $100. We
would like to price the bond when the maturity T ranges from 1 to 5 years.

The price of the four-year bond is equal to:

Pt =
5

(1 + 0.52%)
+

5

(1 + 0.99%)2 +
5

(1 + 1.42%)3 +
105

(1 + 1.80%)4 = $112.36
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The market of credit risk
Capital requirement
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The loan market
The bond market
Securitization and credit derivatives

Yield to maturity

Table: Price, yield to maturity and sensitivity of bonds

T Rt (T ) Bt (T ) Pt y S

1 0.52% 99.48 104.45 0.52% −104.45
2 0.99% 98.03 107.91 0.98% −210.86
3 1.42% 95.83 110.50 1.39% −316.77
4 1.80% 93.04 112.36 1.76% −420.32
5 2.15% 89.82 113.63 2.08% −520.16
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The market of credit risk
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The loan market
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Yield to maturity

Table: Impact of a parallel shift of the yield curve on the bond with five-year
maturity

∆R
P̆t ∆Pt P̂t ∆Pt S ×∆y

(in bps)
−50 116.26 2.63 116.26 2.63 2.60
−30 115.20 1.57 115.20 1.57 1.56
−10 114.15 0.52 114.15 0.52 0.52

0 113.63 0.00 113.63 0.00 0.00
10 113.11 −0.52 113.11 −0.52 −0.52
30 112.08 −1.55 112.08 −1.55 −1.56
50 111.06 −2.57 111.06 −2.57 −2.60

P̌t =
∑
tm≥t

C (tm) e−(tm−t)(Rt(tm)+∆R) + Ne−(T−t)(Rt(T )+∆R)

P̂t =
∑
tm≥t

C (tm) e−(tm−t)(y+∆R) + Ne−(T−t)(y+∆R)
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Bond pricing (with default risk)'

&

$

%

-

?

Pt

6

t1

6

t2

· · ·

τ

6

R · N

T time
u uu

Figure: Cash flows of a bond with default risk
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Bond pricing (with default risk)

the coupons C (tm) if the bond issuer does not default before the
coupon date tm: ∑

tm≥t

C (tm) · 1 {τ > tm}

the notional if the bond issuer does not default before the maturity
date:

N · 1 {τ > T}
the recovery part if the bond issuer defaults before the maturity date:

R · N · 1 {τ ≤ T}

where R is the corresponding recovery rate

SVt =
∑
tm≥t

C (tm) · e−
∫ tm
t

rs ds · 1 {τ > tm}+

N · e−
∫ T
t

rs ds · 1 {τ > T}+ R · N · e−
∫ τ
t

rs ds · 1 {τ ≤ T}
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Bond pricing (with default risk)

Closed-form formula

Pt + ACt =
∑
tm≥t

C (tm)Bt (tm) St (tm) + NBt (T ) St (T ) +

RN

∫ T

t

Bt (u) ft (u) du

where St (u) is the survival function at time u and ft (u) the associated
density function
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Bond pricing (with default risk)

If we consider an exponential default time with parameter λ – τ ∼ E (λ),
we have St (u) = e−λ(u−t), ft (u) = λe−λ(u−t) and:

Pt + ACt =
∑
tm≥t

C (tm)Bt (tm) e−λ(tm−t) + NBt (T ) e−λ(T−t) +

λRN

∫ T

t

Bt (u) e−λ(u−t) du

If we assume a flat yield curve – Rt (u) = r , we obtain:

Pt + ACt =
∑
tm≥t

C (tm) e−(r+λ)(tm−t) + Ne−(r+λ)(T−t) +

λRN

(
1− e−(r+λ)(T−t)

r + λ

)
If the recovery rate is equal to zero, y = r + λ
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Credit spread

The credit spread is equal to the difference between the yield to maturity
with default risk y and the yield to maturity without default risk y?:

s = y − y?

Remark

In the previous case (exponential default time + flat yield curve + zero
recovery), we have:

s = λ

If λ is relatively small (less than 20%), the credit spread is approximately
equal to the annual default probability PD:

PD = St (t + 1) = 1− e−λ ≈ λ
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Credit spread

We consider the previous example with a coupon of 4.5% and a 10-year
maturity

Table: Computation of the credit spread s

R λ PD Pt y s
(in %) (in bps) (in bps) (in $) (in %) (in bps)

0

0 0.0 110.1 3.24 0.0
10 10.0 109.2 3.34 9.9

200 198.0 93.5 5.22 198.1
1000 951.6 50.4 13.13 988.9

40

0 0.0 110.1 3.24 0.0
10 10.0 109.6 3.30 6.0

200 198.0 99.9 4.41 117.1
1000 951.6 73.3 8.23 498.8

80

0 0.0 110.1 3.24 0.0
10 10.0 109.9 3.26 2.2

200 198.0 106.4 3.66 41.7
1000 951.6 96.3 4.85 161.4
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Credit risk versus market risk

Figure: Difference between market and credit risks for a bond
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Credit securitization

Figure: Securitization in Europe and US (in e tn)
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Credit securitization

Collateral assets

Mortgage-backed securities (MBS)

Residential mortgage-backed securities (RMBS)
Commercial mortgage-backed securities (CMBS)

Collateralized debt obligations (CDO)

Collateralized loan obligations (CLO)
Collateralized bond obligations (CBO)

Asset-backed securities (ABS)

Auto loans
Credit cards and revolving credit
Student loans
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Credit securitization

Collateral
Pool

of Debt

Special
Purpose
Vehicle

Security

Originator Arranger Investors

Figure: Structure of pass-through securities
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Credit securitization

Collateral
Pool

of Debt

Special
Purpose
Vehicle

Security A

Security B

Security C

Figure: Structure of pay-through securities
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Credit securitization

Table: US mortgage-backed securities

Year
Agency Non-agency Total

MBS CMO CMBS RMBS (in $ bn)
Issuance

2002 57.5% 23.6% 2.2% 16.7% 2 515
2006 33.6% 11.0% 7.9% 47.5% 2 691
2008 84.2% 10.8% 1.2% 3.8% 1 394
2010 71.0% 24.5% 1.2% 3.3% 2 013
2012 80.1% 16.4% 2.2% 1.3% 2 195
2014 68.7% 19.2% 7.0% 5.1% 1 440
2016 76.3% 15.7% 3.8% 4.2% 2 044
2018 69.2% 16.6% 4.7% 9.5% 1 899

Outstanding amount
2002 59.7% 17.4% 5.6% 17.2% 5 289
2006 45.7% 14.9% 8.3% 31.0% 8 390
2008 52.4% 14.0% 8.8% 24.9% 9 467
2010 59.2% 14.6% 8.1% 18.1% 9 258
2012 64.0% 14.8% 7.2% 14.0% 8 838
2014 68.0% 13.7% 7.1% 11.2% 8 842
2016 72.4% 12.3% 5.9% 9.5% 9 023
2018 74.7% 11.3% 5.6% 8.4% 9 732
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Credit securitization

Table: US asset-backed securities

Year
Auto CDO Credit Equip-

Other
Student Total

Loans & CLO Cards ement Loans (in $ bn)
Issuance

2002 34.9% 21.0% 25.2% 2.6% 6.8% 9.5% 269
2006 13.5% 60.1% 9.3% 2.2% 4.6% 10.3% 658
2008 16.5% 37.8% 25.9% 1.3% 5.4% 13.1% 215
2010 46.9% 6.4% 5.2% 7.0% 22.3% 12.3% 126
2012 33.9% 23.1% 12.5% 7.1% 13.7% 9.8% 259
2014 25.2% 35.6% 13.1% 5.2% 17.0% 4.0% 393
2016 28.3% 36.8% 8.3% 4.6% 16.9% 5.1% 325
2018 20.8% 54.3% 6.1% 5.1% 10.1% 3.7% 517

Outstanding amount
2002 20.7% 28.6% 32.5% 4.1% 7.5% 6.6% 905
2006 11.8% 49.3% 17.6% 3.1% 6.0% 12.1% 1 657
2008 7.7% 53.5% 17.3% 2.4% 6.2% 13.0% 1 830
2010 7.6% 52.4% 14.4% 2.4% 7.1% 16.1% 1 508
2012 11.0% 48.7% 10.0% 3.3% 8.7% 18.4% 1 280
2014 13.2% 46.8% 10.1% 3.9% 9.8% 16.2% 1 349
2016 13.9% 48.0% 9.3% 3.7% 11.6% 13.5% 1 397
2018 13.3% 48.2% 7.4% 5.0% 16.0% 10.2% 1 677

Thierry Roncalli Course 2023-2024 in Financial Risk Management 207 / 1695



The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Credit default swap

Figure: Outstanding amount of credit default swaps (in $ tn)
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Credit default swap

'

&

$

%
-

?

t1

?

t2

?

t3

?

t4

?

t5

?

t6 · · ·
︷ ︸︸ ︷ccc · N · (tm − tm−1)

6

t τ T

(1−R) · N

timeu u u

Figure: Cash flows of a single-name credit default swap
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Credit default swap

Example

We consider a credit default swap, whose notional principal is $10 mn,
maturity is 5 years and payment frequency is quarterly. The credit event is
the bankruptcy of the corporate entity A. We assume that the recovery
rate is set to 40% and the coupon rate is equal to 2%

20 fixing dates: 3M, 6M, 9M, 1Y, . . . , 5Y

Quarterly premium = $10 mn× 2%× 0.25 = $50 000

No default ⇒ the protection buyer will pay a total of
$50 000× 20 = $1 mn

The corporate defaults two years and four months after the CDS
inception date ⇒ the protection buyer will pay
9× $50 000 = $450 000 and the protection seller will pay the
protection leg (1− 40%)× $10 mn = $6 mn
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Credit default swap

If we assume that the premium is not paid after the default time τ , the
stochastic discounted value of the premium leg is:

SVt (PL) =
∑
tm≥t

ccc · N · (tm − tm−1) · 1 {τ > tm} · e−
∫ tm
t

rs ds

The present value of the premium leg is then:

PVt (PL) = E

∑
tm≥t

ccc · N ·∆tm · 1 {τ > tm} · e−
∫ tm
t

rs ds

∣∣∣∣∣∣Ft


=

∑
tm≥t

ccc · N ·∆tm · E [1 {τ > tm}] · E
[
e−

∫ tm
t

rs ds
]

= ccc · N ·
∑
tm≥t

∆tmSt (tm)Bt (tm)

where St (u) is the survival function at time u
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Credit default swap

If we assume that the default leg is exactly paid at the default time τ , the
stochastic discount value of the default (or protection) leg is:

SVt (DL) = (1−R) · N · 1 {τ ≤ T} · e−
∫ τ
t

r(s) ds

It follows that its present value is:

PVt (DL) = E
[

(1−R) · N · 1 {τ ≤ T} · e−
∫ τ
t

rs ds
∣∣∣Ft

]
= (1−R) · N · E [1 {τ ≤ T} · Bt (τ )]

= (1−R) · N ·
∫ T

t

Bt (u) ft (u) du

where ft (u) is the density function associated to the survival function
St (u)
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Credit default swap

We deduce that the mark-to-market of the swap is:

Pt (T ) = PVt (DL)− PVt (PL)

= (1−R)N

∫ T

t

Bt (u) ft (u) du − cccN
∑
tm≥t

∆tmSt (tm)Bt (tm)

= N

(
(1−R)

∫ T

t

Bt (u) ft (u) du − ccc · RPV01

)
where RPV01 =

∑
tm≥t ∆tmSt (tm)Bt (tm) is called the risky PV01 and

corresponds to the present value of 1 bp paid on the premium leg

CDS spread

The CDS spread s is the fair value coupon rate ccc in such a way that the
initial value of the credit default swap is equal to zero Pt = 0:

s =
(1−R)

∫ T

t
Bt (u) ft (u) du∑

tm≥t ∆tmSt (tm)Bt (tm)
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Credit default swap

Three properties:

1 No default risk: St (u) = 1 ⇒ s = 0

2 Recovery rate is set to 100%: R = 1 ⇒ s = 0

3 s is a decreasing function of R

If the premium leg is paid continuously, we obtain:

s =
(1−R)

∫ T

t
Bt (u) ft (u) du∫ T

t
Bt (u) St (u) du
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Credit default swap

If the interest rates are equal to zero (Bt (u) = 1) and the default times is
exponential with parameter λ – St (u) = e−λ(u−t) and ft (u) = λe−λ(u−t),
we get:

s =
(1−R) · λ ·

∫ T

t
e−λ(u−t) du∫ T

t
e−λ(u−t) du

= (1−R) · λ

If λ is relatively small, the one-year default probability is equal to:

PD = Pr {τ ≤ t + 1 | τ ≤ t} = 1− St (t + 1) = 1− e−λ ' λ

Credit triangle relationship

s ≈ (1−R) · PD

⇒ The spread is a decreasing function of the default probability
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Credit default swap

The first CDS was traded by J.P. Morgan in 1994

Standardization: 2003 and 2014 ISDA

Settlement: physical or cash

In the case of physical settlement, the protection buyer delivers a bond to
the protection seller and receives the notional principal amount ⇒ the
price of the defaulted bond is equal to R · N ⇒ the implied
mark-to-market of the physical settlement is N −R · N = (1−R) · N
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Credit default swap

Figure: Evolution of some sovereign CDS spreads
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Credit default swap

Figure: Evolution of some financial and corporate CDS spreads
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Credit curve

Figure: Example of CDS spread curves as of 17 September 2015
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Credit risk hedging with a CDS contract

'

&

$

%
t τ time

R · N

(1−R) · N

C (tm)

s · N

t1 t2 t3 t4 t5 t6

Figure: Hedging a defaultable bond with a credit default swap

y? = y − s ⇒ CDS spread = Credit spread
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Credit risk trading with a CDS contract

Two directional trading strategies:

‘long credit’ refers to the position of the protection seller who is
exposed to the credit risk

‘short credit’ is the position of the protection buyer who sold the
credit risk of the reference entity

⇒ A long exposure implies that the default results in a loss, whereas a
short exposure implies that the default results in a gain
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Credit risk trading with a CDS contract

Let Pt,t′ (T ) be the mark-to-market of a CDS position whose inception
date is t, valuation date is t ′ and maturity date is T . We have:

Pseller
t,t (T ) = Pbuyer

t,t (T ) = 0

At date t ′ > t, the mark-to-market price of the CDS is:

Pbuyer
t,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du − st (T ) · RPV01

)
whereas the value of the CDS spread satisfies the following relationship:

Pbuyer
t′,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du − st′ (T ) · RPV01

)
= 0

We deduce that the P&L of the protection buyer is:

Πbuyer = Pbuyer
t,t′ (T )− Pbuyer

t,t (T ) = Pbuyer
t,t′ (T )
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Credit risk trading with a CDS contract

We know that Pbuyer
t′,t′ (T ) = 0 and we obtain:

Πbuyer = Pbuyer
t,t′ (T )− Pbuyer

t′,t′ (T )

= N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du − st (T ) · RPV01

)
−

N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du − st′ (T ) · RPV01

)
= N · (st′ (T )− st (T )) · RPV01

Because Πseller = −Πbuyer, we distinguish two cases:

If st′ (T ) > st (T ), the protection buyer makes a profit, because this
short credit exposure has benefited from the increase of the default
risk.

If st′ (T ) < st (T ), the protection seller makes a profit, because the
default risk of the reference entity has decreased.
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Credit risk trading with a CDS contract

Suppose that we are in the first case. To realize its P&L, the protection
buyer has three options:

1 He could unwind the CDS exposure with the protection seller if the
latter agrees. This implies that the protection seller pays the
mark-to-market Pbuyer

t,t′ (T ) to the protection buyer

2 He could hedge the mark-to-market value by selling a CDS on the
same reference entity and the same maturity. In this situation, he
continues to pay the spread st (T ), but he now receives a premium,
whose spread is equal to st′ (T )

3 He could reassign the CDS contract to another counterparty. The
new counterparty (the protection buyer C in our case) will then pay
the coupon rate st (T ) to the protection seller. However, the spread is
st′ (T ) at time t ′, which is higher than st (T ). This is why the new

counterparty also pays the mark-to-market Pbuyer
t,t′ (T ) to the initial

protection buyer
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Credit risk trading with a CDS contract

Transfers the agreement

Pays the mark-to-market

Time t Time t ′

st (T ) st (T )

(1−R) · N (1−R) · N

Protection
Seller

A

Protection
Buyer

B

Protection
Buyer

C

Figure: An example of CDS offsetting
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Credit default swap

Example

The coupons are quarterly and the notional is equal to $1 mn. The
recovery rate R is set to 40% whereas the default time τ is an
exponential random variable, whose parameter λ is equal to 50 bps. We
consider seven maturities (6M, 1Y, 2Y, 3Y, 5Y, 7Y and 10Y) and two
coupon rates (10 and 100 bps).

Table: Price, spread and risky PV01 of CDS contracts

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 998 −3 492 30.01 0.499
1 1 992 −6 963 30.02 0.995
2 3 956 −13 811 30.04 1.974
3 5 874 −20 488 30.05 2.929
5 9 527 −33 173 30.08 4.744
7 12 884 −44 804 30.10 6.410

10 17 314 −60 121 30.12 8.604

Thierry Roncalli Course 2023-2024 in Financial Risk Management 226 / 1695



The market of credit risk
Capital requirement
Credit risk modeling

The loan market
The bond market
Securitization and credit derivatives

Basket default swap

First-to-default (FtD)

Second-to-default (StD)

kth-to-default credit derivatives

⇒ Impact of the default correlation:

max
(
sCDS

1 , . . . , sCDS
n

)
≤ sFtD ≤

n∑
i=1

sCDS
i
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Credit default indices

Definition

A credit default index is a CDS on a basket of reference entities

Table: Historical spread of CDX/iTraxx indices (in bps)

Date
CDX iTraxx

NA.IG NA.HY EM Europe Japan Asia
Dec. 2012 94.1 484.4 208.6 117.0 159.1 108.8
Dec. 2013 62.3 305.6 272.4 70.1 67.5 129.0
Dec. 2014 66.3 357.2 341.0 62.8 67.0 106.0
Sep. 2015 93.6 505.3 381.2 90.6 82.2 160.5
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Credit default indices

Table: List of Markit CDX main indices

Index name Description n R
CDX.NA.IG Investment grade entities 125 40%
CDX.NA.IG.HVOL High volatility IG entities 30 40%
CDX.NA.XO Crossover entities 35 40%
CDX.NA.HY High yield entities 100 30%
CDX.NA.HY.BB High yield BB entities 37 30%
CDX.NA.HY.B High yield B entities 46 30%
CDX.EM EM sovereign issuers 14 25%
LCDX Secured senior loans 100 70%
MCDX Municipal bonds 50 80%
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Credit default indices

Table: List of Markit iTraxx main indices

Index name Description n R
iTraxx Europe European IG entities 125 40%
iTraxx Europe HiVol European HVOL IG entities 30 40%
iTraxx Europe Crossover European XO entities 40 40%
iTraxx Asia Asian (ex-Japan) IG entities 50 40%
iTraxx Asia HY Asian (ex-Japan) HY entities 20 25%
iTraxx Australia Australian IG entities 25 40%
iTraxx Japan Japanese IG entities 50 35%
iTraxx SovX G7 G7 governments 7 40%
iTraxx LevX European leveraged loans 40 40%
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Collateralized debt obligation (CDO)

A CDO is a pay-through ABS structure, whose securities are bonds linked
to a series of tranches

Credit
portfolio

Equity

Mezzanine

Senior

Super
Senior

Assets Liabilities

0− 15%

15− 25%

25− 35%

35− 100%

P
rio

rity
o

f
p

aym
en

t
w

a
terfa

ll

Figure: An example of a CDO structure
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Collateralized debt obligation (CDO)

The returns of the 4 bonds depend on the loss of the corresponding
tranche. Each tranche is characterized by an attachment point A and a
detachment point D. In our example, we have:

Tranche Equity Mezzanine Senior Super senior
A 0% 15% 25% 35%
D 15% 25% 35% 100%

The protection buyer of the tranche [A,D] pays a coupon rate ccc[A,D] on
the nominal outstanding amount of the tranche to the protection seller. In
return, he receives the protection leg, which is the loss of the tranche
[A,D]
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CDO pricing

We have:

Lt (u) =
n∑

i=1

Ni · (1−Ri ) · 1 {τ i ≤ u}

and:

L
[A,D]
t (u) = (Lt (u)− A) · 1 {A ≤ Lt (u) ≤ D}+ (D − A) · 1 {Lt (u) > D}

The nominal outstanding amount of the tranche is therefore:

N
[A,D]
t (u) = (D − A)− L

[A,D]
t (u)

The spread of the CDO tranche is

s [A,D] =
E
[∑

tm≥t ∆L
[A,D]
t (tm) · Bt (tm)

]
E
[∑

tm≥t ∆tm · N [A,D]
t (tm) · Bt (tm)

]
We obviously have the following inequalities

sEquity > sMezzanine > sSenior > sSuper senior
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Credit risk

It is the risk of loss on a debt instrument resulting from the failure of the
borrower to make required payments: default risk 6= downgrading risk

Definition (BCBS, 2006)

A default is considered to have occurred with regard to a particular obligor
when either or both of the two following events have taken place

The bank considers that the obligor is unlikely to pay its credit
obligations to the banking group in full, without recourse by the bank
to actions such as realizing security (if held)

The obligor is past due more than 90 days on any material credit
obligation to the banking group. Overdrafts will be considered as
being past due once the customer has breached an advised limit or
been advised of a limit smaller than current outstandings
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A fair game?

Table: World’s largest banks in 1981 and 1988

1981 1988
Bank Assets Bank Assets

1 Bank of America (US) 115.6 Dai-Ichi Kangyo (JP) 352.5
2 Citicorp (US) 112.7 Sumitomo (JP) 334.7
3 BNP (FR) 106.7 Fuji (JP) 327.8
4 Crédit Agricole (FR) 97.8 Mitsubishi (JP) 317.8
5 Crédit Lyonnais (FR) 93.7 Sanwa (JP) 307.4
6 Barclays (UK) 93.0 Industrial Bank (JP) 261.5
7 Société Générale (FR) 87.0 Norinchukin (JP) 231.7
8 Dai-Ichi Kangyo (JP) 85.5 Crédit Agricole (FR) 214.4
9 Deutsche Bank (DE) 84.5 Tokai (JP) 213.5

10 National Westminster (UK) 82.6 Mitsubishi Trust (JP) 206.0
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The Basel I framework

Table: Risk weights by category of on-balance sheet assets

RW Instruments

0%

Cash
Claims on central governments and central banks denominated in national currency and funded
in that currency
Other claims on OECD central governments and central banks
Claims† collateralized by cash of OECD government securities

20%

Claims† on multilateral development banks
Claims† on banks incorporated in the OECD and claims guaranteed by OECD incorporated banks
Claims† on securities firms incorporated in the OECD subject to comparable supervisory and
regulatory arrangements
Claims† on banks incorporated in countries outside the OECD with a residual maturity of up to
one year
Claims† on non-domestic OECD public-sector entities
Cash items in process of collection

50% Loans fully secured by mortgage on residential property

100%

Claims on the private sector
Claims on banks incorporated outside the OECD with a residual maturity of over one year
Claims on central governments outside the OECD and non denominated in national currency
All other assets
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The Basel I framework

For off-balance sheet assets, the amount E of a credit line is converted to
an exposure at default:

EAD = E · CCF

where CCF is the credit conversion factor (100%, 50%, 20% and 0%)
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The Basel I framework

Table: Illustration of capital requirement

Balance
Asset E CCF EAD RW RWA

Sheet

On-

US bonds 100 0% 0
Mexico bonds 20 100% 20
Argentine debt 20 0% 0
Home mortgage 500 50% 250
Corporate loans 500 100% 500
Credit lines 40 100% 40

Off-
Standby facilities 20 100% 20 0% 0
Credit lines (> 1Y) 42 50% 21 100% 21
Credit lines (≤ 1Y) 18 0% 0 100% 0
Total 831
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The Basel II framework

The standardized approach (SA)

The internal ratings-based approach (IRB)
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The Basel II standardized approach

Table: Risk weights of the SA approach (Basel II)

Rating
AAA A+ BBB+ BB+ CCC+

to to to to to NR
AA− A− BBB− B− C

Sovereigns 0% 20% 50% 100% 150% 100%

Banks
1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

2 ST 20% 20% 20% 50% 150% 20%

Corporates
BBB+ to BB− B+ to C

20% 50% 100% 150% 100%
Retail 75%
Residential mortgages 35%
Commercial mortgages 100%
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The Basel II standardized approach

Table: Comparison of risk weights between Basel I and Basel II

Entity Rating Maturity Basel I Basel II
Sovereign (OECD) AAA 0% 0%
Sovereign (OECD) A- 0% 20%
Sovereign BBB 100% 50%
Bank (OECD) BBB 2Y 20% 50%
Bank BBB 2M 100% 20%
Corporate AA+ 100% 20%
Corporate BBB 100% 100%
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Credit ratings

Table: Credit rating system of S&P, Moody’s and Fitch

Prime High Grade Upper
Maximum Safety High Quality Medium Grade

S&P/Fitch AAA AA+ AA AA− A+ A A−
Moody’s Aaa Aa1 Aa2 Aa3 A1 A2 A3

Lower Non Investment Grade
Medium Grade Speculative

S&P/Fitch BBB+ BBB BBB− BB+ BB BB−
Moody’s Baa1 Baa2 Baa3 Ba1 Ba2 Ba3

Highly Substantial In Poor Extremely
Speculative Risk Standing Speculative

S&P/Fitch B+ B B− CCC+ CCC CCC− CC
Moody’s B1 B2 B3 Caa1 Caa2 Caa3 Ca
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Credit ratings

Table: Examples of country’s S&P rating

Country
Local currency Foreign currency

Jun. 2009 Oct. 2015 Jun. 2009 Oct. 2015
Argentina B- CCC+ B- SD
Brazil BBB+ BBB- BBB- BB+
China A+ AA- A+ AA-
France AAA AA AAA AA
Italy A+ BBB- A+ BBB-
Japan AA A+ AA A+
Russia BBB+ BBB- BBB BB+
Spain AA+ BBB+ AA+ BBB+
Ukraine B- CCC+ CCC+ SD
US AAA AA+ AA+ AA+
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The Basel II standardized approach

CCF (Basel II ≈ Basel I)
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Credit risk mitigation

1 Collateralized transactions

2 Guarantees and credit derivatives
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Credit risk mitigation
Collateralized transactions

1 Cash and comparable instruments

2 Gold

3 Debt securities which are rated AAA to BB- when issued by
sovereigns or AAA to BBB- when issued by other entities or at least
A-3/P-3 for short-term debt instruments

4 Debt securities which are not rated but fulfill certain criteria (senior
debt issued by banks, listed on a recognisee exchange and sufficiently
liquid)

5 Equities that are included in a main index

6 UCITS and mutual funds, whose assets are eligible instruments and
which offer a daily liquidity

7 Equities which are listed on a recognized exchange and
UCITS/mutual funds which include such equities
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Credit risk mitigation
Collateralized transactions

Simple approach

RWA = (EAD−C ) · RW +C ·max (RWC , 20%)

where EAD is the exposure at default, C is the market value of the
collateral, RW is the risk weight appropriate to the exposure and RWC is
the risk weight of the collateral

Comprehensive approach

The risk-weighted asset amount after risk mitigation is
RWA = RW ·EAD? whereas EAD? is the modified exposure at default:

EAD? = max (0, (1 + HE ) · EAD− (1− HC − HFX ) · C )

where HE is the haircut applied to the exposure, HC is the haircut applied
to the collateral and HFX is the haircut for currency risk
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Credit risk mitigation
Collateralized transactions

Table: Standardized supervisory haircuts for collateralized transactions

Rating
Residual

Sovereigns Others
Maturity

0−1Y 0.5% 1%
AAA to AA− 1−5Y 2% 4%

5Y+ 4% 8%
0−1Y 1% 2%

A+ to BBB− 1−5Y 3% 6%
5Y+ 6% 12%

BB+ to BB− 15%
Cash 0%
Gold 15%
Main index equities 15%
Equities listed on a recognized exchange 25%
FX risk 8%
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Credit risk mitigation
Guarantees and credit derivatives

Banks can use these credit protection instruments if they are direct,
explicit, irrevocable and unconditional

Simple approach

RWA = (EAD−C ) · RW +C ·max (RWC , 20%)

where EAD is the exposure at default, C is the market value of the
collateral, RW is the risk weight appropriate to the exposure and RWC is
the risk weight of the collateral
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The Basel II internal ratings-based approach

4 parameters:

the exposure at default (EAD)

the probability of default (PD)

the loss given default (LGD)

the effective maturity (M)

The credit risk measure is the sum of individual risk contributions:

R (w) =
n∑

i=1

RC i

where RC i is a function of the four risk components:

RC i = fIRB (EADi ,LGDi ,PDi ,Mi )

and fIRB is the IRB fomula

IRB is not an internal model, but an external model with internal parameters
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The Basel II internal ratings-based approach

The mechanism of the IRB approach is the following:

a classification of exposures (sovereigns, banks, corporates, retail
portfolios, etc.)

for each credit i , the bank estimates the probability of default

it uses the standard regulatory values of the other risk components
(EADi , LGDi and Mi ) or estimates them in the case of AIRB

the bank calculate then the risk-weighted assets RWAi of the credit
by applying the right IRB formula fIRB to the risk components

⇒ Distinction between FIRB (foundation IRB) and AIRB (advanced IRB)

⇒ Internal ratings are central to the IRB approach
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The Basel II internal ratings-based approach

Table: An example of internal rating system

Rating Degree of risk Definition Borrower category
by self-assessment

1 No essential risk Extremely high degree of certainty of repayment

Normal

2 Negligible risk High degree of certainty of repayment
3 Some risk Sufficient certainty of repayment

4
A Better than There is certainty of repayment but substantial changes in the environment in the
B average future may have some impact on this uncertainty

5
A

Average
There are no problems foreseeable in the future,

B but a strong likelihood of impact from changes in the environment

6
A

Tolerable
There are no problems foreseeable in the future,

B but the future cannot be considered entirely safe

7
Lower than There are no problems at the current time but the financial position of
average the borrower is relatively weak

8
A Needs preventive There are problems with lending terms or fulfilment, or the borrower’s business Needs
B management conditions are poor or unstable, or there are other factors requiring careful management attention

9 Needs There is a high likelihood of bankruptcy in the future In danger of bankruptcy

10
I serious The borrower is in serious financial straits and “effectively bankrupt” Effectively bankruptcy
II management The borrower is bankrupt Bankrupt
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The Basel II internal ratings-based approach

Another example of internal rating system

The rating system of Crédit Agricole is:

A+, A,

B+, B,

C+, C, C-,

D+, D, D-,

E+, E and E-

Source: Crédit Agricole, Annual Financial Report 2014, page 201
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The credit risk model of Basel II
Assumptions

The portfolio loss is equal to:

L =
n∑

i=1

wi · LGDi ·1 {τ i ≤ Ti}

where wi and Ti are the exposure at default and the residual maturity
of the i th credit
The loss given default LGDi is a random variable
The default time τ i depends on a set of risk factors X , whose
probability distribution is denoted by H
Let pi (X ) be the conditional default probability. The (unconditional
or long-term) default probability is:

pi = EX [1 {τ i ≤ Ti}] = EX [pi (X )]

Let Di = 1 {τ i ≤ Ti} be the default indicator function. Conditionally
to the risk factors X , Di is a Bernoulli random variable with
probability pi (X )
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The credit risk model of Basel II

Under the standard assumptions that the loss given default is independent
from the default time and the default times are conditionally independent,
we obtain:

E [L | X ] =
n∑

i=1

wi · E [LGDi ] · E [Di | X ] =
n∑

i=1

wi · E [LGDi ] · pi (X )
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The credit risk model of Basel II

We also have (HFRM, Exercise 3.4.8, page 255):

σ2 (L | X ) =
n∑

i=1

w2
i ·
(
E
[
LGD2

i

]
· E
[
D2

i | X
]
− E2 [LGDi ] · p2

i (X )
)

Since we have:

E
[
D2

i | X
]

= pi (X )

E
[
LGD2

i

]
= σ2 (LGDi ) + E2 [LGDi ]

we deduce that:

σ2 (L | X ) =
n∑

i=1

w2
i · Ai

where:

Ai = E2 [LGDi ] · pi (X ) · (1− pi (X )) + σ2 (LGDi ) · pi (X )
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The credit risk model of Basel II
The concept of granularity

Infinitely granular portfolio

The portfolio is infinitely fine-grained if there is no concentration risk:

lim
n→∞

max
wi∑n
j=1 wj

= 0

⇒ the conditional distribution of L degenerates to its conditional
expectation E [L | X ]

The intuition of this result is the following: We consider a fine-grained
portfolio equivalent to the original portfolio by replacing the original credit
i by m credits with the same default probability pi , the same loss given
default LGDi but an exposure at default divided by m. Let Lm be the loss
of the equivalent fine-grained portfolio. When m tends to ∞, we obtain
the infinitely fine-grained portfolio. Conditionally to the risk factors X , the
portfolio loss L∞ is equal to the conditional mean E [L | X ]
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The credit risk model of Basel II

Proof

We have:

E [Lm | X ] =
n∑

i=1

 m∑
j=1

wi

m

 · E [LGDi ] · E [Di | X ] = E [L | X ]

and:

σ2 (Lm | X ) =
n∑

i=1

 m∑
j=1

w2
i

m2

 · Ai =
1

m

n∑
i=1

w2
i · Ai =

1

m
σ2 (Lm | X )

We note that E [L∞ | X ] = E [L | X ] and σ2 (L∞ | X ) = 0. Conditionally
to the risk factors X , the portfolio loss L∞ is equal to the conditional
mean E [L | X ]
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The credit risk model of Basel II

The associated probability distribution F is then:

F (`) = Pr {L∞ ≤ `}
= Pr {E [L | X ] ≤ `}

= Pr

{
n∑

i=1

wi · E [LGDi ] · pi (X ) ≤ `

}

Let g (x) be the function
∑n

i=1 wi · E [LGDi ] · pi (x). We have:

F (`) =

∫
· · ·
∫
1 {g (x) ≤ `} dH (x)

⇒ Not possible to obtain a closed-form formula for the value-at-risk
F−1 (α):

F−1 (α) = {` : Pr {g (X ) ≤ `} = α}
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The credit risk model of Basel II
The single risk factor case

If we consider a single risk factor and assume that g (x) is an increasing
function, we obtain:

Pr {g (X ) ≤ `} = α ⇔ Pr
{
X ≤ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= α

⇔ ` = g
(
H−1 (α)

)
We finally deduce that the value-at-risk has the following expression:

F−1 (α) = g
(
H−1 (α)

)
=

n∑
i=1

wi · E [LGDi ] · pi
(
H−1 (α)

)
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The credit risk model of Basel II

Euler allocation principle

The value-at-risk satisfies the Euler allocation principle:

F−1 (α) =
n∑

i=1

RC i

where the expression of the risk contribution is:

RC i = wi ·
∂ F−1 (α)

∂ wi
= wi · E [LGDi ] · pi

(
H−1 (α)

)
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The credit risk model of Basel II

Remark

If g (x) is a decreasing function, we obtain Pr
{
X ≥ g−1 (`)

}
= α and:

F−1 (α) =
n∑

i=1

wi · E [LGDi ] · pi
(
H−1 (1− α)

)
The risk contribution becomes:

RC i = wi · E [LGDi ] · pi
(
H−1 (1− α)

)
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The credit risk model of Basel II

Summary

Under the assumptions:

H1 The loss given default LGDi is independent from the default time τ i

H2 The default times (τ 1, . . . , τ n) depend on a single risk factor X and
are conditionally independent with respect to X

H3 The portfolio is infinitely fine-grained, meaning that there is no
exposure concentration

we have:
RC i = wi · E [LGDi ] · pi

(
H−1 (π)

)
where π = α if pi (X ) is an increasing function of X or π = 1− α if pi (X )
is a decreasing function of X
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The credit risk model of Basel II
Closed-form formula of the value-at-risk

⇒ Merton (1974) / Vasicek (1991)
Let Zi be the normalized asset value of the entity i . In the Merton model,
the default occurs when Zi is below a given barrier Bi : Di = 1⇔ Zi < Bi .
By assuming that Zi is Gaussian, we deduce that:

pi = Pr {Di = 1} = Pr {Zi < Bi} = Φ (Bi )

and Bi = Φ−1 (pi )

We assume that the asset value Zi depends on the common risk factor X
and an idiosyncratic risk factor εi as follows:

Zi =
√
ρX +

√
1− ρεi

X and εi are two independent standard normal random variables and we
have:

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= ρ

where ρ is the constant asset correlation
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The credit risk model of Basel II
Closed-form formula of the value-at-risk

The conditional default probability is equal to:

pi (X ) := Pr {Di = 1 | X} = Pr {Zi < Bi | X}

= Pr
{√

ρX +
√

1− ρεi < Bi

}
= Pr

{
εi <

Bi −
√
ρX

√
1− ρ

}
= Φ

(
Bi −

√
ρX

√
1− ρ

)
We obtain:

g (x) =
n∑

i=1

wi ·E [LGDi ] ·pi (x) =
n∑

i=1

wi ·E [LGDi ] ·Φ
(

Φ−1 (pi )−
√
ρx

√
1− ρ

)
Since g (x) is a decreasing function if wi ≥ 0, we have:

RC i = wi · E [LGDi ] · Φ
(

Φ−1 (pi ) +
√
ρΦ−1 (α)

√
1− ρ

)
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The credit risk model of Basel II

Theorem (HFRM, Appendix A.2.2.5, page 1063)∫ c

−∞
Φ (a + bx)φ (x) dx = Φ2

(
c ,

a√
1 + b2

;
−b√

1 + b2

)
pi is the unconditional default probability

We verify that:

EX [pi (X )] = EX

[
Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)]
=

∫ ∞
−∞

Φ

(
Φ−1 (pi )−

√
ρx

√
1− ρ

)
φ (x) dx

= Φ2

(
∞, Φ−1 (pi )√

1− ρ
·
(

1

1− ρ

)−1/2

;

√
ρ

√
1− ρ

(
1

1− ρ

)−1/2
)

= Φ2

(
∞,Φ−1 (pi ) ;

√
ρ
)

= Φ
(
Φ−1 (pi )

)
= pi
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The credit risk model of Basel II

Example

We consider a homogeneous portfolio with 100 credits. For each credit,
the exposure at default, the expected LGD and the probability of default
are set to $1 mn, 50% and 5%

Figure: Probability functions of the credit portfolio loss
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What is the impact of the maturity?

the maturity Ti is taken into account through the probability of default ⇒
pi = Pr {τ i ≤ Ti}

Let us denote PDi the annual default probability of the obligor. If we
assume that the default time is Markovian, we have the following
relationship:

pi = 1− Pr {τ i > Ti} = 1− (1− PDi )
Ti

We deduce that:

RC i = wi · E [LGDi ] · Φ

Φ−1
(

1− (1− PDi )
Ti

)
+
√
ρΦ−1 (α)

√
1− ρ


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The credit risk model of Basel II

Maturity adjustment

The maturity adjustment is the function ϕ (t) such that ϕ (1) = 1 and:

RC i ≈ wi · E [LGDi ] · Φ
(

Φ−1 (PDi ) +
√
ρΦ−1 (α)

√
1− ρ

)
· ϕ (Ti )
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The IRB formulas
A long process to obtain the finalized formulas

January 2001: α = 99.5%, ρ = 20% and a standard maturity of three
years

April 2001: Quantitative Impact Study (QIS)

November 2001: Results of the QIS 2

Table: Percentage change in capital requirements under CP2 proposals

SA FIRB AIRB

G10
Group 1 6% 14% −5%
Group 2 1%

EU
Group 1 6% 10% −1%
Group 2 −1%

Others 5%

July 2002: QIS 2.5

May 2003: QIS 3

June 2004: Basel II
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The IRB formulas

If we use the notations of the Basel Committee, the risk contribution has
the following expression:

RC = EAD ·LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+
√
ρΦ−1 (α)

√
1− ρ


where:

EAD is the exposure at default

LGD is the (expected) loss given default

PD is the (one-year) probability of default

M is the effective maturity
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The IRB formulas

Because RC is directly the capital requirement (RC = 8%× RWA), we
deduce that the risk-weighted asset amount is equal to:

RWA = 12.50 · EAD ·K?

where K? is the normalized required capital for a unit exposure:

K? = LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+
√
ρΦ−1 (α)

√
1− ρ


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The IRB formulas

In order to obtain the finalized formulas, the Basel Committee has
introduced the following modifications:

A maturity adjustment ϕ (M) has been added:

K? ≈ LGD ·Φ
(

Φ−1 (PD) +
√
ρΦ−1 (α)

√
1− ρ

)
· ϕ (M)

The confidence level is 99.9% instead of 99.5%
The default correlation is a parametric function ρ (PD) in order that
low ratings are not too penalizing for capital requirements;
The credit risk measure is the unexpected loss:

ULα = VaRα−E [L]

Final supervisory formula

K? =

(
LGD ·Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
·ϕ (M)
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The IRB formulas
Risk-weighted assets for corporate, sovereign, and bank exposures

The three asset classes use the same formula:

K? =

(
LGD ·Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
·(

1 + (M− 2.5) · b (PD)

1− 1.5 · b (PD)

)
with:

b (PD) = (0.11852− 0.05478 · ln (PD))2

and:

ρ (PD) = 12%×
(

1− e−50×PD

1− e−50

)
+ 24%×

(
1− 1− e−50×PD

1− e−50

)
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The IRB formulas
Risk-weighted assets for small and medium-sized enterprises

SMEs are defined as corporate entities where the reported sales for the
consolidated group of which the firm is a part is less than 50e mn

⇒ New parametric function for the default correlation:

ρSME (PD) = ρ (PD)− 0.04 ·
(

1− (max (S , 5)− 5)

45

)
where S is the reported sales expressed in e mn

⇒ This adjustment has the effect to reduce the default correlation and
then the risk-weighted assets
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The IRB formulas
Risk-weighted assets for corporate, sovereign, and bank exposures

Foundation IRB (FIRB)

EAD is the amount of the claim

For off-balance sheet items, the
bank uses the CCF values of the
SA approach.

PD is estimated by the bank

LGD is set to 45% for senior
claims and 75% for subordinated
claims

M is set to 2.5 years

Advanced IRB (AIRB)

For off-balance sheet items, the
bank may estimate its own
internal measures of CCF

PD is estimated by the bank

LGD may be estimated by the
bank

M is the weighted average time
of the cash flows, with a
one-year floor and a five-year
cap
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The IRB formulas
Risk-weighted assets for corporate, sovereign, and bank exposures

Example

We consider a senior debt of $3 mn on a corporate firm. The residual
maturity of the debt is equal to 2 years. We estimate the one-year
probability of default at 5%

We first calculate the default correlation:

ρ (PD) = 12%×
(

1− e−50×0.05

1− e−50

)
+24%×

(
1− 1− e−50×0.05

1− e−50

)
= 12.985%

We have:

b (PD) = (0.11852− 0.05478× ln (0.05))2 = 0.0799

It follows that the maturity adjustment is equal to:

ϕ (M) =
1 + (2− 2.5)× 0.0799

1− 1.5× 0.0799
= 1.0908
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The IRB formulas
Risk-weighted assets for corporate, sovereign, and bank exposures

The normalized capital charge with a one-year maturity is:

K? = 45%× Φ

(
Φ−1 (5%) +

√
12.985%Φ−1 (99.9%)√

1− 12.985%

)
− 45%× 5%

= 0.1055

When the maturity is two years, we obtain:

K? = 0.1055× 1.0908 = 0.1151

We deduce the value taken by the risk weight:

RW = 12.5× 0.1151 = 143.87%

It follows that the risk-weighted asset amount is equal to $4.316 mn
whereas the capital charge is $345 287
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The IRB formulas
Risk-weighted assets for corporate, sovereign, and bank exposures

Table: IRB risk weights (in %) for corporate exposures

Maturity M = 1 M = 2.5 M = 2.5 (SME)
LGD 45% 75% 45% 75% 45% 75%

PD (in %)

0.10 18.7 31.1 29.7 49.4 23.3 38.8
0.50 52.2 86.9 69.6 116.0 54.9 91.5
1.00 73.3 122.1 92.3 153.9 72.4 120.7
2.00 95.8 159.6 114.9 191.4 88.5 147.6
5.00 131.9 219.8 149.9 249.8 112.3 187.1

10.00 175.8 292.9 193.1 321.8 146.5 244.2
20.00 223.0 371.6 238.2 397.1 188.4 314.0

(*) For SME claims, sales are equal to 5e mn
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The IRB formulas
Risk-weighted assets for retail exposures

Claims can be included in the regulatory retail portfolio if they meet the
following criteria:

1 The exposure must be to an individual person or to a small business

2 It satisfies the granularity criterion, meaning that no aggregate
exposure to one counterpart can exceed 0.2% of the overall regulatory
retail portfolio

3 The aggregated exposure to one counterparty cannot exceed 1e mn
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The IRB formulas
Risk-weighted assets for retail exposures

The maturity is set to one year:

K? = LGD ·Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

Residential mortgage exposures:

ρ (PD) = 15%

Qualifying revolving retail exposures:

ρ (PD) = 4%

Other retail exposures:

ρ (PD) = 3%×
(

1− e−35×PD

1− e−35

)
+ 16%×

(
1− 1− e−35×PD

1− e−35

)
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The IRB formulas
Risk-weighted assets for retail exposures

Table: IRB risk weights (in %) for retail exposures

Mortgage Revolving Other retail
LGD 45% 25% 45% 85% 45% 85%

PD (in %)

0.10 10.7 5.9 2.7 5.1 11.2 21.1
0.50 35.1 19.5 10.0 19.0 32.4 61.1
1.00 56.4 31.3 17.2 32.5 45.8 86.5
2.00 87.9 48.9 28.9 54.6 58.0 109.5
5.00 148.2 82.3 54.7 103.4 66.4 125.5

10.00 204.4 113.6 83.9 158.5 75.5 142.7
20.00 253.1 140.6 118.0 222.9 100.3 189.4
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Pillar 2 – Supervisory review process

Supervisory review process (SRP)

1 Supervisory review and evaluation process (SREP)

2 Internal capital adequacy assessment process (ICAAP)

⇒ SREP defines the regulatory response to the first pillar (validation
processes of internal models), whereas ICAAP addresses risks that are not
captured in Pillar 1 like:

Concentration risk and non-granular portfolios

Default correlation

Stressed parameters (PD and LGD)

Point-in-time (PIT) versus through the-cycle (TTC)
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Pillar 3 – Market discipline

The third pillar requires banks to publish comprehensive information about
their risk management process

Since 2015, standardized templates for quantitative disclosure with a fixed
format in order to facilitate the comparison between banks
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The Basel III revision

For credit risk capital requirements, Basel III is close to the Basel II
framework with some adjustments, which mainly concern the parameters

Remark

SA and IRB methods continue to be the two approaches for computing the
capital charge for credit risk
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The Basel III revision
The standardized approach

Differences between Basel II et and Basel III:

Two methods:
1 External credit risk assessment approach (ECRA)
2 Standardized credit risk approach (SCRA)

Loan-to-value ratio (LTV)
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The standardized approach (ECRA)

Table: Risk weights of the SA approach (ECRA, Basel III)

Rating
AAA A+ BBB+ BB+ CCC+

to to to to to NR
AA− A− BBB− B− C

Sovereigns 0% 20% 50% 100% 150% 100%

PSE
1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

MDB 20% 30% 50% 100% 150% 50%

Banks
2 20% 30% 50% 100% 150% SCRA

2 ST 20% 20% 20% 50% 150% SCRA
Covered 10% 20% 20% 50% 100%

Corporates 20% 50% 75% 100% 150% 100%
Retail∗ 75%

(∗) The retail category includes revolving credits, credit cards, consumer credit

loans, auto loans, student loans, etc., but not real estate exposures
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The Basel III revision
The standardized approach (SCRA, banks)

The standardized credit risk approach (SCRA) must be used for all
exposures to banks in two situations:

1 When the exposure is unrated

2 When external credit ratings are prohibited (e.g. in the US12)

In this case, the bank must conduct a due diligence analysis in order to
classify the exposures into three grades

A Grade A refers to the most solid banks, whose capital exceeds the
minimum regulatory capital requirements (RW = 40% – 20% for
short-term exposures)

B Grade B refers to banks subject to substantial credit risk (RW = 75%
– 50% for short-term exposures)

C Grade C refers to the most vulnerable banks (RW = 150% – 150% for
short-term exposures)

12The United States had abandoned in 2010 the use of commercial credit ratings
after the Dodd-Frank reform
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The Basel III revision
The standardized approach (SCRA, corporates)

When external credit ratings are prohibited, the risk weight of exposures to
corporates is equal to 100% with two exceptions:

A 65% risk weight is assigned to corporates, which can be considered
investment grade (IG)

For exposures to small and medium-sized enterprises, a 75% risk
weight can be applied if the exposure can be classified in the retail
category and 85% for the others
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Table: Risk weights of the SA approach (ECRA, Basel III)

Residential real estate Commercial real estate
Cash flows ND D Cash flows ND D
LTV ≤ 50 20% 30%

LTV ≤ 60
min (60%,

70%
50 < LTV ≤ 60 25% 35% RWC )
60 < LTV ≤ 80 30% 45% 60 < LTV ≤ 80 RWC 90%
80 < LTV ≤ 90 40% 60%

90 < LTV ≤ 100 50% 75% LTV > 80 RWC 110%
LTV > 100 70% 105%
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Definition

The loan-to-value (LTV) ratio is the ratio of a loan to the value of an
asset purchased

Example

If one borrows $100 000 to purchase a house of $150 000, the LTV ratio is
100 000/150 000 or 66.67%

This ratio is extensively used in English-speaking countries (e.g. the
United States) to measure the risk of the loan

In continental Europe, the risk of home property loans is measured by the
ability of the borrower to repay the capital and service his debt, meaning
that the risk of the loan is generally related to the income of the borrower
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The standardized approach

For off-balance sheet items, credit conversion factors (CCF) have been
revised. They can take the values 10%, 20%, 40%, 50% and 100%. This
is a more granular scale without the possibility to set the CCF to 0%
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The Basel III revision
The internal ratings-based approach

The methodology of the IRB approach does not change with respect to
Basel II, since the formulas are the same except the correlation parameter
for bank exposures:

ρ (PD) = 15%×
(

1− e−50×PD

1− e−50

)
+ 30%×

(
1−

(
1− e−50×PD

)
1− e−50

)

Other changes

For banks and large corporates, only the FIRB approach can be used

In the AIRB approach, the estimated parameters of PD and LGD are
subject to some input floorsa

The default values of the LGD parameter are 75% for subordinated
claims, 45% for senior claims on financial institutions and 40% for
senior claims on corporates in the FIRB approach

aFor example, the minimum PD is set to 5 bps for corporate and bank exposures
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Exposure at default

Definition

The exposure at default “for an on-balance sheet or off-balance sheet item
is defined as the expected gross exposure of the facility upon default of the
obligor”

⇒ EAD corresponds to the gross notional in the case of a loan or a credit

The big issue concerns off-balance sheet items, such as revolving lines of
credit, credit cards or home equity lines of credit (HELOC)
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Exposure at default

At the default time τ , we have:

EAD (τ | t) = B (t) + CCF · (L (t)− B (t))

where:

B (t) is the outstanding balance (or current drawn) at time t

L (t) is the current undrawn limit of the credit facility

CCF is the credit conversion factor

L (t)− B (t) is the current undrawn or the amount that the debtor is
able to draw upon in addition to the current drawn B (t)

We deduce that:

CCF =
EAD (τ | t)− B (t)

L (t)− B (t)
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Exposure at default

Let us consider the off-balance sheet item i that has defaulted. We have:

CCFi (τ i − t) =
Bi (τ i )− Bi (t)

Li (t)− Bi (t)

At time τ i , we observe the default of Asset i and the corresponding
exposure at default, which is equal to the outstanding balance Bi (τ i )

⇒ We have to choose a date t < τ i to observe Bi (t) and Li (t) in order
to calculate the CCF

Estimation of CCF is difficult because it is sensitive to the date t
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Loss given default

Loss given default versus recovery rate

The recovery is the percentage of the notional on the defaulted debt
that can be recovered

In the Basel framework, the recovery rate is not explicitly used, and
the concept of loss given default is preferred for measuring the credit
portfolio loss

We have:
LGD ≥ 1−R
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Loss given default

Example

We consider a bank that is lending $100 mn to a corporate firm. We
assume that the firm defaults at one time and, the bank recovers $60 mn
and the litigation costs are equal to $5 mn

We deduce that the recovery rate is equal to:

R =
60

100
= 60%

In order to recover $60 mn, the bank has incurred some operational and
litigation costs. In this case, the bank has lost $40 mn plus $5 mn,
implying that the loss given default is equal to:

LGD =
40 + 5

100
= 45%
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Loss given default

Relationship between R and LGD

We have:
LGD = 1−R + c

where c is the litigation cost (expressed in %)
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Loss given default

Two approaches for modeling LGD:
1 The first approach considers that LGD is a random variable, whose

probability distribution has to be estimated:

LGD ∼ F (x)

2 The second approach consists in estimating the conditional
expectation:

E [LGD] = E [LGD | X1 = x1, . . . ,Xm = xm] = g (x1, . . . , xm)

where (X1, . . . ,Xm) are the risk factors that impact LGD

Remark

We recall that the loss given default in the Basel IRB formulas does not
correspond to the random variable, but to its expectation E [LGD].
Therefore, only the mean E [LGD] is important for Pillar 1

⇒ Pillar 2 uses the entire probability distribution F (x) and the condition
expectation under stressed conditions
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Loss given default
Stochastic modeling (parametric distribution)

Beta distribution

The beta distribution B (α, β) has the following pdf:

f (x) =
xα−1 (1− x)β−1

B (α, β)

where B (α, β) =
∫ 1

0
tα−1 (1− t)β−1 dt . The mean and the variance are:

µ (X ) = E [X ] =
α

α + β

and:

σ2 (X ) = var (X ) =
αβ

(α + β)2 (α + β + 1)

When α and β are greater than 1, the distribution has one mode
xmode = (α− 1) / (α + β − 2)
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Loss given default
Stochastic modeling (parametric distribution)

Several shapes:

B (1, 1) ∼ U[0,1], B (∞,∞) ∼ δ0.5 ([0, 1]), B (α, 0) ∼ B (1) and
B (0, β) ∼ B (0)

If α = β, the distribution is symmetric around x = 0.5; we have a bell
curve when the two parameters α and β are higher than 1, and a
U-shape curve when the two parameters α and β are lower than 1

If α > β, the skewness is negative and the distribution is left-skewed,
if α < β, the skewness is positive and the distribution is right-skewed
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Figure: Probability density function of the beta distribution B (α, β)
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Method of moments (HFRM, Section 10.1.3, page 628)

We have:

α̂MM =
µ̂2

LGD (1− µ̂LGD)

σ̂2
LGD

− µ̂LGD

and:

β̂MM =
µ̂LGD (1− µ̂LGD)2

σ̂2
LGD

− (1− µ̂LGD)

Maximum likelihood estimation (HFRM, Section 10.1.2, page 614)

(
α̂ML, β̂ML

)
= arg max ` (α, β)

= arg max (α− 1)
n∑

i=1

ln yi + (b − 1)
n∑

i=1

ln (1− yi )− n lnB (α, β)
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Example

We consider the following sample of losses given default: 68%, 90%, 22%,
45%, 17%, 25%, 89%, 65%, 75%, 56%, 87%, 92% and 46%

We obtain µ̂LGD = 59.77% and σ̂LGD = 27.02%. Using the method of
moments, the estimated parameters are α̂MM = 1.37 and β̂MM = 0.92

Using a numerical optimization method, we have α̂ML = 1.84 and
β̂ML = 1.25. See HFRM on page 619 for the statistical inference:

Table: Results of the maximum likelihood estimation

Parameter Estimate
Standard

t-statistic p-value
error

α 1.8356 0.6990 2.6258 0.0236
β 1.2478 0.4483 2.7834 0.0178
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Figure: Calibration of the beta distribution
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Loss given default
Stochastic modeling (non-parametric distribution)

The limit case of the beta distribution’s U-shaped is the Bernoulli
distribution:

LGD 0% 100%
Probability (1− µLGD) µLGD

⇒ Extension to the empirical distribution or histogram

Example

We consider the following empirical distribution of LGD:

LGD (in %) 0 10 20 25 30 40 50 60 70 75 80 90 100
p̂ (in %) 1 2 10 25 10 2 0 2 10 25 10 2 1
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Figure: Calibration of a bimodal LGD distribution
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Loss given default
The case of non-granular portfolios

Example

We consider a credit portfolio of 10 loans, whose loss is equal to:

L =
10∑
i=1

EaDi ·LGDi ·1 {τ i ≤ Ti}

where Ti is equal to 5 years, EaDi is equal to $1 000 and the default time
τ i is exponential with the following intensity parameter λi :

i 1 2 3 4 5 6 7 8 9 10
λi (in bps) 10 10 25 25 50 100 250 500 500 1 000

The loss given default LGDi is given by the previous empirical distribution:

LGD (in %) 0 10 20 25 30 40 50 60 70 75 80 90 100
p̂ (in %) 1 2 10 25 10 2 0 2 10 25 10 2 1
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Loss given default
The case of non-granular portfolios

Figure: Loss frequency in % of the three LGD models
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Loss given default
The case of non-granular portfolios

Figure: Loss frequency in % for different values of µLGD and σLGD
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Loss given default
The case of granular portfolios

Expression of the portfolio loss

We recall that:

L =
n∑

i=1

EADi ·LGDi ·1 {τ i ≤ Ti}

If the portfolio is fined grained, we have:

E [L | X ] =
n∑

i=1

EADi ·E [LGDi ] · pi (X )

We deduce that the distribution of the portfolio loss does not depend on
the random variables LGDi , but on their expected values E [LGDi ].
Therefore, we can replace the previous expression of the portfolio loss by:

L =
n∑

i=1

EADi ·E [LGDi ] · 1 {τ i ≤ Ti}
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Loss given default
Economic modeling

The third version of Moody’s LossCalc considers seven factors that are
grouped in three major categories:

1 factors external to the issuer: geography, industry, credit cycle stage
2 factors specific to the issuer: distance-to-default, probability of

default (or leverage for private firms)
3 factors specific to the debt issuance: debt type, relative standing in

capital structure, collateral

Once the factors are identified, we must estimate the LGD model:

LGD = f (X1, . . . ,Xm)

where X1, . . . ,Xm are the m factors, and f is a non-linear function

We apply a logit transformation and estimate the model using linear
regression or quantile regression (see HFRM, Section 14.2.3, page 909) ⇒
This approach will be studied in Lecture 11 dedicated to stress testing and
scenario analysis
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Probability of default

Three approaches:

Survival function

Transition probability matrix

Structural models
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Survival function

Let τ be a default (or survival) time. The survival function is defined as
follows:

S (t) = Pr {τ > t} = 1− F (t)

where F is the cumulative distribution function. We deduce that:

f (t) = −∂ S (t)

∂ t

We define the hazard function λ (t) as the instantaneous default rate given
that the default has not occurred before t:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t + dt | τ ≥ t}
dt

We deduce that:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t + dt}
dt

· 1

Pr {τ ≥ t}

=
f (t)

S (t)
= −∂t S (t)

S (t)
= −∂ ln S (t)

∂ t
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Survival function

The survival function can then be rewritten with respect to the hazard
function and we have:

S (t) = e−
∫ t

0
λ(s) ds

Table: Common survival functions

Model S (t) λ (t)
Exponential exp (−λt) λ
Weibull exp (−λtγ) λγtγ−1

Log-normal 1− Φ (γ ln (λt)) γt−1φ (γ ln (λt)) / (1− Φ (γ ln (λt)))

Log-logistic 1/
(

1 + λt
1
γ

)
λγ−1t

1
γ /
(
t + λt1+ 1

γ

)
Gompertz exp (λ (1− eγt)) λγ exp (γt)

Cox S (t) = e− exp(β>x)
∫ t

0
λ0(s) ds λ0 (t) exp

(
β>x

)
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Exponential survival time

We note τ ∼ E (λ) and we have:

S (t) = e−λt

Main properties

1 The mean residual life E [τ | τ ≥ t] is constant

2 It satisfies the lack of memory property (LMP):

Pr {τ ≥ t + u | τ ≥ t} = Pr {τ ≥ u}

or equivalently S (t + u) = S (t) S (u)

3 The probability distribution of n · τ 1:n is the same as probability
distribution of τ i
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Piecewise exponential model

We have:

λ (t) =
M∑

m=1

λm · 1
{
t?m−1 < t ≤ t?m

}
= λm if t ∈

]
t?m−1, t

?
m

]
where t?m are the knots of the function (t?0 = 0, t?M+1 =∞). For

t ∈
]
t?m−1, t

?
m

]
, the expression of the survival function becomes:

S (t) = exp

(
−

m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t − t?m−1

))
= S

(
t?m−1

)
e−λm(t−t?m−1)

It follows that the density function is equal to:

f (t) = λm exp

(
−

m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t − t?m−1

))
We verify that:

f (t)

S (t)
= λm if t ∈

]
t?m−1, t

?
m

]
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Piecewise exponential model

Example

We consider three set of parameters {(t?m, λm) ,m = 1, . . . ,M}:

{(1, 1%) , (2, 1.5%) , (3, 2%) , (4, 2.5%) , (∞, 3%)} for λ1 (t)

{(1, 10%) , (2, 7%) , (5, 5%) , (7, 4.5%) , (∞, 6%)} for λ2 (t)

λ3 (t) = 4% for λ3 (t)
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Piecewise exponential model

Figure: Example of the piecewise exponential model
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Piecewise exponential model

Estimation methods:

Non-linear least squares regression

Kaplan-Meier estimation (non-parametric approach)

Bootstrap

Bootstrap method

1 We first estimate the parameter λ1 for the earliest maturity ∆t1

2 Assuming that
(
λ̂1, . . . , λ̂i−1

)
have been estimated, we calculate λ̂i

for the next maturity ∆ti
3 We iterate step 2 until the last maturity ∆tm

⇒ This algorithm is used for calibrating the credit curve of CDS spreads
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Piecewise exponential model

Example

We consider three credit curves, whose CDS spreads expressed in bps are
given in the table below. We assume that the recovery rate R is set to
40%

Table: Calibrated piecewise exponential model from CDS prices

Credit curve Bootstrap solution
Maturity

#1 #2 #3 #1 #2 #3
(in years)

1 50 50 350 83.3 83.3 582.9
3 60 60 370 110.1 110.1 637.5
5 70 90 390 140.3 235.0 702.0
7 80 115 385 182.1 289.6 589.4

10 90 125 370 194.1 241.9 498.5
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Transition probability matrix

Definition

We consider a time-homogeneous Markov chain R, whose transition
matrix is P = (pi,j). We note S = {1, 2, . . . ,K} the state space of the
chain and pi,j is the probability that the entity migrates from rating i to
rating j . The matrix P satisfies the following properties:

∀i , j ∈ S, pi,j ≥ 0;

∀i ∈ S,
∑K

j=1 pi,j = 1.

In credit risk, we generally assume that K is the absorbing state (or the
default state), implying that any entity which has reached this state
remains in this state (pK ,K = 1)
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Table: Example of credit migration matrix (in %)

AAA AA A BBB BB B CCC D
AAA 92.82 6.50 0.56 0.06 0.06 0.00 0.00 0.00
AA 0.63 91.87 6.64 0.65 0.06 0.11 0.04 0.00
A 0.08 2.26 91.66 5.11 0.61 0.23 0.01 0.04

BBB 0.05 0.27 5.84 87.74 4.74 0.98 0.16 0.22
BB 0.04 0.11 0.64 7.85 81.14 8.27 0.89 1.06
B 0.00 0.11 0.30 0.42 6.75 83.07 3.86 5.49

CCC 0.19 0.00 0.38 0.75 2.44 12.03 60.71 23.50
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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Let R (t) be the value of the state at time t. We define p (s, i ; t, j) as the
probability that the entity reaches the state j at time t given that it has
reached the state i at time s:

p (s, i ; t, j) = Pr {R (t) = j | R (s) = i} = p
(t−s)
i,j

This is the Markov property

The n-step transition probability is defined as:

p
(n)
i,j = Pr {R (t + n) = j | R (t) = i}

and we note P(n) =
(
p

(n)
i,j

)
the associated n-step transition matrix
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For n = 2, we obtain:

p
(2)
i,j = Pr {R (t + 2) = j | R (t) = i}

=
K∑

k=1

Pr {R (t + 2) = j ,R (t + 1) = k | R (t) = i}

=
K∑

k=1

Pr {R (t + 2) = j | R (t + 1) = k} · Pr {R (t + 1) = k | R (t) = i}

=
K∑

k=1

pi,k · pk,j
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Chapman-Kolmogorov (forward) equation

We have (scalar form):

p
(n+m)
i,j =

K∑
k=1

p
(n)
i,k · p

(m)
k,j ∀n,m > 0

or (matrix form):
P(n+m) = P(n) · P(m)

with the convention P(0) = IK

We deduce that:
P(n) = Pn

and:
p (t, i ; t + n, j) = p

(n)
i,j = e>i P

nej
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p
(2)
AAA,AAA = pAAA,AAA × pAAA,AAA + pAAA,AA × pAA,AAA + pAAA,A × pA,AAA +

pAAA,BBB × pBBB,AAA + pAAA,BB × pBB,AAA + pAAA,B × pB,AAA +

pAAA,CCC × pCCC,AAA

= 0.92832 + 0.0650× 0.0063 + 0.0056× 0.0008 +

0.0006× 0.0005 + 0.0006× 0.0004

= 86.1970%
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Table: Two-year transition probability matrix P2 (in %)

AAA AA A BBB BB B CCC D
AAA 86.20 12.02 1.47 0.18 0.11 0.01 0.00 0.00
AA 1.17 84.59 12.23 1.51 0.18 0.22 0.07 0.02
A 0.16 4.17 84.47 9.23 1.31 0.51 0.04 0.11

BBB 0.10 0.63 10.53 77.66 8.11 2.10 0.32 0.56
BB 0.08 0.24 1.60 13.33 66.79 13.77 1.59 2.60
B 0.01 0.21 0.61 1.29 11.20 70.03 5.61 11.03

CCC 0.29 0.04 0.68 1.37 4.31 17.51 37.34 38.45
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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Table: Five-year transition probability matrix P5 (in %)

AAA AA A BBB BB B CCC D
AAA 69.23 23.85 5.49 0.96 0.31 0.12 0.02 0.03
AA 2.35 66.96 24.14 4.76 0.86 0.62 0.13 0.19
A 0.43 8.26 68.17 17.34 3.53 1.55 0.18 0.55

BBB 0.24 1.96 19.69 56.62 13.19 5.32 0.75 2.22
BB 0.17 0.73 5.17 21.23 40.72 20.53 2.71 8.74
B 0.07 0.47 1.73 4.67 16.53 44.95 5.91 25.68

CCC 0.38 0.24 1.37 2.92 7.13 18.51 9.92 59.53
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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We note π
(n)
i the probability of the state i at time n:

π
(n)
i = Pr {R (n) = i}

and π(n) =
(
π

(n)
1 , . . . , π

(n)
K

)
the probability distribution. By construction,

we have:
π(n+1) = P>π(n)

The Markov chain R admits a stationary distribution π? if π? = P>π?:

lim
n→∞

p
(n)
k,i = π?i

We can interpret π?i as the average duration spent by the Markov chain R
in the state i
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Average return period of a Markov chain

Let Ti be the return period of state i :

Ti = inf {n : R (n) = i | R (0) = i}

The average return period is then equal to:

E [Ti ] =
1

π?i
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Survival function

Since K is the default state, the survival function Si (t) of a firm whose
initial rating is the state i is given by:

Si (t) = 1− Pr {R (t) = K | R (0) = i}
= 1− e>i P

teK
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Estimation of the piecewise exponential model

In the piecewise exponential model, the survival function is

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1)

for t ∈
]
t?m−1, t

?
m

]
. We deduce that S (t?m) = S

(
t?m−1

)
e−λm(t?m−t?m−1),

implying that:

ln S (t?m) = ln S
(
t?m−1

)
− λm

(
t?m − t?m−1

)
and:

λm =
ln S

(
t?m−1

)
− ln S (t?m)

t?m − t?m−1
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Estimation of the piecewise exponential model

It is then straightforward to estimate the piecewise hazard function from a
transition probability matrix:

The knots of the piecewise function are the years m ∈ N∗

For each initial rating i , the hazard function λi (t) is defined as:

λi (t) = λi,m if t ∈ ]m − 1,m]

where:

λi,m =
ln Si (m − 1)− ln Si (m)

m − (m − 1)

= ln

(
1− e>i P

m−1eK

1− e>i P
meK

)
and P0 = I
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Figure: Estimated hazard function λi (t) from the credit migration matrix
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Why the hazard function of all the ratings converges to the same
level, which is equal to 102.63 bps?

In the long run, the initial rating has no impact on the survival function:

Conditional probability distribution ⇒ Unconditional probability
distribution

We deduce that the annual default rate is exactly equal to 1.0263%
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Definition

The transition matrix P (s; t) is defined as follows:

Pi,j (s; t) = p (s, i ; t, j) = Pr {R (t) = j | R (s) = i}

where s ∈ R+ and t ∈ R+. Assuming that the Markov chain is
time-homogenous, we have P (t) = P (0; t)

Markov generator

The Markov generator is defined by the matrix Λ = (λi,j) where λi,j ≥ 0

for all i 6= j and λi,i = −
∑K

j 6=i λi,j . In this case, the transition matrix
satisfies the following relationship:

P (t) = exp (tΛ)

where exp (A) is the matrix exponential of A.
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Probabilistic interpretation of Λ

If we assume that the probability of jumping from rating i to rating j in a
short time period ∆t is proportional to ∆t, we have:

p (t, i ; t + ∆t, j) = λi,j∆t

The matrix form of this equation is P (t; t + ∆t) = Λ ∆t. We deduce that:

P (t + ∆t) = P (t)P (t; t + ∆t) = P (t) Λ ∆t

and:
dP (t) = P (t) Λ dt

Because we have exp (0) = I , we obtain the solution P (t) = exp (tΛ)

λi,j can be interpreted as the instantaneous transition rate of jumping
from rating i to rating j
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Matrix exponential (HFRM, Appendix A.1.1.3, page 1034)

Let f (x) = ex =
∑∞

k=0
xk

k! . The matrix exponential of the matrix A is
equal to:

B = eA =
∞∑
k=0

Ak

k!

whereas the matrix logarithm of A is the matrix B such that eB = A and
we note B = lnA
Let A and B be two n× n square matrices. Using the Taylor expansion, we
can show that f

(
A>
)

= f (A)>, Af (A) = f (A)A and

f
(
B−1AB

)
= B−1f (A)B. It follows that eA

>
=
(
eA
)>

and

eB
−1AB = B−1eAB. If AB = BA, we can also prove that AeB = eBA and

eA+B = eAeB = eBeA

Remark

Algorithms for computing matrix functions (eA, lnA, Ax ,
√
A, cosA, etc.)

are available in programming languages (matlab, gauss, python, etc.)
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Example

We consider a rating system with three states: A (good rating), B (bad
rating) and D (default). The Markov generator is equal to:

Λ =

 −0.30 0.20 0.10
0.15 −0.40 0.25
0.00 0.00 0.00



The one-year transition probability matrix is equal to:

P (1) = eΛ =

 75.16% 14.17% 10.67%
10.63% 68.07% 21.30%

0.00% 0.00% 100.00%


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For the two-year maturity, we get:

P (2) = e2Λ =

 58.00% 20.30% 21.71%
15.22% 47.85% 36.93%

0.00% 0.00% 100.00%


We verify that P (2) = P (1)2. This derives from the property of the
matrix exponential:

P (t) = etΛ =
(
eΛ
)t

= P (1)t
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The one-month transition probability matrix is equal to:

P

(
1

12

)
= e

1
12 Λ =

 97.54% 1.62% 0.84%
1.21% 96.73% 2.05%
0.00% 0.00% 100.00%



Remark

Another way to compute the one-month transition probability matrix is to
use the matrix exponent function:

P

(
1

12

)
= P (1)

1
12
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Let P̂ (t) be the empirical transition matrix for a given t. We can estimate
the Markov generator:

Λ̂ =
1

t
ln
(
P̂ (t)

)

Table: Markov generator Λ̂ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.49 703.67 35.21 3.04 6.56 -0.79 -0.22 0.02
AA 67.94 −859.31 722.46 51.60 2.57 10.95 4.92 -1.13
A 7.69 245.59 −898.16 567.70 53.96 20.65 -0.22 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B -0.84 11.83 30.11 8.71 818.31 −1936.82 539.18 529.52

CCC 25.11 -2.89 44.11 84.87 272.05 1678.69 −5043.00 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The matrix Λ̂ does not verify the Markov conditions λ̂i,j ≥ 0 for all i 6= j
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Israel et al. (2001) propose two estimators to obtain a valid generator:
1 The first approach consists in adding the negative values back into

the diagonal values: λ̄i,j = max
(
λ̂i,j , 0

)
i 6= j

λ̄i,i = λ̂i,i +
∑

j 6=i min
(
λ̂i,j , 0

)
2 In the second method, we carry forward the negative values on the

matrix entries which have the correct sign:

Gi =
∣∣∣λ̂i,i ∣∣∣+

∑
j 6=i max

(
λ̂i,j , 0

)
Bi =

∑
j 6=i max

(
−λ̂i,j , 0

)
λ̃i,j =


0 if i 6= j and λ̂i,j < 0

λ̂i,j − Bi

∣∣∣λ̂i,j ∣∣∣ /Gi if Gi > 0

λ̂i,j if Gi = 0
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Table: Markov generator Λ̃ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.99 703.19 35.19 3.04 6.55 0.00 0.00 0.02
AA 67.90 −859.88 721.98 51.57 2.57 10.94 4.92 0.00
A 7.69 245.56 −898.27 567.63 53.95 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.10 8.71 818.14 −1937.24 539.06 529.40

CCC 25.10 0.00 44.10 84.84 271.97 1678.21 −5044.45 2940.22
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table: 207-day transition probability matrix (in %)

AAA AA A BBB BB B CCC D
AAA 95.85 3.81 0.27 0.03 0.04 0.00 0.00 0.00
AA 0.37 95.28 3.90 0.34 0.03 0.06 0.02 0.00
A 0.04 1.33 95.12 3.03 0.33 0.12 0.00 0.02

BBB 0.03 0.14 3.47 92.75 2.88 0.53 0.09 0.11
BB 0.02 0.06 0.31 4.79 88.67 5.09 0.53 0.53
B 0.00 0.06 0.17 0.16 4.16 89.84 2.52 3.08

CCC 0.12 0.01 0.23 0.45 1.45 7.86 75.24 14.64
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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Remark

The continuous-time framework is more flexible when modeling credit risk.
For instance, the expression of the survival function becomes:

Si (t) = Pr {R (t) = K | R (0) = i} = 1− e>i exp (tΛ) eK

We can therefore calculate the probability density function in an easier way:

fi (t) = −∂t Si (t) = e>i Λ exp (tΛ) eK
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Figure: Probability density function fi (t) of S&P ratings
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Structural models

Two main models:

Merton (1974)

Black and Cox (1976)

Two main implementations:

KMV

CreditGrades
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Other topics

Pillar 1

Exposure at default

Expected loss given
default

Probability of
default

Pillar 2

Random loss given
default

Default correlation

Granularity

Internal model

Exposure at default

Random loss given
default

Probability of
default

Default correlation

Granularity
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Default correlation

Two approaches:

Copula models

Factor models

⇒ Same concept
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Default correlation
The copula model

Let S be the survival function of the random vector (τ 1, . . . , τ n), we can
show that S admits a copula representation:

S (t1, . . . , tn) = C (S1 (t1) , . . . ,Sn (tn))

where Si is the survival function of τ i and C is the survival copula
associated to S
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The copula function of the Basel model

In the Basel mode, the (normalized) asset value of the i th firm is
Zi ∼ N (0, 1) and the default occurs when Zi is below a non-stochastic
barrier Bi :

Di = 1⇔ Zi ≤ Bi = Φ−1 (pi )

We recall that Zi =
√
ρX +

√
1− ρεi where X ∼ N (0, 1) is the

systematic risk factor and εi ∼ N (0, 1) is the specific risk factor, and the
conditional default probability is equal to:

pi (X ) = Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)
If we introduce the time dimension, we obtain:

pi (t) = Pr {τ i ≤ t} = 1− Si (t)

and:

pi (t,X ) = Φ

(
Φ−1 (1− Si (t))−√ρX

√
1− ρ

)
where Si (t) is the survival function of the i th firm
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The copula function of the Basel model

Z = (Z1, . . . ,Zn) ∼ N (0n,Cn (ρ)) with:

Cn (ρ) =


1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1


It follows that the joint default probability is:

p1,...,n = Pr {D1 = 1, . . . ,Dn = 1} = Pr {Z1 ≤ B1, . . . ,Zn ≤ Bn}
= Φ (B1, . . . ,Bn;Cn (ρ))

Since we have Bi = Φ−1 (pi ), we deduce that:

p1,...,n = Φ
(
Φ−1 (p1) , . . . ,Φ−1 (pn) ;Cn (ρ)

)
The Basel copula between default probabilities is the Normal copula
with a constant correlation matrix
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The copula function of the Basel model

If we consider the dependence between the survival times, we have:

S (t1, . . . , tn) = Pr {τ 1 > t1, . . . , τ n > tn}
= Pr

{
Z1 > Φ−1 (p1 (t1)) , . . . ,Zn > Φ−1 (pn (tn))

}
= Pr {Φ (Z1) > p1 (t1) , . . . ,Φ (Zn) > pn (tn)}
= Pr {Φ (Z1) ≤ 1− p1 (t1) , . . . ,Φ (Zn) ≤ 1− pn (tn)}
= C (1− p1 (t1) , . . . , 1− pn (tn) ;Cn (ρ))

= C (S1 (t1) , . . . ,Sn (tn) ;Cn (ρ))

The Basel copula between default times is the Normal copula with
a constant correlation matrix
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Default correlation
Extension to other copula functions

From an industrial point of view, only two copula functions are used and
tractable:

1 The Normal copula

2 The Student t copula

with a general correlation matrix:

C =


1 ρ1,2 · · · ρ1,n

1
...

. . . ρn−1,n

1


⇒ In practice, we use a structural correlation matrix (HFRM, pages
221-225)
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Default correlation
The factor model

One-factor model

Zi =
√
ρX +

√
1− ρεi

(m + 1)-factor model

Zi =
√
ρ · X +

√
ρmap(i) − ρ · Xmap(i) +

√
1− ρmap(i) · εi
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Default correlation
Jump-to-default

How default correlations affects default times

Let τ 1 and τ 2 be two default times, whose joint survival function is
S (t1, t2) = C (S1 (t1) ,S2 (t2)). We have:

S1 (t | τ 2 = t?) = Pr {τ 1 > t | τ 2 = t?}
= ∂2C (S1 (t) ,S2 (t?))

= C2|1 (S1 (t) ,S2 (t?))

6= S1 (t) except if C = C⊥

where C2|1 is the conditional copula function

⇒ This phenomenon is called jump-to-defaut (JTD) or spread jump
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Default correlation
Jump-to-default of credit ratings

The hazard function is equal to:

λi (t) =
fi (t)

Si (t)
=

e>i Λ exp (tΛ) eK

1− e>i exp (tΛ) eK

We deduce that:

λi1 (t | τ i2 = t?) =
fi1 (t | τ i2 = t?)

Si1 (t | τ i2 = t?)

With the Basel copula, we have:

Si1 (t | τ i2 = t?) = Φ

(
Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√

1− ρ2

)
and:

fi1 (t | τ i2 = t?) = φ

(
Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√

1− ρ2

)
fi1 (t)√

1− ρ2φ (Φ−1 (Si1 (t)))
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Default correlation
Jump-to-default of credit ratings

Figure: Hazard function λi (t) (in bps)
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Default correlation
Jump-to-default of credit ratings

Figure: Hazard function λi (t) (in bps) when a AAA-rated company defaults
after 10 years (ρ = 5%)
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Default correlation
Jump-to-default of credit ratings

Figure: Hazard function λi (t) (in bps) when a AAA-rated company defaults
after 10 years (ρ = 50%)
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Default correlation
Jump-to-default of credit ratings

Figure: Hazard function λi (t) (in bps) when a BB-rated company defaults after
10 years (ρ = 50%)
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Jump-to-default of credit ratings

Figure: Hazard function λi (t) (in bps) when a CCC-rated company defaults after
10 years (ρ = 50%)
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Granularity and concentration
Definition of the granularity adjustment

We recall that the portfolio loss is given by:

L =
n∑

i=1

EADi ·LGDi ·1 {τ i ≤ Ti}

For an infinitely fine-grained (IFG) portfolio, we have:

VaRα (wIFG) =
n∑

i=1

EADi ·E [LGDi ] · Φ
(

Φ−1 (PDi ) +
√
ρΦ−1 (PDi )√

1− ρ

)
However, the portfolio w cannot be fine-grained and present some
concentration issues, implying that the value-at-risk is equal to the
quantile α of the loss distribution:

VaRα (w) = F−1
L (α)

The granularity adjustment GA is the difference between the two risk
measures:

GA = VaRα (w)−VaRα (wIFG)
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Granularity and concentration
The case of a perfectly concentrated portfolio

Let us consider a portfolio that is made up of one credit:

L = EAD ·LGD ·1 {τ ≤ T}
It follows that:

FL (`) = Pr {EAD ·LGD ·1 {τ ≤ T} ≤ `}
Since we have ` = 0⇔ τ > T , we deduce that
FL (0) = Pr {τ > T} = 1− PD. If ` 6= 0, we have:

FL (`) = FL (0) + Pr {EAD ·LGD ≤ ` | τ ≤ T}

= (1− PD) + PD ·G
(

`

EAD

)
where G is the distribution function of the loss given default. The
value-at-risk of this portfolio is then equal to:

VaRα (w) =

 EAD ·G−1

(
α + PD−1

PD

)
if α ≥ 1− PD

0 otherwise
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Granularity and concentration
The case of a perfectly concentrated portfolio

Figure: Comparison between the 99.9% value-at-risk of a loan and its risk
contribution in an IFG portfolio
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Granularity and concentration
IFG versus non-IFG portfolios

Figure: Comparison of the loss distribution of non-IFG and IFG portfolios
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Exercises

Credit derivatives

Exercise 3.4.1 – Single- and multi-name credit default swaps

Basel II model

Exercise 3.4.8 – Variance of the conditional portfolio loss
Exercise 3.4.2 – Risk contribution in the Basel II model
Exercise 3.4.7 – Derivation of the original Basel granularity
adjustement

Parameter modeling

Exercise 3.4.3 – Calibration of the piecewise exponential model
Exercise 3.4.4 – Modeling loss given default
Exercise 3.4.5 – Modeling default times with a Markov chain
Exercise 3.4.6 – Continuous-time modeling of default risk
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Collateral risk

Counterparty credit risk and collateral risk are other forms of credit risk,
where the underlying credit risk is not directly generated by the economic
objective of the financial transaction

⇒ The portfolio can suffer a loss even if the business objective is reached

Some examples:

1997: LTCM (CCR)

2008: Lehman Brothers (CVA)

2011: ETF & Repo markets (Collateral risk)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 373 / 1695



Counterparty Credit Risk
Credit valuation adjustment

Collateral risk

Definition
Modeling the exposure at default
Regulatory capital
Impact of wrong way risk

Credit risk (CR) 6= Counterparty credit risk (CCR)

CR:

Loan ⇒ credit risk (which is rewarded by a credit spread)

CDS ⇒ credit risk of the firm

CCR:

Option ⇒ counterparty credit risk (because the settlement is not
guaranteed)

CDS ⇒ counterpart credit risk (if one counterparty defaults before
the firm)
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Definition

Definition

BCBS (2006) measures the counterparty credit risk by the replacement
cost of the OTC derivative
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Definition

Let us consider two banks A and B that have entered into an OTC
contract C. We assume that the bank B defaults before the maturity of
the contract. Bank A can then face two situations:

The current value of the contract C is negative ⇒ Bank A closes out
the position, pays the market value of the contract to Bank B, enters
with another counterparty into a similar contract and receives the
market value of the contract

The current value of the contract C is positive ⇒ Bank A closes out
the position, receives nothing from Bank B, enters with another
counterparty into a similar contract and pays the market value of the
contract

Loss = maximum between zero and the market value

This loss is not a market risk, a credit risk but a counterparty credit risk
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CCR is more complex than CR

1 The counterparty credit risk is bilateral, meaning that both
counterparties may face losses (Banks A and B)

2 The exposure at default is uncertain, because we don’t know what
will be the replacement cost of the contract when the counterparty
defaults

The credit loss of an OTC portfolio is:

L =
n∑

i=1

EADi (τ i ) · LGDi ·1 {τ i ≤ Ti}

⇒ The exposure at default is random and depends on different factors:

The default time of the counterparty

The evolution of market risk factors

The correlation between the market value of the OTC contract and
the default of the counterparty
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Exposure at default

Exposure at default

We have:
EAD = max (MtM (τ ) , 0)

Table: EAD of a portfolio

No netting EAD =
∑n

i=1 max (MtMi (τ ) , 0)
Global netting EAD = max

(∑n
i=1 MtMi (τ ) , 0

)
Netting sets EAD =

∑
k max

(∑
i∈Nk

MtMi (τ ) , 0
)

+∑
i /∈∪Nk

max (MtMi (τ ) , 0)
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Exposure at default

Example

Banks A and B have traded five OTC products, whose mark-to-market
valuesa are given in the table below:

t 1 2 3 4 5 6 7 8
C1 5 5 3 0 −4 0 5 8
C2 −5 10 5 −3 −2 −8 −7 −10
C3 0 2 −3 −4 −6 −3 0 5
C4 2 −5 −5 −5 2 3 5 7
C5 −1 −3 −4 −5 −7 −6 −7 −6

aThey are calculated from the viewpoint of Bank A.

No netting

Global netting

Partial netting = equity OTC contracts (C1 and C2) and fixed income
OTC contracts (C3 and C4)
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Exposure at default

Table: Counterparty exposure of Bank A

t 1 2 3 4 5 6 7 8
No netting 7 17 8 0 2 3 10 20

Global netting 1 9 0 0 0 0 0 4
Partial netting∗ 2 15 8 0 0 0 5 12

(*) Partial netting for t = 8: EAD = max (8− 10, 0) + max (5 + 7, 0) + max (−6, 0) = 12

Table: Counterparty exposure of Bank B

t 1 2 3 4 5 6 7 8
No netting 6 8 12 17 19 17 14 16

Global netting 0 0 4 17 17 14 4 0
Partial netting 1 6 12 17 17 14 9 8
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An illustrative example

Example

We consider a bank that buys 1 000 ATM call options, whose maturity is
one-year. The current value of the underlying asset is equal to $100. We
assume that the interest rate r and the cost-of-carry parameter b are equal
to 5%. Moreover, the implied volatility of the option is considered as a
constant and is equal to 20%

We have:
MtM (t) = nC · (C (t)− C0)

where nC and C (t) are the number and the market value of call options.
The initial value of the call option is given by the Black-Scholes formula
and we have C0 = $10.45

The exposure at default e (t) is equal to:

e (t) = max (MtM (t) , 0)
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An illustrative example

Table: Mark-to-market and counterparty exposure of the call option

t
Scenario #1 Scenario #2

S (t) C (t) MtM (t) e (t) S (t) C (t) MtM (t) e (t)
1M 97.58 8.44 −2 013 0 91.63 5.36 −5 092 0
2M 98.19 8.25 −2 199 0 89.17 3.89 −6 564 0
3M 95.59 6.26 −4 188 0 97.60 7.35 −3 099 0
4M 106.97 12.97 2 519 2 519 97.59 6.77 −3 683 0
5M 104.95 10.83 382 382 96.29 5.48 −4 970 0
6M 110.73 14.68 4 232 4 232 97.14 5.29 −5 157 0
7M 113.20 16.15 5 700 5 700 107.71 11.55 1 098 1 098
8M 102.04 6.69 −3 761 0 105.71 9.27 −1 182 0
9M 115.76 17.25 6 802 6 802 107.87 10.18 −272 0

10M 103.58 5.96 −4 487 0 108.40 9.82 −630 0
11M 104.28 5.41 −5 043 0 104.68 5.73 −4 720 0

1Y 104.80 4.80 −5 646 0 115.46 15.46 5 013 5 013
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An illustrative example

We have:
MtM (0; t) = MtM (0; t0) + MtM (t0; t)

where 0 is the initial date of the trade, t0 is the current date and t is the
future date

⇒ This implies that the mark-to-market value at time t has two
components:

1 The current mark-to-market value MtM (0; t0) that depends on the
past trajectory of the underlying price

2 The future mark-to-market value MtM (t0; t) that depends on the
future trajectory of the underlying price

How to calculate MtM (t0; t)?

Historical probability measure P
Risk-neutral probability measure Q
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An illustrative example

Figure: Probability density function of the counterparty exposure after six months
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An illustrative example

Figure: Probability density function of the counterparty exposure after nine
months
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An illustrative example

Figure: Evolution of the counterparty exposure
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Measuring the counterparty exposure

The counterparty exposure (or the potential future exposure – PFE) is
equal to:

e (t) = max (MtM (0; t) , 0)

The current exposure is defined as:

CE (t0) = max (MtM (0; t0) , 0)

F[0,t] is the cumulative distribution function of the potential future exposure
e (t)

The peak exposure (PE) is the quantile of the counterparty exposure at the
confidence level α:

PEα (t) = F−1
[0,t] (α) = {inf x : Pr {e (t) ≤ x} ≥ α}

The maximum peak exposure (MPE) is equal to:

MPEα (0; t) = sup
s

PEα (0; s)
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Measuring the counterparty exposure

The expected exposure (EE) is the average of the distribution of the
counterparty exposure at the future date t:

EE (t) = E [e (t)] =

∫ ∞
0

x dF[0,t] (x)

The expected positive exposure (EPE) is the weighted average over time
[0, t] of the expected exposure:

EPE (0; t) = E
[

1

t

∫ t

0

e (s) ds

]
=

1

t

∫ t

0

EE (s) ds

The effective expected exposure (EEE) is the maximum expected exposure
that occurs at the future date t or any prior date:

EEE (t) = sup
s≤t

EE (s) = max
(
EEE

(
t−
)
,EE (t)

)
The effective expected positive exposure (EEPE) is the weighted average
over time [0, t] of the effective expected exposure:

EEPE (0; t) =
1

t

∫ t

0

EEE (s) ds
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Exercise I

Exercise (HFRM, Exercise 4.4.2, Question 3, page 301)

We assume that:
e (t) = exp

(
σ ·
√
t · X

)
where X ∼ N (0, 1)
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Solution of F[0,t]

We have:

F[0,t] (x) = Pr
{
eσ
√
tX ≤ x

}
= Pr

{
σ
√
tX ≤ ln x

}
= Φ

(
ln x

σ
√
t

)
with x ∈ [0,∞]
We deduce that the probability density function is equal to:

f[0,t] (x) =
∂ F[0,t] (x)

∂ x

=
1

xσ
√
t
φ

(
ln x

σ
√
t

)
We recognize the pdf of the log-normal distribution:

e (t) ∼ LN
(
0, σ2t

)
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Solution of PE

We have:
PEα (t) = F−1

[0,t] (α)

It follows that:

Φ

(
ln x

σ
√
t

)
= α ⇔ ln x

σ
√
t

= Φ−1 (α)

⇔ x = exp
(

Φ−1 (α)σ
√
t
)

We conclude that:
PEα (t) = eΦ−1(α)σ

√
t

It is obvious that eΦ−1(α)σ
√
t is maximum when t is equal to the

maturity T :

MPEα (0;T ) = sup
t

PEα (t) = eΦ−1(α)σ
√
T
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Solution of EE

The expected exposure is the average of the potential future exposure:

EE (t) = E [e (t)]

=

∫
x dF[0,t] (x)

=

∫
x f[0,t] (x) dx

We can compute the integral or we can use the property that
e (t) ∼ LN

(
0, σ2t

)
. Since we know that:

E
[
LN

(
µ, σ2

)]
= exp

(
µ+

1

2
σ2

)
we conclude that:

EE (t) = exp

(
1

2
σ2t

)
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Solution of EPE

We have:

EPE (0; t) =
1

t

∫ t

0

EE (s) ds

=
1

t

∫ t

0

e
1
2σ

2s ds

=
1

t

[
e

1
2σ

2s

1
2σ

2

]t
0

=
2e

1
2σ

2t − 2

σ2t
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Solution of EEE

Since the function e
1
2σ

2t is increasing with respect to t, we deduce
that the effective expected exposure is equal to the expected exposure:

EEE (t) = sup
s≤t

EE (s)

= exp

(
1

2
σ2t

)
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Solution of EEPE

It follows that:

EEPE (0; t) =
1

t

∫ t

0

EEE (s) ds

=
1

t

∫ t

0

EE (s) ds

= EPE (0; t)

=
2e

1
2σ

2t − 2

σ2t
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Solution

Figure: Credit exposure when e (t) = exp
(
σ
√
tN (0, 1)

)
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Exercise II

Exercise (HFRM, Exercise 4.4.2, Question 4, page 301)

We assume that:

e (t) = σ ·
(
t3 − 7

3
Tt2 +

4

3
T 2t

)
· X

where X ∼ U[0,1]
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Solution

Solution (HFRM-CB, pages 75-76)

F[0,t] (x) =
x

σ
(
t3 − 7

3Tt
2 + 4

3T
2t
) with x ∈

[
0, σ

(
t3 − 7

3
Tt2 +

4

3
T 2t

)]
PEα (0) = ασ

(
t3 − 7

3
Tt2 +

4

3
T 2t

)
MPEα (0; t) = 1 {t < t?} × PFEα (0; t) + 1 {t ≥ t?} × PFEα (0; t?)

EE (t) =
1

2
σ

(
t3 − 7

3
Tt2 +

4

3
T 2t

)
EPE (0; t) = σ

(
9t3 − 28Tt2 + 24T 2t

72

)
EEE (t) = 1 {t < t?} × EE (t) + 1 {t ≥ t?} × EE (t?)

t? =

(
7−
√

13

9

)
T
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Figure: Credit exposure when e (t) = σ
(
t3 − 7

3
Tt2 + 4

3
T 2t

)
U[0,1]
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Practical implementation for calculating counterparty
exposures

In practice, we use Monte Carlo simulations and the risk-neutral
distribution probability Q
We consider a set of discrete times {t0, t1, . . . , tn}
We note MtMj (ti ) the simulated mark-to-market value for the jth

simulation at time at time ti
We note nS the number of Monte Carlo simulations

Remark

If we consider the introductory example, we simulate Sj (ti ) the value of
the asset price at time ti for the jth simulation. For each simulated
trajectory, we then calculate the option price Cj (ti ) and the
mark-to-market value:

MtMj (ti ) = nC · (Cj (ti )− C0)
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Practical implementation

Given a sample of nS simulated exposures for t ∈ {t0, t1, . . . , tn}:

ej (ti ) = max (MtMj (ti ) , 0)

we deduce the following estimators:

The peak exposure at time ti is estimated using the order statistics:

PEα (ti ) = eαnS :nS (ti )

We use the empirical mean to calculate the expected exposure:

EE (ti ) =
1

nS

nS∑
j=1

ej (ti )
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Practical implementation

For the expected positive exposure, we approximate the integral by
the following sum:

EPE (0; ti ) =
1

ti

i∑
k=1

EE (tk) ∆tk

If we consider a fixed-interval scheme with ∆tk = ∆t, we obtain:

EPE (0; ti ) =
∆t

ti

i∑
k=1

EE (tk) =
1

i

i∑
k=1

EE (tk)
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Practical implementation

By definition, the effective expected exposure is given by the following
recursive formula:

EEE (ti ) = max (EEE (ti−1) ,EE (ti ))

where EEE (0) is initialized with the value EE (0)

Finally, the effective expected positive exposure is given by:

EEPE (0; ti ) =
1

ti

i∑
k=1

EEE (tk) ∆tk

In the case of a fixed-interval scheme, this formula becomes:

EEPE (0; ti ) =
1

i

i∑
k=1

EEE (tk)
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The square-root profile of CCR

Figure: Counterparty exposure profile of options
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The bell-shaped profile of CCR

Figure: Counterparty exposure profile of interest rate swaps

Thierry Roncalli Course 2023-2024 in Financial Risk Management 405 / 1695



Counterparty Credit Risk
Credit valuation adjustment

Collateral risk

Definition
Modeling the exposure at default
Regulatory capital
Impact of wrong way risk

Regulatory capital

Basel II

Non-internal model methods
1 Current exposure method

(CEM)
2 Standardized method (SM)

Internal model method (IMM)

Basel III

Standardized approach
(SA-CCR)

Internal model method (IMM)

Each approach defines how the exposure at default EAD is
calculated. In the SA approach, the capital charge is equal to:

K = 8% · EAD ·RW

In the IRB approach, we recall that:

K = EAD ·LGD ·

(
Φ

(
Φ−1 (PD) +

√
ρ (PD)Φ−1 (0.999)√

1− ρ (PD)

)
− PD

)
·ϕ (M)
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Regulatory capital
Internal model method (Basel II and III)

We have:
EAD = α · EEPE (0; min (T , 1))

where α is equal to 1.4 and T is the maturity of the OTC contract

Remark

Under some conditions, the bank may uses its own estimates for α, but it
must be larger than 1.2
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Regulatory capital
Internal model method (Basel II and III)

Example

We assume that the one-year effective expected positive exposure with
respect to a given counterparty is equal to $50.2 mn. The LGD is equal to
45% and the maturity is set to one year.

Table: Capital charge of counterparty credit risk under the FIRB approach

PD 1% 2% 3% 4% 5%

Basel II
ρ (PD) (in %) 19.28 16.41 14.68 13.62 12.99
K (in $ mn) 4.12 5.38 6.18 6.82 7.42

Basel III
ρ (PD) (in %) 24.10 20.52 18.35 17.03 16.23
K (in $ mn) 5.26 6.69 7.55 8.25 8.89
∆K (in %) 27.77 24.29 22.26 20.89 19.88
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Regulatory capital
SA-CCR method (Basel III)

The exposure at default under the SA-CCR is defined as follows:

EAD = α · (RC + PFE)

where RC is the replacement cost (or the current exposure), PFE is the
potential future exposure and α is equal to 1.4

Remark

We can view this formula as an approximation of the IMM calculation,
meaning that RC + PFE represents a stylized EEPE value

⇒ SA-CCR is close to SA-TB (see HFRM on pages 270-274)
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Impact of wrong way risk

Definition

The wrong way risk (WWR) is defined as the risk that “occurs when
exposure to a counterparty or collateral associated with a transaction is
adversely correlated with the credit quality of that counterparty”. This
means that the exposure at default of the OTC contract and the default
risk of the counterparty are positively correlated

Two types of wrong way risk:

1 General (or conjectural) wrong way risk occurs when the credit quality
of the counterparty is correlated with macroeconomic factors, which
also impact the value of the transaction (e.g. level of interest rates)

2 Specific wrong way risk occurs when the correlation between the
exposure at default and the probability of default is mainly explained
by some idiosyncratic factors (e.g. Bank A buys a CDS protection on
Bank B from Bank C )
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Impact of wrong way risk
An example

We assume that:
MtM (t) = µ+ σW (t)

If we note e (t) = max (MtM (t) , 0), we have:

E [e (t)] =

∫ ∞
−∞

max
(
µ+ σ

√
tx , 0

)
φ (x) dx

= µ

∫ ∞
−µ/(σ

√
t)
φ (x) dx + σ

√
t

∫ ∞
−µ/(σ

√
t)
xφ (x) dx

= µ

(
1− Φ

(
− µ

σ
√
t

))
+ σ
√
t

[
− 1√

2π
e−

1
2 x

2

]∞
−µ/(σ

√
t)

= µΦ

(
µ

σ
√
t

)
+ σ
√
tφ

(
µ

σ
√
t

)
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Impact of wrong way risk
An example

Two assumptions:

H1 Merton model with the default barrier B (t) = Φ−1 (1− S (t))

H2 The dependence between the mark-to-market MtM (t) and the
survival time is given by the Normal copula C (u1, u2; ρ) with
parameter ρ
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Impact of wrong way risk
An example

Since we have 1− S (t) ∼ U[0,1], it follows that B (t) ∼ N (0, 1). We
deduce that the random vector (MtM (t) ,B (t)) is normally distributed:(

MtM (t)
B (t)

)
∼ N

((
µ
0

)
,

(
σ2t ρσ

√
t

ρσ
√
t 1

))
because the correlation ρ (MtM (t) ,B (t)) is equal to the Normal copula
parameter ρ. Using the conditional expectation formula (Lecture 2, Slide
114), it follows that:

MtM (t) | B (t) = B ∼ N
(
µB , σ

2
B

)
where:

µB = µ+ ρσ
√
t (B − 0)

and:
σ2
B = σ2t − ρ2σ2t =

(
1− ρ2

)
σ2t
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Impact of wrong way risk
An example

We deduce that:

E [e (t) | τ = t] = E [e (t) | B (t) = B] = µBΦ

(
µB

σB

)
+ σBφ

(
µB

σB

)
where:

µB = µ+ ρσ
√
tB

and:
σB =

√
1− ρ2σ

√
t

With the exception of ρ = 0, we have:

E [e (t)] 6= E [e (t) | τ = t]
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Impact of wrong way risk
An example

Figure: Conditional distribution of the mark-to-market

(*) The default occurs at time t = 1, and the parameters are µ = 0, σ = 1 and τ ∼ E (λ)
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Impact of wrong way risk
An example

Figure: Conditional expectation of the exposure at default

(*) The default values are µ = 0, σ = 1, PD = 90% and ρ = 50%
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Impact of wrong way risk

Calibration of the α factor

⇒ A difficult task:

L =
n∑

i=1

EAD (τ i ,F1, . . . ,Fm) · LGDi ·1 {τ i ≤ Ti}

where F = (F1, . . . ,Fm) are the market risk factors and τ = (τ 1, . . . , τ n)
are the default times

WWR implies to correlate the random vectors F and τ
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CVA versus CCR

Definition

CVA is the adjustment to the risk-free (or fair) value of derivative
instruments to account for counterparty credit risk. Thus, CVA is
commonly viewed as the market price of CCR

CCR concerns the default risk of the counterparty ⇒ credit risk
CCR may induce a loss

CVA concerns the credit risk of the counterparty before the default ⇒
market risk

CVA impacts the mark-to-market of the OTC contract

2008 GFC & Lehman Brothers bankruptcy

Banks suffered significant CCR losses on their OTC derivatives portfolios:

2/3 of these losses came from CVA markdowns on derivatives

1/3 were due to counterparty defaults
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Fair valuation

We consider two banks A and B and an OTC contract C. The P&L ΠA|B
of Bank A is equal to:

ΠA|B = MtM−CVAB

where MtM is the risk-free mark-to-market value of C and CVAB is the
CVA with respect to Bank B. We assume that Bank A has traded the
same contract with Bank C . It follows that:

ΠA|C = MtM−CVAC

In a world where there is no counterparty credit risk, we have:

ΠA|B = ΠA|C = MtM
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Fair valuation

If we take into account the counterparty credit risk, the two P&Ls of the
same contract are different because Bank A does not face the same risk:

ΠA|B 6= ΠA|C

In particular, if Bank A wants to close the two exposures, it is obvious that
the contact C with the counterparty B has more value than the contact C
with the counterparty C if the credit risk of B is lower than the credit risk
of C
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CVA, DVA and bilateral CVA

CVA is the market risk related to the credit risk of the counterparty

DVA (debit value adjustment) is the credit-related adjustment
capturing the entity’s own credit risk

BCVA (bilateral CVA) is the combination of the two credit-related
adjustments:

ΠA|B = MtM + DVAA−CVAB︸ ︷︷ ︸
Bilateral CVA

If the credit risk of Bank A is lower than the credit risk of Bank B,
the bilateral CVA of Bank A is negative and reduces the value of the
OTC portfolio from the perspective of Bank A

If the credit risk of Bank A is higher than the credit risk of Bank B,
the bilateral CVA of Bank A is positive and increases the value of the
OTC portfolio from the perspective of Bank A

If the credit risk of Banks A and B is the same, the bilateral CVA is
equal to zero
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BCVA and the coherency property

The DVA of Bank A is the CVA of Bank A from the perspective of Bank B:

CVAA = DVAA

We also have DVAB = CVAB , which implies that the P&L of Bank B is
equal to:

ΠB|A = −MtM + DVAB −CVAA

= −MtM + CVAB −DVAA

= −ΠA|B

Remark

We deduce that the P&Ls of Banks A and B are coherent in the bilateral
CVA framework as in the risk-free MtM framework
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Notations

The positive exposure e+ (t) is the maximum between 0 and the
risk-free mark-to-market:

e+ (t) = max (MtM (t) , 0)

This quantity was previously denoted by e (t) and corresponds to the
potential future exposure in the CCR framework

The negative exposure e− (t) is the difference between the risk-free
mark-to-market and the positive exposure:

e− (t) = MtM (t)− e+ (t) = max (−MtM (t) , 0)

The negative exposure is then the equivalent of the positive exposure
from the perspective of the counterparty
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The CVA formula

CVA is the risk-neutral discounted expected value of the potential loss:

CVA = EQ
[
1 {τB ≤ T} · e−

∫ τB
0 rt dt · L

]
where:

T is the maturity of the OTC derivative

τB is the default time of Bank B

L is the counterparty loss:

L = (1−RB) · e+ (τB)
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The CVA formula

Using usual assumptions, we obtain:

CVA = (1−RB) ·
∫ T

0

B0 (t) EpE (t) dFB (t)

where:

EpE (t) is the risk-neutral expected positive exposure:

EpE (t) = EQ [e+ (t)
]

FB is the cumulative distribution function of τB

The CVA formula

Since SB (t) = 1− FB (t), we obtain:

CVA = (1−RB) ·
∫ T

0

−B0 (t) EpE (t) dSB (t)
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The DVA formula

The debit value adjustment is defined as the risk-neutral discounted
expected value of the potential gain:

DVA = EQ
[
1 {τA ≤ T} · e−

∫ τA
0 rt dt · G

]
where:

τA is the default time of Bank A
G is the counterparty gain:

G = (1−RA) · e− (τA)

The DVA formula

DVA = (1−RA) ·
∫ T

0

−B0 (t) EnE (t) dSA (t)

where EnE (t) is the risk-neutral expected negative exposure:

EnE (t) = EQ [e− (t)
]

Thierry Roncalli Course 2023-2024 in Financial Risk Management 426 / 1695



Counterparty Credit Risk
Credit valuation adjustment

Collateral risk

Definition
Practical implementation
Regulatory capital
CVA and wrong/right way risk

The two BCVA formulas

Independent case (τB ⊥ τA)

BCVA = DVA−CVA

= (1−RA) ·
∫ T

0

−B0 (t) EnE (t) dSA (t)−

(1−RB) ·
∫ T

0

−B0 (t) EpE (t) dSB (t)

General case

We must consider the joint survival function of (τA, τB):

BCVA = EQ

[
1 {τA ≤ min (T , τB)} · e−

∫ τA
0 rt dt · G−

1 {τB ≤ min (T , τA)} · e−
∫ τB

0 rt dt · L

]
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Interpretation of the CVA measure

If we assume that the yield curve is flat and SB (t) = e−λB t , we have:

dSB (t) = −λBe−λB t dt

and:

CVA = (1−RB) ·
∫ T

0

e−rt EpE (t)λBe
−λB t dt

= sB ·
∫ T

0

e−(r+λB )t EpE (t) dt

⇒ CVA is the product of the CDS spread and the discounted value of the
expected positive exposure
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Exercise III

Exercise (HFRM, Exercise 4.4.5, page 303)

We assume that the mark-to-market value is given by:

MtM (t) = N

∫ T

t

f (t,T )Bt (s) ds − N

∫ T

t

f (0,T )Bt (s) ds

where N and T are the notional and the maturity of the swap, and
f (t,T ) is the instantaneous forward rate which follows a geometric
Brownian motion:

df (t,T ) = µf (t,T ) dt + σf (t,T ) dW (t)

We also assume that the yield curve is flat – Bt (s) = e−r(s−t) – and the
risk-neutral survival function is S (t) = e−λt

Thierry Roncalli Course 2023-2024 in Financial Risk Management 429 / 1695



Counterparty Credit Risk
Credit valuation adjustment

Collateral risk

Definition
Practical implementation
Regulatory capital
CVA and wrong/right way risk

Solution

Solution (Syrkin and Shirazi, 2015; HFRM-CB, Section 4.4.5, pages 82-85)

We have:

CVA (t) = sB ·
∫ T

t

e−(r+λ)(u−t) EpE (u) du

where:

EpE (t) = Nf (0,T )ϕ (t,T )

(
eµtΦ

((
µ

σ
+

1

2
σ

)√
t

)
− Φ

((
µ

σ
− 1

2
σ

)√
t

))
and:

ϕ (t,T ) =
1− e−r(T−t)

r

Numerical example: N = 1000, f (0,T ) = 5%, µ = 2%, σ = 25%, T = 10
years and RB = 50%
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Solution

Figure: CVA of fixed-float swaps
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Practical implementation

We approximate the integral by a sum:

CVA = (1−RB) ·
∑
ti≤T

B0 (ti ) · EpE (ti ) · (SB (ti−1)− SB (ti ))

and:

DVA = (1−RA) ·
∑
ti≤T

B0 (ti ) · EnE (ti ) · (SA (ti−1)− SA (ti ))

where {ti} is a partition of [0,T ]

Thierry Roncalli Course 2023-2024 in Financial Risk Management 432 / 1695



Counterparty Credit Risk
Credit valuation adjustment

Collateral risk

Definition
Practical implementation
Regulatory capital
CVA and wrong/right way risk

Practical implementation

We have:

SB (ti−1)− SB (ti ) = Pr {ti−1 < τB ≤ ti} = PDB (ti−1, ti )

PDB (ti−1, ti ) is a risk-neutral probability

The credit triangle relationship is:

sB (t) = (1−RB) · λB (t)

We deduce that:

SB (t) = exp (−λB (t) · t) = exp

(
−sB (t) · t

1−RB

)
and:

PDB (ti−1, ti ) = exp

(
−sB (ti−1) · ti−1

1−RB

)
− exp

(
−sB (ti ) · ti

1−RB

)
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Comparison with AM-CVA (2010 version of Basel III)

BCBS approximates the integral by the middle Riemann sum:

CVA = LGDB ·
∑
ti≤T

(
EpE (ti−1)B0 (ti−1) + B0 (ti ) EpE (ti )

2

)
·PDB (ti−1, ti )

where:

LGD = 1−RB is the risk-neutral loss given default of the
counterparty B

PDB (ti−1, ti ) is the risk neutral probability of default between ti−1

and ti :

PDB (ti−1, ti ) = max

(
exp

(
−s (ti−1)

LGDB
· ti−1

)
− exp

(
− s (ti )

LGDB
· ti
)
, 0

)
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Basel III

2010 version of Basel III

Standardized method (SM-CVA)

Advanced method (AM-CVA)

2017 version of Basel III

Basic approach (BA-CVA)

Standardized approach (SA-CVA)

⇒ The Basel Committee completely flip-flopped within the same accord,
since the 2017 version will replace the 2010 version in January 2022
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Basic approach (BA-CVA)

The capital requirement is equal to:

K = β ·KReduced + (1− β) ·KHedged

where KReduced and KHedged are the capital requirements without and
with hedging recognition

The reduced version of the BA-CVA is obtained by setting β to 100%

A bank that actively hedges CVA risks may choose the full version of
the BA-CVA and β = 25%
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Reduced version

We have:

KReduced =

√√√√√ρ ·∑
j

SCVAj

2

+ (1− ρ2) ·
∑
j

SCVA2
j

where:

ρ = 50%

SCVAj is the CVA capital requirement for the jth counterparty:

SCVAj =
1

α
· RWj ·

∑
k

DFk ·EADk ·Mk

α = 1.4

RWj is the risk weight for counterparty j

k is the netting set, DFk is the discount factor, EADk is the CCR
exposure at default, Mk is the effective maturity
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Reduced version

RWj depends on the credit quality of the counterparty (IG/HY) and its
sector:

Table: Supervisory risk weights (BA-CVA)

Sector
Credit quality

IG HY/NR
Sovereign 0.5% 3.0%
Local government 1.0% 4.0%
Financial 5.0% 12.0%
Basic material, energy, industrial, agriculture, manufac-
turing, mining and quarrying

3.0% 7.0%

Consumer goods and services, transportation and stor-
age, administrative and support service activities

3.0% 8.5%

Technology, telecommunication 2.0% 5.5%
Health care, utilities, professional and technical activi-
ties

1.5% 5.0%

Other sector 5.0% 12.0%
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Hedged version

The full version of the BA-CVA recognizes hedging instruments
(single-name CDS and index CDS):

KHedged =
√

K1 + K2 + K3

where:
1 K1 aggregates the systematic risk components of the CVA risk:

K1 =

ρ ·∑
j

(SCVAj −SNHj)− IH

2

2 K2 aggregates the idiosyncratic risk components of the CVA risk:

K2 =
(
1− ρ2

)
·
∑
j

(SCVAj − SNHj)
2

3 K3 corresponds to the hedging misalignment risk because of the
mismatch between indirect and single-name hedges:

K3 =
∑
j

HMAj
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Hedged version
Single-name hedging

SNHj is the CVA reduction for counterparty j due to single-name hedging

SNHj =
∑
h∈j

%h,j · (RWh ·DFh ·Nh ·Mh)

where:

h represents the single-name CDS transaction, %h,j is the supervisory
correlation, DFh is the discount factor, Nh is the notional and Mh is
the remaining maturity

These quantities are calculated at the single-name CDS level

The correlation %h,j between the credit spread of the counterparty and
the credit spread of the CDS can take three values:

1 100% if CDS h directly refers to counterparty j
2 80% if CDS h has a legal relation with counterparty j
3 50% if CDS h and counterparty j are of the same sector and region
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Hedged version
Index hedging

IH is the global CVA reduction due to index hedging:

IH =
∑
h′

RWh′ ·DFh′ ·Nh′ ·Mh′

where:

h′ represents the index CDS transaction

The risk weight is the weighted average of risk weights of RWj :

RWh′ = 0.7 ·
∑
j∈h′

wj · RWj

where wj is the weight of the counterparty/sector j in the index CDS
h′
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Hedged version
Hedging mismatch

The hedging misalignment risk is equal to:

HMAj =
∑
h∈j

(
1− %2

h,j

)
· (RWh ·DFh ·Nh ·Mh)2
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Basic approach (BA-CVA)
Special cases

If there is no hedge, we have SNHj = 0, HMAj = 0, IH = 0, and

K = KReduced

If there is no hedging misalignment risk and no index CDS hedging, we
have:

K =

√√√√√ρ ·∑
j

Kj

2

+ (1− ρ2) ·
∑
j

K2
j

where Kj = SCVAj −SNHj is the single-name capital requirement for
counterparty j
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Exercise IV

Exercise

We assume that the bank has three financial counterparties A, B and C ,
that are respectively rated IG, IG and HY. There are 4 OTC transactions,
whose characteristics are the following:

Transaction k 1 2 3 4
Counterparty A A B C

EADk 100 50 70 20
Mk 1 1 0.5 0.5

In order to reduce the counterparty credit risk, the bank has purchased a
CDS protection on A for an amount of $75 mn, a CDS protection on B for
an amount of $10 mn and a HY Financial CDX for an amount of $10 mn.
The maturity of hedges exactly matches the maturity of transactions.
However, the CDS protection on B is indirect, because the underlying
name is not B, but B ′ which is the parent company of B
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Solution (KReduced)

We calculate the discount factors DFk for the four transactions:
DF1 = DF2 = 0.9754 and DF3 = DF4 = 0.9876

We calculate the single-name capital for each counterparty:

SCVAA =
1

α
× RWA× (DF1×EAD1×M1 + DF2×EAD2×M2)

=
1

1.4
× 5%× (0.9754× 100× 1 + 0.9754× 50× 1)

= 5.225

We also find that SCVAB = 1.235 and SCVAC = 0.847

It follows that
∑

j SCVAj = 7.306 and
∑

j SCVA2
j = 29.546

The capital requirement without hedging is equal to:

KReduced =

√
(0.5× 7.306)2 + (1− 0.52)× 29.546 = 5.959
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Solution (KHedged)

We calculate the single-name hedge parameters:

SNHA = 5%× 100%× 0.9754× 75× 1 = 3.658

and:
SNHB = 5%× 80%× 0.9876× 10× 0.5 = 0.198

Since the CDS protection is on B ′ and not B, there is a hedging
misalignment risk:

HMAB = 0.052 ×
(
1− 0.802

)
× (0.9876× 10× 0.5)2 = 0.022

For the CDX protection, we have:

IH = (0.7× 12%)× 0.9876× 10× 0.5 = 0.415

We obtain K1 = 1.718, K2 = 3.187, K3 = 0.022 and

KHedged =
√

1.7182 + 3.1872 + 0.0222 = 2.220
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Solution (regulatory capital)

The capital requirement is equal to $3.154 mn:

K = 0.25× 5.959 + 0.75× 2.220 = 3.154
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Standardized approach (SA-CVA)

Remark

SA-CVA ≈ SA-TB
K = KDelta + KVega

Two portfolios:

1 The CVA portfolio
2 The hedging portfolio

For each risk (delta and vega), we calculate the weighted CVA
sensitivity of each risk factor Fj :

WSCVA
j = SCVA

j · RWj

and:
WSHedge

j = SHedge
j · RWj

where Sj and RWj are the net sensitivity of the CVA or hedging
portfolio with respect to the risk factor and the risk weight of Fj
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Standardized approach (SA-CVA)

We aggregate the weighted sensitivity in order to obtain a net figure:

WSj = WSCVA
j + WSHedge

j

We calculate the capital requirement for the risk bucket Bk :

KBk
=

√∑
j

WS2
j +
∑
j′ 6=j

ρj,j′ ·WSj ·WSj′ +1% ·
∑
j

(
WSHedge

j

)2

where Fj ∈ Bk
We aggregate the different buckets for a given risk class:

KDelta/Vega = mCVA ·
√∑

k

K2
Bk

+
∑
k′ 6=k

γk,k′ ·KBk
·KBk′

where mCVA = 1.25 is the multiplier factor
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CVA and wrong/right way risk

CVA trading desk

How to be sure that the CVA hedging portfolio does not create itself
another source of hidden wrong way risk?

In practice, market and credit risks are correlated!

Two approaches

1 The copula model (Cespedes et al., 2010)
2 The hazard rate model (Hull and White, 2012)
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Exposure at default

In the case of a margin agreement, the counterparty needs to post
collateral and the exposure at default becomes:

e+ (t) = max (MtM (t)− C (t) , 0)

where C (t) is the collateral value at time t
The collateral transfer occurs when the mark-to-market exceeds a
threshold H:

C (t) = max (MtM (t − δC )− H, 0)

where:
H is the minimum collateral transfer amount
δC ≥ 0 is the margin period of risk (MPOR)

We obtain:

e+ (t) = MtM (t) · 1 {0 ≤ MtM (t) ,MtM (t − δC ) < H}+

(MtM (t)−MtM (t − δC ) + H) ·
1 {H ≤ MtM (t − δC ) ≤ MtM (t) + H}
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Special cases

When H = +∞, C (t) is equal to zero and we obtain:

e+ (t) = max (MtM (t) , 0)

When H = 0, the collateral C (t) is equal to MtM (t − δC ) and the
counterparty exposure becomes:

e+ (t) = max (MtM (t)−MtM (t − δC ) , 0) = max (MtM (t − δC , t) , 0)

The CCR corresponds to the variation of the mark-to-market
MtM (t − δC , t) during the liquidation period [t − δC , t]

When δC is set to zero, we deduce that:

e+ (t) = MtM (t) · 1 {0 ≤ MtM (t) < H}+ H · 1 {H ≤ MtM (t)}

When δC is set to zero and there is no minimum collateral transfer
amount, the counterparty credit risk vanishes:

e+ (t) = 0
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Illustration

Figure: Impact of collateral on the counterparty exposure
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Collateral risk management

Two ways to reduce the counterparty risk:

1 Reducing the haircut (H ↘ 0)

2 Reducing the margin period of risk (δC ↘ 0)

Trade-off between risk and operational cost & process
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Risk allocation

We recall the Euler allocation principle:

R (w) =
n∑

i=1

RC i =
n∑

i=1

wi ·
∂R (w)

∂ wi
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Risk allocation

Application to a CVA portfolio

CVA (w) = (1−RB) ·
∫ T

0

−B0 (t) EpE (t;w) dSB (t)

where EpE (t;w) is the expected positive exposure with respect to the
portfolio w . The Euler allocation principle becomes:

CVA (w) =
n∑

i=1

CVAi (w)

where CVAi (w) is the CVA risk contribution of the i th component:

CVAi (w) = (1−RB) ·
∫ T

0

−B0 (t) EpEi (t;w) dSB (t)

and EpEi (t;w) is the EpE risk contribution of the i th component
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Risk allocation

What is the challenge?

Computing the EpE risk contribution:

EpEi (t;w) = wi ·
∂ EpE (t;w)

∂ wi

Very difficult and almost impossible ⇒ needs simplification
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Exercises

Counterparty credit risk (CCR)

Exercise 4.4.1 – Impact of netting agreements in counterparty credit
risk
Exercise 4.4.2 – Calculation of the effective expected positive exposure
Exercise 4.4.3 – Calculation of the capital charge for counterparty
credit risk

Credit valuation adjustment (CVA)

Exercise 4.4.4 – Calculation of CVA and DVA measures
Exercise 4.4.5 – Approximation of the CVA for an interest rate swap
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A long list of operational risk losses:

1983: Banco Ambrosiano Vatican Bank (money laundering)

1995: Barings (rogue trading)

1996: Summitomo Bank (rogue trading)

1996: Crédit Lyonnais (headquarter fire)

Etc.

Since the end of the nineties, new themes: operational risk, legal risk,
compliance, money laundering, etc.
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Definition

Definition

The Basel Committee defines the operational risk in the following way:

“Operational risk is defined as the risk of loss resulting from in-
adequate or failed internal processes, people and systems or from
external events. This definition includes legal risk, but excludes
strategic and reputational risk”
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Loss event type classification

1 Internal fraud (“losses due to acts of a type intended to defraud,
misappropriate property or circumvent regulations, the law or
company policy, excluding diversity/discrimination events, which
involves at least one internal party”)

1 Unauthorized activity
2 Theft and fraud

2 External fraud (“losses due to acts of a type intended to defraud,
misappropriate property or circumvent the law, by a third party”)

1 Theft and fraud
2 Systems security

3 Employment practices and workplace safety (“losses arising from acts
inconsistent with employment, health or safety laws or agreements,
from payment of personal injury claims, or from
diversity/discrimination events”)

1 Employee relations
2 Safe environment
3 Diversity & discrimination
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Loss event type classification

4 Clients, products & business practices (“losses arising from an
unintentional or negligent failure to meet a professional obligation to
specific clients (including fiduciary and suitability requirements), or
from the nature or design of a product”)

1 Suitability, disclosure & fiduciary
2 Improper business or market practices
3 Product flaws
4 Selection, sponsorship & exposure
5 Advisory activities

5 Damage to physical assets (“losses arising from loss or damage to
physical assets from natural disaster or other events”)

1 Disasters and other events
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Loss event type classification

6 Business disruption and system failures (“losses arising from
disruption of business or system failures”)

1 Systems

7 Execution, delivery & process management (“losses from failed
transaction processing or process management, from relations with
trade counterparties and vendors”)

1 Transaction capture, execution & maintenance
2 Monitoring and reporting
3 Customer intake and documentation
4 Customer/client account management
5 Trade counterparties
6 Vendors & suppliers
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Loss data collection exercise (LDCE)

Table: Internal losses larger than e20 000 per year

Year pre 2002 2002 2003 2004 2005 2006 2007
nL 14 017 10 216 13 691 22 152 33 216 36 386 36 622
L (in e bn) 3.8 12.1 4.6 7.2 9.7 7.4 7.9
nB 24 35 55 68 108 115 117

More and more operational risk losses:

Société Générale in 2008 ($7.2 bn), Morgan Stanley in 2008 ($9.0
bn), BPCE in 2008 ($1.1 bn), UBS in 2011 ($2 bn), JPMorgan Chase
in 2012 ($5.8 bn), etc.
Libor scandal: $2.5 bn for Deutsche Bank, $1 bn for Rabobank, $545
mn for UBS, etc.
Forex scandal: six banks (BoA, Barclays, Citi, JPM, UBS and RBS)
agreed to pay fines totaling $5.6 bn in May 2015
BNP Paribas payed a fine of $8.9 bn in June 2014 (anti-money
laundering control)
Etc.
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Basic indicator approach (BIA)
The standardized approach (TSA)
Advanced measurement approaches (AMA)
Basel III (SA-OR or SMA)

Basel II versus Basel III

Basel II

Basic indicator approach (BIA)

The standardized approach
(TSA)

Advanced measurement
approaches (AMA)

Basel III

Standardized approach (SA-OR)

Pillar II
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Basic indicator approach (BIA)
The standardized approach (TSA)
Advanced measurement approaches (AMA)
Basel III (SA-OR or SMA)

Basic indicator approach (BIA)

The capital charge is a fixed percentage of annual gross income:

K = α ·GI

where α = 15% and GI is the average of the positive gross income over
the previous three years:

GI =
max (GIt−1, 0) + max (GIt−2, 0) + max (GIt−3, 0)∑3

k=1 1 {GIt−k > 0}
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The standardized approach (TSA)

TSA is an extended version of BIA:

Kj,t = βj ·GIj,t

where βj and GIj,t are a fixed percentage and the gross income
corresponding to the jth business line. The total capital charge is the
three-year average of the sum of all the capital charges:

K =
1

3

3∑
k=1

max

 8∑
j=1

Kj,t−k , 0


If the values of gross income are all positive, the total capital charge
becomes:

K =
1

3

3∑
k=1

8∑
j=1

βj ·GIj,t−k =
8∑

j=1

βj ·GIj
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The standardized approach (TSA)

Table: Mapping of business lines for operational risk

Level 1 Level 2 βj

Corporate Finance

Corporate Finance

18%
Municipal/Government Finance
Merchant Banking
Advisory Services

Trading & Sales

Sales

18%
Market Making
Proprietary Positions
Treasury

Retail Banking
Retail Banking

12%Private Banking
Card Services

Commercial Banking\ Commercial Banking 12%
Payment & Settlement External Clients 18%

Agency Services
Custody

15%Corporate Agency
Corporate Trust

Asset Management
Discretionary Fund Management

12%
Non-Discretionary Fund Management

Retail Brokerage Retail Brokerage 12%
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The standardized approach (TSA)

What is the difference between corporate finance, trading & sales and
commercial banking?

Corporate finance: mergers and acquisitions, underwriting,
securitization, syndications, IPO, debt placements

Trading & sales: buying and selling of securities and derivatives,
own position securities, lending and repos, brokerage

Commercial banking: project finance, real estate, export finance,
trade finance, factoring, leasing, lending, guarantees, bills of exchange
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Advanced measurement approaches (AMA)

The AMA method is defined by certain criteria without refereing to a
specific statistical model:

The capital charge should cover the one-year operational loss at the
99.9% confidence level (UL + EL)

A minimum five-year observation period of internal loss data

The model can incorporate the risk mitigation impact of insurance,
which is limited to 20% of the total operational risk capital charge
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Advanced measurement approaches (AMA)

Table: Distribution of annualized operational losses (in %)

Business line
Event type

All
1 2 3 4 5 6 7

Corporate Finance 0.2 0.1 0.6 93.7 0.0 0.0 5.4 28.0
Trading & Sales 11.0 0.3 2.3 29.0 0.2 1.8 55.3 13.6
Retail Banking 6.3 19.4 9.8 40.4 1.1 1.5 21.4 32.0
Commercial Banking 11.4 15.2 3.1 35.5 0.4 1.7 32.6 7.6
Payment & Settlement 2.8 7.1 0.9 7.3 3.2 2.3 76.4 2.6
Agency Services 1.0 3.2 0.7 36.0 18.2 6.0 35.0 2.6
Asset Management 11.1 1.0 2.5 30.8 0.3 1.5 52.8 2.5
Retail Brokerage 18.1 1.4 6.3 59.5 0.1 0.2 14.4 5.1
Unallocated 6.5 2.8 28.4 28.3 6.5 1.3 26.2 6.0
All 6.1 8.0 6.0 52.4 1.4 1.2 24.9 100.0
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Basel III (SA-OR or SMA)

Remark

The standardized measurement approach (SMA) will replace the three
approaches of the Basel II framework in 2022. AMA may be used for Pillar
2

The SMA is based on three components:

1 Business indicator (BI)

2 Business indicator component (BIC)

3 Internal loss multiplier (ILM)
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Basel III (SA-OR or SMA)

The business indicator is a proxy of the operational risk:

BI = ILDC + SC + FC

where ILDC is the interest, leases and dividends component, SC is
the services component and FC is the financial component. The
underlying idea is to list the main activities that generate operational
risk:  ILDC = min (|INC−EXP| , 2.25% · IRE) + DIV

SC = max (OI,OE) + max (FI,FE)
FC = |ΠTB|+ |ΠBB|

where INC represents the interest income, EXP the interest expense,
IRE the interest earning assets, DIV the dividend income, OI the
other operating income, OE the other operating expense, FI the fee
income, FE the fee expense, ΠTB the net P&L of the trading book
and ΠBB the net P&L of the banking book
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Basel III (SA-OR or SMA)

Basel III (SA-OR or SMA)

The business indicator component is given by:

BIC = 12%·min (BI, $1 bn)+15%·min (BI−1, $30 bn)+18%·min (BI−30)+

The internal loss multiplier is equal to:

ILM = ln

(
e1 − 1 +

(
15 · L̄
BIC

)0.8
)

where L̄ is the average annual operational risk losses over the last 10
years

The capital charge for the operational risk is then equal to:

K = ILM ·BIC
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LDA and operational risk

The operational risk loss L of the bank is divided into a matrix of
homogenous losses:

L =
K∑

k=1

Sk

where Sk is the sum of losses of the k th cell and K is the number of cells
in the matrix (Basel II = 7× 8 = 56 cells)
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Definition

Definition

LDA is a method to model the random loss Sk of a particular cell. It
assumes that Sk is the random sum of homogeneous individual losses:

Sk =

Nk (t)∑
n=1

X (k)
n

where Nk (t) is the random number of individual losses for the period [0, t]

and X
(k)
n is the nth individual loss

Two sources of uncertainty:

1 We don’t know what will be the magnitude of each loss event
(severity risk)

2 We don’t know how many losses will occur in the next year
(frequency risk)
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Assumptions

We consider the random sum:

S =

N(t)∑
n=1

Xn

The loss distribution approach is based on the following assumptions:

The number of losses N (t) follows the loss frequency distribution P

The sequence of individual losses Xn is independent and identically
distributed (iid)

The corresponding probability distribution F is called the loss severity
distribution

The number of events is independent from the amount of loss events

The probability distribution G of S is the compound distribution (P,F)
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Exercise I

Exercise

We assume that the number of losses is distributed as follows:

n 0 1 2 3
p (n) 50% 30% 17% 3%

The loss amount can take the values $100 and $200 with probabilities 70%
and 30%

Show that:

s 0 100 200 300 400 500 600
Pr {S = s} 50% 21% 17.33% 8.169% 2.853% 0.567% 0.081%
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Compound distribution

The cumulative distribution function of S can be written as:

G (s) =

{ ∑∞
n=1 p (n) Fn? (s) for s > 0

p (0) for s = 0

where Fn? is the n-fold convolution of F with itself:

Fn? (s) = Pr
{∑n

i=1
Xi ≤ s

}
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Compound distribution

Figure: Compound distribution when N ∼ P (50) and X ∼ LN (8, 5)
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Regulatory capital

The capital charge (or the capital-at-risk) corresponds to the percentile α:

CaR (α) = G−1 (α)

The regulatory capital is obtained by setting α = 99.9%:

K = CaR (99.9%)

Here are the different steps to implement the loss distribution approach:

for each cell of the operational risk matrix, we estimate the loss
frequency distribution and the loss severity distribution

we calculate the capital-at-risk

we define the copula function between the different cells of the
operational risk matrix, and deduce the aggregate capital-at-risk
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Estimation of the loss severity distribution

Let {x1, . . . , xT} the sample collected for a given cell of the operational
risk matrix. We consider that the individual losses follow a given
parametric distribution F:

X ∼ F (x ; θ)

where θ is the vector of parameters

The goal is to estimate θ (and F)

Two issues:

The choice of F

The choice of the estimation method
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Some candidates for the loss severity distribution

Gamma X ∼ G (α, β) where α > 0 and β > 0

F (x ; θ) =
γ (α, βx)

Γ (α)

Log-gamma X ∼ LG (α, β) where α > 0 and β > 0

F (x ; θ) =
γ (α, β ln x)

Γ (α)

Log-logistic X ∼ LL (α, β) where α > 0 and β > 0

F (x ; θ) =
1

1 + (x/α)−β
=

xβ

αβ + xβ

Log-normal X ∼ LN
(
µ, σ2

)
where x > 0 and σ > 0

F (x ; θ) = Φ

(
ln x − µ

σ

)
Generalized extreme value X ∼ GEV (µ, σ, ξ) where x > µ− σ/ξ, σ > 0 and ξ > 0

F (x ; θ) = exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

Pareto X ∼ P (α, x−) where x ≥ x−, α > 0 and x− > 0

F (x ; θ) = 1− (x/x−)−α
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Some candidates for the loss severity distribution

Table: Density function, mean and variance of parametric probability distribution

Distribution f (x ; θ) E [X ] var (X )

G (α, β)
βαxα−1e−βx

Γ (α)

α

β

α

β2

LG (α, β)
βα (ln x)α−1

xβ+1Γ (α)

(
β

β − 1

)α
if β > 1

(
β

β − 2

)α
−
(

β

β − 1

)2α

if β > 2

LL (α, β)
β (x/α)β−1

α
(

1 + (x/α)β
)2

απ

β sin (π/β)
if β > 1 α2

(
2π

β sin (2π/β)
− π2

β2 sin2 (π/β)

)
if β > 2

LN
(
µ, σ2

) 1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)

exp

(
µ+

1

2
σ2

)
exp

(
2µ+ σ2

) (
exp

(
σ2
)
− 1
)

GEV (µ, σ, ξ)

1

σ

[
1 + ξ

(
x − µ
σ

)]−(1+1/ξ)

µ+
σ

ξ
(Γ (1− ξ)− 1)

σ2

ξ2

(
Γ (1− 2ξ)− Γ2 (1− ξ)

)
exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

if ξ < 1 if ξ < 1
2

P (α, x−)
αxα−
xα+1

αx−
α− 1

if α > 1
αx2
−

(α− 1)2 (α− 2)
if α > 2
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Estimation methods

Method of maximum likelihood (HFRM, Section 10.1.2, page 614)

The log-likelihood function associated to the sample is:

` (θ) =
T∑
i=1

ln f (xi ; θ)

where f (x ; θ) is the density function

Generalized method of moments (HFRM, Section 10.1.3, page 628)

The empirical moments are:{
hi,1 (θ) = xi − E [X ]

hi,2 (θ) = (xi − E [X ])2 − var (X )
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Estimation methods

If we consider that X ∼ LN
(
µ, σ2

)
, the log-likelihood function is:

` (θ) = −
T∑
i=1

ln xi −
T

2
lnσ2 − T

2
ln 2π − 1

2

T∑
i=1

(
ln xi − µ

σ

)2

whereas the empirical moments are: hi,1 (θ) = xi − eµ+ 1
2σ

2

hi,2 (θ) =
(
xi − eµ+ 1

2σ
2
)2

− e2µ+σ2
(
eσ

2 − 1
)
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Estimation methods

Example

We assume that the individual losses take the following values expressed in
thousand dollars: 10.1, 12.5, 14, 25, 317.3, 353, 1 200, 1 254, 52 000 and
251 000

We find that:

α̂ML = 15.70 and β̂ML = 1.22 for the log-gamma distribution

α̂ML = 293 721 and β̂ML = 0.51 for the log-logistic distribution

µ̂ML = 12.89 and σ̂ML = 3.35 for the log-normal distribution

µ̂GMM = 16.26 and σ̂GMM = 1.40 for the log-normal distribution
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An important bias

The truncation process of loss data collection

Data are recorded only when their amounts are higher than some
thresholds

Loss thresholds vary across banks, time, business lines, etc.

“A bank must have an appropriate de minimis gross loss threshold
for internal loss data collection, for example e10 000. The appro-
priate threshold may vary somewhat between banks, and within a
bank across business lines and/or event types. However, particular
thresholds should be broadly consistent with those used by peer
banks” (BCBS, 2006, page 153)
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Operational risk loss data

Remark

Operational risk loss data cannot be reduced to the sample of
individual losses, but also requires specifying the threshold Hi for each
individual loss xi

The form of operational loss data is then {(xi ,Hi ) , i = 1, . . . ,T},
where xi is the observed value of X knowing that X is larger than the
threshold Hi

From a statistical point of view, we have:

The true distribution is the probability distribution of X

The sample distribution is the probability distribution of X | X ≥ Hi
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Dealing with loss thresholds
Analytics of the sample distribution

The sample distribution is equal to:

F? (x ; θ | H) = Pr {X ≤ x | X ≥ H}

=
Pr {X ≤ x ,X ≥ H}

Pr {X ≥ H}

=
Pr {X ≤ x} − Pr {X ≤ min (x ,H)}

Pr {X ≥ H}

= 1 {x ≥ H} · F (x ; θ)− F (H; θ)

1− F (H; θ)

It follows that the density function is:

f ? (x ; θ | H) = 1 {x ≥ H} · f (x ; θ)

1− F (H; θ)
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Dealing with loss thresholds
Analytics of the sample distribution

Figure: Impact of the loss threshold H on the sample distribution
(X ∼ LN (8, 5))
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Dealing with loss thresholds
Application to the method of maximum likelihood

We have:

` (θ) =
T∑
i=1

ln f ? (xi ; θ | Hi )

=
T∑
i=1

ln f (xi ; θ) +
T∑
i=1

ln1 {xi ≥ Hi} −
T∑
i=1

ln (1− F (Hi ; θ))

where Hi is the threshold associated to the i th observation

The correction term is −
∑T

i=1 ln (1− F (Hi ; θ))
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Dealing with loss thresholds
Application to the method of maximum likelihood

In the case of the log-normal model, the log likelihood function is:

` (θ) = −T

2
ln 2π − T

2
lnσ2 −

T∑
i=1

ln xi −
1

2

T∑
i=1

(
ln xi − µ

σ

)2

−

T∑
i=1

ln

(
1− Φ

(
lnHi − µ

σ

))
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Dealing with loss thresholds
Application to the generalized method of moments

The empirical moments become:{
hi,1 (θ) = xi − E [X | X ≥ Hi ]

hi,2 (θ) = (xi − E [X | X ≥ Hi ])
2 − var (X | X ≥ Hi )

There is no reason that the conditional moment E [Xm | X ≥ Hi ] is
equal to the unconditional moment E [Xm]
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Dealing with loss thresholds
Application to the generalized method of moments

In the case of the log-normal model, the empirical moments are:{
hi,1 (θ) = xi − a1 (θ,Hi ) e

µ+ 1
2σ

2

hi,2 (θ) = x2
i − 2xia1 (θ,Hi ) e

µ+ 1
2σ

2

+ 2a2
1 (θ,Hi ) e

2µ+σ2 − a2 (θ,Hi ) e
2µ+2σ2

where:

ak (θ,H) =
1− Φ

(
ln H−µ−kσ2

σ

)
1− Φ

(
ln H−µ
σ

)
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Dealing with loss thresholds
Illustration

Example

We assume that the individual losses take the following values expressed in
thousand dollars: 10.1, 12.5, 14, 25, 317.3, 353, 1 200, 1 254, 52 000 and
251 000

The ML estimates are µ̂ML = 12.89 and σ̂ML = 3.35 for the log-normal
distribution

Example

The previous losses have been collected using a unique threshold that is
equal to $5 000

The ML estimates become µ̂ML = 8.00 and σ̂ML = 5.71 for the log-normal
distribution
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Dealing with loss thresholds
Illustration

Figure: Comparison of the estimated severity distributions
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Choice of the severity distribution

Figure: An example of QQ plot where extreme events are underestimated
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Estimation of the loss frequency distribution

The goal is now to estimate P

Thierry Roncalli Course 2023-2024 in Financial Risk Management 503 / 1695



Definition
Regulatory capital

Loss distribution approach

Definition
Parametric estimation
Calculating the capital charge
Incorporating scenario analysis

Counting process

Let N (t) be the number of losses occurring during the time period [0, t].
The number of losses for the time period [t1, t2] is then equal to:

N (t1; t2) = N (t2)− N (t1)

We generally made the following statements about the process N (t):

The distribution of the number of losses N (t; t + h) for each h > 0 is
independent of t; moreover, N (t; t + h) is stationary and depends
only on the time interval h

The random variables N (t1; t2) and N (t3; t4) are independent if the
time intervals [t1, t2] and [t3, t4] are disjoint

No more than one loss may occur at time t
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Poisson process

These simple assumptions define a Poisson process:
1 There exists a scalar λ > 0 such that the distribution of N (t) has a

Poisson distribution with parameter λt
2 The duration between two successive losses is iid and follows the

exponential distribution distribution E (λ)
3 The probability mass function of the Poisson process is:

p (n) = Pr {N (t) = n} =
e−λt · (λt)n

n!

Remark

If N1 ∼ P (λ1) and N2 ∼ P (λ2), then N1 + N2 ∼ P (λ1 + λ2). We deduce
that:

K∑
k=1

N

(
k − 1

K
;
k

K

)
= N (1)

where N ((k − 1) /K ; k/K ) ∼ P (λ/K )
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Estimation of λ

The ML estimator is the mean of the annual number of losses:

λ̂ML =
1

ny

ny∑
y=1

Ny

where Ny is the number of losses occurring at year y

Since we have λ = E [N (1)] = var (N (1)) , the MM estimator based on
the first moment is equal to:

λ̂MM = λ̂ML =
1

ny

ny∑
y=1

Ny

whereas the MM estimator based on the first moment is equal to:

λ̂MM =
1

ny

ny∑
y=1

(
Ny − N̄

)2

where N̄ is the average number of losses
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Estimation of λ

Example

The annual number of losses from 2006 to 2015 is the following: 57, 62,
45, 24, 82, 36, 98, 75, 76 and 45. The mean is equal to 60 whereas the
variance is equal to 474.40

Figure: PMF of the Poisson distribution P (60)

Not possible to
observe an annual
number of losses
equal to 24 and 98!
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Negative binomial distribution

When the variance exceeds the mean, we use the negative binomial
distribution NB (r , p):

p (n) =

(
r + n − 1

n

)
(1− p)r pn =

Γ (r + n)

n! Γ (r)
(1− p)r pn

where r > 0 and p ∈ [0, 1]. We have:

E [NB (r , p)] =
p · r

1− p

and:
var (NB (r , p)) =

p · r
(1− p)2

Remark

We verify that:

var (NB (r , p)) =
1

1− p
· E [NB (r , p)] > E [NB (r , p)]
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Negative binomial distribution and Poisson process

The negative binomial distribution corresponds to a Poisson process where
the intensity parameter is random and follows a gamma distribution:

NB (r , p) ∼ P (Λ)

Λ ∼ G (α, β)

where α = r and β = (1− p) /p

⇒ See HFRM, Exercise 5.4.6, page 346 and HFRM-CB, Section 5.4.6,
pages 113-116
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Application to the example

Using the previous example, we obtain:

r̂MM =
m2

v −m
=

602

474.40− 60
= 8.6873

and

p̂MM =
v −m

v
=

474.40− 60

474.40
= 0.8735

where m is the mean and v is the variance of the sample

If we use the method of maximum likelihood, we obtain r̂ML = 7.7788
and p̂ML = 0.8852

We deduce that:
NB (r̂ML, p̂ML) ∼ P (Λ)

where:
Λ ∼ G (7.7788, 0.1296)

P (60) and NB (r̂ML, p̂ML) have the same mean, but not the same
variance
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Application to the example

Figure: PMF of the negative binomial distribution
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Application to the example

Figure: Probability density function of the parameter λ

Thierry Roncalli Course 2023-2024 in Financial Risk Management 512 / 1695



Definition
Regulatory capital

Loss distribution approach

Definition
Parametric estimation
Calculating the capital charge
Incorporating scenario analysis

Dealing with a loss threshold

The loss threshold has an impact on the sample frequency distribution

For instance, if the threshold H is set at a high level, then the average
number of reported losses is low

Let NH (t) be the number of events that are larger than the threshold
H:

NH (t) =

N(t)∑
i=1

1 {Xi > H}

We can show that (HFRM, page 326):

E [NH (t)] = E [N (t)] · Pr {Xi > H} = E [N (t)] · (1− F (H; θ))
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Dealing with a loss threshold

In the case of the Poisson distribution, we also prove that:

PH (λ) = P (λH)

We deduce that the estimator λ̂ has the following expression:

λ̂ =
λ̂H

1− F
(
H; θ̂

)
where:

λ̂H is the average number of losses that are collected above the
threshold H

F
(
x ; θ̂
)

is the parametric estimate of the severity distribution.

Remark

This approach is only valid if the loss threshold is unique
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Dealing with a loss threshold

Example

We consider that the bank has collected the loss data from 2006 to 2015
with a threshold of $20 000. For a given event type, the calibrated severity
distribution corresponds to a log-normal distribution with parameters
µ̂ = 7.3 and σ̂ = 2.1, whereas the annual number of losses is the following:
23, 13, 50, 12, 25, 36, 48, 27, 18 and 35

Using the Poisson distribution, we obtain λ̂H = 28.70. The probability that
the loss exceeds the threshold H is equal to:

Pr {X > 20 000} = 1− Φ

(
ln (20 000)− 7.3

2.1

)
= 10.75%

This means that only 10.75% of losses can be observed when we apply a
threshold of $20 000. We deduce that the estimate of the Poisson
parameter is equal to:

λ̂ =
28.70

10.75%
= 266.90
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Calculating the capital charge

Several approaches:

Monte Carlo approach

Method of characteristic functions

Panjer recursive approach

Single loss approximation
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Monte Carlo approach
Algorithm

Compute the capital-at-risk for an operational risk cell

Initialize the number of simulations nS
for j = 1 : nS do

Simulate an annual number n of losses from the frequency
distribution P
Sj ← 0
for i = 1 : n do

Simulate a loss Xi from the severity distribution F
Sj = Sj + Xi

end for
end for
Calculate the order statistics S1:nS , . . . ,SnS :nS

Deduce the capital-at-risk CaR = SαnS :nS with α = 99.9%
return CaR
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Monte Carlo approach
Illustration

We assume that N (1) ∼ P (4) and Xi ∼ LN (8, 4)

The simulated values of N (1) are 3, 4, 1, 2, 3, etc.

The simulated values of Xi are 3388.6, 259.8, 13328.3, 39.7, 1220.8,
1486.4, 15197.1, 3205.3, 5070.4, 84704.1, 64.9, 1237.5, 187073.6,
4757.8, 50.3, 2805.7, etc.

For the first simulation, we have three losses and we obtain:

S1 = 3388.6 + 259.8 + 13328.3 = $16 976.7

For the second simulation, the number of losses is equal to four and the
compound loss is equal to:

S2 = 39.7 + 1220.8 + 1486.4 + 15197.1 = $17 944.0

For the third simulation, we obtain:

S3 = $3 205.3
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Monte Carlo approach

The Monte Carlo method is powerful and the most used approach
for computing the capital charge for operational risk

But be careful about the convergence!
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Panjer recursion

Theorem

Panjer (1981) showed that if the pmf of the counting process N (t)
satisfies:

p (n) =

(
a +

b

n

)
p (n − 1)

where a and b are two scalars, then the following recursion holds:

g (x) = p (1) f (x) +

∫ x

0

(
a + b

y

x

)
f (y) g (x − y) dy

where x > 0
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Panjer recursion

For discrete severity distributions satisfying fn = Pr {Xi = nδ} where δ is
the monetary unit (e.g. $10 000), the Panjer recursion becomes:

gn = Pr {S = nδ} =
1

1− af0

n∑
j=1

(
a +

bj

n

)
fjgn−j

where:

g0 =
∞∑
n=0

p (n) (f0)n =

{
p (0) ebf0 if a = 0

p (0) (1− af0)−1−b/a otherwise

The capital-at-risk is then equal to:

CaR (α) = n?δ

where:

n? = inf

n :
n∑

j=0

gj ≥ α


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Panjer recursion

Example

We consider the compound Poisson distribution with log-normal losses and
different sets of parameters:

(a) λ = 5, µ = 5, σ = 1.0

(b) λ = 5, µ = 5, σ = 1.5

(c) λ = 5, µ = 5, σ = 2.0

(d) λ = 50, µ = 5, σ = 2.0

We perform a discretization of the severity distribution:

fn = Pr

{
nδ − δ

2
≤ Xi ≤ nδ +

δ

2

}
= F

(
nδ +

δ

2

)
− F

(
nδ − δ

2

)
with the convention f0 = F (δ/2)
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Panjer recursion

Figure: Comparison between the Panjer and MC compound distributions
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Panjer recursion

Table: Comparison of the capital-at-risk calculated with Panjer recursion and
Monte Carlo simulations

α
Panjer recursion Monte Carlo simulations

(a) (b) (c) (d) (a) (b) (c) (d)
90% 2400 4500 11000 91000 2350 4908 11648 93677
95% 2900 6500 19000 120000 2896 6913 19063 123569
99% 4300 13500 52000 231000 4274 13711 51908 233567
99.5% 4900 18000 77000 308000 4958 17844 77754 310172
99.9% 6800 32500 182000 604000 6773 32574 185950 604756
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Single loss approximation

If the severity belongs to the family of subexponential distributions
(HFRM, pages 333-336), Böcker and Klüppelberg (2005) showed that:

G−1 (α) = EL + UL (α)

≈ E [N (1)] · E [Xi ] + F−1

(
1− 1− α

N (1)

)
− E [Xi ]

≈ (E [N (1)]− 1) · E [Xi ] + F−1

(
1− 1− α

E [N (1)]

)
If N (1) ∼ P (λ) and Xi ∼ LN

(
µ, σ2

)
, we obtain:

EL = λ exp

(
µ+

1

2
σ2

)
and:

UL (α) ≈ exp

(
µ+ σΦ−1

(
1− 1− α

λ

))
− exp

(
µ+

1

2
σ2

)
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Single loss approximation

Remark

A better approximation of the capital-at-risk is:

G−1 (α) ≈
(
P−1 (α)− 1

)
E [Xi ] + F−1

(
1− 1− α

E [N (1)]

)
where P is the cumulative distribution function of the counting process
N (1)
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How to compute the total capital charge?

The operational risk loss L of the bank is divided into a matrix of
homogenous losses:

L =
K∑

k=1

Sk

where Sk is the sum of losses of the k th cell and K is the number of cells
in the matrix (Basel II = 7× 8 = 56 cells)

Using LDA, we know how to compute Sk . But how to compute the
total loss L?

The solution is given by the copula approach

It only works with the Monte Carlo approach and uses the method of the
empirical quantile function (HFRM, Section 13.1.3.2, pages 805-808)
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Probability distribution of a given scenario

We assume that N (t) ∼ P (λ). Let τn be the arrival time of the nth loss:

τn = inf {t ≥ 0 : N (t) = n}

We know that Tn = τn − τn−1 ∼ E (λ)

We recall that the losses Xn ∼ F

We note Tn (x) the duration between two losses exceeding x

We have Tn (x) ≡ T1 (x)

Theorem

We have:
Tn (x) ∼ E (λ (1− F (x)))

and:

E [Tn (x)] =
1

λ (1− F (x))
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Probability distribution of a given scenario

Proof

By using the fact that a finite sum of exponential times is an Erlang
distribution, we have:

Pr {T1 (x) > t} =
∑
n≥1

Pr {τn > t;X1 < x , . . . ,Xn−1 < x ;Xn ≥ x}

=
∑
n≥1

Pr {τn > t} · F (x)n−1 · (1− F (x))

=
∑
n≥1

F (x)n−1 · (1− F (x)) ·
(

n−1∑
k=0

e−λt
(λt)k

k!

)

= (1− F (x)) ·
∞∑
k=0

e−λt
(λt)k

k!

( ∞∑
n=k

F (x)n

)

= e−λt
∞∑
k=0

(λt)k

k!
F (x)k

= e−λ(1−F(x))t
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Calibration of a set of scenarios

We define a scenario as “a loss of x or higher occurs once every d
years”

We assume that the severity distribution is F (x ; θ) and the frequency
distribution is P (λ)

Suppose that we face different scenarios {(xs , ds) , s = 1, . . . , nS}. We
may estimate the implied parameters underlying the expert
judgements using the method of moments:(

λ̂MM, θ̂MM

)
= arg min

nS∑
s=1

ws ·
(
ds −

1

λ (1− F (xs ; θ))

)2

where ws is the weight of the sth scenario

We can show that the optimal weights ws correspond to the inverse
of the variance of ds :

ws =
1

var (ds)
= λ (1− F (xs ; θ))
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Calibration of a set of scenarios

Numerical solution

To solve the previous optimization program, we proceed by iterations:

Let
(
λ̂m, θ̂m

)
be the solution of the minimization program:

(
λ̂m, θ̂m

)
= arg min

p∑
j=1

λ̂m−1·
(

1− F
(
xs ; θ̂m−1

))
·
(
ds −

1

λ (1− F (xs ; θ))

)2

Under some conditions, the estimator
(
λ̂m, θ̂m

)
converge to the

optimal solution

We can simplify the optimization program by using the following
approximation:

ws =
1

var (ds)
=

1

E [ds ]
' 1

ds
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Calibration of a set of scenarios

Example

We assume that the severity distribution is log-normal and consider the
following set of expert’s scenarios:

xs (in $ mn) 1 2.5 5 7.5 10 20
ds (in years) 1/4 1 3 6 10 40
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Calibration of a set of scenarios

#1 If ws = 1, we obtain λ̂ = 43.400, µ̂ = 11.389 and σ̂ = 1.668

#2 Using the approximation ws ' 1/ds , the estimates become
λ̂ = 154.988, µ̂ = 10.141 and σ̂ = 1.855

#3 The optimal estimates are λ̂ = 148.756, µ̂ = 10.181 and σ̂ = 1.849

Here are the estimated values of the duration:

xs (in $ mn) 1 2.5 5 7.5 10 20
#1 0.316 1.022 2.964 5.941 10.054 39.997
#2 0.271 0.968 2.939 5.973 10.149 39.943
#3 0.272 0.970 2.941 5.974 10.149 39.944
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Exercises

Severity distribution

Exercise 5.4.1 – Estimating the loss severity distribution
Exercise 5.4.5 – Parametric estimation of the loss severity distribution

Frequency distribution

Exercise 5.4.2 – Estimation of the loss frequency distribution

Other topics

Exercise 5.4.3 – Using the method of moments in operational risk
models
Exercise 5.4.6 – Mixed Poisson process
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Bid-ask spread

Definition

The bid-ask quoted spread St is defined by:

St =
Pask
t − Pbid

t

Pmid
t

where Pask
t , Pbid

t and Pmid
t are the ask, bid and mid quotes for a given

security at time t.

We have:

Pmid
t =

Pask
t + Pbid

t

2
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Bid-ask spread

Table: Snapshot of the limit order book of the Lyxor Euro Stoxx 50 ETF
recorded at NYSE Euronext Paris – The corresponding date is 14:00:00 and
56, 566 micro seconds on 28 December 2012

i th limit
Buy orders Sell orders

Qbid,i
t Pbid,i

t Qask,i
t Pask,i

t

1 65 201 26.325 70 201 26.340
2 85 201 26.320 116 201 26.345
3 105 201 26.315 107 365 26.350
4 76 500 26.310 35 000 26.355
5 20 000 26.305 35 178 26.360

We have Pbid
t = 26.325 and Pask

t = 26.340, implying that the mid price is
equal to Pmid

t = (26.325 + 26.340) /2 = 26.3325. We deduce that the
bid-ask spread is:

St =
26.340− 26.325

26.3325
= 5.696 bps
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Bid-ask spread

Figure: An example of a limit order book
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Bid-ask spread

The effective spread is equal to:

Se
τ = 2

∣∣∣∣Pτ − Pmid
t

Pmid
t

∣∣∣∣
where τ is the trade index, Pτ is the price of the τ th trade and Pmid

τ is
the midpoint of market quote calculated at the time t of the τ th trade

The realized spread is equal to:

Sr
τ = 2

∣∣∣∣∣Pτ − Pmid
t+∆

Pmid
t+∆

∣∣∣∣∣
Generally, ∆ is set to five minutes

Price impact ⇒ Pmid
t+∆ 6= Pmid

t
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Trading volume

The trading volume Vt indicates the dollar value of the security exchanged
during the period t:

Vt =
∑
τ∈t

QτPτ

where Qτ and Pτ are the τ th quantity and price traded during the period.
Generally, we consider a one-day period and use the following
approximation:

Vt ≈ QtPt

where Qt is the number of securities traded during the day t and Pt is the
closing price of the security.
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Turnover

The turnover is the ratio between the trading volume and the free float
market capitalization Mt of the asset:

Tt =
Vt

Mt
=

Vt

NtPt

where Nt is the number of outstanding ‘floating ’ shares

⇒ The asset turnover ratio indicates how many times each share changes
hands in a given period
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Liquidation ratio

The liquidation ratio LR (m) measures the proportion of a given position
that can be liquidated after m trading days
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Liquidation ratio

Computation of the liquidation ratio

We denote (x1, . . . , xn) the number of shares held in the portfolio. For each
asset that composes the portfolio, we denote x+

i the maximum number of
shares for asset i that can be sold during a trading day. The number of
shares xi (m) liquidated after m trading days is defined as follows:

xi (m) = min

(xi − m−1∑
k=0

xi (k)

)+

, x+
i


with xi (0) = 0. The liquidation ratio LR (m) is then the proportion of the
portfolio liquidated after m trading days:

LR (m) =

∑n
i=1

∑m
k=0 xi (k) · Pi,t∑n

i=1 xi · Pi,t

Thierry Roncalli Course 2023-2024 in Financial Risk Management 545 / 1695



Market liquidity
Funding liquidity

Regulation of the liquidity risk

Conventional liquidity measures
Other liquidity measures
The liquidity-adjusted CAPM

Liquidation ratio

Table: Statistics of the liquidation ratio (size = $10 bn, liquidation policy = 10%
of ADV)

Statistics SPX SX5E DAX NDX
MSCI MSCI MSCI
EM INDIA EMU SC

m (in days) Liquidation ratio LR (t) in %
1 88.4 12.3 4.8 40.1 22.1 1.5 3.0
2 99.5 24.7 9.6 72.6 40.6 3.0 6.0
5 100.0 58.8 24.1 99.7 75.9 7.6 14.9

10 100.0 90.1 47.6 99.9 93.9 15.1 29.0

α (in %) Liquidation time LR−1 (α) in days
50 1 5 11 2 3 37 21
75 1 7 17 3 5 71 43
90 2 10 23 3 9 110 74
99 2 15 29 5 17 156 455

Source: Roncalli and Weisang (2015).
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Liquidation ratio

Table: Statistics of the liquidation ratio (size = $10 bn, liquidation policy = 30%
of ADV)

Statistics SPX SX5E DAX NDX
MSCI MSCI MSCI
EM INDIA EMU SC

t (in days) Liquidation ratio LR (t) in %
1 100.0 37.0 14.5 91.0 55.5 4.5 9.0
2 100.0 67.7 28.9 99.8 81.8 9.1 17.8
5 100.0 99.2 68.6 100.0 98.5 22.6 40.4

10 100.0 100.0 99.6 100.0 100.0 43.1 63.2

α (in %) Liquidation time LR−1 (α) in days
50 1 2 4 1 1 13 7
75 1 3 6 1 2 24 15
90 1 4 8 1 3 37 25
99 1 5 10 2 6 52 152

Source: Roncalli and Weisang (2015).
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Other liquidity measures

Hui-Heubel liquidity ratio

H2
t =

1

Tt

(
Phigh
t − P low

t

P low
t

)

Hasbrouck-Schwartz variance ratio

VR =
var (Rt,t+h)

var (Rt,t+1)

Amihud measure

ILLIQ =
1

nt

∑
t

|Rt,t+1|
Vt

Implicit spread of Roll (1984):

S̃ = 2
√
− cov (∆Pt ,∆Pt−1)
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L-CAPM

“[...] there is also broad belief among users of financial liquidity –
traders, investors and central bankers – that the principal challenge
is not the average level of financial liquidity... but its variability
and uncertainty” (Persaud, 2003).
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L-CAPM

We note Ri,t and Li,t the gross return and the relative (stochastic)
illiquidity cost of Asset i . At the equilibrium, Acharya and Pedersen (2005)
showed that:

E [Ri,t − Li,t ]− r = β̃i · (E [Rm,t − Lm,t ]− r)

where r is the return of the risk-free asset, Rm,t and Lm,t are the gross

return and the illiquidity cost of the market portfolio, and β̃i is the
liquidity-adjusted beta of Asset i :

β̃i =
cov (Ri,t − Li,t ,Rm,t − Lm,t)

var (Rm,t − Lm,t)
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Asset liability mismatch

“We define funding liquidity as the ability to settle obligations
with immediacy. Consequently, a bank is illiquid if it is unable
to settle obligations. Legally, a bank is then in default. Given
this definition we define funding liquidity risk as the possibility
that over a specific horizon the bank will become unable to settle
obligations with immediacy” (Drehmann and Nikolaou, 2013).
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Relationship between market and funding liquidity risks

“Traders provide market liquidity, and their ability to do so de-
pends on their availability of funding. Conversely, traders’ funding,
i.e., their capital and margin requirements, depends on the assets’
market liquidity. We show that, under certain conditions, margins
are destabilizing and market liquidity and funding liquidity are mu-
tually reinforcing, leading to liquidity spirals” (Brunnermeier and
Pedersen, 2009).
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Relationship between market and funding liquidity risks

Central
bank

liquidity

Market
liquidity

(risk)

Funding
liquidity

(risk)

Figure: The liquidity nodes of the financial system

Source: Nikolaou (2009).
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Relationship between market and funding liquidity risks

Banks

Stock market

Asset management

Banks

Subprime crisis

Credit risk

Funding risk

Market risk

Collateral risk

F
ee

d
b

a
ck

lo
o

p

Figure: Spillover effects during the 2008 global financial crisis

Thierry Roncalli Course 2023-2024 in Financial Risk Management 554 / 1695



Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Liquidity coverage ratio

The liquidity coverage ratio is defined as:

LCR =
HQLA

Total net cash outflows
≥ 100%

where the numerator is the stock of high quality liquid assets (HQLA) in
stressed conditions, and the denominator is the total net cash outflows
over the next 30 calendar days

⇒ The underlying idea of the LCR is that the bank has sufficient liquid
assets to meet its liquidity needs for the next month
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High quality liquid asset

An asset is considered to be a HQLA if it can be easily converted into
cash. Therefore, the concept of HQLA is related to asset quality and asset
liquidity

Characteristics used by the Basel Committee for defining HQLA:

fundamental characteristics (low risk, ease and certainty of valuation,
low correlation with risky assets, listed on a developed and recognized
exchange);

market-related characteristics (active and sizable market, low
volatility, flight to quality).
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High quality liquid asset

Table: Stock of HQLA

Level Description Haircut
Level 1 assets

Coins and bank notes

0%

Sovereign, central bank, PSE, and MDB assets
qualifying for 0% risk weighting
Central bank reserves
Domestic sovereign or central bank debt for
non-0% risk weighting

Level 2 assets (maximum of 40% of HQLA)
Level 2A assets

Sovereign, central bank, PSE and MDB assets

15%
qualifying for 20% risk weighting
Corporate debt securities rated AA− or higher
Covered bonds rated AA− or higher

Level 2B assets (maximum of 15% of HQLA)
RMBS rated AA or higher 25%
Corporate debt securities rated between A+

50%
and BBB−
Common equity shares 50%
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High quality liquid asset

Level 2 assets are subject to two caps. Let xHQLA, x1 and x2 be the value
of HQLA, level 1 assets and level 2 assets. We have:

xHQLA = x1 + x2

s.t.

 x2 = x2A + x2B

x2A ≤ 0.40 · xHQLA

x2B ≤ 0.15 · xHQLA

We deduce that one trivial solution is:

x?HQLA = min

(
5

3
x1, x1 + x2

)
x?1 = x1

x?2 = x?HQLA − x?1
x?2A = min (x?2 , x2A)
x?2B = x?2 − x?2A
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

High quality liquid asset

Example

We consider the following assets:

1 Coins and bank notes = $200 mn

2 Central bank reserves = $100 mn

3 20% risk-weighted sovereign debt securities = $200 mn

4 AA corporate debt securities = $300 mn

5 Qualifying RMBS = $200 mn

6 BB+ corporate debt securities = $500 mn
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

High quality liquid asset

Table: Solution of the exercise

Assets
Gross

Haircut
Net Capped

Value Value Value
Level 1 assets (1) + (2) 300 0% 300 300
Level 2 assets 1 200 825 200

2A (3) + (4) 500 15% 425 200
2B (5) + (6) 700 400 0

(5) 200 25% 150 0
(6) 500 50% 250 0

Total 1 500 1 125 500

⇒ The stock of HQLA is equal to $500 mn
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

The value of total net cash outflows is defined as follows:

Total net cash outflows = Total expected cash outflows−

min

(
Total expected cash inflows,

75% of total expected cash outflows

)
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

Table: Cash outflows of the LCR

Liabilities Description Rate
Retail deposits
Demand and term deposits (less than 30 days)

Stable deposits covered by deposit insurance 3%
Stable deposits 5%
Less stable deposits 10%

Term deposits (with residual maturity greater than 30 days) 0%
Unsecured wholesale funding
Demand and term deposits (less than 30 days) provided by
small business customers

Stable deposits 5%
Less stable deposits 10%

Deposits generated by clearing, custody and cash management 25%
Portion covered by deposit insurance 5%

Cooperative banks in an institutional network 25%
Corporates, sovereigns, central banks, PSEs and MDBs 40%

Portion covered by deposit insurance 20%
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

Table: Cash outflows of the LCR

Liabilities Description Rate
Secured funding transactions
With a central bank counterparty 0%
Backed by level 1 assets 0%
Backed by level 2A assets 15%
Backed by non-level 1 or non-level 2A assets with domestic

25%
sovereigns, PSEs or MDBs as a counterparty
Backed by level 2B RMBS assets 25%
Backed by other level 2B assets 50%
All other secured funding transactions 100%
Additional requirements
Margin/collateral calls ≥ 20%
ABCP, SIVs, conduits, SPVs, etc. 100%
Net derivative cash outflows 100%
Other credit/liquidity facilities ≥ 5%
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

Table: Cash inflows of the LCR

Receivables Description Rate
Maturing secured lending transactions
Backed by level 1 assets 0%
Backed by level 2A assets 15%
Backed by level 2B RMBS assets 25%
Backed by other level 2B assets 50%
Backed by non-HQLAs 100%
Other cash inflows
Credit/liquidity facilities provided to the bank 0%
Inflows to be received from retail counterparties 50%
Inflows to be received from non-financial wholesale counterparties 50%
Inflows to be received from financial institutions and

100%
central banks
Net derivative receivables 100%
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

Example

The bank has $500 mn of HQLA. Its main liabilities are:

1 Retail stable deposit = $17.8 bn ($15 bn have a government
guarantee)

2 Retail term deposit (with a maturity of 6 months) = $5 bn

3 Stable deposit provided by small business customers = $1 bn

4 deposit of corporates = $200 mn

In the next thirty days, the bank also expects to receive $100 mn of loan
repayments, and $10 mn due to a maturing derivative
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Total net cash outflows

We calculate the expected cash outflows for the next thirty days:

Cash outflows = 3%× 15 000 + 5%× 2 800 + 0%× 5 000 +

5%× 1 000 + 40%× 200

= $720 mn

We estimate the cash inflows expected by the bank for the next
month:

Cash inflows = 50%× 100 + 100%× 10 = $60 mn

We deduce that the liquidity coverage ratio of the bank is equal to:

LCR =
500

720− 60
= 75.76%
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Net stable funding ratio

It is defined as the amount of available stable funding (ASF) relative to
the amount of required stable funding (RSF):

NSFR =
Available amount of stable funding

Required amount of stable funding
≥ 100%

The available amount of stable funding (ASF) corresponds to the
regulatory capital plus some other liabilities

The required amount of stable funding (RSF) is the sum of weighted
assets and off-balance sheet exposures
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Market liquidity
Funding liquidity

Regulation of the liquidity risk

Liquidity coverage ratio
Net stable funding ratio
Leverage ratio

Leverage ratio

It is defined as the capital measure divided by the exposure measure

This ratio must be below 3%

The capital measure corresponds to the tier 1 capital

The exposure measure is composed of four main exposures:
1 On-balance sheet exposures
2 Derivative exposures
3 Securities financing transaction (SFT)
4 Exposures and off-balance sheet items
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Market liquidity
Funding liquidity

Regulation of the liquidity risk
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General principles of the banking book risk management
Interest rate risk

Behavioral options
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General principles of the banking book risk management
Interest rate risk

Behavioral options
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General principles of the banking book risk management
Interest rate risk

Behavioral options

ALM risk ⇒ banking book

Not only a risk management issue, but also concerns commercial
choices and business models

Several ALM risks: liquidity risk, interest rate risk, embedded option
risk, currency risk

The ALM function is located in the finance department,
not in the risk management department
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Balance sheet

Table: A simplified balance sheet

Assets Liabilities
Cash Due to central banks
Loans and leases Deposits

Mortgages Deposit accounts
Consumer credit Savings
Credit cards Term deposits

Interbank loans Interbank funding
Investment securities Short-term debt

Sovereign bonds Subordinated debt
Corporate bonds Reserves

Other assets Equity capital
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Income statement

Table: A simplified income statement

Interest income
− Interest expenses
= Net interest income
+ Non-interest income
= Gross income
− Operating expenses
= Net income
− Provisions
= Earnings before tax
− Income tax
= Profit after tax
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Accounting standards

Four main systems:

1 US GAAP

2 Japanese combined system

3 Chinese accounting standards

4 International Financial Reporting Standards (IFRS)

⇒ IFRS is implemented in European Union, Australia, Middle East,
Russia, South Africa, etc.
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Accounting standards

Before 2018

IAS 39

financial assets at fair value
through profit and loss (FVTPL)

available-for-sale financial assets
(AFS)

loans and receivables (L&R);

held-to-maturity investments
(HTM)

After 2018

IFRS 9

amortized cost (AC)

fair value (FV)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

ALM committee (ALCO)

Funding
Excess

Funding
Deficit

Funding
Price

Funding
Cost

Business
Line A ALM

Business
Line B

Market

Figure: Internal and external funding transfer
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Liquidity gap

A (t) is the value of assets at time t

L (t) is the value of liabilities at time t

Funding ratio

FR (t) =
A (t)

L (t)

Funding gap
FG (t) = A (t)− L (t)

Liquidity ratio

LR (t) =
L (t)

A (t)

Liquidity gap
LG (t) = L (t)− A (t)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Liquidity gap

Example

The assets A (t) are composed of loans that are linearly amortized in a
monthly basis during the next year. The amount is equal to 120. The
liabilities L (t) are composed of three short-term in fine debt instruments,
and the capital. The corresponding debt notional is respectively equal to
65, 10 and 5 whereas the associated remaining maturity is equal to two,
seven and twelve months. The amount of capital is stable for the next
twelve months and is equal to 40
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Liquidity gap

Table: Computation of the liquidity gap

Period 0 1 2 3 4 5 6 7 8 9 10 11 12
Loans 120 110 100 90 80 70 60 50 40 30 20 10 0
Assets 120 110 100 90 80 70 60 50 40 30 20 10 0
Debt #1 65 65 65
Debt #2 10 10 10 10 10 10 10 10
Debt #3 5 5 5 5 5 5 5 5 5 5 5 5 5
Debt (total) 80 80 80 15 15 15 15 15 5 5 5 5 5
Equity 40 40 40 40 40 40 40 40 40 40 40 40 40
Liabilities 120 120 120 55 55 55 55 55 45 45 45 45 45
LG (t) 0 10 20 −35 −25 −15 −5 5 5 15 25 35 45
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Liquidity gap

Figure: An example of liquidity gap
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

General principles of debt amortization

The annuity amount A (t) at time t is composed of the interest
payment I (t) and the principal payment P (t):

A (t) = I (t) + P (t)

The interest payment at time t is equal to the interest rate i (t) times
the outstanding principal balance N (t − 1):

I (t) = i (t)N (t − 1)

The outstanding principal balance N (t) equal to

N (t) = N (t − 1)− P (t)

The outstanding principal balance N (t) is equal to the present value
C (t) of forward annuity amounts: N (t) = C (t)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Constant amortization debt (or linear amortization of the capital):
P (t) is constant over time (HFRM, page 379):

P (t) =
1

n
N0

A (t) = I (t) + P (t) =

(
1

n
+ i

(
1− t − 1

n

))
N0

Constant payment debt: the annuity amount A (t) is constant

A (t) = A =
i

1− (1 + i)−n
N0

I (t) =

(
1− 1

(1 + i)n−t+1

)
A

Bullet repayment debt: the notional is fully repaid at the time of
maturity

I (t) = iN0 and P (t) = 1 {t = n} · N0
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Example

We consider a 10-year mortgage, whose notional is equal to $100. The
annual interest rate i is equal to 5%, and we assume annual principal
payments
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Table: Repayment schedule of the constant amortization mortgage

t C (t − 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 15.00 5.00 10.00 10.00 90.00
2 90.00 14.50 4.50 10.00 20.00 80.00
3 80.00 14.00 4.00 10.00 30.00 70.00
4 70.00 13.50 3.50 10.00 40.00 60.00
5 60.00 13.00 3.00 10.00 50.00 50.00
6 50.00 12.50 2.50 10.00 60.00 40.00
7 40.00 12.00 2.00 10.00 70.00 30.00
8 30.00 11.50 1.50 10.00 80.00 20.00
9 20.00 11.00 1.00 10.00 90.00 10.00

10 10.00 10.50 0.50 10.00 100.00 0.00
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Table: Repayment schedule of the constant payment mortgage

t C (t − 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 12.95 5.00 7.95 7.95 92.05
2 92.05 12.95 4.60 8.35 16.30 83.70
3 83.70 12.95 4.19 8.77 25.06 74.94
4 74.94 12.95 3.75 9.20 34.27 65.73
5 65.73 12.95 3.29 9.66 43.93 56.07
6 56.07 12.95 2.80 10.15 54.08 45.92
7 45.92 12.95 2.30 10.65 64.73 35.27
8 35.27 12.95 1.76 11.19 75.92 24.08
9 24.08 12.95 1.20 11.75 87.67 12.33

10 12.33 12.95 0.62 12.33 100.00 0.00
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Table: Repayment schedule of the bullet repayment mortgage

t C (t − 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 5.00 5.00 0.00 0.00 100.00
2 100.00 5.00 5.00 0.00 0.00 100.00
3 100.00 5.00 5.00 0.00 0.00 100.00
4 100.00 5.00 5.00 0.00 0.00 100.00
5 100.00 5.00 5.00 0.00 0.00 100.00
6 100.00 5.00 5.00 0.00 0.00 100.00
7 100.00 5.00 5.00 0.00 0.00 100.00
8 100.00 5.00 5.00 0.00 0.00 100.00
9 100.00 5.00 5.00 0.00 0.00 100.00

10 100.00 105.00 5.00 100.00 100.00 0.00

Thierry Roncalli Course 2023-2024 in Financial Risk Management 587 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Figure: Amortization schedule of the 30-year mortgage (monthly payments)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Example

We consider the following balance sheet:

Assets Liabilities
Items Notional Rate Mat. Items Notional Rate Mat.

Loan #1 100 5% 10 Debt #1 120 5% 10
Loan #2 50 8% 16 Debt #2 80 3% 5
Loan #3 40 3% 8 Debt #3 70 4% 10
Loan #4 110 2% 7 Capital #4 30

All the debt instruments are subject to monthly principal payments

Mixed schedule = constant principal (loan #3 and debt #2), constant
annuity (loan #1, loan #2 and debt #1) and bullet repayment (loan #4
and debt #2)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Figure: Impact of the amortization schedule on the liquidity gap
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Table: Computation of the liquidity gap (mixed schedule, first twelve months)

t
Assets Liabilities LGt#1 #2 #3 #4 At #1 #2 #3 #4 Lt

1 99.4 49.9 39.6 110 298.8 119.2 78.7 70 30 297.9 −0.92
2 98.7 49.7 39.2 110 297.6 118.5 77.3 70 30 295.8 −1.83
3 98.1 49.6 38.8 110 296.4 117.7 76.0 70 30 293.7 −2.75
4 97.4 49.5 38.3 110 295.2 116.9 74.7 70 30 291.6 −3.66
5 96.8 49.3 37.9 110 294.0 116.1 73.3 70 30 289.4 −4.58
6 96.1 49.2 37.5 110 292.8 115.3 72.0 70 30 287.3 −5.49
7 95.4 49.1 37.1 110 291.6 114.5 70.7 70 30 285.2 −6.41
8 94.8 48.9 36.7 110 290.4 113.7 69.3 70 30 283.1 −7.32
9 94.1 48.8 36.3 110 289.2 112.9 68.0 70 30 280.9 −8.24

10 93.4 48.7 35.8 110 287.9 112.1 66.7 70 30 278.8 −9.15
11 92.8 48.5 35.4 110 286.7 111.3 65.3 70 30 276.7 −10.06
12 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Asset and liability amortization

Table: Computation of the liquidity gap (mixed schedule, annual schedule)

t
Assets Liabilities LGt#1 #2 #3 #4 At #1 #2 #3 #4 Lt

0 100.0 50.0 40.0 110 300.0 120.0 80.0 70 30 300.0 0.00
1 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
2 83.8 46.7 30.0 110 270.4 100.5 48.0 70 30 248.5 −21.90
3 75.0 44.8 25.0 110 254.8 90.1 32.0 70 30 222.1 −32.76
4 65.9 42.7 20.0 110 238.6 79.0 16.0 70 30 195.0 −43.55
5 56.2 40.5 15.0 110 221.7 67.4 70 30 167.4 −54.27
6 46.1 38.1 10.0 110 204.2 55.3 70 30 155.3 −48.91
7 35.4 35.5 5.0 75.9 42.5 70 30 142.5 66.56
8 24.2 32.7 56.9 29.0 70 30 129.0 72.12
9 12.4 29.7 42.1 14.9 70 30 114.9 72.81

10 26.4 26.4 30 30.0 3.62
11 22.8 22.8 30 30.0 7.19
12 18.9 18.9 30 30.0 11.06
13 14.8 14.8 30 30.0 15.24
14 10.2 10.2 30 30.0 19.77
15 5.3 5.3 30 30.0 24.68
16 0.0 30 30.0 30.00
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Impact of prepayment

We have:
Nc (t) = N (t) · 1 {τ > t}

where:

Nc (t) and N (t) are the outstanding principal balances with and
without prepayment

τ is the prepayment time of the debt instrument

We deduce that:
E [Nc (t)] = S (t) · N (t)

where S (t) = E [1 {τ > t}] is the survival function of τ

Remark

If τ ∼ E (λ) where λ is the prepayment intensity, we obtain:

E [Nc (t)] = e−λt · N (t) ≤ N (t)
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Impact of prepayment

Figure: Conventional amortization schedule with prepayment risk
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Impact of new production

Accounting identity

N (t) = N (t − 1)−AM (t) + NP (t)

Figure: Impact of the new production on the outstanding amount
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis

Run-off balance sheet
A balance sheet where existing non-trading book positions amortize
and are not replaced by any new business.

Constant balance sheet
A balance sheet in which the total size and composition are
maintained by replacing maturing or repricing cash flows with new
cash flows that have identical features.

Dynamic balance sheet
A balance sheet incorporating future business expectations, adjusted
for the relevant scenario in a consistent manner.
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis
Notations

NP (t): New production at time t

NP (t, u): New production at time t that is present in the balance
sheet at time u ≥ t

S (t, u): Survival function of the new production

f (t, u) is the density function associated to the survival function
S (t, u)

N (t, u): Non-amortized outstanding amount at time t that is present
in the balance sheet at time u ≥ t

S? (t, u): Survival function of the outstanding amount

Thierry Roncalli Course 2023-2024 in Financial Risk Management 597 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis
Stock-flow analysis

The amortization function S (t, u) is defined by:

NP (t, u) = NP (t) · S (t, u)

It measures the proportion of $1 entering in the balance sheet at time
t that remains present at time u ≥ t:

N (t) =

∫ t

−∞
NP (s) S (s, t) ds

The amortization function S? (t, u) is defined by:

N (t, u) = N (t) · S? (t, u)

It measures the proportion of $1 of outstanding amount at time t
that remains present at time u ≥ t

S? (t, u) =

∫ t

−∞NP (s) S (s, u) ds∫ t

−∞NP (s) S (s, t) ds
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General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis
Dynamics of the outstanding amount

We have:
dN (t)

dt
= −

∫ t

−∞
NP (s) f (s, t) ds + NP (t)

where f (t, u) = −∂uS (t, u) is the density function of the amortization

Thierry Roncalli Course 2023-2024 in Financial Risk Management 599 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis
Estimation of the dynamic liquidity gap

The dynamic liquidity gap at time t for a future date u ≥ t is given by:

LG (t, u) =
∑

k∈Liabilities

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds

)
−

∑
k∈Assets

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds

)

In the case of the run-off balance sheet, we obtain:

LG (t, u) =
∑

k∈Liabilities

Nk (t, u)−
∑

k∈Assets

Nk (t, u)
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Dynamic analysis
Liquidity duration

The liquidity duration is the weighted average life (WAL) of the principal
repayments:

D (t) =

∫ ∞
t

(u − t) f (t, u) du

where f (t, u) is the density function associated to the survival function
S (t, u)

Remark

All the previous formulas can be obtained in the discrete-time analysis
(HFRM, Section 7.1.2.3, pages 385-392)
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Dynamic analysis
Mathematical formulas

Table: Survival function and liquidity duration of some amortization schemes
(HFRM, Exercise 7.4.3, page 450; HFRM-CB, Section 7.4.3, pages 126-128)

Amortization S (t, u) D (t)

Bullet 1 {t ≤ u < t + m} m

Constant 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
m

2

Exponential e−λ(u−t) 1

λ
Amortization S? (t, u) D? (t)

Bullet 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
m

2

Constant 1 {t ≤ u < t + m} ·
(

1− u − t

m

)2
m

3

Exponential e−λ(u−t) 1

λ
Amortization dN (t)

Bullet dN (t) = (NP (t)−NP (t −m)) dt

Constant dN (t) =

(
NP (t)− 1

m

∫ t

t−m
NP (s) ds

)
dt

Exponential dN (t) = (NP (t)− λN (t)) dt

Thierry Roncalli Course 2023-2024 in Financial Risk Management 602 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

Dynamic analysis
Illustration

Figure: Amortization functions S (t, u) and S? (t, u)
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Definition

“IRRBB refers to the current or prospective risk to the bank’ cap-
ital and earnings arising from adverse movements in interest rates
that affect the bank’s banking book positions. When interest rates
change, the present value and timing of future cash flows change.
This in turn changes the underlying value of a bank’s assets, lia-
bilities and off-balance sheet items and hence its economic value.
Changes in interest rates also affect a bank’s earnings by alter-
ing interest rate-sensitive income and expenses, affecting its net
interest income” (BCBS, 2016)

1 Economic value (EV, EVE): changes in the net present value of the
balance sheet

2 Earnings-based risk measures (EaR, NII): changes in the expected
future profitability of the bank
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Categories of IRR

3 main sources of interest rate risk

Gap risk: mismatch risk arising from the term structure of banking
book instruments

Repricing risk
Yield curve risk

Basis risk: mismatch risk arising from different interest rate indices

Correlation risk of interest rate indices with the same maturity

Option risk: option derivative positions and embedded options

Automatic option risk (caps, floors, swaptions and other interest rate
derivatives)
Behavioral option risk

Prepayment risk
Early redemption risk (or withdrawal risk)
Non-maturity deposit (NMD)
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Economic value (EV)

The economic value of a series of cash flows CF = {CF (tk) , tk ≥ t} is
the present value of these cash flows:

EV = E

∑
tk≥t

CF (tk) · e−
∫ tk
t r(s) ds

 =
∑
tk≥t

CF (tk) · B (t, tk)

where B (t, tk) is the discount factor for the maturity date tk
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Application to the banking book

We slot all notional repricing cash flows of assets and liabilities into a
set of time buckets

We calculate the net cash flows:

CF (tk) = CFA (tk)− CFL (tk)

where CFA (tk) and CFL (tk) are the cash flows of assets and
liabilities for the time bucket tk

The economic value is given by:

EV =
∑
tk≥t

CF (tk) · B (t, tk)

=
∑
tk≥t

CFA (tk) · B (t, tk)−
∑
tk≥t

CFL (tk) · B (t, tk)

= EVA−EVL
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Stress testing of the economic value

We note EVs the economic value corresponding to the stress scenario
s

EV0 is the base scenario and corresponds to the current term
structure of interest rates

We have:

∆ EVs = EV0−EVs

=
∑
tk≥t

CF0 (tk) · B0 (t, tk)−
∑
tk≥t

CFs (tk) · Bs (t, tk)
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Economic value of equity (EVE)

The economic value of equity (EVE or EVE ) is a specific form of EV
where equity is excluded from the cash flows

A (t)

L? (t)

E (t)

Assets

Pure

Liabilities

Equity

Figure: Relationship between A (t), L? (t) and E (t)

We have:
A (t) = L (t) = L? (t) + E (t)
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Economic value of equity

Since the value of the capital is equal to E (t) = A (t)− L? (t), we have:

EVE = EVA−EVL?

and:
∆ EVEs = EVE0−EVEs

Remark

The economic value of equity is then equal to:

EVE =
∑
tk≥t

CFA (tk) · B (t, tk)−
∑
tk≥t

CFL? (tk) · B (t, tk)
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Net interest income (NII)

The net interest income is the difference between the interest
payments on assets and the interest payments of liabilities

We have:
∆ NIIs = NII0−NIIs

∆ NIIs > 0 indicates a loss if the stress scenario s occurs
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Basel III

The risk measures are equal to the maximum of losses by considering the
different scenarios:

R (EVE) = max
s

(∆ EVEs , 0)

and:
R (NII) = max

s
(∆ NIIs , 0)

IRRBB

No minimum capital requirements K
R (EVE) ≤ 15%× Tier 1

Pillar 2
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Interest rate risk principles

9 IRR principles for banks (management, risk appetite, model
governance process, capital adequacy policy, etc.)

3 IRR principles for supervisors (data collection, challenging the
model assumptions, identification of outlier banks)

Some examples:

To compute ∆ EVE, banks must consider a run-off balance sheet
assumption

To compute ∆ NII, banks must use a constant or dynamic balance
sheet and a rolling 12-month period

Banks must use:

Internal (historical and hypothetical) interest rate scenarios
6 external interest rate scenarios
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The standardized approach
5 steps for measuring the bank’s IRRBB

1 The first step consists in allocating the interest rate sensitivities of the
banking book to three categories

1 amenable to standardization
2 less amenable to standardization
3 not amenable to standardization

2 Then, the bank must slot cash flows into 19 predefined time buckets:
overnight (O/N), O/N–1M, . . ., 10Y–15Y, 15Y–20Y, 20Y+

3 The bank determines ∆ EVEs,c for each shock s and each currency c
4 The bank calculates the total measure for automatic interest rate

option risk KAOs,c
5 The bank calculates the EVE for each shock s:

R (EVEs) = max

(∑
c

(∆ EVEs,c + KAOs,c)+ ; 0

)
The standardized EVE risk measure is equal to:

R (EVE) = max
s
R (EVEs)
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The standardized approach
The supervisory interest rate shock scenarios

Three shock sizes:

Shock size USD/CAD/SEK EUR/HKD GBP JPY EM
S0 (parallel) 200 200 250 100 400
S1 (short) 300 250 300 100 500
S2 (long) 150 100 150 100 300

Given S0, S1 and S2, we calculate the following generic shocks for a given
maturity t:

Parallel shock Short rates shock Long rates shock
∆R(parallel) (t) ∆R(short) (t) ∆R(long) (t)

Up +S0 +S1 · e−t/τ +S2 ·
(
1− e−t/τ

)
Down −S0 −S1 · e−t/τ −S2 ·

(
1− e−t/τ

)
where τ is equal to four years
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The standardized approach
The supervisory interest rate shock scenarios

The six standardized interest rate shock scenarios are defined as follows:

1 Parallel shock up: ∆R(parallel) (t) = +S0

2 Parallel shock down: ∆R(parallel) (t) = −S0

3 Steepener shock (short rates down and long rates up):

∆R(steepnener) (t) = 0.90 ·
∣∣∣∆R(long) (t)

∣∣∣− 0.65 ·
∣∣∣∆R(short) (t)

∣∣∣
4 Flattener shock (short rates up and long rates down):

∆R(flattener) (t) = 0.80 ·
∣∣∣∆R(short) (t)

∣∣∣− 0.60 ·
∣∣∣∆R(long) (t)

∣∣∣
5 Short rates shock up:

∆R(short) (t) = +S1 · e−t/τ

6 Short rates shock down:

∆R(short) (t) = −S1 · e−t/τ
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The standardized approach
The supervisory interest rate shock scenarios

Example

We assume that S0 = 100 bps, S1 = 150 bps and S2 = 200 bps. We would
like to calculate the standardized shocks for the one-year maturity

The parallel shock up is equal to +100 bps, while the parallel shock
down is equal to −100 bps
For the short rates shock, we obtain:

∆R(short) (t) = 150× e−1/4 = 116.82 bps

for the up scenario and −116.82 bps for the down scenario
Since we have

∣∣∆R(short) (t)
∣∣ = 116.82 and

∣∣∆R(long) (t)
∣∣ = 44.24,

the steepener shock is equal to:

∆R(steepnener) (t) = 0.90× 44.24− 0.65× 116.82 = −36.12 bps

For the flattener shock, we have:

∆R(flattener) (t) = 0.80× 116.82− 0.60× 44.24 = 66.91 bps
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The standardized approach
The supervisory interest rate shock scenarios

Figure: Interest rate shocks (in bps) with (S0 = 100, S1 = 150, S2 = 200)
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The standardized approach
The supervisory interest rate shock scenarios

Figure: Stressed yield curve (in %)
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The standardized approach
Treatment of NMDs

Retail transactional (RT)

Retail non-transactional (RNT)

Wholesale (W)

Difference between stable and non-stable part of each category

The stable part of NMDs must be split between:

Core deposits

Maximum proportion: 90% for RT, 70% for RNT and 50% for W
Maximum maturity: 5Y for RT, 4.5Y for RNT and 4Y for W

Non-core deposits (overnight maturity)
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The standardized approach
Prepayment risk

The bank estimates the baseline conditional prepayment rate (CPR) CPR0

and calculates the stressed conditional prepayment rate as follows:

CPRs = min (1, γs · CPR0)

where γs is the multiplier for the scenario s and

γs = 0.8 for the scenarios 1, 3 and 5 (parallel up, steepener and short
rates up)

γs = 1.2 for the scenarios 2, 4 and 6 (parallel down, flattener and
short rates down)
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The standardized approach
Early redemption

The term deposit redemption ratio (TDRR) is stressed as follows:

TDRRs = min (1, γs · TDRR0)

where γs is the multiplier for the scenario s and:

γs = 1.2 for the scenarios 1, 4 and 5 (parallel up, flattener and short
rates up)

γs = 0.8 for the scenarios 2, 3 and 6 (parallel down, steepener and
short rates down)
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The standardized approach
Automatic interest rate options

The computation of the automatic interest rate option risk KAOs is given
by:

KAOs =
∑
i∈S

∆ FVAOs,i −
∑
i∈B

∆ FVAOs,i

where:

i ∈ S (resp. i ∈ B) denotes an automatic interest rate option which is
sold (resp. bought) by the bank

FVAOs,i (resp. FVAO0,i ) is the fair value of the automatic option i
given the stressed (resp. current) yield curve and a relative increase in
the implied volatility of 25% (resp. the current implied volatility)

∆ FVAOs,i is the change in the fair value of the option:

∆ FVAOs,i = FVAOs,i −FVAO0,i
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The standardized approach
Example

We consider a USD-denominated balance sheet. The assets are composed
of loans with the following cash flow slotting:

Instruments Loans Loans Loans
Maturity 1Y 5Y 13Y
Cash flows 200 700 200

The liabilities are composed of retail deposit accounts, term deposits, debt
and tier-one equity capital:

Instruments
Non-core Term Core Debt Equity
deposits deposits deposits ST LT capital

Maturity O/N 7M 3Y 4Y 8Y
Cash flows 100 50 450 100 100 200

Thierry Roncalli Course 2023-2024 in Financial Risk Management 624 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Definition
Liquidity risk
Interest rate risk in the banking book
Other ALM risks

The standardized approach
Example

Table: Economic value of the assets

Bucket tk CF0 (tk) R0 (tk) EV0 (tk)
6 0.875 200 1.55% 197.31

11 4.50 700 3.37% 601.53
17 12.50 100 5.71% 48.98

EV0 847.82

Table: Economic value of the pure liabilities

Bucket tk CF0 (tk) R0 (tk) EV0 (tk)
1 0.0028 100 1.00% 100.00
5 0.625 50 1.39% 49.57
9 2.50 450 2.44% 423.35

10 3.50 100 2.93% 90.26
14 7.50 100 4.46% 71.56

EV0 734.73
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Table: Stressed economic value of equity

Bucket s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
Assets

Rs (t6) 3.55% −0.45% 0.24% 3.30% 3.96% −0.87%
Rs (t11) 5.37% 1.37% 3.65% 3.54% 4.34% 2.40%
Rs (t17) 7.71% 3.71% 6.92% 4.96% 5.84% 5.58%
EVs (t6) 193.89 200.80 199.57 194.31 193.20 201.52
EVs (t11) 549.76 658.18 594.03 596.91 575.74 628.48
EVs (t17) 38.15 62.89 42.13 53.83 48.18 49.79

EVs 781.79 921.87 835.74 845.05 817.11 879.79
Pure liabilities

Rs (t1) 3.00% −1.00% −0.95% 3.40% 4.00% −2.00%
Rs (t5) 3.39% −0.61% −0.08% 3.32% 3.96% −1.17%
Rs (t9) 4.44% 0.44% 2.03% 3.31% 4.05% 0.84%
Rs (t10) 4.93% 0.93% 2.90% 3.40% 4.18% 1.68%
Rs (t14) 6.46% 2.46% 5.31% 4.07% 4.92% 4.00%
EVs (t1) 99.99 100.00 100.00 99.99 99.99 100.01
EVs (t5) 48.95 50.19 50.02 48.97 48.78 50.37
EVs (t9) 402.70 445.05 427.77 414.27 406.69 440.69
EVs (t10) 84.16 96.80 90.34 88.77 86.39 94.30
EVs (t14) 61.59 83.14 67.17 73.70 69.13 74.07

EVs 697.39 775.18 735.31 725.71 710.98 759.43
Equity

EVEs 84.41 146.68 100.43 119.34 106.13 120.37
∆ EVEs 28.69 −33.58 12.67 −6.24 6.97 −7.27
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Example

The current economic value of equity is equal to:

EVE0 = 847.82− 734.73 = 113.09

In the case of the first stress scenario, we have:

EVE1 = 781.79− 697.39 = 84.41

and:
∆ EVE1 = 113.10− 84.41 = 28.69

EVE decreases for scenarios 1, 3 and 5
The EVE risk measure is equal to:

R (EVE) = max
s

(∆ EVEs , 0) = 28.69

It represents 14.3% of the equity:

28.69

200
= 14.3%

The materiality test is not satisfied
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Currency risk

Currency hedging ⇒ also the equity capital?

Dollar funding

Multi-currency balance sheet
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Credit spread risk

e.g. consumer loans e.g. corporate loans

Funding rate

Reference rate

Funding margin

Administered rate Credit margin

e.g. bonds or
interest-earnings securities

Risk-free rate

Market duration spread

Market liquidity spread

Market credit spread

Idiosyncratic credit spread

Items at amortized cost Items at fair value (MtM)
C

S
R

B
B

IR
R

B
B

IR
R

B
B

Figure: Components of interest rates
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Macaulay duration

The Macaulay duration D is the weighted average of the cash flow
maturities:

D =
∑
tk≥t

w (t, tk) · (tk − t)

We have:
∂ V

∂ y = − D
1 + y · V = −D · V

where D is the modified duration

Application to a portfolio

The market value of the portfolio is composed of m cash flow streams:
V =

∑m
j=1 Vj while the duration of the portfolio is the average of

individual durations: D =
∑m

j=1 wj · Dj where wj =
Vj

V
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Duration gap risk

Since E (t) = A (t)− L? (t) and EVE = EVA−EVL? , the duration of
equity is equal to:

DE =
EVA

EVA−EVL?
· DA −

EVL?

EVA−EVL?
· DL? =

EVA

EVA−EVL?
· DGap

where the duration gap (also called DGAP) is equal to

DGap = DA −
EVL?

EVA
· DL?
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Duration gap risk

Another expression of the equity duration is:

DE =
EVA

EVE
· DGap = LA/E · DGap

where LA/E is the leverage ratio

Relationship between EVE and duration gap

∆ EVE = ∆ EVE

≈ −DE · EVE ·
∆y

1 + y

≈ −DGap · EVA ·
∆y

1 + y
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Illustration

We consider the following balance sheet:

Assets Vj Dj Liabilities Vj Dj

Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 30 1.7
Securities 15 3.8 Equity capital 10

Total 100 Total 100

We have EVA = 100, EVL? = 90, EVE = 10 and:

LA/E =
EVA

EVE
=

100

10
= 10

The duration values are equal to:

DA =
5

100
× 0 +

40

100
× 1.5 +

40

100
× 6.0 +

15

100
× 3.8 = 3.57 years

DL? =
40

90
× 3.2 +

20

90
× 0.8 +

30

90
× 1.7 = 2.17 years
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Illustration

We deduce that:

DGap = 3.57− 90

100
× 2.17 = 1.62 years

If we assume that the current yield to maturity is equal to 3%, we obtain:

∆y −2% −1% +1% +2%

∆ EVE 3.15 1.57 −1.57 −3.15
∆ EVE

EVE
31.46% 15.73% −15.73% −31.46%
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Immunization of the balance sheet

We must have:

∆ EVE = 0⇔ DGap = 0⇔ DA −
EVL?

EVA
· DL? = 0

Table: Bank balance sheet after immunization of the duration gap

Assets Vj Dj Liabilities Vj Dj

Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 10.48 1.7
Securities 15 3.8 Zero-coupon bond 19.52 10.0

Equity capital 10 0.0
Total 100 Total 100
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Income gap analysis

If interest rates change, this induces a gap (or repricing) risk because
the bank will have to reinvest assets and refinance liabilities at a
different interest rate level in the future

The gap is defined as the difference between rate sensitive assets
(RSA) and rate sensitive liabilities (RSL):

GAP (t, u) = RSA (t, u)− RSL (t, u)

where t is the current date and u is the time horizon of the gap

We can show that:

∆ NII (t, u) ≈ GAP (t, u) ·∆R

where ∆R is the parallel shock of interest rates
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Net interest income

The net interest income of the bank is the difference between interest rate
revenues of its assets and interest rate expenses of its liabilities:

NII (t, u) =
∑

i∈Assets

Ni (t, u) · Ri (t, u)−
∑

j∈Liabilities

Nj (t, u) · Rj (t, u)

where NII (t, u) is the net interest income at time t for the maturity date
u

⇒ Mathematical formulation (HFRM, pages 412-418)
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Modeling customer rates

Client rates 6= market rates

Several issues:

Correlation

Next repricing date (known or unknown?)

Sensitivity of the customer rate with respect to the market rate
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Hedging strategies

Using a forward rate agreement, we can show that:

NIIH (t, u)−NII (t, u) = GAP (t, u) · ρ (t, u) · (f (t, u)− r (u))

We can draw several conclusions:

When the interest rate gap is closed, the bank does not need to hedge
the net interest income

When the correlation ρ (t, u) between the customer rate and the
market rate is equal to one, the notional of the hedge is exactly equal
to the interest rate gap (it is lower in the general case)

If the bank hedges the net interest income and if the gap is positive, a
decrease of interest rates is not favorable

Hedging the interest rate gap depends on the expectations of the
bank =⇒ partial hedging and macro hedging
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Hedging instruments

Interest rate swaps (IRS)

Forward rate agreements (FRA)

Swaptions
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Funds transfer pricing

All liquidity and interest rate risks are transferred to the ALM unit:

Business units can then lend or borrow funding at a given internal
price

This price is called the funds transfer price (FTP) or the internal
transfer rate

The FTP charges interests to the business unit for client loans,
whereas the FTP compensates the business unit for raising deposits

Thierry Roncalli Course 2023-2024 in Financial Risk Management 641 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Duration gap risk
Earnings-at-risk
Funds transfer pricing

Net interest margin

The net interest margin (NIM) is equal to:

NIM (t, u) =

∑
i∈Assets Ni (t, u) · Ri (t, u)−

∑
j∈Liabilities Nj (t, u) · Rj (t, u)∑

i∈Assets Ni (t, u)

=
RA (t, u) · RRA (t, u)− RL (t, u) · RRL (t, u)

RA (t, u)

where RRA and RRL represent the weighted average interest rate of
interest earning assets and interest bearing liabilities

The net interest spread (NIS) is equal to:

NIS (t, u) =

∑
i∈Assets Ni (t, u) · Ri (t, u)∑

i∈Assets Ni (t, u)
−
∑

j∈Liabilities Nj (t, u) · Rj (t, u)∑
j∈Liabilities Nj (t, u)

= RRA (t, u)− RRL (t, u)

NIM is the profitability ratio of the assets whereas NIS is the interest rate
spread captured by the bank
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Net interest margin

Example

We consider the following interest earning and bearing items:

Assets Ni (t, u) Ri (t, u) Liabilities Nj (t, u) Rj (t, u)
Loans 100 5% Deposits 100 0.5%

Mortgages 100 4% Debts 60 2.5%
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Net interest margin

The interest income is equal to 100× 5% + 100× 4% = 9 whereas
the interest expense is equal to 100× 0.5% + 60× 2.5% = 2. We
deduce that the net interest income is equal to:

NII (t, u) = 9− 2 = 7

We have:

RRA (t, u) =
100× 5% + 100× 4%

100 + 100
= 4.5%

and:

RRL (t, u) =
100× 0.5% + 60× 2.5%

100 + 60
= 1.25%

Since RA (t, u) = 200 and RL (t, u) = 160, we deduce that:

NIM (t, u) =
200× 4.5%− 160× 1.25%

200
=

7

200
= 3.5%

and:
NIS (t, u) = 4.5%− 1.25% = 3.25%
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Net interest margin

Figure: Evolution of the net interest margin in the US
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Commercial margin

The commercial margin rate is the spread between the client rate
Ri (t, u) of the asset i and the corresponding market rate r (t, u):

mi (t, u) = Ri (t, u)− r (t, u)

For the liability j , we have:

mj (t, u) = r (t, u)− Rj (t, u)

In the case where we can perfectly match the asset i with the liability
j , the commercial margin rate is the net interest spread:

m (t, u) = mi (t, u) + mj (t, u) = Ri (t, u)− Rj (t, u)
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Commercial margin

Introducing a funds transfer pricing system is equivalent to interpose the
ALM unit between the business unit and the market

For assets, we have:

mi (t, u) = (Ri (t, u)− FTPi (t, u))︸ ︷︷ ︸
m

(c)
i (t,u)

+ (FTPi (t, u)− r (t, u))︸ ︷︷ ︸
m

(t)
i (t,u)

where:

m
(c)
i (t, u) is the commercial margin rate of the business unit

m
(t)
i (t, u) is the transformation margin rate of the ALM unit

For liabilities, we have:

mj (t, u) = (FTPj (t, u)− Rj (t, u))︸ ︷︷ ︸
m

(c)
j (t,u)

+ (r (t, u)− FTPj (t, u))︸ ︷︷ ︸
m

(t)
j (t,u)
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Commercial margin

Commercial margins and funds transfer prices

The goal of FTP is to lock the commercial margin rates m
(c)
i (t, u) and

m
(c)
j (t, u) over the lifetime of the product contract
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Commercial margin

Example

We consider the following interest earning and bearing items:

Assets Ni (t, u) Ri (t, u) Liabilities Nj (t, u) Rj (t, u)
Loans 100 5% Deposits 100 0.5%

Mortgages 100 4% Debts 60 2.5%

The FTP for the loans and the mortgages is equal to 3%, while the FTP
for deposits is equal to 1.5% and the FTP for debts is equal to 2.5%. We
assume that the market rate is equal to 2.5%

Solution

We obtain the following results:

Assets m
(c)
i (t, u) m

(t)
i (t, u) Liabilities m

(c)
j (t, u) m

(t)
j (t, u)

Loans 2% 0.5% Deposits 1.0% 1.0%
Mortgages 1% 0.5% Debts 0.0% 0.0%
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Commercial margin

The commercial margin of the bank is equal to:

M(c) = 100× 2% + 100× 1% + 100× 1% + 60× 0% = 4

For the transformation margin, we have:

M(t) = 100× 0.5% + 100× 0.5% + 100× 1.0% + 60× 0% = 2

We don’t have M(c) + M(t) = NII because assets and liabilities are not
compensated:

NII−
(
M(c) + M(t)

)
= (RA (t, u)− RL (t, u)) · r (t, u) = 40× 2.5% = 1

The commercial margin of each product is:

M
(c)
Loans = 2

M
(c)
Mortgages = 1

M
(c)
Deposits = 1
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Computing the internal transfer rate
The reference rate

Since we have m
(t)
i (t, u) = FTPi (t, u)− r (t, u), internal prices are

fair if the corresponding mark-to-market is equal to zero on average

For a contract with a bullet maturity, this implies that:

FTPi (t, u) = E [r (t, u)]

The transformation margin can then be interpreted as an interest rate
swap receiving a fixed leg FTPi (t, u) and paying a floating leg r (t, u)

Remark

It follows that the funds transfer price is equal to the market swap rate at
the initial date t with the same maturity than the asset item i
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Computing the internal transfer rate
FTPs and the new production

If we assume that the commercial margin rate of the business unit is
constant:

R (u)− FTP (t, u) = m

we can show that:

FTP (t, u) = R (u) +
Et

[∫∞
t

B (t, u) S (t, u) (r (u)− R (u)) du
]

Et

[∫∞
t

B (t, u) S (t, u) du
]

We deduce that:

for a loan with a fixed rate, the funds transfer price is exactly the
swap rate with the same maturity than the loan and the same
amortization scheme than the new production

if the client rate R (u) is equal to the short-term market rate r (u),
the funds transfer price FTP (t, u) is also equal to r (u)
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What is the maturity of NMDs?

The deposit balance of the client A is equal to $500⇒ the duration
of this deposit is equal to zero day

We consider 1 000 clients ⇒ the total amount that may be withdrawn
today is then between $0 and $500 000

We assume that the probability to withdraw $500 at once is equal to
50% ⇒ the probability that $500 000 are withdrawn is less than
10−300%!

Since we have Pr {S > 275000} < 0.1%, we can decide that 55% of
the deposit balance has a duration of zero day, 24.75% has a duration
of one day, 11.14% has a duration of two days, etc.

The statistical duration of NMDs is long (and not short)
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Non-maturity deposits
Dynamic modeling

In the case of non-maturity deposits, the hazard function rate λ (t, u) of
the amortization function S (t, u) does not depend on the entry date t:

λ (t, u) = λ (u)

We can show that (HFRM, pages 428-428):

dN (t) = (NP (t)− λ (t)N (t)) dt

If we assume that the new production and the hazard rate are constant –
NP (t) = NP and λ (t) = λ, we obtain:

dN (t) = λ (N∞ − N (t)) dt

Thierry Roncalli Course 2023-2024 in Financial Risk Management 654 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Non-maturity deposits
Prepayment risk
Redemption risk

Non-maturity deposits
Dynamic modeling

Two extensions:

The Ornstein-Uhlenbeck model:

dN (t) = λ (N∞ − N (t)) dt + σ dW (t)

The aggregate model:

D (t) = D∞eg(t−s)︸ ︷︷ ︸
Dlong(s,t)

+ (Ds − D∞) e(g−λ)(t−s) + ε (t)︸ ︷︷ ︸
Dshort(s,t)

where g is the growth rate of deposits
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Stable vs non-stable deposits

Remark

We have:

D (t) = ϕD∞eg(t−s)︸ ︷︷ ︸
Dstable(s,t)

+ (Ds − D∞) e(g−λ)(t−s) + ε (t) + (1− ϕ)D∞eg(t−s)︸ ︷︷ ︸
Dnon−stable(s,t)

Calibration of ϕ

We have:
Pr {D (t) ≤ ϕD∞} = 1− α

IIf we consider the Ornstein-Uhlenbeck dynamics, we obtain:

ϕ = 1− σΦ−1 (1− α)

D∞
√

2λ
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Stable vs non-stable deposits

Figure: Stable and non-stable deposits

Thierry Roncalli Course 2023-2024 in Financial Risk Management 657 / 1695



General principles of the banking book risk management
Interest rate risk

Behavioral options

Non-maturity deposits
Prepayment risk
Redemption risk

Non-maturity deposits
Behavioral modeling

The Hutchison-Pennacchi-Selvaggio framework

The deposit rate i (t) is exogenous and the bank account holder modifies his
current deposit balance D (t) to target a level D? (t):

lnD? (t) = β0 + β1 ln i (t) + β2 lnY (t)

where Y (t) is the income of the account holder

The behavior of the bank account holder can be represented by a mean-reverting
AR(1) process:

lnD (t)− lnD (t − 1) = (1− φ) (lnD? (t)− lnD (t − 1)) + ε (t)

The bank maximizes its profit i? (t) = arg max Π (t) where the profit Π (t) is equal
to the revenue minus the cost:

Π (t) = r (t) · D (t)− (i (t) + c (t)) · D (t)

r (t) is the market interest rate and c (t) is the cost of issuing deposits

We can show that:
i? (t) = r (t)− s (t)
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The IRS framework (Jarrow and van Deventer, 1998)

The current market value of deposits is the net present value of the
cash flow stream D (t):

V (0) = E

[ ∞∑
t=0

B (0, t + 1) (r (t)− i (t))D (t)

]

V (0) as an exotic interest rate swap, where the bank receives the
market rate and pays the deposit rate.

We have:

lnD (t) = lnD (t − 1) + β0 + β1r (t) + β2 (r (t)− r (t − 1)) + β3t

and:
i (t) = i (t) + β′0 + β′1r (t) + β′2 (r (t)− r (t − 1))
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Asymmetric adjustment models

O’Brien model:

∆i (t) = α (t) · (̂ı (t)− i (t − 1)) + η (t)

where ı̂ (t) is the conditional equilibrium deposit rate and:

α (t) = α+ · 1 {ı̂ (t) > i (t − 1)}+ α− · 1 {ı̂ (t) < i (t − 1)}

Frachot model:

lnD (t)− lnD (t − 1) = (1− φ) (lnD? (t)− lnDt−1) + δc (r (t) , r?)

where δc (r (t) , r?) = δ · 1 {r (t) ≤ r?} and r? is the interest rate floor

OTS model:

d (t) = d (t − 1) + ∆ ln

(
β0 + β1 arctan

(
β2 + β3

i (t)

r (t)

)
+ β4i (t)

)
+ ε (t)
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Figure: Impact of the market rate on the growth rate of deposits
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Definition

A prepayment is the settlement of a debt or the partial repayment of its
outstanding amount before its maturity date
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Factors of prepayment

1 Refinancing:
P (t) = Pr {τ ≤ t} = ϑ (i0 − i (t))

“A household with a 30-year fixed-rate mortgage of $200 000 at an
interest rate of 6.0% that refinances when rates fall to 4.5% (approx-
imately the average rate decrease between 2008 and 2010 in the US)
saves more than $60 000 in interest payments over the life of the loan,
even after accounting for refinance transaction costs. Further, when
mortgage rates reached all-time lows in late 2012, with rates of roughly
3.35% prevailing for three straight months, this household with a con-
tract rate of 6.5% would save roughly $130 000 over the life of the loan
by refinancing” (Keys, et al., 2016, pages 482-483).

2 Housing turnover (marriage, divorce, death, children leaving home or
changing jobs)
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Structural models

The prepayment value is the premium of an American call option, meaning
that we can derive the optimal option exercise. In this case, the
prepayment strategy can be viewed as an arbitrage strategy between the
market interest rate and the cost of refinancing
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Reduced-form models

Rate, coupon or maturity incentive?

We assume that the mortgage rate drops from i0 to i (t)

The absolute difference of the annuity is equal to:

DA (i0, i (t)) = A (i0, n)− A (i (t) , n)

The relative cumulative difference C (i0, i (t)) is equal to:

C (i0, i (t)) =

∑n
t=1 DA (i0, i (t))

N0

By assuming that the borrower continues to pay the same annuity, the
maturity reduction is given by:

N (i0, i (t)) = {x ∈ N : A (i (t) , x) ≥ A (i (t) , n) ,A (i (t) , x + 1) < A (i (t) , n)}
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Table: Impact of a new mortgage rate (100 KUSD, 5%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 1 061
4.5 1 036 24 291 2.3 2.9 9.67
4.0 1 012 48 578 4.5 5.8 9.42
3.5 989 72 862 6.8 8.6 9.17
3.0 966 95 1 141 9.0 11.4 8.92
2.5 943 118 1 415 11.1 14.2 8.75
2.0 920 141 1 686 13.2 16.9 8.50
1.5 898 163 1 953 15.3 19.5 8.33
1.0 876 185 2 215 17.4 22.2 8.17
0.5 855 206 2 474 19.4 24.7 8.00
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Table: Impact of a new mortgage rate (100 KUSD, 5%, 20-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 660
4.5 633 27 328 4.1 6.6 18.67
4.0 606 54 648 8.2 13.0 17.58
3.5 580 80 960 12.1 19.2 16.67
3.0 555 105 1 264 16.0 25.3 15.83
2.5 530 130 1 561 19.7 31.2 15.17
2.0 506 154 1 849 23.3 37.0 14.50
1.5 483 177 2 129 26.9 42.6 14.00
1.0 460 200 2 401 30.3 48.0 13.50
0.5 438 222 2 664 33.6 53.3 13.00
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Table: Impact of a new mortgage rate (100 KUSD, 10%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)
10.0 1 322

9.0 1 267 55 657 4.1 6.6 9.33
8.0 1 213 108 1 299 8.2 13.0 8.75
7.0 1 161 160 1 925 12.1 19.3 8.33
6.0 1 110 211 2 536 16.0 25.4 7.92
5.0 1 061 261 3 130 19.7 31.3 7.58
4.0 1 012 309 3 709 23.3 37.1 7.25
3.0 966 356 4 271 26.9 42.7 6.92
2.0 920 401 4 816 30.4 48.2 6.67
1.0 876 445 5 346 33.7 53.5 6.50
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Figure: Evolution of 30-year and 15-year mortgage rates in the US
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Survival function with prepayment risk

We have:
S (t, u) = Sc (t, u) · Sp (t, u)

where Sc (t, u) is the traditional amortization function (or the
contract-based survival function) and Sp (t, u) is the prepayment-based
survival function
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Figure: Survival function in the case of prepayment
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Specification of the hazard function

Sp (t, u) can be decomposed into the product of two survival
functions:

Sp (t, u) = Srefinancing (t, u) · Sturnover (t, u)

OTC model:

λp (t, u) = λage (u − t) · λseasonality (u) · λrate (u)

where λage measures the impact of the loan age, λseasonality

corresponds to the seasonality factor and λrate represents the
influence of market rates
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Figure: Components of the OTC model
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Statistical measure of prepayment

Single monthly mortality:

SMM =
prepayments during the month

outstanding amount at the beginning of the month

The constant prepayment rate (CPR) and the SMM are related by the
following equation:

CPR = (1− (1− SMM))12

In IRRBB, the CPR is also known as the conditional prepayment rate:

CPR (u, t) = Pr {u < τ ≤ u + 1 | τ ≥ u}

=
Sp (t, u)− Sp (t, u + 1)

Sp (t, u)

= 1− exp

(
−
∫ u+1

u

λp (t, s) ds

)
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Table: Conditional prepayment rates in June 2018 by coupon rate and issuance
date

Year 2012 2013 2014 2015 2016 2017 2018
Coupon = 3% 9.6% 10.2% 10.9% 10.0% 8.7% 5.3% 3.1%

Coupon = 4.5% 16.1% 15.8% 16.6% 17.9% 17.4% 12.8% 5.3%
Difference 6.5% 5.6% 5.7% 8.0% 8.7% 7.6% 2.2%
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The funding risk of term deposits

A term deposit, also known as time deposit or certificate of deposit
(CD), is a fixed-term cash investment. The client deposits a minimum
sum of money into a banking account in exchange for a fixed rate
over a specified period

When buying a term deposit, the investor can withdraw their funds
only after the term ends

Under some conditions, the investor may withdraw his term deposit
before the maturity date if he pays early redemption costs and fees
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Redemption risk

Early time deposit withdrawals may be motivated by two reasons:

1 Economic motivation: i (t)� i0
2 Negative liquidity shocks of depositors

The redemption-based survival function of time deposits can be
decomposed as:

Sr (t, u) = Seconomic (t, u) · Sliquidity (t, u)
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Early withdrawals due to economic reasons

We note t the current date, m the maturity of the time deposit and
N0 the initial investment at time 0

The value of the time deposit at the maturity is equal to
V0 = N0 (1 + i0)m

The value of the investment for τ = t becomes:

Vr (t) = N0 · (1 + (1− ϕ (t)) i0)t · (1 + i (t))m−t − C (t)

where ϕ (t) is the penalty parameter applied to interest paid and
C (t) is the break fee

The rational investor redeems the term deposit if the refinancing
incentive is positive:

RI (t) =
Vr (t)− V0

N0
> 0
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Early withdrawals due to economic reasons

We can assume that:

λeconomic (t, u) = g (i (u)− i0)

or:
λeconomic (t, u) = g (r (u)− i0)
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Early withdrawals due to negative liquidity shocks

We can decompose the hazard function into two effects:

λliquidity (t, u) = λstructural + λcyclical (u)

where λstructural is the structural rate of redemption and λcyclical (u) is the
liquidity component due to the economic cycle. A simple way to model
λcyclical (u) is to consider a linear function of the GDP growth
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Exercises

Interest rate risk

Exercise 7.4.1 – Constant amortization of a loan
Exercise 7.4.2 – Computation of the amortization functions S (t, u)
and S? (t, u)
Exercise 7.4.3 – Continuous-time analysis of the constant amortization
mortgage (CAM)

Non-maturity deposits (NMD)

Exercise 7.4.4 – Valuation of non-maturity deposits

Prepayment risk

Exercise 7.4.5 – Impact of prepayment on the amortization scheme of
the CAM
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Main issue

Easy

Computing an option price using a
stochastic model

Hard

Computing an option price that
corresponds to the cost of the
hedging strategy

Pricing = Hedging
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The Black-Scholes model

Black and Scholes (1973) assumed that the dynamics of the asset price
S (t) is given by a GBM:{

dS (t) = µS (t) dt + σS (t) dW (t)
S (t0) = S0

where:

S0 is the current price

µ is the drift

σ is the volatility of the diffusion

W (t) is a standard Brownian motion
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The Black-Scholes model

Let f (S (T )) be the payoff of a contingent claim where T is the maturity
of the derivative contract. The price V of the contingent claim is then
equal to the cost of the hedging portfolio. We can show that:{

1
2σ

2S2∂2
SV (t,S) + (µ− λ (t)σ)S∂SV (t,S) + ∂tV (t,S)− r (t)V (t,S) = 0

V (T ,S (T )) = f (S (T ))

This equation is called the fundamental pricing equation
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The Black-Scholes model

The function λ (t) is interpreted as the risk price of the Wiener process
W (t):

λ (t) =
µ− b (t)

σ

where b (t) is the cost-of-carry
We have:{

1
2σ

2S2∂2
SV (t,S) + b (t)S∂SV (t,S) + ∂tV (t,S)− r (t)V (t,S) = 0

V (T ,S (T )) = f (S (T ))

The current price of the derivatives contract is equal to V (t0,S0)
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The Black-Scholes model

Girsanov theorem with g (t) = −λ (t):{
dS (t) = b (t)S (t) dt + σS (t) dWQ (t)
S (t0) = S0

WQ (t) is a Brownian motion under the probability Q defined by:

dQ
dP

= exp

(
−
∫ t

0
λ (s) dW (s)− 1

2

∫ t

0
λ2 (s) ds

)
Feynman-Kac formula with h (t, x) = r (t) and g (t, x) = 0:

V0 = EQ
[
e−

∫ T
0

r(t) dt f (S (T ))
∣∣∣F0

]
V0 is called the martingale solution and Q is called the risk-neutral
probability measure
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Application to European options

We consider an European call option whose payoff at maturity is equal to:

C (T ) = (S (T )− K )+

We assume that the interest rate r (t) and the cost-of-carry parameter
b (t) are constant:

C0 = EQ
[
e
−
∫ T

0
r dt

(S (T )− K )+
∣∣∣F0

]
= e−rTE

[(
S0e

(b− 1
2σ

2)T+σWQ (T ) − K
)+
]

= e−rT
∫∞
−d2

(
S0e

(b− 1
2σ

2)T+σ
√
Tx − K

)
φ (x) dx

= S0e
(b−r)TΦ (d1)− Ke−rTΦ (d2)

where:

d1 =
1

σ
√
T

(
ln

S0

K
+ bT

)
+

1

2
σ
√
T

d2 = d1 − σ
√
T
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Application to European options

Let us now consider an European put option with the following payoff:

P (T ) = (K − S (T ))+

We have:

C (T )−P (T ) = (S (T )− K )+ − (K − S (T ))+ = S (T )− K

We deduce that:

C0 −P0 = EQ
[
e
−
∫ T

0
r dt

(S (T )− K )
∣∣∣F0

]
= EQ [e−rTS (T )

∣∣F0

]
− Ke−rT

= S0e
(b−r)T − Ke−rT

This equation is known as the put-call parity and we have:

P0 = C0 − S0e
(b−r)T + Ke−rT

= −S0e
(b−r)TΦ (−d1) + Ke−rTΦ (−d2)
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Application to European options

Figure: Price of the call option
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Figure: Price of the put option
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Principle of dynamic hedging

n assets that do not pay dividends or coupons during the period [0,T ]

For asset i , we have:

Si (t) = Si (0) +

∫ t

0

µi (u) du +

∫ t

0

σi (u) dWi (u)

We set up a trading portfolio (φ1 (t) , . . . , φn (t)) invested in the
assets (S1 (t) , . . . ,Sn (t))

The value of this trading portfolio is:

X (t) =
n∑

i=1

φi (t)Si (t)
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Self-financing strategy

The portfolio is self-financing if the following conditions hold:{
dX (t)−

∑n
i=1 φi (t) dSi (t) = 0

X (0) = 0

1 The first condition means that all trades are financed by selling or
buying assets in the portfolio

2 The second condition implies that we don’t need money to set up the
initial portfolio

This implies that:

X (t) = X0 +
n∑

i=1

∫ t

0

φi (u) dSi (u)

=
n∑

i=1

φi (0)Si (0) +
n∑

i=1

∫ t

0

φi (u) dSi (u)
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Principle of dynamic hedging

We have:
dS (t) = µS (t) dt + σS (t) dW (t)

The risk-free asset B (t) satisfies:

dB (t) = rB (t) dt

We set up a trading portfolio (φ (t) , ψ (t)) invested in the stock S (t)
and the risk-free asset B (t)

The value of this portfolio is:

V (t) = φ (t)S (t) + ψ (t)B (t)
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Application to the Black-Scholes model

We form a strategy X (t) in which we are long the call option
C (t,S (t)) and short the trading portfolio V (t):

X (t) = C (t,S (t))− V (t)

= C (t,S (t))− φ (t)S (t)− ψ (t)B (t)

We have:

dX (t) = ∂SC (t,S (t)) dS (t) +(
∂tC (t,S (t)) +

1

2
σ2S2 (t) ∂2

SC (t,S (t))

)
dt −

φ (t) dS (t)− ψ (t) dB (t)

By assuming that φ (t) = ∂SC (t,S (t)), we obtain:

dX (t) =

(
∂tC (t,S (t)) +

1

2
σ2S2 (t) ∂2

SC (t,S (t))− rψ (t)B (t)

)
dt
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Application to the Black-Scholes model

X (t) is self-financing if dX (t) = 0 or:

ψ (t) =
∂tC (t,S (t)) +

1

2
σ2S2 (t) ∂2

SC (t,S (t))

rB (t)

We deduce that:

C (t,S (t)) = φ (t)S (t) + ψ (t)B (t)

= ∂SC (t,S (t))S (t) +

∂tC (t,S (t)) +
1

2
σ2S2 (t) ∂2

SC (t,S (t))

rB (t)
B (t)
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Application to the Black-Scholes model

This implies that C (t,S (t)) satisfies the following PDE:

1

2
σ2S2∂2

SC (t,S) + rS∂SC (t,S) + ∂tC (t,S)− rC (t,S) = 0

Since X (t) is self-financing (X (t) = 0), we also deduce that the
trading portfolio V (t) is the replicating portfolio of the call option:

V (t) = φ (t)S (t) + ψ (t)B (t)

= C (t,S (t))− X (t)

= C (t,S (t))
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Application to the Black-Scholes model

If we define the replicating cost as follows:

C (t) =

∫ t

0

φ (u) dS (u) +

∫ t

0

ψ (u) dB (u)

=

∫ t

0

(µS (u)φ (u) + rB (u)ψ (u)) du +

∫ T

0

σS (u)φ (u) dW (u)

we have:

C (t) =

∫ t

0

µS (u) ∂SC (u,S (u)) du +

∫ T

0

σS (u) ∂SC (u,S (u)) dW (u)∫ t

0

(
∂tC (u,S (u)) +

1

2
σ2S2 (u) ∂2

SC (u,S (u))

)
du

=

∫ t

0

dC (u,S (u)) = C (t,S (t))− C (0,S0)

We verify that the replicating cost is exactly equal to the P&L of the
long exposure on the call option
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Cost-of-carry

Let us consider a stock that pays a continuous dividend δ, the
self-financing portfolio is:

X (t) = C (t,S (t))− φ (t)S (t)− ψ (t)B (t)

We deduce that the change in the value of this portfolio is:

dX (t) = dC (t,S (t))−φ (t) dS (t)−ψ (t) dB (t)−φ (t) · δ · S (t) dt︸ ︷︷ ︸
dividend

Using the same rationale than previously, we obtain
φ (t) = ∂SC (t,S (t)) and:

ψ (t) =
∂tC (t,S (t)) +

1

2
σ2S2 (t) ∂2

SC (t,S (t))− δS (t) ∂SC (t,S (t))

rB (t)

Finally, we obtain the following PDE:

1

2
σ2S2∂2

SC (t,S) + (r − δ)S∂SC (t,S) + ∂tC (t,S)− rC (t,S) = 0
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Cost-of-carry

When the stock does not pay a dividend, the cost-of-carry parameter
b is equal to the interest rate r
When the stock pays a continuous dividend, the cost-of-carry
parameter b is equal to r − δ
In the case of futures or forward contracts, the cost-of-carry is equal
to zero
For currency options, the cost-of-carry is the difference between the
domestic interest rate r and the foreign interest rate r?

Table: Impact of the dividend on the option premium

Put option Call option
S0 / δ 0.00 0.02 0.05 0.07 0.00 0.02 0.05 0.07

90 1.28 1.44 1.73 1.94 13.50 12.67 11.48 10.72
100 4.42 4.83 5.50 5.97 6.89 6.31 5.50 5.00
110 10.19 10.87 11.91 12.63 2.91 2.59 2.16 1.90
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Delta hedging

The Black-Scholes model assumes that the replicating portfolio is
rebalanced continuously

In practice, it is rebalanced at some fixed dates ti :

0 = t0 < t1 < · · · < tn = T

At the initial date, we have:

X (t0) = C (t0,S (t0))− V (t0) = 0

where:
V (t0) = φ (t0) · S (t0) + ψ (t0) · B (t0)

Because we have φ (t0) = ∆ (t0) and X (t0) = 0, we deduce that:

ψ (t0) = C (t0,S (t0))−∆ (t0)S (t0)
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Delta hedging

At time t1, the value of the replicating portfolio is then equal to:

V (t1) = ∆ (t0)S (t1)+(C (t0,S (t0))−∆ (t0)S (t0))·(1 + r (t0) (t1 − t0))

It follows that:
X (t1) = C (t1,S (t1))− V (t1)

We are not sure that X (t1) = 0 because it is not possible to hedge
the jump S (t1)− S (t0). We rebalance the portfolio and we have:

V (t1) = φ (t1) · S (t1) + ψ (t1) · B (t1)

We deduce that:
φ (t1) = ∆ (t1)

and:
ψ (t1) = V (t1)−∆ (t1)S (t1)
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At time t2, the value of the replicating portfolio is equal to:

V (t2) = ∆ (t1)S (t2) + (V (t1)−∆ (t1)S (t1)) · (1 + r (t1) (t2 − t1))

More generally, we have:

X (ti ) = C (ti ,S (ti ))− V (ti )

and:

V (ti ) = ∆ (ti−1)S (ti )︸ ︷︷ ︸
VS (ti )

+(V (ti−1)−∆ (ti−1)S (ti−1)) · (1 + r (ti−1) (ti − ti−1))︸ ︷︷ ︸
VB (ti )

where VS (ti ) is the component due to the delta exposure on the asset
and VB (ti ) is the component due to the cash exposure on the
risk-free bond
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Delta hedging

We notice that:

VS (ti ) = ∆ (ti−1) · S (ti )

= ∆ (ti−1) · S (ti−1) · (1 + RS (ti−1; ti ))

and:

VB (ti ) = (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 + r (ti−1) · (ti − ti−1))

= (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 + RB (ti−1; ti ))

where RS (ti−1; ti ) and RB (ti−1; ti ) are the asset and bond returns
between ti−1 and ti
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Delta hedging

At the maturity, we obtain:

X (T ) = X (tn)

= (S (T )− K )+ − V (tn)

Π (T ) = −X (T ) is the P&L of the delta hedging strategy. To
measure its efficiency, we consider the ratio π defined as follows:

π =
Π (T )

C (t0,S (t0))
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Example #1

We consider the replication of 100 ATM call options. The current price of
the asset is 100 and the maturity of the option is 20 weeks. We consider
the following parameter: b = r = 5% and σ = 20%. We rebalance the
replicating portfolio every week.
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T = 20/52

K = 100

C (t0,S (t0)) = $5.90

The replicating portfolio is rebalanced at times ti :

ti =
i

52
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Table: An example of delta hedging strategy (negative P&L)

i ti S (ti ) ∆ (ti−1) VS (ti ) VB (ti ) V (ti ) C (ti ,S (ti )) X (ti ) Π (ti )
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 95.63 58.59 5603.15 −5273.36 329.79 350.22 20.43 −20.43
2 0.04 95.67 43.72 4182.80 −3854.96 327.84 336.15 8.31 −8.31
3 0.06 94.18 43.24 4072.36 −3812.62 259.75 260.57 0.82 −0.82
4 0.08 92.73 37.29 3457.72 −3255.16 202.55 196.22 −6.33 6.33
5 0.10 96.59 31.34 3027.23 −2706.31 320.93 326.47 5.54 −5.54
6 0.12 101.68 44.63 4537.99 −3993.73 544.26 582.71 38.45 −38.45
7 0.13 101.41 63.39 6428.19 −5906.72 521.47 545.64 24.17 −24.17
8 0.15 100.22 62.36 6249.97 −5808.29 441.68 453.62 11.94 −11.94
9 0.17 99.32 57.57 5718.25 −5333.51 384.74 382.58 −2.16 2.16

10 0.19 101.64 53.46 5433.52 −4929.49 504.03 495.99 −8.04 8.04
11 0.21 101.81 63.27 6441.30 −5932.22 509.08 483.87 −25.21 25.21
12 0.23 102.62 64.10 6578.19 −6022.97 555.22 513.53 −41.69 41.69
13 0.25 107.56 67.97 7311.26 −6426.42 884.84 876.68 −8.16 8.16
14 0.27 102.05 86.90 8867.94 −8470.05 397.89 424.07 26.18 −26.18
15 0.29 100.88 66.19 6677.01 −6362.67 314.34 321.76 7.41 −7.41
16 0.31 106.90 59.86 6399.37 −5730.15 669.21 756.02 86.80 −86.80
17 0.33 107.66 90.32 9723.75 −8994.54 729.22 806.47 77.25 −77.25
18 0.35 101.79 94.74 9643.97 −9480.00 163.96 276.24 112.27 −112.27
19 0.37 101.76 69.88 7111.04 −6955.85 155.19 228.08 72.89 −72.89
20 0.38 101.83 75.10 7647.28 −7494.04 153.24 183.00 29.76 −29.76
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Table: An example of delta hedging strategy (positive P&L)

i ti S (ti ) ∆ (ti−1) VS (ti ) VB (ti ) V (ti ) C (ti ,S (ti )) X (ti ) Π (ti )
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 98.50 58.59 5771.31 −5273.36 497.95 489.70 −8.25 8.25
2 0.04 97.00 53.45 5184.51 −4771.31 413.19 396.75 −16.44 16.44
3 0.06 95.47 47.89 4571.99 −4236.14 335.85 311.62 −24.24 24.24
4 0.08 98.17 41.87 4110.19 −3664.81 445.38 419.94 −25.44 25.44
5 0.10 100.48 51.10 5134.88 −4575.85 559.03 528.68 −30.35 30.35
6 0.12 102.92 59.19 6092.33 −5394.04 698.28 664.00 −34.29 34.29
7 0.13 105.50 67.69 7140.94 −6274.05 866.89 829.99 −36.90 36.90
8 0.15 101.81 76.13 7750.53 −7171.44 579.09 550.21 −28.88 28.88
9 0.17 100.65 63.86 6427.97 −5928.66 499.31 457.48 −41.83 41.83

10 0.19 98.86 59.15 5847.59 −5459.40 388.19 337.04 −51.15 51.15
11 0.21 99.26 50.91 5053.11 −4649.03 404.09 335.31 −68.78 68.78
12 0.23 101.78 52.25 5317.65 −4786.50 531.15 458.03 −73.12 73.12
13 0.25 99.28 64.14 6367.78 −6002.74 365.03 288.19 −76.84 76.84
14 0.27 99.19 51.19 5077.96 −4722.07 355.89 257.52 −98.36 98.36
15 0.29 95.53 49.97 4773.36 −4604.77 168.59 92.40 −76.18 76.18
16 0.31 98.02 26.47 2594.85 −2362.61 232.23 148.05 −84.19 84.19
17 0.33 97.03 39.61 3843.35 −3653.84 189.51 83.97 −105.54 105.54
18 0.35 96.64 29.34 2835.17 −2659.65 175.51 44.51 −131.01 131.01
19 0.37 95.01 21.11 2005.37 −1866.05 139.32 3.75 −135.56 135.56
20 0.38 93.67 3.62 338.73 −204.45 134.27 0.00 −134.27 134.27
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Figure: Probability density function of the hedging ratio π
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Figure: Relationship between the hedging efficiency σ (π) and the hedging
frequency
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Figure: Impact of a jump on the hedging ratio π (t)
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Figure: Impact of a jump on the hedging ratio π (t)
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We have

∆ (t) =
∂ C (t,S (t))

∂ S (t)

and:

C (t + dt,S (t + h))− C (t,S (t)) ≈ ∆ (t) · (S (t + dt)− S (t))

⇒ Taylor expansion to other orders and other parameters
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The delta-gamma-theta approximation is:

C (t + dt,S (t + h))− C (t,S (t)) ≈ ∆ (t) · (S (t + dt)− S (t)) +

1

2
Γ (t) · (S (t + dt)− S (t))2 +

Θ (t) · ((t + dt)− t)

where:

Γ (t) =
∂2 C (t,S (t))

∂ S (t)2 =
∂∆ (t)

∂ S (t)

and:

Θ (t) =
∂ C (t,S (t))

∂ t
= −∂ C (t,S (t))

∂ T
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We have:

Θ (t) =
∂ C (t,S (t))

∂ t
= −∂ C (t,S (t))

∂ T

We recall that the option price satisfies the PDE:

1

2
σ2S2Γ + bS∆ + Θ− rC = 0

We deduce that the theta of the option can be calculated as follows:

Θ = rC − 1

2
σ2S2Γ− bS∆
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Example #2

We consider a call option, whose strike K is equal to 100. The risk-free
rate and the cost-of-carry parameter are equal to 5%. For the volatility
coefficient, we consider two cases: (a) σ = 20% and (b) σ = 50%.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 719 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The Black-Scholes model
Interest rate risk modeling

Greek sensitivities

Figure: Delta coefficient of the call option
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Figure: Gamma coefficient of the call option
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We assume a delta neutral hedging portfolio

The trader can face four configurations of residual risk:

Γ
− +

Θ
− X
+ X

The configurations (Γ < 0,Θ < 0) and (Γ > 0,Θ > 0) are not
realistic
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Two main configurations:

(a) a negative gamma exposure with a positive theta

(b) a positive gamma exposure with a negative theta

Two P&L profiles:

(a) If the gamma is negative, the best situation is obtained when the
asset price does not move. Any changes in the asset price reduce the
P&L, which can be negative if the gamma effect is more important
than the theta effect. We also notice that the gain is bounded and
the loss is unbounded in this configuration

(b) If the theta is negative, the loss is bounded and maximum when the
asset price does not move. Any changes in the asset price increase the
P&L because the gamma is positive. In this configuration, the gain is
unbounded
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Figure: P&L of the delta neutral hedging portfolio
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Figure: Illustration of the configuration (Γ > 0,Θ < 0)
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Definition

The implied volatility is the root of the following non-linear equation:

fBS (S0,K , σimplied,T , b, r) = V (T ,K )

where fBS is the Black-scholes formula and V (T ,K ) is the market
price of the option, whose maturity date is T and whose strike is K

By convention, the implied volatility is denoted by Σ, and is a
function of the parameters T and K :

σimplied = Σ (T ,K )
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Example #3

We consider a call option, whose maturity is one year. The current price of
the underlying asset is normalized and is equal to 100. Moreover, the
risk-free rate and the cost-of-carry parameter are equal to 5%. Below, we
report the market price of European call options of three assets for several
strikes:

K 90 95 98 100 101 102 105 110
C1 (T ,K ) 16.70 13.35 11.55 10.45 9.93 9.42 8.02 6.04
C2 (T ,K ) 18.50 14.50 12.00 10.45 9.60 9.00 7.50 5.70
C3 (T ,K ) 18.00 14.00 11.80 10.45 9.90 9.50 8.40 7.40
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Table: Implied volatility Σ (T ,K)

K 90 95 98 100 101 102 105 110
Σ1 (T ,K ) 20.00 20.01 19.99 20.0 20.01 19.99 20.00 20.00
Σ2 (T ,K ) 26.18 23.41 21.24 20.0 19.14 18.90 18.69 19.14
Σ3 (T ,K ) 24.53 21.95 20.68 20.0 19.93 20.20 20.95 23.43
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Figure: Volatility smile
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When the curve of implied volatility is decreasing and increasing, the
curve is called a volatility smile

When the curve of implied volatility is just decreasing, it is called a
volatility skew

If we consider the maturity dimension, the term structure of implied
volatility is known as the volatility surface
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Relationship between the implied volatility and the
risk-neutral density

We have:

Ct (T ,K ) = EQ
[
e−

∫ T
t

r ds (S (T )− K )+
∣∣∣Ft

]
= e−r(T−t)

∫ ∞
−∞

(S − K )+ qt (T ,S) dS

= e−r(T−t)

∫ ∞
K

(S − K ) qt (T ,S) dS

where qt (T ,S) is the risk-neutral probability density function of
S (T ) at time t

By definition, the risk-neutral cumulative distribution function
Qt (T ,S) is equal to:

Qt (T ,S) =

∫ S

−∞
qt (T , x) dx
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We deduce that:

∂ Ct (T ,K )

∂ K
= −e−r(T−t)

∫ ∞
K

qt (T ,S) dS

= −e−r(T−t) (1−Qt (T ,K ))

and:
∂2 Ct (T ,K )

∂ K 2
= e−r(T−t)qt (T ,K )

It follows that:

Qt (T ,K ) = Pr {S (T ) ≤ K | Ft}
= 1 + er(T−t) · ∂KCt (T ,K )
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We note Σt (T ,K ) the volatility surface and C?t (T ,K ,Σ) the
Black-Scholes formula. It follows that:

Qt (T ,K ) = 1 + er(T−t) · ∂KC?t (T ,K ,Σt (T ,K )) +

er(T−t) · ∂ΣC?t (T ,K ,Σt (T ,K )) · ∂KΣt (T ,K )

where:
∂KC?t (T ,K ,Σ) = −e−r(T−t) · Φ (d2)

and:

∂ΣC?t (T ,K ,Σ) = S (t) · e(b−r)(T−t) ·
√
T − t · φ

(
d2 + Σ

√
T − t

)
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The risk-neutral probability density function is equal to:

qt (T ,K ) = ∂KQt (T ,K ) = er(T−t) · ∂2
KCt (T ,K )

where:

∂2
KCt (T ,K ) = ∂2

KC?t (T ,K ,Σt) + 2 · ∂2
K ,ΣC?t (T ,K ,Σt) · ∂KΣt (T ,K ) +

∂ΣC?t (T ,K ,Σt) · ∂2
KΣt (T ,K ) +

∂2
ΣC?t (T ,K ,Σt) · (∂KΣt (T ,K ))2

and:

∂2
KC?t (T ,K ,Σ) = e−r(T−t) φ (d2)

KΣ
√
T − t

∂2
K ,ΣC?t (T ,K ,Σ) = e(b−r)(T−t) S (t) d1φ (d1)

ΣK

∂2
ΣC?t (T ,K ,Σ) = e(b−r)(T−t) S (t) d1d2

√
T − tφ (d1)

Σ
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Example #4

We assume that S (t) = 100, T − t = 10, b = r = 5% and:

Σt (T ,K ) = 0.25 + ln
(

1 + 10−6 (K − 90)2 + 10−6 (K − 180)2
)
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Figure: Risk-neutral probability density function
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Robustness of the Black-Scholes formula

We can show that:

V (T )− f (S (T )) =
1

2

∫ T

0

er(T−t)Γ (t)
(
Σ2 (T ,K )− σ2 (t)

)
S2 (t) dt

where f (S (T )) is the payoff of the option. We obtain the following
results:

if Γ (t) ≥ 0, a positive P&L is achieved by overestimating the realized
volatility:

Σ (T ,K ) ≥ σ (t) =⇒ V (T ) ≥ f (S (T ))

if Γ (t) ≤ 0, a positive P&L is achieved by underestimating the
realized volatility:

Σ (T ,K ) ≤ σ (t) =⇒ V (T ) ≥ f (S (T ))

the variance of the hedging error is an increasing function of the
absolute value of the gamma coefficient:

|Γ (t)| ↗=⇒ var (V (T )− f (S (T )))↗
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Example #5

We consider the replication of 100 ATM call options. The current price of
the asset is 100 and the maturity of the option is 6 months (or 130 trading
days). We consider the following parameters: b = r = 5%. We rebalance
the delta hedging portfolio every trading day. Moreover, we assume that
the option is priced and hedged with a 20% implied volatility.
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Figure: Hedging error when the implied volatility is 20%
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We obtain:
Pr {π > 0 | Σ = 20%, σ = 15%} = 99.04%

and:
Pr {π > 0 | Σ = 20%, σ = 25%} = 0.09%
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The instantaneous interest rate follows an Ornstein-Uhlenbeck
process: {

dr (t) = a (b − r (t)) dt + σ dW (t)
r (t0) = r0

The value V (t, r) of a zero-coupon bond satisfies the PDE:

1

2
σ2 ∂

2V (t, r)

∂ r2
+(a (b − r (t))− λ (t)σ)

∂ V (t, r)

∂ r
+
∂ V (t, r)

∂ t
−r (t)V (t, r) = 0

with V (T , r) = 1

The Feynman-Kac formula implies:

V (0, r0) = EQ
[
e
−
∫ T

0
r(t) dt

∣∣∣F0

]
where dr (t) = (a (b − r (t))− λ (t)σ) dt + σ dWQ (t)
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By assuming that λ (t) = λ, we have:

V (0, r0) = exp

(
−r0β −

(
b′ − σ2

2a2

)
(T − β)− σ2β2

4a

)

where b′ = b − λσ

a
and β =

1− e−aT

a
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We recall that the zero-coupon rate is defined by:

B (t,T ) = e−(T−t)R(t,T )

We deduce that:

R (t,T ) = − 1

T − t
lnB (t,T )

=

(
b′ − σ2

2a2

)
+

(
rt − b′ +

σ2

2a2

)
β

T − t
+

σ2β2

4a (T − t)
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Figure: Vasicek model (a = 2.5, b = 6% and σ = 5%)
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Let F (t,T1,T2) be the forward rate at time t for the period [T1,T2]:

B (t,T2) = e−(T2−T1)F (t,T1,T2)B (t,T1)

We deduce that the expression of F (t,T1,T2) is:

F (t,T1,T2) = − 1

(T2 − T1)
ln

B (t,T2)

B (t,T1)

It follows that the instantaneous forward rate is given by this equation:

f (t,T ) = F (t,T ,T ) = −∂ lnB (t,T )

∂ T

Thierry Roncalli Course 2023-2024 in Financial Risk Management 745 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The Black-Scholes model
Interest rate risk modeling

Vasicek model

Another expression of the price of the zero-coupon bond is:

B (t, rt) = exp

(
− (T − t)R∞ − (rt − R∞)

(
1− e−a(T−t)

a

)
−
σ2
(
1− e−a(T−t)

)2

4a3

)

where:

R∞ = lim
T→∞

R (t,T ) = b′ − σ2

2a2

Therefore, the instantaneous forward rate in the Vasicek model is:

f (t,T ) = R∞ + (rt − R∞) e−a(T−t) +
σ2
(
1− e−a(T−t)

)
e−a(T−t)

2a2
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Figure: Calibration of the Vasicek model
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Caps, floors and swaptions

Future dates T0,T1, . . . ,Tn

The payoff of a caplet is (Ti − Ti−1) (F (Ti−1,Ti−1,Ti )− K )+,
where K is the strike of the caplet and F (Ti−1,Ti−1,Ti ) is the
forward rate at the future date Ti−1

δi−1 = Ti − Ti−1 is the tenor of the caplet

Ti−1 is the resetting date (or the fixing date) of the forward rate

Ti is the maturity date of the caplet

A cap is a portfolio of successive caplets:

Cap (t) =
n∑

i=1

Caplet (t,Ti−1,Ti )
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A floor is a portfolio of successive floorlets:

Floor (t) =
n∑

i=1

Floorlet (t,Ti−1,Ti )

where the payoff of the floorlet is (Ti − Ti−1) (K − F (Ti−1,Ti−1,Ti ))+
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A par swap rate is the fixed rate of an interest rate swap:

Sw (t) =
B (t,T0)− B (t,Tn)∑n

i=1 (Ti − Ti−1) · B (t,Ti )

The payoff of a payer swaption is:

(Sw (T0)− K )+
n∑

i=1

(Ti − Ti−1)B (T0,Ti )

where Sw (T0) is the forward swap rate
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Caps, floors and swaptions

Generally, caps, floors and swaptions are written on the Libor rate, which
is defined as a simple forward rate:

L (t,Ti−1,Ti ) =
1

Ti − Ti−1

(
B (t,Ti−1)

B (t,Ti )
− 1

)
We have:

Caplet (t,Ti−1,Ti ) = EQ
[
e−

∫ Ti
t r(s) dsδi−1 (L (Ti−1,Ti−1,Ti )− K )+

∣∣∣Ft

]
and:

Swaption (t) = EQ

[
e−

∫ Tn
t

r(s) ds (Sw (T0)− K )+
n∑

i=1

δi−1B (T0,Ti )

∣∣∣∣∣Ft

]

⇒ the discount factor is stochastic and is not independent from the
forward rate L (Ti−1,Ti−1,Ti ) or the forward swap rate Sw (T0)
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Change of numéraire and equivalent martingale measure

The price of the contingent claim, whose payoff is V (T ) = f (S (T ))
at time T , is given by:

V (0) = EQ
[
e−

∫ T
0

r(s) ds · V (T )
∣∣∣F0

]
Q is the risk-neutral probability measure

We can rewrite this equation as follows:

V (0)

M (0)
= EQ

[
V (T )

M (T )

∣∣∣∣F0

]
where M (0) = 1 and:

M (t) = exp

(∫ t

0

r (s) ds

)
Under the probability measure Q, we know that Ṽ (t) = V (t) /M (t)
is an Ft-martingale
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Change of numéraire and equivalent martingale measure

The money market account M (t) is then the numéraire when the
martingale measure is the risk-neutral probability measure, but other
numéraires can be used in order to simplify pricing problems:

“The use of the risk-neutral probability measure has proved to
be very powerful for computing the prices of contingent claims
[...] We show here that many other probability measures can be
defined in the same way to solve different asset-pricing problems,
in particular option pricing. Moreover, these probability measure
changes are in fact associated with numéraire changes” (Geman
et al., 1995, page 443).
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Change of numéraire and equivalent martingale measure

Let us consider another numéraire N (t) > 0 and the associated probability
measure given by the Radon-Nikodym derivative:

dQ?

dQ
=

N (T ) /N (0)

M (T ) /M (0)
= e−

∫ T
0

r(s) ds · N (T )

N (0)

We have:

EQ?
[
V (T )

N (T )

∣∣∣∣F0

]
= EQ

[
V (T )

N (T )
· dQ?

dQ

∣∣∣∣Ft

]
=

M (0)

N (0)
· EQ

[
V (T )

M (T )

∣∣∣∣F0

]
=

M (0)

N (0)
· V (0)
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Change of numéraire and equivalent martingale measure

We deduce that:
V (0)

N (0)
= EQ?

[
V (T )

N (T )

∣∣∣∣F0

]
We have changed the numéraire (M (t)→ N (t)) and the probability
measure (Q→ Q?)

More generally, we have:

V (t) = N (t) · EQ?
[
V (T )

N (T )

∣∣∣∣Ft

]
Thanks to Girsanov theorem, we notice that e−

∫ t
0
r(s) dsN (t) is an

Ft-martingale
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Change of numéraire and equivalent martingale measure

The forward numéraire is the zero-coupon bond price of maturity T :

N (t) = B (t,T )

The probability measure is called the forward probability and is
denoted by Q? (T )

By noticing that N (T ) = B (T ,T ) = 1, we have:

V (t) = B (t,T )EQ?(T ) [V (T )| Ft ]
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Change of numéraire and equivalent martingale measure

In the case of a caplet, we obtain:

Caplet (t,Ti−1,Ti ) = δi−1EQ
[

M (t)

M (Ti )
(L (Ti−1,Ti−1,Ti )− K )+

∣∣∣∣Ft

]
= δi−1EQ?(Ti )

[
N (t)

N (Ti )
(L (Ti−1,Ti−1,Ti )− K )+

∣∣∣∣Ft

]
= δi−1B (t,Ti )EQ?(Ti )

[
(L (Ti−1,Ti−1,Ti )− K )+

∣∣∣Ft

]
where L (t,Ti−1,Ti ) is an Ft-martingale under the forward probability
measure Q? (Ti )

The general formula of the caplet price is:

Caplet (t,Ti−1,Ti ) = B (t,Ti )EQ?(Ti )

[(
1

B (Ti−1,Ti )
− (1 + δi−1K )

)+
∣∣∣∣∣Ft

]
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Change of numéraire and equivalent martingale measure

If we use the standard Black model, we obtain:

Caplet (t,Ti−1,Ti ) = δi−1B (t,Ti ) (L (t,Ti−1,Ti ) Φ (d1)− KΦ (d2))

where σi−1 is the volatility of the Libor rate L (t,Ti−1,Ti ),

d1 =
1

σi−1

√
Ti−1 − t

ln
L (t,Ti−1,Ti )

K
+

1

2
σi−1

√
Ti−1 − t

and:
d2 = d1 − σi−1

√
Ti−1 − t
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Change of numéraire and equivalent martingale measure

The annuity numéraire is equal to:

N (t) =
n∑

i=1

(Ti − Ti−1)B (t,Ti )

While the forward swap rate is a martingale under the annuity
probability measure Q?, the price of the swaption is:

Swaption (t) = EQ

[
M (t)

M (Tn)
(Sw (T0)− K )+

n∑
i=1

δi−1B (T0,Ti )

∣∣∣∣∣Ft

]

= EQ?
[

N (t)

N (T0)
(Sw (T0)− K )+

n∑
i=1

δi−1B (T0,Ti )

∣∣∣∣∣Ft

]
= N (t)EQ?

[
(Sw (T0)− K )+

∣∣∣Ft

]
= N (t)EQ?

[(
1− B (T0,Tn)

N (T0)
− K

)+
∣∣∣∣∣Ft

]
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The HJM model

Under the risk-neutral probability measure Q, the dynamics of the
instantaneous forward rate for the maturity T is given by:

f (t,T ) = f (0,T ) +

∫ t

0

α (s,T ) ds +

∫ t

0

σ (s,T ) dWQ (s)

where f (0,T ) is the current forward rate

Therefore, the stochastic differential equation is:

df (t,T ) = α (t,T ) dt + σ (t,T ) dWQ (t)
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The HJM model

We can show that:

α (t,T ) = σ (t,T )

∫ T

t

σ (t, u) du

This equation is known as the ‘drift restriction’ and is necessary to
ensure no-arbitrage opportunities

We have:

dB (t,T ) = r (t)B (t,T ) dt + b (t,T )B (t,T ) dWQ (t)

where b (t,T ) = −
∫ T

t
σ (t, u) du
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The HJM model

The drift restriction implies that the dynamics of the instantaneous
forward rate f (t,T ) is given by:

df (t,T ) =

(
σ (t,T )

∫ T

t

σ (t, u) du

)
dt + σ (t,T ) dWQ (t)

If we are interested in the instantaneous spot rate r (t), we obtain:

r (t) = f (t, t)

= r (0) +

∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du

)
ds +

∫ t

0

σ (s, t) dWQ (s)
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Market models

1 Libor market model (LMM)

Under the forward probability measure Q? (Ti+1), the Libor rate
Li (t) = L (t,Ti ,Ti+1) is a martingale:

dLi (t) = γi (t) Li (t) dW
Q?(Ti+1)
i (t)

We can use the Black formula to price caplets and floorlets where the
volatility σi is defined by:

σ2
i =

1

Ti − t

∫ Ti

t

γ2
i (s) ds

2 Swap market model (SMM)

We have:
dSw (t) = η (t) Sw (t) dW Q? (t)
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The uncertain volatility model (UVM)

We recall that:

V (T )− f (S (T )) =
1

2

∫ T

0

er(T−t)Γ (t)
(
Σ2 (T ,K )− σ2 (t)

)
S2 (t) dt

If we assume that σ (t) ∈ [σ−, σ+], we obtain a simple rule for achieving a
positive P&L:

if Γ (t) ≥ 0, we have to hedge the portfolio by considering an implied
volatility that is equal to the upper bound σ+;

if Γ (t) ≤ 0, we set the implied volatility to the lower bound σ−.

⇒ This rule is valid if the gamma of the option is always positive or
negative, that is when the payoff is convex

How to extend this rule when the gamma can change
its sign during the life of the option?
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The uncertain volatility model (UVM)

We assume that:

dS (t) = r (t)S (t) dt + σ (t)S (t) dWQ (t)

where:
σ− ≤ σ (t) ≤ σ+

Let V (t,S (t)) be the option price, whose payoff is f (S (T )).
V (t,S (t)) is bounded:

V− (t,S (t)) ≤ V (t,S (t)) ≤ V+ (t,S (t))

where V− (t,S (t)) = infQ(σ) EQ(σ)
[
exp

(
−
∫ T

t
r (s) ds

)
f (S (T ))

]
,

V+ (t,S (t)) = supQ(σ) EQ(σ)
[
exp

(
−
∫ T

t
r (s) ds

)
f (S (T ))

]
and

Q (σ) denotes all the probability measures
We can then show that V− and V+ satisfy the HJB equation:

sup / inf
σ−≤σ(t)≤σ+

(
1

2
σ2 (t)S2 ∂

2 V (t,S)

∂ S2
+ b (t)S

∂ V (t,S)

∂ S

)
+
∂ V (t,S)

∂ t
−r (t)V (t,S) = 0
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The uncertain volatility model (UVM)

Solving the HJB equation is equivalent to solve the modified
Black-Scholes PDE:{

1
2σ

2 (Γ (t,S))S2∂2
SV (t,S) + b (t)S∂SV (t,S) + ∂tV (t,S)− r (t)V (t,S) = 0

V (T ,S (T )) = f (S (T ))

where:

σ (x) =

{
σ+ if x ≥ 0
σ− if x < 0

for V (t,S (t)) = V+ (t,S (t))

and:

σ (x) =

{
σ− if x > 0
σ+ if x ≤ 0

for V (t,S (t)) = V− (t,S (t))

Thierry Roncalli Course 2023-2024 in Financial Risk Management 766 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

The uncertain volatility model (UVM)

Let umi be the numerical solution of V (tm,Si ). At each iteration m,
we approximate the gamma coefficient by the central difference
method:

Γ (tm,Si ) '
umi+1 − 2umi + umi+1

h2

By assuming that:

sign (Γ (tm,Si )) ≈ sign (Γ (tm+1,Si ))

we can compute the values taken by σ (Γ (t,S)) and solve the PDE
for the next iteration m + 1
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The uncertain volatility model (UVM)

If we consider the European call option, we have Γ (t,S) > 0,
meaning that:

V+ (t,S (t)) = CBS

(
t,S (t) , σ+

)
and:

V− (t,S (t)) = CBS

(
t,S (t) , σ−

)
where CBS (t,S , σ) is the Black-Scholes price at time t when the
underlying price is equal to S and the implied volatility is equal to Σ.
Then, the worst-case scenario occurs when the volatility σ (t) reaches
the upper bound σ+
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The uncertain volatility model (UVM)

Example #6

We consider a double KOC barrier option:

fBarrier (S (T )) = 1 {S (t) ∈ [L,H] , t ∈ T } · fVanilla (S (T ))

with the following parameters: K = 100, L = 80, H = 120, T = 1,
b = 5% and r = 5%. We assume that the volatility σ (t) lies in the range
of 15% and 25%. We assume a continuous barrier T = [0, 1] and a
window barrier T = [0.25, 0.75].

Thierry Roncalli Course 2023-2024 in Financial Risk Management 769 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

The uncertain volatility model (UVM)

Figure: Comparing BS and UVM prices of the double KOC barrier option
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The shifted log-normal model

This model assumes that the asset price S (t) is a linear transformation of
a log-normal random variable X (t):

S (t) = α (t) + β (t)X (t)

where β (t) ≥ 0. Then, the payoff of the European call option is:

f (S (T )) = (S (T )− K )+

= (α (T ) + β (T )X (T )− K )+

= β (T )

(
X (T )− K − α (T )

β (T )

)+

This type of approach is interesting because the pricing of options can
then be done using the Black-Scholes formula:

C (0,S0) = β (T )CBS

(
X0,

K − α (T )

β (T )
, σX ,T , bX , r

)
where bX and σX are the drift and diffusion coefficients of X (t) under the
risk-neutral probability measure Q
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The fixed-strike parametrization

Let us suppose that:

S (t) = α + β exp

((
bQ (t)− 1

2
σ2

)
t + σWQ (t)

)
We have S0 = α + β meaning that:

S (t) = α + (S0 − α) exp

((
bQ (t)− 1

2
σ2

)
t + σWQ (t)

)
Let b the cost-of-carry parameter of the asset. Under the risk-neutral
probability measure, the martingale condition is:

EQ [e−btS (t) | F0

]
= S0
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The fixed-strike parametrization

Since we have EQ [S (t)] = α + (S0 − α) eb
Q(t)t , we deduce that the

no-arbitrage condition implies that:

α + (S0 − α) eb
Q(t)t = S0e

bt ⇔ bQ (t) =
1

t
ln

(
S0e

bt − α
S0 − α

)
The payoff of the European call option is:

f (S (T )) = (S (T )− K )+ = ((S (T )− α)− (K − α))+

We deduce that the price of the option is given by:

C (0,S0) = CBS

(
S0 − α,K − α, σ,T , bQ (T ) , r

)
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The fixed-strike parametrization

Figure: Volatility skew generated by the SLN model (fixed-strike parametrization)
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The floating-strike parametrization

Let us now suppose that:

S (t) = αeϕt + βe(b− 1
2σ

2)t+σWQ(t)

We have S0 = α + β and EQ [S (t)] = αeϕt + βebt . We deduce that the
stochastic process e−btS (t) is a Ft-martingale if it is equal to:

S (t) = αebt + (S0 − α) e(b− 1
2σ

2)t+σWQ(t)

The payoff of the European call option becomes:

f (S (T )) = (S (T )− K )+ =
((
S (T )− αebT

)
−
(
K − αebT

))+

It follows that the option price is equal to:

C (0,S0) = CBS

(
S0 − α,K − αebT , σ,T , b, r

)
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The floating-strike parametrization

Figure: Volatility skew generated by the SLN model (floating-strike
parametrization)
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The forward parametrization

If we consider the forward price F (t) instead of the spot price S (t), the
two models coincide because we have b = 0:

dF (t) = σ (F (t)− α) dWQ (t)

and the price of the option is given by the Black formula:

C (0,S0) = CBlack (F0 − α,K − α, σ,T , r)
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The forward parametrization

We can prove the following results:

monotonicity in strike:

sign

(
∂ Σ (T ,K )

∂ K

)
= signα

upper and lower bounds:{
Σ (T ,K ) < σ if α > 0
Σ (T ,K ) > σ if α < 0

sharpness of bound:
lim

K→∞
Σ (T ,K ) = σ

short-expiry behavior:

lim
T→0

Σ (T ,K ) =


σ ln (F0/K )

ln ((F0 − α) / (K − α))
if K 6= F0

σ
(
1− αF−1

0

)
if K = F0
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Table: Error of the SLN implied volatility formula (in bps)

K
(α = 22, σ = 25%) (α = −70, σ = 12%)
1M 1Y 5Y 1M 1Y 5Y

80 1.0 11.1 57.0 −0.9 −12.9 −66.0
90 0.7 10.6 54.1 −1.0 −11.9 −61.4

100 0.9 10.2 51.6 −1.1 −11.3 −57.3
110 1.0 9.7 49.6 −0.8 −10.8 −53.8
120 0.7 9.3 47.7 −0.6 −10.3 −51.3
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Mixture of SLN distributions

One limitation of the SLN model is that it only produces a volatility
skew, and not a volatility smile

The (risk-neutral) probability density function f (x) of the asset price
density is given by the mixture of known basic densities:

f (x) =
m∑
j=1

pj fj (x)

where fj is the jth basic density, pj > 0 and
∑m

j=1 pj = 1

Let G (S (T )) be the payoff of an European option. We have:

C (0,S0) = EQ [e−rTG (S (T ))
∣∣F0

]
= . . . =

m∑
j=1

pjEQj
[
e−rTG (S (T ))

∣∣F0

]
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Mixture of SLN distributions

If we consider a mixture of two shifted log-normal models, the price of
the European call option is equal to:

C (0,S0) = p · CSLN (S0,K , σ1,T , b, r , α1) +

(1− p) · CSLN (S0,K , σ2,T , b, r , α2)

where CSLN is the formula of the SLN model

The model has five parameters: σ1, σ2, α1, α2 and p
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Mixture of SLN distributions

Example #7

We consider a calibration set of five options, whose strike and implied
volatilities are equal to:

Kj 80 90 100 110 120
Σ (1,Kj) 21% 19% 18.25% 18.5% 19%

The current value of the asset price is equal to 100, the maturity of
options is one year, the cost-of-carry parameter is set to 0 and the interest
rate is 5%

The parameters are estimated by minimizing the weighted least squares:

min
n∑

j=1

wj

(
Ĉj − CSLN (S0,Kj , σ1, σ2,Tj , b, r , α1, α2, p)

)2

where Ĉj = CBS (S0,Kj ,Σ (Tj ,Kj) ,Tj , b, r) and wj is the weight of the jth

option
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Mixture of SLN distributions

We consider three parameterizations:

(#1) the weights wj are uniform, and we impose that α1 = α2 and
p = 50%

(#2) the weights wj are uniform, and p is set to 25%

(#3) the weights wj are inversely proportional to option prices Ĉj ,
and p is set to 50%

Table: Calibrated parameters of the mixed SLN model

Model #1 #2 #3
σ1 16.5% 8.2% 10.2%
σ2 7.3% 17.2% 21.7%
α1 −53.3 −289.7 −145.2
α1 −53.3 19.6 47.4
p 50.0% 25.0% 50.0%
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Mixture of SLN distributions

Figure: Implied volatility (in %) of calibrated mixed SLN models
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Local volatility model

We assume that:

dS (t) = bS (t) dt + σ (t,S (t))S (t) dWQ (t)

σ (t,S)⇒ Σ (T ,K )

Σ (T ,K )⇒ σ (t,S) (Dupire model)

Relationship with the Breeden-Litzenberger model
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The Fokker-Planck equation

The risk-neutral probability density function qt (T ,S) of the asset price
S (T ) satisfies the forward Chapman-Kolmogorov equation:

∂ qt (T ,S)

∂ T
= −∂ [bSqt (T ,S)]

∂ S
+

1

2

∂2
[
σ2 (T ,S)S2qt (T ,S)

]
∂ S2

The initial condition is:

qt (t,S) = 1 {S = St}

where St is the value of S (t) that is known at time t
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The Breeden-Litzenberger formulas

We have:

Ct (T ,K ) = e−r(T−t)

∫ ∞
K

(S − K ) qt (T ,S) dS

∂ Ct (T ,K )

∂ K
= −e−r(T−t)

∫ ∞
K

qt (T ,S) dS

∂2 Ct (T ,K )

∂ K 2
= e−r(T−t)qt (T ,K )

∂ Ct (T ,K )

∂ T
= −rCt (T ,K ) + e−r(T−t)

∫ ∞
K

(S − K )
∂ qt (T ,S)

∂ T
dS

Thierry Roncalli Course 2023-2024 in Financial Risk Management 787 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

Derivation of the forward equation

We deduce that:

∂ Ct (T ,K )

∂ T
= −rCt (T ,K ) + e−r(T−t)I

where:

I =
1

2
σ2 (T ,K )K 2qt (T ,K ) + ber(T−t)

(
Ct (T ,K )− K

∂ Ct (T ,K )

∂ K

)
It follows that:

∂ Ct (T ,K )

∂ T
= −rCt (T ,K ) +

1

2
σ2 (T ,K )K 2 ∂

2 Ct (T ,K )

∂ K 2
+

b

(
Ct (T ,K )− K

∂ Ct (T ,K )

∂ K

)
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Derivation of the forward equation

We conclude that:

1

2
σ2 (T ,K )K 2 ∂

2 Ct (T ,K )

∂ K 2
− bK

∂ Ct (T ,K )

∂ K
−

∂ Ct (T ,K )

∂ T
+ (b − r)Ct (T ,K ) = 0
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Differences between backward and forward PDE
approaches

The backward PDE is:{
1
2σ

2 (t,S)S2∂2
SV (t,S) + bS∂SV (t,S) + ∂tV (t,S)− rV (t,S) = 0

V (T ,S (T )) = f (T ,S (T ) ,K )

The forward PDE is:{
1
2σ

2 (T ,K )K 2∂2
KV (T ,K )− bK∂KV (T ,K )− ∂TV (T ,K ) + (b − r)V (T ,K ) = 0

V (t,K ) = f (t,St ,K )
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Differences between backward and forward PDE
approaches

In the backward formulation, the state variables are t and S , whereas
the fixed variables are T and K

In the forward formulation, the state variables are T and K , whereas
the fixed variables are the current time t and the current asset price St

The backward PDE approach suggests that we can hedge the option
using a dynamic portfolio of the underlying asset

The forward PDE approach suggests that we can hedge the option
using a static portfolio of call and put options
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Differences between backward and forward PDE
approaches

We consider the pricing of an European call option with the following
parameters: S0 = 100, K = 100, σ (t,S) = 20%, T = 0.5, b = 2%
and r = 5%

In the case of the backward PDE, we consider the usual boundary
conditions: {

C (t,S) = 0
∂SC (t,+∞) = 1

For the forward PDE, the boundary conditions are:{
∂KC (T , 0) = −1
C (T ,+∞) = 0

The backward and forward PDEs are solved using the
Crank-Nicholson scheme
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Differences between backward and forward PDE
approaches
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Duality between local volatility and implied volatility

We have:

σ2 (T ,K ) = 2
bK∂KC (T ,K ) + ∂TC (T ,K )− (b − r)C (T ,K )

K 2∂2
KC (T ,K )

Thierry Roncalli Course 2023-2024 in Financial Risk Management 794 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

Duality between local volatility and implied volatility

We can show:

σ (T ,K ) =

√
A (T ,K )

B (T ,K )

where:

A (T ,K ) = Σ2 (T ,K ) + 2bKTΣ (T ,K ) ∂KΣ (T ,K ) +

2TΣ (T ,K ) ∂TΣ (T ,K )

and:

B (T ,K ) = 1 + 2K
√
Td1∂KΣ (T ,K ) + K 2TΣ (T ,K ) ∂2

KΣ (T ,K ) +

K 2Td1d2 (∂KΣ (T ,K ))2
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Duality between local volatility and implied volatility

Example #8

We assume that the implied volatility is equal to:

Σ (T ,K ) = Σ0 + α (S0 − K )2

where Σ0 = 20%, α = 1 bp, S0 = 100 and b = 5%.
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Duality between local volatility and implied volatility

Figure: Calibrated local volatility σ (T , S) (in %)
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Duality between local volatility and implied volatility

If there is no skew, the local volatility function does not depend on the
strike:

σ2 (T ) = Σ2 (T ) + 2TΣ (T )
∂ Σ (T )

∂ T

We notice that:

σ2 (T ) = Σ2 (T ) + 2TΣ (T )
∂ Σ (T )

∂ T
=
∂ TΣ2 (T )

∂ T

or:

Σ2 (T ) =
1

T

∫ T

0

σ2 (t) dt

The implied variance is then the time series average of the local variance
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Duality between local volatility and implied volatility

Let x be the log-moneyness:

x = ϕ (T ,K ) = ln
S0

K
+ bT

We introduce the functions Σ̃ and σ̃ such that
Σ (T ,K ) = Σ̃ (T , ϕ (T ,K )) and σ (T ,K ) = σ̃ (T , ϕ (T ,K ))

We can show that the implied volatility is the harmonic mean of the
local volatility:

1

Σ̃ (0, x)
=

∫ 1

0

dy

σ̃ (0, xy)

It follows that:
∂ Σ̃ (0, 0)

∂ x
=

1

2

∂ σ̃ (0, 0)

∂ x

The ATM slope of the implied volatility near expiry is equal to one
half the slope of the local volatility
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Dupire model in practice

Time interpolation (e.g., linear interpolation of the total implied
variance υ (T ,K ) = TΣ2 (T ,K ))

Non-parametric interpolation (e.g., cubic spline interpolation)

Parametric interpolation (e.g., SVI parametrization)
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Dupire model in practice

Figure: Implied volatility surface Σ (T ,K) (in %)
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Dupire model in practice

Figure: Local volatility surface σ (T ,K) (in %)
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Hedging coefficients

The delta of the option is:

∆ ≈ V (T ,K ,St + ε)− V (T ,K ,St − ε)

2ε

The gamma of the option is:

Γ ≈ V (T ,K ,St + ε)− 2V (T ,K ,St) + V (T ,K ,St − ε)

ε2

The vega is the sensitivity of the price to a parallel shift of
Σ (T ,K ,St):

υ =
V ′ (T ,K ,St)− V (T ,K ,St)

ε′

where V ′ (T ,K ,St) is the option price obtained when the implied
volatility surface is Σ (T ,K ,St) + ε′
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Hedging coefficients

“Market smiles and skews are usually managed by using local
volatility models a la Dupire. We discover that the dynamics of the
market smile predicted by local vol models is opposite of observed
market behavior: when the price of the underlying decreases, local
vol models predict that the smile shifts to higher prices; when the
price increases, these models predict that the smile shifts to lower
prices. Due to this contradiction between model and market, delta
and vega hedges derived from the model can be unstable and may
perform worse than naive Black-Scholes’ hedges” (Hagan et al.,
2002, page 84).
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Application to exotic options

We assume that S0, b = 5% and r
The option parameters are K = 100, L = 90 and H = 115
The maturity is set to one year

Table: Barrier option pricing with the local volatility model

Option Payoff LV
BS-PDE BS-RR

Σ1 Σ2 Σ1 Σ2

Call (S (T )− K )+ 8.85 8.96 8.78 8.96 8.78

Put (K − S (T ))+ 3.97 4.08 3.90 4.08 3.90

DOC 1 {S (t) > L} · (S (T )− K )+ 7.98 8.14 8.05 8.11 8.02

DOP 1 {S (t) > L} · (K − S (T ))+ 0.26 0.27 0.28 0.25 0.27

UOC 1 {S (t) < H} · (S (T )− K )+ 0.99 0.88 0.94 0.83 0.89

UOP 1 {S (t) < H} · (K − S (T ))+ 3.81 3.90 3.75 3.89 3.74

KOC 1 {S (t) ∈ [L,H]} · (S (T )− K )+ 0.65 0.56 0.64 0.52 0.59

KOP 1 {S (t) ∈ [L,H]} · (K − S (T ))+ 0.20 0.20 0.22 0.19 0.21
BCC 1 {S (T ) ≥ K} 0.58 0.56 0.57 0.56 0.57
BCP 1 {S (T ) ≤ K} 0.37 0.39 0.38 0.39 0.38
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Stochastic volatility models

We assume that the joint dynamics of the spot price S (t) and the
stochastic volatility σ (t) is:{

dS (t) = µ (t)S (t) dt + σ (t)S (t) dW1 (t)
dσ (t) = ζ (σ (t)) dt + ξ (σ (t)) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t
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Stochastic volatility models

The fundamental pricing equation is:

1

2
σ2S2∂2

SV (t,S , σ) + ρσSξ (σ) ∂2
S,σV (t,S , σ) +

1

2
ξ2 (σ) ∂2

σV (t,S , σ)

+ (µ− λSσ)S∂SV (t,S , σ) + (ζ (σ)− λσξ (σ)) ∂σV (t,S , σ)

+∂tV (t,S , σ)− rV (t,S , σ) = 0

where V (t,S , σ) is the price of the contingent claim,
V (T ,S (T )) = f (S (T )) and f (S (T )) is the option payoff
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Stochastic volatility models

The market price of the spot risk W1 (t) is:

λS (t) =
µ (t)− b (t)

σ (t)

We introduce the function ζ ′ (y):

ζ ′ (σ (t)) = ζ (σ (t))− λσ (t) ξ (σ (t))

The PDE becomes:

1

2
σ2S2∂2

SV (t,S , σ) + ρσSξ (σ) ∂2
S,σV (t,S , σ) +

1

2
ξ2 (σ) ∂2

σV (t,S , σ)

+bS∂SV (t,S , σ) + ζ ′ (σ) ∂σV (t,S , σ) + ∂tV (t,S , σ)− rV (t,S , σ) = 0
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Stochastic volatility models

Using the Girsanov theorem, we deduce that the risk-neutral dynamics
is: {

dS (t) = b (t)S (t) dt + σ (t)S (t) dWQ
1 (t)

dσ (t) = ζ ′ (σ (t)) dt + ξ (σ (t)) dWQ
2 (t)

The martingale solution is then equal to:

V0 = EQ
[
e−

∫ T
0

r(t) dt f (S (T ))
∣∣∣F0

]
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Hedging portfolio

In the case of the Black-Scholes model, delta and vega sensitivities are
equal to:

∆BS =
∂ VBS (S0,K ,Σ,T )

∂ S0

and:

υBS =
∂ VBS (S0,K ,Σ,T )

∂ Σ
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Hedging portfolio

In the case of the stochastic volatility model, we have:

∆SV =
∂ VSV (S0,K , σ0,T )

∂ S0

If we assume that VSV (S0,K , σ0,T ) = VBS (S0,K ,ΣSV (T ,S0) ,T ), we
obtain:

∆SV =
∂ VBS (S0,K ,ΣSV,T )

∂ S0
+
∂ VBS (S0,K ,ΣSV,T )

∂ ΣSV
· ∂ ΣSV (T ,S0)

∂ S0

= ∆BS + υBS ·
∂ ΣSV (T ,S0)

∂ S0

⇒ The delta of the SV model depends on the BS vega
Generally, we have ∂S0 ΣSV (T ,S0) ≥ 0 implying that ∆SV ≥ ∆BS
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Hedging portfolio

The natural hedging portfolio should consist in two long/short
exposures since we have two risk factors S (t) and σ (t)

We can define the vega sensitivity as follows:

υSV =
∂ VSV (S0,K , σ0,T )

∂ σ0

However, this definition has no interest since the stochastic volatility
σ (t) cannot be directly or even indirectly trade

This is why most of traders prefer to use a BS vega:

υSV =
∂ VBS (S0,K ,ΣSV (T ,S0) ,T )

∂ ΣSV

The vega is calculated with respect to the implied volatility
ΣSV (T ,S0) deduced from the stochastic volatility model
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Heston model

We have: {
dS (t) = µS (t) dt +

√
v (t)S (t) dW1 (t)

dv (t) = κ (θ − v (t)) dt + ξ
√

v (t) dW2 (t)

where S (0) = S0, v (0) = v0 and W (t) = (W1 (t) ,W2 (t)) is a
two-dimensional Wiener process with E [W1 (t)W2 (t)] = ρ t
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Heston model

The stochastic variance v (t) follows a CIR process: θ is the long-run
variance, κ is the mean-reverting parameter and ξ is the volatility of
the variance (also called the vovol parameter)

We have σ (t) =
√
v (t) and:

dσ (t) =

((
κθ

2
− ξ2

8

)
1

σ (t)
− 1

2
κσ (t)

)
dt +

1

2
ξ dW2 (t)

The stochastic volatility is then an Ornstein-Uhlenbeck process if we
impose θ = ξ2/ (4κ)
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Heston model

The PDE is:

1

2
vS2∂2

SV + ρξvS∂2
S,vV +

1

2
ξ2v∂2

vV

+bS∂SV + (κ (θ − v (t))− λv) ∂vV + ∂tV − rV = 0

The risk-neutral dynamics is:{
dS (t) = bS (t) dt +

√
v (t)S (t) dWQ

1 (t)

dv (t) = (κ (θ − v (t))− λv (t)) dt + ξ
√

v (t) dWQ
2 (t)
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Heston model

The closed-form solutions of European call and put options are:

C0 = S0e
(b−r)TP1 − Ke−rTP2

P0 = S0e
(b−r)T (P1 − 1)− Ke−rT (P2 − 1)

where the probabilities P1 and P2 satisfy:

Pj =
1

2
+

1

π

∫ ∞
0

Re

(
e−iφ ln Kϕj (S0, v0,T , φ)

iφ

)
dφ

ϕj (S0, v0,T , φ) = exp (Cj (T , φ) + Dj (T , φ) v0 + iφ lnS0)

Cj (T , φ) = ibφT +
aj
ξ2

(
(bj − iρξφ+ dj)T − 2 ln

(
1− gje

djT

1− gj

))
Dj (T , φ) =

bj − iρξφ+ dj
ξ2

(
1− edjT

1− gjedjT

)
gj =

bj − iρξφ+ dj
bj − iρξφ− dj

dj =

√
(iρξφ− bj)

2 − ξ2 (2iujφ− φ2)

where a1 = a2 = κθ, b1 = κ+ λ− ρξ, b2 = κ+ λ, u1 = 1/2 and u2 = −1/2
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Heston model

Example # 9

The parameters are equal to S0 = 100, b = r = 5%, v0 = θ = 4%,
κ = 0.5, ξ = 0.9 and λ = 0. We consider the pricing of the European call
option, whose maturity is three months.
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Figure: Implied volatility of the Heston model (in %)
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Heston model

Figure: Skew ω (T ,K) =
∂ Σ (T ,K)

∂ K
of the Heston model (in bps)
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SABR model

The dynamics of the forward rate F (t) is given by:{
dF (t) = α (t)F (t)β dWQ

1 (t)

dα (t) = να (t) dWQ
2 (t)

where E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t

The model has 4 parameters:

1 α the current value of α (t)

2 β the exponent of the forward rate

3 ν the log-normal volatility of α (t)

4 ρ the correlation between the two Brownian motions
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The implied Black volatility is:

ΣB (T ,K ) =
α

(F0K )(1−β)/2
(

1 + (1−β)2

24 ln2 F0

K + (1−β)4

1920 ln4 F0

K

) ( z

χ (z)

)
·

(
1 +

(
(1− β)2

α2

24 (F0K )1−β +
ρανβ

4 (F0K )(1−β)/2
+

2− 3ρ2

24
ν2

)
T

)

where:

z = να−1 (F0K )(1−β)/2 ln
F0

K

and:
χ (z) = ln

(√
1− 2ρz + z2 + z − ρ

)
− ln (1− ρ)
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Figure: Impact of the parameter β
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Figure: Impact of the parameters α, ν and ρ
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The parameters β and ρ impact the slope of the smile in a similar way.
Then, they cannot be jointly identifiable. For example, let us consider the
following smile when F0 is equal to 5%: ΣB (1, 3%) = 13%,
ΣB (1, 4%) = 10%, ΣB (1, 5%) = 9% and ΣB (1, 7%) = 10%. If we
calibrate this smile for different values of β, we obtain the following
solutions:

β α ν ρ
0.0 0.0044 0.3203 0.2106
0.5 0.0197 0.3244 0.0248
1.0 0.0878 0.3388 −0.1552
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Figure: Implied volatility for different parameter sets (β, ρ)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 825 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

SABR model

There are two approaches for estimating β:

1 β can be chosen from prior beliefs (β = 0 for the normal model,
β = 0.5 for the CIR model and β = 1 for the log-normal model)

2 β can be statistically estimated by considering the dynamics of the
forward rate. Indeed, we have

Σt (T ,Ft) '
α

F 1−β
t

We can consider the following linear regression:

ln Σt (T ,Ft) = lnα + (β − 1) lnFt + ut
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Table: Calibration of the parameter β in the SABR model

Rate
Level Difference Empirical quantile of β̂t,t+h

β̂ R2
c β̂ R2

c 10% 25% 50% 75% 90%
1y1y −0.06 0.91 0.59 0.15 −2.01 −0.14 0.71 1.00 2.17
1y5y −0.29 0.87 0.32 0.27 −1.80 −0.28 0.73 1.11 2.76

1y10y −0.37 0.80 0.34 0.22 −2.04 −0.23 0.71 1.11 2.69
5y1y 0.42 0.29 0.35 0.22 −1.58 −0.31 0.71 1.00 2.38
5y5y −0.01 0.73 0.23 0.28 −2.12 −0.36 0.61 1.00 2.52

5y10y −0.10 0.69 0.27 0.23 −1.99 −0.30 0.70 1.05 2.58
10y1y 0.96 0.00 0.28 0.20 −1.88 −0.20 0.80 1.07 2.43
10y5y −0.10 0.65 0.28 0.20 −2.02 −0.29 0.73 1.02 2.76

10y10y −0.47 0.73 0.27 0.20 −1.71 −0.24 0.85 1.07 2.93
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Figure: Probability density function of the estimate β̂ (SABR model)
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Once we have set the value of β, we estimate the parameters (α, ν, ρ)
by fitting the observed implied volatilities

However, we have seen that α is highly related to the ATM volatility.
Indeed, we have:

ΣB (T ,F0) =
α

F 1−β
0

(
1 +

(
(1− β)2

α2

24F 2−2β
0

+
ρανβ

4F 1−β
0

+
2− 3ρ2

24
ν2

)
T

)
We deduce that:

α3

(
(1− β)2 T

24F 2−2β
0

)
+α2

(
ρνβT

4F 1−β
0

)
+α

(
1 +

2− 3ρ2

24
ν2T

)
−ΣB (T ,F0)F 1−β

0 = 0

Let α = gα (ΣB (T ,F0) , ν, ρ) be the positive root of the cubic
equation. Therefore, imposing that the smile passes through the ATM
volatility ΣB (T ,F0) allows to reduce the calibration to two
parameters (ν, ρ)
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Example #10

We consider the following smile:

K (in %) 2.8 3.0 3.5 3.7 4.0 4.5 5.0 7.0
Σ (T ,K ) (in %) 13.2 12.8 12.0 11.6 11.0 10.0 9.0 10.0

The maturity T is equal to one year and the forward rate F0 is set to 5%
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If we consider a stochastic log-normal model (β = 1), we obtain the
following results:

Calibration α (in %) β ν ρ (in %) RSS ΣATM (in %)
#1 9.466 1.00 0.279 −23.70 0.630 9.51
#2 8.944 1.00 0.322 −22.90 1.222 9.00
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Figure: Calibration of the SABR model

Thierry Roncalli Course 2023-2024 in Financial Risk Management 832 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

SABR model

The sensitivities correspond to the following formulas:

∆ =
∂ CB

∂ F0
+
∂ CB

∂ Σ
· ∂ ΣB (T ,K )

∂ F0

and:

υ =
∂ CB

∂ Σ
· ∂ ΣB (T ,K )

∂ α

To obtain these formulas, we apply the chain rule on the Black
formula by assuming that the volatility Σ is not constant and depends
on F0 and α

Thierry Roncalli Course 2023-2024 in Financial Risk Management 833 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

The uncertain volatility model (UVM)
The shifted log-normal model
Local volatility model
Stochastic volatility models

SABR model

We notice that the vega is defined with respect to the parameter α. This
approach is little used in practice, because it is difficult to hedge this
model parameter. This is why traders prefer to compute the vega with
respect to the ATM volatility:

υ =
∂ CB

∂ Σ
· ∂ ΣB (T ,K )

∂ α
· ∂ α

∂ ΣATM

where ΣATM = ΣB (T ,F0)
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Bartlett (2006) proposes a refinement for computing the delta. Indeed, a
shift in F0 produces a shift in α, because the two processes F (t) and α (t)
are correlated. Since we have:

dα (t) = να (t) dWQ
2 (t)

= να (t)
(
ρ dWQ

1 (t) +
√

1− ρ2 dW (t)
)

and:

dWQ
1 (t) =

dF (t)

α (t)F (t)β

we deduce that:

dα (t) =
νρ

F (t)β
dF (t) + να (t)

√
1− ρ2 dW (t)
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The new delta is then:

∆? =
∂ CB

∂ F0
+
∂ CB

∂ Σ

(
∂ ΣB (T ,K )

∂ F0
+
∂ ΣB (T ,K )

∂ α
· ∂ α
∂ F0

)
=

∂ CB

∂ F0
+
∂ CB

∂ Σ

(
∂ ΣB (T ,K )

∂ F0
+

νρ

F (t)β
∂ ΣB (T ,K )

∂ α

)
= ∆ +

νρ

F (t)β
υ

⇒ The new delta incorporates a part of the vega risk

Thierry Roncalli Course 2023-2024 in Financial Risk Management 836 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

Factor risk
Dividend risk
Correlation risk
Liquidity risk

Factor models

Factor models: Vasicek, CIR, HJM, etc.

Interest rates are linked to some factors X (t), which can be
observable or not observable

The factor is directly the instantaneous interest rate r (t) in Vasicek
or CIR models

Multi-factor models by considering explicit factors (level, slope,
convexity, etc.)

Professional practice based on non-explicit factors
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Linear and quadratic Gaussian models

Let us assume that the instantaneous interest rate r (t) is linked to
the factors X (t) under the risk-neutral probability Q as follows:

r (t) = α (t) + β (t)> X (t) + X (t)> Γ (t)X (t)

where α (t) is a scalar, β (t) is a n × 1 vector and Γ (t) is a n × n
matrix

The factors follow an Ornstein-Uhlenbeck process:

dX (t) = (a (t) + B (t)X (t)) dt + Σ (t) dWQ (t)

where a (t) is a n × 1 vector, B (t) is a n × n matrix, Σ (t) is a n × n
matrix and WQ (t) is a standard n-dimensional Brownian motion
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There exists a family of α̂ (t,T ), β̂ (t,T ) and Γ̂ (t,T ) such that the price
of the zero-coupon bond B (t,T ) is given by:

B (t,T ) = exp
(
−α̂ (t,T )− β̂ (t,T )> X (t)− X (t)> Γ̂ (t,T )X (t)

)
where α̂ (t,T ), β̂ (t,T ) and Γ̂ (t,T ) solve a system of Riccati equations.
If we assume that the matrix Γ̂ (t,T ) is symmetric, we obtain:

∂t α̂ (t,T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t,T )
)
− β̂ (t,T )> a (t) +

1

2
β̂ (t,T )>Σ (t) Σ (t)> β̂ (t,T )− α (t)

∂t β̂ (t,T ) = −B (t)> β̂ (t,T ) + 2Γ̂ (t,T ) Σ (t) Σ (t)> β̂ (t,T )−
2Γ̂ (t,T ) a (t)− β (t)

∂t Γ̂ (t,T ) = 2Γ̂ (t,T ) Σ (t) Σ (t)> Γ̂ (t,T )−
2Γ̂ (t,T )B (t)− Γ (t)

with the boundary conditions α̂ (T ,T ) = β̂ (T ,T ) = Γ̂ (T ,T ) = 0
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Linear and quadratic Gaussian models

The forward interest rate F (t,T1,T2) is given by:

F (t,T1,T2) = − 1

T2 − T1
ln

B (t,T2)

B (t,T1)

=
α̂ (t,T2)− α̂ (t,T1) +

(
β̂ (t,T2)− β̂ (t,T2)

)>
X (t)

T2 − T1
+

X (t)>
(

Γ̂ (t,T2)− Γ̂ (t,T1)
)
X (t)

T2 − T1

We deduce that the instantaneous forward rate is equal to:

f (t,T ) = α (t,T ) + β (t,T )> X (t) + X (t)> Γ (t,T )X (t)

where α (t,T ) = ∂T α̂ (t,T ), β (t,T ) = ∂T β̂ (t,T ) and
Γ (t,T ) = ∂T Γ̂ (t,T )
It follows that α (t) = α (t, t) = ∂t α̂ (t, t), β (t) = β (t, t) = ∂t β̂ (t, t) and
Γ (t) = Γ (t, t) = ∂t Γ̂ (t, t)
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Linear and quadratic Gaussian models

Let V (t,X ) be the price of the option, whose payoff is f (x). It satisfies
the following PDE:

1

2
trace

(
Σ (t) ∂2

XV (t,X ) Σ (t)>
)

+ (a (t) + B (t)X ) ∂XV (t,X ) +

∂tV (t,X )−
(
α (t) + β (t)> X + X>Γ (t)X

)
V (t,X ) = 0

Once we have specified the functions α (t), β (t), Γ (t), a (t), B (t) and
Σ (t), we can then price the option by solving numerically the previous
multidimensional PDE with the terminal condition V (T ,X ) = f (X )
Most of the time, the payoff is not specified with respect to the state
variables X , but depends on the interest rate r (t). In this case, we use the
following transformation:

f (r) = f
(
α (T ) + β (T )> X + X>Γ (T )X

)
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Dynamics of risk factors under the forward probability
measure

We have:

dB (t,T )

B (t,T )
= r (t) dt −

(
2Γ̂ (t,T )X (t) + β̂ (t,T )

)>
Σ (t) dWQ (t)

We deduce that:

WQ?(T ) (t) = WQ (t) +

∫ t

0

Σ (s)>
(

2Γ̂ (s,T )X (s) + β̂ (s,T )
)

ds

defines a Brownian motion under Q? (T )
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Dynamics of risk factors under the forward probability
measure

It follows that:

dX (t) =
(
ã (t) + B̃ (t)X (t)

)
dt + Σ (t) dWQ?(T ) (t)

where:
ã (t) = a (t)− Σ (t) Σ (t)> β̂ (t,T )

and:
B̃ (t) = B (t)− 2Σ (t) Σ (t)> Γ̂ (t,T )

We conclude that X (t) is Gaussian under any forward probability measure
Q? (T ):

X (t) ∼ N (m (0, t) ,V (0, t))
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Dynamics of risk factors under the forward probability
measure

El Karoui et al. (1992) showed that the conditional mean and variance
satisfies the following forward differential equations:

∂Tm (t,T ) = a (T )+B (T )m (t,T )−2V (t,T ) Γ (T )m (t,T )−V (t,T )β (T )

and:

∂TV (t,T ) = V (t,T )B (T )> + B (T )V (t,T )− 2V (t,T ) Γ (T )V (t,T ) +

Σ (T ) Σ (T )>

If t is equal to zero, the initial conditions are m (0, 0) = X (0) = 0
and V (0, 0) = 0

If t 6= 0, we proceed in two steps: first, we calculate numerically the
solutions m (0, t) and V (0, t), and second, we initialize the system
with m (t, t) = m (0, t) and V (t, t) = V (0, t)
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Dynamics of risk factors under the forward probability
measure

In fact, the previous forward differential equations are not obtained under
the traditional forward probability measure Q? (T ), but under the
probability measure Q? (t,T ) defined by the following Radon-Nykodin
derivative:

dQ? (t,T )

dP
= e−

∫ T
0

r(s) dse
∫ T
t

f (t,s) ds

The reason is that we would like to price at time t any caplet with maturity
T . Therefore, this is the maturity T and not the filtration Ft that moves
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Pricing caplets and swaptions

The formula of the Libor rate L (t,Ti−1,Ti ) at time t between the dates
Ti−1 and Ti is:

L (t,Ti−1,Ti ) =
1

Ti − Ti−1

(
B (t,Ti−1)

B (t,Ti )
− 1

)
It follows that the price of the caplet is given by:

Caplet = B (0, t)EQ?(t)
[
(B (t,Ti−1)− (1 + (Ti − Ti−1)K )B (t,Ti ))+

]
where Q? (t) is the forward probability measure. We can then calculate
the price using two approaches:

1 we can solve the partial differential equation

2 we can calculate the mathematical expectation using numerical
integration
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Pricing caplets and swaptions

In the first approach, we consider the PDE with the following payoff:

f (X ) = max (0, g (X ))

where:

g (X ) = exp
(
−α̂ (t,Ti−1)− β̂ (t,Ti−1)> X − X>Γ̂ (t,Ti−1)X

)
−

(1 + δi−1K ) exp
(
−α̂ (t,Ti )− β̂ (t,Ti )

> X − X>Γ̂ (t,Ti )X
)

In the second approach, we have X (t) ∼ N (m (0, t) ,V (0, t)) under the
forward probability Q? (t). We deduce that:

Caplet (t,Ti−1,Ti ) = B (0, t)

∫
f (x)φn (x ;m (0, t) ,V (0, t)) dx

This integral can be computed numerically using Gauss-Legendre
quadrature methods
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Calibration and practice of factor models

The calibration of the model consists in fitting the functions α (t),
β (t), Γ (t), a (t), B (t) and Σ (t)

Generally, professionals assume that a (t) = 0 and B (t) = 0
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Calibration and practice of factor models

Figure: Volatility smiles generated by the quadratic Gaussian model
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Impact of dividends on option prices

Let us consider that the underlying asset pays a continuous dividend
yield d during the life of the option

The risk-neutral dynamics become:

dS (t) = (r − d)S (t) dt + σS (t) dW (t)

We deduce that the Black-Scholes formula is equal to:

C0 = S0e
−dTΦ (d1)− Ke−rTΦ (d2)

where:

d1 =
1

σ
√
T

(
ln

S0

K
+ (r − d)T

)
+

1

2
σ
√
T

d2 = d1 − σ
√
T
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Impact of dividends on option prices

Figure: Impact of dividends on the call option price

Thierry Roncalli Course 2023-2024 in Financial Risk Management 851 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

Factor risk
Dividend risk
Correlation risk
Liquidity risk

Models of discrete dividends

We denote by S (t) the market price and Y (t) an additional process that
is assumed to be a geometric Brownian motion:

dY (t) = rY (t) dt + σY (t) dWQ (t)

⇒ Three main approaches to take into account discrete dividends
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Models of discrete dividends

1. Y (t) is the capital price process excluding the dividends and the
market price S (t) is equal to the sum of the capital price and the
discounted value of future dividends:

S (t) = Y (t) +
∑

tk∈[t,T ]

D (tk) e−r(tk−t)

To price European options, we then replace the price S0 by the
adjusted price Y0 = S0 −

∑
tk≤T D (tk) e−rtk
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Models of discrete dividends

2. We define D (t) as the sum of capitalized dividends paid until time t:

D (t) =
∑

1 {tk < t} · D (tk) er(t−tk )

The market price S (t) is equal to the difference between the
cum-dividend price Y (t) and the capitalized dividends :

S (t) = Y (t)− D (t)

We deduce that:

(S (T )− K )+ = (Y (T )− D (T )− K )+

= (Y (T )− (K + D (T )))+

= (Y (T )− K ′)
+

In the case of European options, we replace the strike K by the
adjusted strike K ′ = K +

∑
tk≤T D (tk) er(T−tk )
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Models of discrete dividends

3. The last approach considers the market price process as a
discontinuous process:{

dS (t) = rS (t) dt + σS (t) dWQ (t) if tk−1 < t < tk
S (t) = S

(
t−k
)
− D (tk) if t = tk
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Models of discrete dividends

Example #11

We assume that S0 = 100, K = 100, σ = 30%, T = 1, r = 5% and
b = 5%. A dividend D (t1) will be paid at time t1 = 0.5

Table: Impact of the dividend on the option price

Call Put
D (t1) (#1) (#2) (#3) (#1) (#2) (#3)

0 14.23 14.23 14.23 9.35 9.35 9.35
3 12.46 12.81 12.69 10.51 10.86 10.64
5 11.34 11.92 11.69 11.34 11.92 11.59

10 8.78 9.93 9.42 13.66 14.80 14.20
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The two-asset case

We consider the example of a basket option on two assets

Let Si (t) be the price process of asset i at time t. According to the
Black-Scholes model, we have:{

dS1 (t) = b1S1 (t) dt + σ1S1 (t) dWQ
1 (t)

dS2 (t) = b2S2 (t) dt + σ2S2 (t) dWQ
2 (t)

where bi and σi are the cost-of-carry and the volatility of asset i

Under the risk-neutral probability measure Q, WQ
1 (t) and WQ

2 (t) are
two correlated Brownian motions:

E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t
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The two-asset case

The option price associated to the payoff
(α1S1 (T ) + α2S2 (T )− K )+ is the solution of the two-dimensional
PDE:

1

2
σ2

1S
2
1∂

2
S1
C +

1

2
σ2

2S
2
2∂

2
S2
C + ρσ1σ2S1S2∂

2
S1,S2

C+

b1S1∂S1C + b2S2∂S2C + ∂tC − rC = 0

with the terminal condition:

C (T ,S1,S2) = (α1S1 + α2S2 − K )+

Using the Feynman-Kac representation theorem, we have:

C0 = EQ
[
e−

∫ T
0

r dt (α1S1 (T ) + α2S2 (T )− K )+
]
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The two-asset case

The value C0 can be calculated using numerical integration

In some cases, the two-dimensional problem can be reduced to
one-dimensional integration. For instance, if α1 < 0, α2 > 0 and
K > 0, we obtain:

C0 =

∫
R

BS (S? (x) ,K? (x) , σ?,T , b?, r)φ (x) dx

where:

S? (x) = α2S2 (0) eρσ2

√
Tx

K? (x) = K − α1S1 (0) e(b1− 1
2σ

2
1)T+σ1

√
Tx

σ? = σ2

√
1− ρ2

b? = b2 −
1

2
ρ2σ2

2
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The two-asset case

Example #12

We assume that S1 (0) = S2 (0) = 100, σ1 = σ2 = 20%, b1 = 10%, b2 = 0
and r = 5%. We calculate the price of a basket option, whose maturity T
is equal to one year. For the other characteristics (α1, α2,K ), we consider
different set of parameters: (1,−1, 1), (1,−1, 5), (0.5, 0.5, 100),
(0.5, 0.5, 110) and (0.1, 0.1,−5)
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The two-asset case

Table: Impact of the correlation on the basket option price

α1 1.0 1.0 0.5 0.5 0.1
α2 −1.0 −1.0 0.5 0.5 0.1
K 1 5 100 110 −5
−0.90 20.41 18.23 5.39 0.66 24.78
−0.75 19.81 17.62 6.06 1.35 24.78
−0.50 18.76 16.55 6.97 2.31 24.78
−0.25 17.61 15.37 7.73 3.12 24.78

ρ 0.00 16.35 14.08 8.39 3.83 24.78
0.25 14.94 12.61 8.99 4.46 24.78
0.50 13.30 10.88 9.54 5.05 24.78
0.75 11.29 8.66 10.05 5.59 24.78
0.90 9.78 6.81 10.34 5.90 24.78
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Cega sensitivity

Table: Relationship between the basket option price and the correlation
parameter ρ

Option type Payoff Increasing Decreasing

Spread (S2 − S1 − K )+ X
Basket (α1S1 + α2S2 − K )+

α1α2 > 0 α1α2 < 0

Max (max (S1,S2)− K )+ X
Min (min (S1,S2)− K )+ X

Best-of call/call max
(

(S1 − K1)+
, (S2 − K2)+

)
X

Best-of put/put max
(

(K1 − S1)+
, (K2 − S2)+

)
X

Worst-of call/call min
(

(S1 − K1)+
, (S2 − K2)+

)
X

Option!Worst-of Worst-of put/put min
(

(K1 − S1)+
, (K2 − S2)+

)
X

Thierry Roncalli Course 2023-2024 in Financial Risk Management 862 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

Factor risk
Dividend risk
Correlation risk
Liquidity risk

Cega sensitivity

The sensitivity of the option price with respect to the correlation
parameter ρ is called the cega:

c =
∂ C0

∂ρ

The previous analysis leads us to define the lower and upper bounds of the
option price when the cega is either positive or negative:

C0 ∈
{

[C0 (ρ−) ,C0 (ρ+)] if c ≥ 0
[C0 (ρ+) ,C0 (ρ−)] if c ≤ 0

We can define the conservative price by taking the maximum between
C0 (ρ−) and C0 (ρ+)
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Cega sensitivity

In the case where ρ− = −1 and ρ+ = 1, the bounds satisfy the
one-dimensional PDE:{

1
2σ

2
1S

2∂2
SC (t,S) + b1S∂SC (t,S) + ∂tC (t,S)− rC (t,S) = 0

C (T ,S) = f (S , g (S))

where:

g (S) = S2 (0)

(
S

S1 (0)

)±σ2/σ1

exp

((
b2 −

1

2
σ2

2 ±
(

1

2
σ1σ2 −

σ2

σ1
b1

))
T

)
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The implied correlation

Figure: Correlation smile
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Riding on the smiles

In practice, the two volatilities are unknown and must be deduced
from the volatility smiles Σ1 (K1,T ) and Σ2 (K2,T ) of the two assets

The difficulty is then to find the corresponding strikes K1 and K2
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Riding on the smiles

In the case of the general payoff (α1S1 (T ) + α2S2 (T )− K )+, we
have: {

(α1 = 1, α2 = 0,K ≥ 0)⇒ K1 = K
(α1 = −1, α2 = 0,K ≤ 0)⇒ K1 = −K

and: {
(α1 = 0, α2 = 1,K ≥ 0)⇒ K2 = K
(α1 = 0, α2 = −1,K ≤ 0)⇒ K2 = −K

The payoff of the spread option can be written as follows:

(S1 (T )− S2 (T )− K )+ = ((S1 (T )− K1) + (K2 − S2 (T )))+

≤ (S1 (T )− K1)+︸ ︷︷ ︸
Call

+ (K2 − S2 (T ))+︸ ︷︷ ︸
Put

where K1 = K2 + K

Therefore, the price of the spread option can be bounded above by a
call price on S1 plus a put price on S2

However, the implicit strikes can take different values
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Riding on the smiles

Let us assume that S1 (0) = S2 (0) = 100 and K = 4. Below, we give five
pairs (K1,K2) and the associated implied volatilities
(Σ1 (K1,T ) ,Σ2 (K2,T )):

Pair #1 #2 #3 #4 #5
K1 104 103 102 101 100
K2 100 99 98 97 96

Σ1 (K1,T ) 16% 17% 18% 19% 20%
Σ2 (K2,T ) 20% 22% 24% 26% 28%

C0 10.77 11.37 11.99 12.61 13.24
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The multi-asset case
How to define a conservative price?

In the multivariate case, the PDE becomes:

1

2

n∑
i=1

σ2
i S

2
i ∂

2
Si
C +

n∑
i<j

ρi,jσiσjSiSj∂
2
Si ,Sj

C+

n∑
i=1

biSi∂iC + ∂tC − rC = 0

with the terminal value:

C (T ,S1, . . . ,Sn) = f (S1 (T ) , . . . ,Sn (T ))

Here, ρi,j is the correlation between the Brownian motions of Si and
Sj

Most of the time, the trader uses the same value ρ for all asset
correlations ρi,j
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The multi-asset case
How to define a conservative price?

We can show that the price is increasing (resp. decreasing) with
respect to ρ if

∑n
i<j σiσj∂

2
Si ,Sj

f is a positive (resp. negative) measure

Let us consider the payoff function
f (S1,S2,S3) = (S1 + S2 − S3 − K )+, we have:

n∑
i<j

σiσj∂
2
Si ,Sj

f = (σ1σ2 − σ1σ3 − σ2σ3) · 1 {S1 + S2 − S3 − K = 0}

If σ1σ2 − σ1σ3 − σ2σ3 > 0, the price increases with respect to ρ, and
if σ1σ2 − σ1σ3 − σ2σ3 < 0, the price decreases with respect to ρ
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The multi-asset case
Issues with constant correlation matrices

We consider a basket of n stocks

The basket volatility is given by:

σB =

√√√√ n∑
i=1

w2
i σ

2
i + 2

n∑
i>j

ρi,jwiwjσiσj

where wi is the weight of asset i in the basket, σi the volatility of
asset i and ρi,j the correlation between asset i and asset j
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The multi-asset case
Issues with constant correlation matrices

The implied correlation ρimp of the basket is defined as the root of
the following equation:

σ2
B −

n∑
i=1

w2
i σ

2
i − 2ρimp

n∑
i>j

wiwjσiσj = 0

We deduce that:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i

2
∑n

i>j wiwjσiσj

Another expression of the implied correlation is:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i(∑n

i=1 wiσi
)2 −

∑n
i=1 w

2
i σ

2
i
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The multi-asset case
Issues with constant correlation matrices

We consider the following payoff:

(S1 (T )− S2 (T ) + S3 (T )− S4 (T )− K )+ · 1 {S5 (T ) > L}

We calculate the option price of maturity 3 months using the
Black-Scholes model. We assume that Si (0) = 100 and Σi = 20% for the
five underlying assets, the strike K is equal to 5, the barrier L is equal to
105, and the interest rate r is set to 5%.
When the correlation matrix is C5 (ρ), the maximum price of 2.20 is not a
conservative price. For instance, if we consider the correlation matrix
below, we obtain an option price of 3.99:

C =


1.0000 0.2397 0.7435 −0.1207 0.0563
0.2397 1.0000 −0.0476 −0.0260 −0.1958
0.7435 −0.0476 1.0000 0.2597 0.1153
−0.1207 −0.0260 0.2597 1.0000 −0.7568

0.0563 −0.1958 0.1153 −0.7568 1.0000


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The multi-asset case
Issues with constant correlation matrices

Figure: Price of the basket option with respect to the constant correlation
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Liquidity risk

Liquidity risk impacts trading costs of the hedging strategy

An example is the put option ⇒ short strategy (can we be short on the
underlying asset?)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 875 / 1695



Basics of option pricing
Volatility risk

Other model risk topics

Factor risk
Dividend risk
Correlation risk
Liquidity risk

Liquidity risk

Let us consider the replication of a call option. If the price of the
underlying asset decreases sharply, the delta is reduced and the option
trader has to sell asset shares. Because of their trend-following aspect,
option traders generally buy assets when the market goes up and sell
assets when the market goes down. However, we know that liquidity is
asymmetric between these two market regimes. Therefore, it is more
difficult to adjust the delta exposure when the market goes down, because
of the lack of liquidity
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Liquidity risk

Let us consider one of the most famous examples, which concerns call
options on Sharpe ratio. Starting from 2004, some banks proposed to
investors a payoff of the form (SR (0;T )− K )+ where SR (0;T ) is the
Sharpe ratio of the underlying asset during the option period. This payoff
is relatively easy to replicate. However, most of call options on Sharpe
ratio have been written on mutual funds and hedge funds. The difficulty
comes from the liquidity of these underlying assets. For instance, the
trader does not know exactly the price of the asset when he executes his
order because of the notice period. This can be a big issue when the fund
offers weekly or monthly liquidity. The second problem comes from the fact
that the fund manager can impose lock-up period and gates. For instance,
a gate limits the amount of withdrawals. During the 2008/2009 hedge
fund crisis, many traders faced gate provisions and were unable to adjust
their delta. This crisis marketed the end of call options on Sharpe ratio.
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Exercises

Option pricing models

Exercise 9.4.1 – Option pricing and martingale measure
Exercise 9.4.2 – The Vasicek model
Exercise 2.4.4 – Change of numéraire and Girsanov theorem

Volatility

Exercise 9.4.8 – Dupire local volatility model
Exercise 2.4.9 – The stochastic normal model
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Sklar’s theorem

A bi-dimensional copula is a function C which satisfies the following
properties:

1 Dom C = [0, 1]× [0, 1]
2 C (0, u) = C (u, 0) = 0 and C (1, u) = C (u, 1) = u for all u in [0, 1]
3 C is 2-increasing:

C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0

for all (u1, u2) ∈ [0, 1]2, (v1, v2) ∈ [0, 1]2 such that 0 ≤ u1 ≤ v1 ≤ 1
and 0 ≤ u2 ≤ v2 ≤ 1

Remark

This means that C is a cumulative distribution function with uniform
marginals:

C (u1, u2) = Pr {U1 ≤ u1,U2 ≤ u2}

where U1 and U2 are two uniform random variables
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Sklar’s theorem

We consider the function C⊥ (u1, u2) = u1u2. We have:

C⊥ (0, u) = C⊥ (u, 0) = 0

C⊥ (1, u) = C⊥ (u, 1) = u

Since we have v2 − u2 ≥ 0 and v1 ≥ u1, it follows that
v1 (v2 − u2) ≥ u1 (v2 − u2) and :

v1v2 + u1u2 − u1v2 − v1u2 ≥ 0

⇒ C⊥ is a copula function and is called the product copula
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Multivariate probability distribution with given marginals

Let F1 and F2 be two univariate distributions.
F (x1, x2) = C (F1 (x1) ,F2 (x2)) is a probability distribution with marginals
F1 and F2:

ui = Fi (xi ) defines a uniform transformation (ui ∈ [0, 1])

C (F1 (x1) ,F2 (∞)) = C (F1 (x1) , 1) = F1 (x1)

Sklar also shows that:

Any bivariate distribution F admits a copula representation:

F (x1, x2) = C (F1 (x1) ,F2 (x2))

The copula C is unique if the marginals are continuous
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Multivariate probability distribution with given marginals

The Gumbel logistic distribution is equal to:

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1

We have:
F1 (x1) ≡ F (x1,∞) =

(
1 + e−x1

)−1

and F2 (x2) ≡ (1 + e−x2 )
−1

. The quantile functions are then:

F−1
1 (u1) = ln u1 − ln (1− u1)

and F−1
2 (u2) = ln u2 − ln (1− u2). We finally deduce that:

C (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)
=

u1u2

u1 + u2 − u1u2

is the Gumbel logistic copula
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Expression of the copula density function

If the joint distribution function F (x1, x2) is absolutely continuous, we
obtain:

f (x1, x2) = ∂1,2 F (x1, x2)

= ∂1,2 C (F1 (x1) ,F2 (x2))

= c (F1 (x1) ,F2 (x2)) · f1 (x1) · f2 (x2)

where f (x1, x2) is the joint probability density function, f1 and f2 are the
marginal densities and c is the copula density:

c (u1, u2) = ∂1,2 C (u1, u2)

Remark

The condition C (v1, v2)− C (v1, u2)− C (u1, v2) + C (u1, u2) ≥ 0 is
equivalent to ∂1,2 C (u1, u2) ≥ 0 when the copula density exists.
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Expression of the copula density function

In the case of the Gumbel logistic copula, we have:

C (u1, u2) =
u1u2

u1 + u2 − u1u2

and:

c (u1, u2) =
2u1u2

(u1 + u2 − u1u2)3
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Expression of the copula density function

We deduce that:

c (u1, u2) =
f
(
F−1

1 (u1) ,F−1
2 (u2)

)
f1
(
F−1

1 (u1)
)
· f2
(
F−1

2 (u2)
)

If we consider the Normal copula, we have:

C (u1, u2; ρ) = Φ
(
Φ−1 (u1) ,Φ−1 (u2) ; ρ

)
and:

c (u1, u2; ρ) =
2π
(
1− ρ2

)−1/2
exp

(
− 1

2(1−ρ2)

(
x2

1 + x2
2 − 2ρx1x2

))
(2π)−1/2 exp

(
− 1

2x
2
1

)
· (2π)−1/2 exp

(
− 1

2x
2
2

)
=

1√
1− ρ2

exp

(
−1

2

(
x2

1 + x2
2 − 2ρx1x2

)
(1− ρ2)

+
1

2

(
x2

1 + x2
2

))

where x1 = Φ−1
1 (u1) and x2 = Φ−1

2 (u2)
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Expression of the copula density function

Figure: Construction of a bivariate probability distribution with given marginals
and the Normal copula
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Concordance ordering

Let C1 and C2 be two copula functions. We say that the copula C1 is
smaller than the copula C2 and we note C1 ≺ C2 if we have:

C1 (u1, u2) ≤ C2 (u1, u2)

for all (u1, u2) ∈ [0, 1]2

Let Cθ (u1, u2) = C (u1, u2; θ) be a family of copula functions that depends
on the parameter θ. The copula family {Cθ} is totally ordered if, for all
θ2 ≥ θ1, Cθ2 � Cθ1 (positively ordered) or Cθ2 ≺ Cθ1 (negatively ordered)

Remark

The Normal copula family is positively ordered
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Fréchet bounds

We have:
C− ≺ C ≺ C+

where:
C− (u1, u2) = max (u1 + u2 − 1, 0)

and:
C+ (u1, u2) = min (u1, u2)
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The multivariate case

The canonical decomposition of a multivariate distribution function is:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

We have:
C− ≺ C ≺ C+

where:

C− (u1, . . . , un) = max

(
n∑

i=1

ui − n + 1, 0

)
and:

C+ (u1, . . . , un) = min (u1, . . . , un)

Remark

C− is not a copula when n ≥ 3
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Countermonotonicity and comonotonicity

Let X = (X1,X2) be a random vector with distribution F. We define the
copula of (X1,X2) by the copula of F:

F (x1, x2) = C 〈X1,X2〉 (F1 (x1) ,F2 (x2))

Definition

X1 and X2 are countermonotonic – or C 〈X1,X2〉 = C− – if there
exists a random variable X such that X1 = f1 (X ) and X2 = f2 (X )
where f1 and f2 are respectively decreasing and increasing functions.
In this case, X2 = f (X1) where f = f2 ◦ f −1

1 is a decreasing function

X1 and X2 are independent if the dependence function is the product
copula C⊥

X1 are X2 are comonotonic – or C 〈X1,X2〉 = C+ – if there exists a
random variable X such that X1 = f1 (X ) and X2 = f2 (X ) where f1
and f2 are both increasing functions. In this case, X2 = f (X1) where
f = f2 ◦ f −1

1 is an increasing function
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Countermonotonicity and comonotonicity

We consider a uniform random vector (U1,U2):

C 〈U1,U2〉 = C− ⇔ U2 = 1− U1

C 〈U1,U2〉 = C+ ⇔ U2 = U1

We consider a standardized Gaussian random vector (X1,X2). We
have U1 = Φ (X1) and U2 = Φ (X2). We deduce that:

C 〈X1,X2〉 = C− ⇔ Φ (X2) = 1− Φ (X1)⇔ X2 = −X1

C 〈X1,X2〉 = C+ ⇔ Φ (X2) = Φ (X1)⇔ X2 = X1
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Countermonotonicity and comonotonicity

We consider a random vector (X1,X2) where Xi ∼ N
(
µi , σ

2
i

)
. We

have

Ui = Φ

(
Xi − µi

σi

)
We deduce that:

C 〈X1,X2〉 = C− ⇔ Φ

(
X2 − µ2

σ2

)
= 1− Φ

(
X1 − µ1

σ1

)
⇔ Φ

(
X2 − µ2

σ2

)
= Φ

(
−X1 − µ1

σ1

)
⇔ X2 =

(
µ2 +

σ2

σ1
µ1

)
− σ2

σ1
X1

and:

C 〈X1,X2〉 = C+ ⇔ X2 =

(
µ2 −

σ2

σ1
µ1

)
+
σ2

σ1
X1

Thierry Roncalli Course 2023-2024 in Financial Risk Management 895 / 1695



Copulas
Extreme value theory

Definition and properties
Parametric copula functions
Estimation

Countermonotonicity and comonotonicity

We consider a random vector (X1,X2) where Xi ∼ LN
(
µi , σ

2
i

)
. We

have:

Ui = Φ

(
lnXi − µi

σi

)
We deduce that:

C 〈X1,X2〉 = C− ⇔ lnX2 =

(
µ2 +

σ2

σ1
µ1

)
− σ2

σ1
lnX1

⇔ X2 = e

(
µ2+

σ2
σ1
µ1

)
e−

σ2
σ1

ln X1

⇔ X2 = e

(
µ2+

σ2
σ1
µ1

)
X
−σ2
σ1

1

and:

C 〈X1,X2〉 = C+ ⇔ lnX2 =

(
µ2 −

σ2

σ1
µ1

)
+
σ2

σ1
lnX1

⇔ X2 = e

(
µ2−

σ2
σ1
µ1

)
X
σ2
σ1

1
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Countermonotonicity and comonotonicity

If X1 ∼ LN (0, 1) and X2 ∼ LN (0, 1), we have:

C 〈X1,X2〉 = C− ⇔ X2 =
1

X1

If X1 ∼ LN
(
0, 22

)
and X2 ∼ LN (0, 1), we have:

C 〈X1,X2〉 = C+ ⇔ X2 =
√

X1

Linear dependence vs non-linear dependence

The concepts of counter- and comonotonicity concepts generalize the cases
where the linear correlation of a Gaussian vector is equal to −1 or +1
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Non-linear stochastic dependence

Scale invariance property

If h1 and h2 are two increasing functions on ImX1 and ImX2, then we
have:

C 〈h1 (X1) , h2 (X2)〉 = C 〈X1,X2〉
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Non-linear stochastic dependence

Proof (marginals)

We note F and G the probability distributions of the random vectors
(X1,X2) and (Y1,Y2) = (h1 (X1) , h2 (X2)). The marginals of G are:

G1 (y1) = Pr {Y1 ≤ y1}
= Pr {h1 (X1) ≤ y1}
= Pr

{
X1 ≤ h−1

1 (y1)
}

(because h1 is strictly increasing)

= F1

(
h−1

1 (y1)
)

and G2 (y2) = F2

(
h−1

2 (y2)
)
. We deduce that G−1

1 (u1) = h1

(
F−1

1 (u1)
)

and G−1
2 (u2) = h2

(
F−1

2 (u2)
)
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Non-linear stochastic dependence

Proof (copula)

By definition, we have:

C 〈Y1,Y2〉 (u1, u2) = G
(
G−1

1 (u1) ,G−1
2 (u2)

)
Moreover, it follows that:

G
(
G−1

1 (u1) ,G−1
2 (u2)

)
= Pr

{
Y1 ≤ G−1

1 (u1) ,Y2 ≤ G−1
2 (u2)

}
= Pr

{
h1 (X1) ≤ G−1

1 (u1) , h2 (X2) ≤ G−1
2 (u2)

}
= Pr

{
X1 ≤ h−1

1

(
G−1

1 (u1)
)
,X2 ≤ h−1

2

(
G−1

2 (u2)
)}

= Pr
{
X1 ≤ F−1

1 (u1) ,X2 ≤ F−1
2 (u2)

}
= F

(
F−1

1 (u1) ,F−1
2 (u2)

)
Because we have C 〈X1,X2〉 (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
, we deduce

that:
C 〈Y1,Y2〉 = C 〈X1,X2〉
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Non-linear stochastic dependence

We have:

G (y1, y2) = C 〈X1,X2〉 (G1 (y1) ,G2 (y1))

= C 〈X1,X2〉
(
F1

(
h−1

1 (y1)
)
,F2

(
h−1

2 (y2)
))

Applying an increasing transformation does not change the copula
function, only the marginals

The copula function is the minimum exhaustive statistic of the dependence
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Non-linear stochastic dependence

If X1 and X2 are two positive random variables, the previous theorem
implies that:

C 〈X1,X2〉 = C 〈lnX1,X2〉
= C 〈lnX1, lnX2〉
= C 〈X1, expX2〉

= C
〈√

X1, expX2

〉
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Concordance measures

A numeric measure m of association between X1 and X2 is a measure of
concordance if it satisfies the following properties:

1 −1 = m 〈X ,−X 〉 ≤ m 〈C〉 ≤ m 〈X ,X 〉 = 1;

2 m
〈
C⊥
〉

= 0;

3 m 〈−X1,X2〉 = m 〈X1,−X2〉 = −m 〈X1,X2〉;
4 if C1 ≺ C2, then m 〈C1〉 ≤ m 〈C2〉;

We have:
C ≺ C⊥ ⇒ m 〈C〉 < 0

and:
C � C⊥ ⇒ m 〈C〉 > 0
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Kendall’s tau and Spearman’s rho

Kendall’s tau is the probability of concordance minus the probability
of discordance:

τ = Pr {(Xi − Xj) · (Yi − Yj) > 0} − Pr {(Xi − Xj) · (Yi − Yj) < 0}

= 4
x

[0,1]2

C (u1, u2) dC (u1, u2)− 1

Spearman’s rho is the linear correlation of the rank statistics:

% =
cov (FX (X ) ,FY (Y ))

σ (FX (X )) · σ (FY (Y ))

= 12
x

[0,1]2

u1u2 dC (u1, u2)− 3

For the normal copula, we have:

τ =
2

π
arc sin ρ and % =

6

π
arc sin

ρ

2
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Exhaustive vs non-exhaustive statistics of stochastic
dependence

Figure: Contour lines of bivariate densities (Normal copula with τ = 50%)
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Linear correlation

The linear correlation (or Pearson’s correlation) is defined as follows:

ρ 〈X1,X2〉 =
E [X1 · X2]− E [X1] · E [X2]

σ (X1) · σ (X2)

It satisfies the following properties:

if C 〈X1,X2〉 = C⊥, then ρ 〈X1,X2〉 = 0

ρ is an increasing function with respect to the concordance measure:

C1 � C2 ⇒ ρ1 〈X1,X2〉 ≥ ρ2 〈X1,X2〉

ρ 〈X1,X2〉 is bounded:

ρ− 〈X1,X2〉 ≤ ρ 〈X1,X2〉 ≤ ρ+ 〈X1,X2〉

and the bounds are reached for the Fréchet copulas C− and C+
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Linear correlation

1 However, we don’t have ρ 〈C−〉 = −1 and ρ 〈C+〉 = +1. If we use the
stochastic representation of Fréchet bounds, we have:

ρ− 〈X1,X2〉 = ρ+ 〈X1,X2〉 =
E [f1 (X ) · f2 (X )]− E [f1 (X )] · E [f2 (X )]

σ (f1 (X )) · σ (f2 (X ))

The solution of the equation ρ− 〈X1,X2〉 = −1 is f1 (x) = a1x + b1

and f2 (x) = a2x + b2 where a1a2 < 0. For the equation
ρ+ 〈X1,X2〉 = +1, the condition becomes a1a2 > 0

2 Moreover, we have:

ρ 〈X1,X2〉 = ρ 〈f1 (X1) , f2 (X2)〉 ⇔

 f1 (x) = a1x + b1

f2 (x) = a2x + b2

a1a2 > 0

Remark

The linear correlation is only valid for a linear (or Gaussian) world. The
copula function generalizes the concept of linear correlation in a
non-Gaussian non-linear world
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Linear correlation

Example

We consider the bivariate log-normal random vector (X1,X2) where
X1 ∼ LN

(
µ1, σ

2
1

)
, X2 ∼ LN

(
µ2, σ

2
2

)
and ρ = ρ 〈lnX1, lnX2〉.

We can show that:

E [X p1

1 · X
p2

2 ] = exp

(
p1µ1 + p2µ2 +

p2
1σ

2
1 + p2

2σ
2
2

2
+ p1p2ρσ1σ2

)
and:

ρ 〈X1,X2〉 =
exp (ρσ1σ2)− 1√

exp (σ2
1)− 1 ·

√
exp (σ2

2)− 1
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Linear correlation

If σ1 = 1 and σ2 = 3, we obtain the following results:

Copula ρ 〈X1,X2〉 τ 〈X1,X2〉 % 〈X1,X2〉
C− −0.008 −1.000 −1.000

ρ = −0.7 −0.007 −0.494 −0.683
C⊥ 0.000 0.000 0.000

ρ = 0.7 0.061 0.494 0.683
C+ 0.162 1.000 1.000
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Tail dependence

Definition

We consider the following statistic:

λ+ = lim
u→1−

1− 2u + C (u, u)

1− u

We say that C has an upper tail dependence when λ+ ∈ (0, 1] and C has
no upper tail dependence when λ+ = 0

For the lower tail dependence λ−, the limit becomes:

λ− = lim
u→0+

C (u, u)

u

We notice that λ+ and λ− can also be defined as follows:

λ+ = lim
u→1−

Pr {U2 > u | U1 > u}

and:
λ− = lim

u→0+
Pr {U2 < u | U1 < u}
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Tail dependence

For the copula functions C− and C⊥, we have λ− = λ+ = 0

For the copula C+, we obtain λ− = λ+ = 1

In the case of the Gumbel copula:

C (u1, u2; θ) = exp

(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

we obtain λ− = 0 and λ+ = 2− 21/θ

In the case of the Clayton copula:

C (u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ

we obtain λ− = 2−1/θ and λ+ = 0
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Tail dependence

The quantile-quantile dependence function is equal to:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
=

Pr
{
X2 > F−1

2 (α) ,X1 > F−1
1 (α)

}
Pr
{
X1 > F−1

1 (α)
}

=
1− Pr

{
X1 ≤ F−1

1 (α)
}
− Pr

{
X2 ≤ F−1

2 (α)
}

1− Pr
{
X1 ≤ F−1

1 (α)
} +

Pr
{
X2 ≤ F−1

2 (α) ,X1 ≤ F−1
1 (α)

}
1− Pr {F1 (X1) ≤ α}

=
1− 2α + C (α, α)

1− α
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Tail dependence

Figure: Quantile-quantile dependence measures λ+ (α) and λ− (α)
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Risk interpretation of the tail dependence

We consider two portfolios, whose losses correspond to the random
variables L1 and L2 with probability distributions F1 and F2. We have:

λ+ (α) = Pr
{
L2 > F−1

2 (α) | L1 > F−1
1 (α)

}
= Pr {L2 > VaRα (L2) | L1 > VaRα (L1)}
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Archimedean copulas

Definition

An Archimedean copula is defined by:

C (u1, u2) =

{
ϕ−1 (ϕ (u1) + ϕ (u2)) if ϕ (u1) + ϕ (u2) ≤ ϕ (0)
0 otherwise

where ϕ a C 2 is a function which satisfies ϕ (1) = 0, ϕ′ (u) < 0 and
ϕ′′ (u) > 0 for all u ∈ [0, 1]

⇒ ϕ (u) is called the generator of the copula function
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Archimedean copulas

Example

If ϕ (u) = u−1 − 1, we have ϕ−1 (u) = (1 + u)−1 and:

C (u1, u2) =
(
1 +

(
u−1

1 − 1 + u−1
2 − 1

))−1
=

u1u2

u1 + u2 − u1u2

The Gumbel logistic copula is then an Archimedean copula

Remark

The product copula C⊥ is Archimedean and the associated generator
is ϕ (u) = − ln u

Concerning Fréchet copulas, only C− is Archimedean with
ϕ (u) = 1− u
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Archimedean copulas

Table: Archimedean copula functions

Copula ϕ (u) C (u1, u2)
C⊥ − ln u u1u2

Clayton u−θ − 1
(
u−θ1 + u−θ2 − 1

)−1/θ

Frank − ln
e−θu − 1

e−θ − 1
−1

θ
ln

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
Gumbel (− ln u)θ exp

(
−
(
ũθ1 + ũθ2

)1/θ
)

Joe − ln
(

1− (1− u)θ
)

1−
(
ūθ1 + ūθ2 − ūθ1 ū

θ
2

)1/θ

We use the notations ū = 1− u and ũ = − ln u
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Multivariate Normal copula

The Normal copula is the dependence function of the multivariate normal
distribution with a correlation matrix ρ:

C (u1, . . . , un; ρ) = Φn

(
Φ−1 (u1) , . . . ,Φ−1 (un) ; ρ

)
By using the canonical decomposition of the multivariate density function:

f (x1, . . . , xn) = c (F1 (x1) , . . . ,Fn (xn))
n∏

i=1

fi (xi )

we deduce that the probability density function of the Normal copula is:

c (u1, . . . , un, ; ρ) =
1

|ρ|
1
2

exp

(
−1

2
x>
(
ρ−1 − In

)
x

)
where xi = Φ−1 (ui )
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Bivariate Normal copula

In the bivariate case, we obtain:

c (u1, u2; ρ) =
1√

1− ρ2
exp

(
−x2

1 + x2
2 − 2ρx1x2

2 (1− ρ2)
+

x2
1 + x2

2

2

)
It follows that the expression of the bivariate Normal copula function is
also equal to:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
φ2 (x1, x2; ρ) dx1 dx2

where φ2 (x1, x2; ρ) is the bivariate normal density:

φ2 (x1, x2; ρ) =
1

2π
√

1− ρ2
exp

(
−x2

1 + x2
2 − 2ρx1x2

2 (1− ρ2)

)
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Bivariate Normal copula

Remark

Let (X1,X2) be a standardized Gaussian random vector, whose
cross-correlation is ρ. Using the Cholesky decomposition, we write X2 as
follows: X2 = ρX1 +

√
1− ρ2X3 where X3 ∼ N (0, 1) is independent from

X1 and X2. We have:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1,X2 ≤ x2}

= E
[
Pr
{
X1 ≤ x1, ρX1 +

√
1− ρ2X3 ≤ x2 | X1

}]
=

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx

It follows that:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
φ (x) dx
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Bivariate Normal copula

We deduce that:

C (u1, u2; ρ) =

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du

We have:

τ =
2

π
arcsin ρ

and:

% =
6

π
arcsin

ρ

2

We can show that:

λ+ = λ− =

{
0 if ρ < 1
1 if ρ = 1
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Bivariate Normal copula

Figure: Tail dependence λ+ (α) for the Normal copula
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Multivariate Student’s t copula

We have:

C (u1, . . . , un; ρ, ν) = Tn

(
T−1
ν (u1) , . . . ,T−1

ν (un) ; ρ, ν
)

By using the definition of the cumulative distribution function:

Tn (x1, . . . , xn; ρ, ν) =

∫ x1

−∞
· · ·
∫ xn

−∞

Γ
(
ν+n

2

)
|ρ|−

1
2

Γ
(
ν
2

)
(νπ)

n
2

(
1 +

1

ν
x>ρ−1x

)− ν+n
2

dx

we can show that the copula density function is then:

c (u1, . . . , un, ; ρ, ν) = |ρ|−
1
2

Γ
(
ν+n

2

) [
Γ
(
ν
2

)]n[
Γ
(
ν+1

2

)]n
Γ
(
ν
2

) (1 + 1
ν x
>ρ−1x

)− ν+n
2∏n

i=1

(
1 +

x2
i

ν

)− ν+1
2

where xi = T−1
ν (ui )
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Bivariate Student’s t copula

We have:

C (u1, u2; ρ, ν) =

∫ u1

0

C2|1 (u, u2; ρ, ν) du

where:

C2|1 (u1, u2; ρ, ν) = Tν+1

( ν + 1

ν +
[
T−1
ν (u1)

]2
)1/2

T−1
ν (u2)− ρT−1

ν (u1)√
1− ρ2


We have:

λ+ = 2− 2 · Tν+1

((
(ν + 1) (1− ρ)

(1 + ρ)

)1/2
)

=

{
0 if ρ = −1
> 0 if ρ > −1
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Bivariate Student’s t copula

Figure: Tail dependence λ+ (α) for the Student’s t copula (ν = 1)
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Bivariate Student’s t copula

Figure: Tail dependence λ+ (α) for the Student’s t copula (ν = 4)
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Dependogram

The dependogram is the scatter plot between ut,1 and ut,2 where:

ut,i =
1

T + 1
Rt,i

and Rt,i is the rank statistic (T is the sample size)

Example

xt,1 −3 4 1 8
xt,2 105 65 17 9
Rt,1 1 3 2 4
Rt,2 4 3 2 1
ut,1 0.20 0.60 0.40 0.80
ut,2 0.80 0.60 0.40 0.20
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Dependogram

Figure: Dependogram of EU and US equity returns (ρ = 57.8%)
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Dependogram

Figure: Dependogram of simulated Gaussian returns (ρ = 57.8%)
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The method of moments

If τ = fτ (θ) is the relationship between θ and Kendall’s tau, the MM
estimator is simply the inverse of this relationship:

θ̂ = f −1
τ (τ̂)

where τ̂ is the estimate of Kendall’s tau based on the sample

Remark

We have:

τ̂ =
c − d

c + d

where c and d are the number of concordant and discordant pairs

For instance, in the case of the Gumbel copula, we have:

τ =
θ − 1

θ

and:

θ̂ =
1

1− τ̂
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The method of maximum likelihood

We have:

F (x1, . . . , xn) = C (F1 (x1; θ1) , . . . ,Fn (xn; θn) ; θc)

with two types of parameters:

the parameters (θ1, . . . , θn) of univariate distribution functions

the parameters θc of the copula function

The expression of the log-likelihood function is:

` (θ1, . . . , θn, θc) =
T∑
t=1

ln c (F1 (xt,1; θ1) , . . . ,Fn (xt,n; θn) ; θc) +

T∑
t=1

n∑
i=1

ln fi (xt,i ; θi )

The ML estimator is then defined as follows:(
θ̂1, . . . , θ̂n, θ̂c

)
= arg max ` (θ1, . . . , θn, θc)
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The method of inference functions for marginals

The IFM method is a two-stage parametric method:

1 the first stage involves maximum likelihood from univariate marginals

2 the second stage involves maximum likelihood of the copula
parameters θc with the univariate parameters θ̂1, . . . , θ̂n held fixed
from the first stage:

θ̂c = arg max
T∑
t=1

ln c
(

F1

(
xt,1; θ̂1

)
, . . . ,Fn

(
xt,n; θ̂n

)
; θc
)
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The omnibus method

The omnibus method replaces the marginals F1, . . . ,Fn by their
non-parametric estimates:

θ̂c = arg max
T∑
t=1

ln c
(

F̂1 (xt,1) , . . . , F̂n (xt,n) ; θc
)

where:

F̂i (xt,i ) = ut,i =
1

T + 1
Rt,i
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Estimation of the Normal copula

In the case of the Normal copula, the matrix ρ of the parameters is
estimated with the following algorithm:

1 we first transform the uniform variates ut,i into Gaussian variates:

nt,i = Φ−1 (ut,i )

2 we then calculate the correlation matrix ρ̂ of the Gaussian variates
nt,i .
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Order statistics

Definition

Let X1, . . . ,Xn be iid random variables, whose probability distribution
is denoted by F

We rank these random variables by increasing order:

X1:n ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ Xn:n

Xi :n is called the i th order statistic in the sample of size n

We note xi :n the corresponding random variate or the value taken by
Xi :n
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Order statistics

We have:

Fi :n (x) = Pr {Xi :n ≤ x}
= Pr {at least i variables among X1, . . . ,Xn are less or equal to x}

=
n∑

k=i

Pr {k variables among X1, . . . ,Xn are less or equal to x}

=
n∑

k=i

(
n

k

)
F (x)k (1− F (x))n−k

and:

fi :n (x) =
∂ Fi :n (x)

∂ x
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Order statistics

Example

If X1, . . . ,Xn follow a uniform distribution U[0,1], we obtain:

Fi :n (x) =
n∑

k=i

(
n

k

)
xk (1− x)n−k = IB (x ; i , n − i + 1)

where IB (x ;α, β) is the regularized incomplete beta function:

IB (x ;α, β) =
1

B (α, β)

∫ x

0

tα−1 (1− t)β−1
dt

We deduce that Xi :n ∼ B (i , n − i + 1) anda:

E [Xi :n] = E [B (i , n − i + 1)] =
i

n + 1

aWe recall that E [B (α, β)] = α/ (α+ β)
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Extreme order statistics

The extreme order statistics are:

X1:n = min (X1, . . . ,Xn)

and:
Xn:n = max (X1, . . . ,Xn)

We have:

F1:n (x) =
n∑

k=1

(
n

k

)
F (x)k (1− F (x))n−k = 1−

(
n

0

)
F (x)0 (1− F (x))n

= 1− (1− F (x))n

and:

Fi :n (x) =
n∑

k=n

(
n

k

)
F (x)k (1− F (x))n−k =

(
n

n

)
F (x)n (1− F (x))n−n

= F (x)n
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Alternative proof

We have:

F1:n (x) = Pr {min (X1, . . . ,Xn) ≤ x} = 1− Pr {min (X1, . . . ,Xn) ≥ x}
= 1− Pr {X1 ≥ x ,X2 ≥ x , . . . ,Xn ≥ x}

= 1−
n∏

i=1

Pr {Xi ≥ x}

= 1−
n∏

i=1

(1− Pr {Xi ≤ x})

= 1− (1− F (x))n

and:

Fn:n (x) = Pr {max (X1, . . . ,Xn) ≤ x} = Pr {X1 ≤ x ,X2 ≤ x , . . . ,Xn ≤ x}

=
n∏

i=1

Pr {Xi ≤ x}

= F (x)n
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Extreme order statistics

We deduce that the density functions are equal to:

f1:n (x) = n (1− F (x))n−1 f (x)

and
fn:n (x) = nF (x)n−1 f (x)
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Extreme order statistics

We consider the daily returns of the MSCI USA index from 1995 to 2015

H1 Daily returns are Gaussian, meaning that:

Rt = µ̂+ σ̂Xt

where Xt ∼ N (0, 1), µ̂ is the empirical mean of daily returns and σ̂ is
the daily standard deviation

H2 Daily returns follow a Student’s t distribution19:

Rt = µ̂+ σ̂

√
ν − 2

ν
Xt

where Xt ∼ tν . We consider two alternative assumptions: H2a : ν = 3
and H2b : ν = 6

19We add the factor
√

(ν − 2) /ν in order to verify that var (Rt) = σ̂2
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Extreme order statistics

Figure: Density function of the maximum order statistic (daily return of the
MSCI USA index, 1995-2015)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 942 / 1695



Copulas
Extreme value theory

Order statistics
Univariate extreme value theory
Multivariate extreme value theory

Extreme order statistics

Remark

The limit distributions of minima and maxima are degenerate:

lim
n→∞

F1:n (x) = lim
n→∞

1− (1− F (x))n =

{
0 if F (x) = 0
1 if F (x) > 0

and:

lim
n→∞

Fn:n (x) = lim
n→∞

F (x)n =

{
0 if F (x) < 1
1 if F (x) = 1

Remark

We only consider the largest order statistic Xn:n because the minimum
order statistic X1:n is equal to Yn:n by setting Yi = −Xi
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Univariate extreme value theory

Fisher-Tippet theorem

Let X1, . . . ,Xn be a sequence of iid random variables, whose distribution
function is F. If there exist two constants an and bn and a non-degenerate
distribution function G such that:

lim
n→∞

Pr

{
Xn:n − bn

an
≤ x

}
= G (x)

then G can be classified as one of the following three types:

Type I (Gumbel) Λ (x) = exp (−e−x)
Type II (Fréchet) Φα (x) = 1 (x ≥ 0) · exp (−x−α)
Type III (Weibull Ψα (x) = 1 (x ≤ 0) · exp (− (−x)α)

Λ, Φα and Ψα are called extreme value distributions

Fisher-Tippet theorem ≈ an extreme value analog of the central limit theorem
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Univariate extreme value theory

We recall that:

lim
n→∞

(
1 +

x

n

)n
= 1 + x +

x2

2!
+

x3

3!
+ . . . = exp (x)
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Univariate extreme value theory

We consider the exponential distribution: F (x) = 1− exp (−λx). We
have:

lim
n→∞

Fn:n (x) = lim
n→∞

(
1− e−λx

)n
= lim

n→∞

(
1− ne−λx

n

)n

= lim
n→∞

exp
(
−ne−λx

)
= 0

We verify that the limit distribution is degenerate
If we consider the affine transformation with an = 1/λ et
bn = (ln n) /λ, we obtain:

Pr

{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx + bn} =

(
1− e−λ(anx+bn)

)n
=
(
1− e−x−ln n

)n
=

(
1− e−x

n

)n

and:

G (x) = lim
n→∞

(
1− e−x

n

)n

= exp
(
−e−x

)
= Λ (x)
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Generalized extreme value distribution

We combine the three distributions Λ, Φα et Ψα into a single
distribution function GEV (µ, σ, ξ):

G (x) = exp

(
−
(

1 + ξ

(
x − µ
σ

))−1/ξ
)

defined on the support ∆ =
{
x : 1 + ξσ−1 (x − µ) > 0

}
the limit case ξ → 0 corresponds to the Gumbel distribution Λ

ξ = −α−1 > 0 defines the Fréchet distribution Φα

the Weibull distribution Ψα is obtained by considering ξ = −α−1 < 0
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Generalized extreme value distribution

The density function is equal to:

g (x) =
1

σ

(
1 + ξ

(
x − µ
σ

))−(1+ξ)/ξ

exp

(
−
(

1 + ξ

(
x − µ
σ

))−1/ξ
)

Block maxima approach

The log-likelihood function is equal to:

`t = − lnσ −
(

1 + ξ

ξ

)
ln

(
1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ

where xt is the observed maximum for the tth period (or block maximum)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 948 / 1695



Copulas
Extreme value theory

Order statistics
Univariate extreme value theory
Multivariate extreme value theory

Generalized extreme value distribution

We consider the example of the MSCI USA index

Using daily returns, we calculate the block maximum for each period
of 22 trading days and estimate the GEV distribution using the
method of maximum likelihood

We compare the estimated GEV distribution with the distribution
function F22:22 (x) when we assume that daily returns are Gaussian:

α 90% 95% 96% 97% 98% 99%
Gaussian 3.26% 3.56% 3.65% 3.76% 3.92% 4.17%

GEV 3.66% 4.84% 5.28% 5.91% 6.92% 9.03%
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Generalized extreme value distribution

Figure: Probability density function of the maximum return R22:22
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Value-at-risk estimation

We recall that the P&L between t and t + 1 is equal to:

Π (w) = Pt+1 (w)− Pt (w) = Pt (w) · R (w)

We have:
VaRα (w) = −Pt (w) · F̂−1 (1− α)

We now estimate the GEV distribution Ĝ of the maximum of −R (w) for a
period of n trading days. The confidence level must be adjusted in order
to obtain the same return time:

1

1− α
× 1 day =

1

1− αGEV
× n days⇔ αGEV = 1− (1− α) · n

It follows that the value-at-risk is equal to:

VaRα (w) = P (t) · Ĝ−1 (αGEV) = P (t) ·
(
µ̂− σ̂

ξ̂

(
1− (− lnαGEV)−ξ̂

))
because we have G−1 (α) = µ− σ

ξ

(
1− (− lnα)−ξ

)
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Value-at-risk estimation

Table: Comparing Gaussian, historical and GEV value-at-risk measures

VaR α Long US Long EM
Long US Long EM
Short EM Short US

99.0% 2.88% 2.83% 3.06% 3.03%
Gaussian 99.5% 3.19% 3.14% 3.39% 3.36%

99.9% 3.83% 3.77% 4.06% 4.03%
99.0% 3.46% 3.61% 3.37% 3.81%

Historical 99.5% 4.66% 4.73% 3.99% 4.74%
99.9% 7.74% 7.87% 6.45% 7.27%
99.0% 2.64% 2.61% 2.72% 2.93%

GEV 99.5% 3.48% 3.46% 3.41% 3.82%
99.9% 5.91% 6.05% 5.35% 6.60%
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Expected shortfall estimation

We use the peak over threshold approach (HFRM, pages 773-777)
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Extreme value copulas

Definition

An extreme value (EV) copula satisfies the following relationship:

C
(
ut1, . . . , u

t
n

)
= Ct (u1, . . . , un)

for all t > 0
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Extreme value copulas

The Gumbel copula is an EV copula:

C
(
ut1, u

t
2

)
= exp

(
−
((
− ln ut1

)θ
+
(
− ln ut2

)θ)1/θ
)

= exp

(
−
(
tθ
(

(− ln u1)θ + (− ln u2)θ
))1/θ

)
=

(
exp

(
−
(

(− ln u1)θ + (− ln u2)θ
)1/θ

))t

= Ct (u1, u2)
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Extreme value copulas

The Farlie-Gumbel-Morgenstern copula is not an EV copula:

C
(
ut1, u

t
2

)
= ut1u

t
2 + θut1u

t
2

(
1− ut1

) (
1− ut2

)
= ut1u

t
2

(
1 + θ − θut1 − θut2 + θut1u

t
2

)
6= ut1u

t
2 (1 + θ − θu1 − θu2 + θu1u2)t

6= Ct (u1, u2)
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Extreme value copulas

Show that:

C+ is an EV copula

C⊥ is an EV copula

C− is not an EV copula
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Multivariate extreme value theory

Let X = (X1, . . . ,Xn) be a random vector of dimension n. We note Xm:m

the random vector of maxima:

Xm:m =

 Xm:m,1

...
Xm:m,n


and Fm:m the corresponding distribution function:

Fm:m (x1, . . . , xn) = Pr {Xm:m,1 ≤ x1, . . . ,Xm:m,n ≤ xn}

The multivariate extreme value (MEV) theory considers the asymptotic
behavior of the non-degenerate distribution function G such that:

lim
m→∞

Pr

(
Xm:m,1 − bm,1

am,1
≤ x1, . . . ,

Xm:m,n − bm,n
am,n

≤ xn

)
= G (x1, . . . , xn)
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Multivariate extreme value theory

Using Sklar’s theorem, there exists a copula function C 〈G〉 such that:

G (x1, . . . , xn) = C 〈G〉 (G1 (x1) , . . . ,Gn (xn))

We have:

The marginals G1, . . . ,Gn satisfy the Fisher-Tippet theorem

C 〈G〉 is an extreme value copula

Remark

An extreme value copula satisfies the PQD property:

C⊥ ≺ C ≺ C+
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Tail dependence of extreme values

We can show that the (upper) tail dependence of C 〈G〉 is equal to the
(upper) tail dependence of C 〈F〉:

λ+ (C 〈G〉) = λ+ (C 〈F〉)

⇒ Extreme values are independent if the copula function C 〈F〉 has no
(upper) tail dependence
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Advanced topics

Maximum domain of attraction

Univariate extreme value theory (HFRM, pages 765-770)
Multivariate extreme value theory (HFRM, pages 779 and 781-782)

Deheuvels-Pickands representation (HFRM, pages 779-781)

Generalized Pareto distribution GPD (σ, ξ) (HFRM, pages 773-777)
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Exercises

Copulas

Exercise 11.5.5 – Correlated loss given default rates
Exercise 11.5.6 – Calculation of correlation bounds
Exercise 11.5.7 – The bivariate Pareto copula

Extreme value theory

Exercise 12.4.2 – Order statistics and return period
Exercise 12.4.4 – Extreme value theory in the bivariate case
Exercise 12.4.5 – Maximum domain of attraction in the bivariate case
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Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Uniform random numbers

The idea is to build a pseudorandom sequence S and repeat this sequence
as often as necessary
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Linear congruential generator

The most famous and used algorithm is the linear congruential
generator (LCG):

xn = (a · xn−1 + c) modm

un = xn/m

where:

a is the multiplicative constant
c is the additive constant
m is the modulus (or the order of the congruence)

The initial number x0 is called the seed

{x1, x2, . . . , xn} is a sequence of pseudorandom integer numbers
(0 ≤ xn < m)

{u1, u2, . . . , un} is a sequence of uniform random variates

The maximum period is m
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Linear congruential generator

Example #1

If we consider that a = 3, c = 0, m = 11 and x0 = 1, we obtain the
following sequence:

{1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, . . .}

The period length is only five, meaning that only five uniform random
variates can be generated: 0.09091, 0.27273, 0.81818, 0.45455 and
0.36364
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Linear congruential generator

The minimal standard LCG proposed by Lewis et al. (1969) is defined by
a = 75, c = 0 and m = 231 − 1
Its period length is equal to m − 1 = 231 − 2 ≈ 2.15× 109

Table: Simulation of 10 uniform pseudorandom numbers

n xn un xn un
0 1 0.000000 123 456 0.000057
1 16 807 0.000008 2 074 924 992 0.966212
2 282 475 249 0.131538 277 396 911 0.129173
3 1 622 650 073 0.755605 22 885 540 0.010657
4 984 943 658 0.458650 237 697 967 0.110687
5 1 144 108 930 0.532767 670 147 949 0.312062
6 470 211 272 0.218959 1 772 333 975 0.825307
7 101 027 544 0.047045 2 018 933 935 0.940139
8 1 457 850 878 0.678865 1 981 022 945 0.922486
9 1 458 777 923 0.679296 466 173 527 0.217079

10 2 007 237 709 0.934693 958 124 033 0.446161
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Figure: Lattice structure of the linear congruential generator
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Multiple recursive generator

We have

xn =

(
k∑

i=1

ai · xn−i + c

)
modm

The famous MRG32k3a generator of L’Ecuyer (1999) uses two 32-bit
multiple recursive generators:{

xn = (1403580 · xn−2 − 810728 · xn−3) modm1

yn = (527612 · yn−1 − 1370589 · yn−3) modm2

where m1 = 232 − 209 and m2 = 232 − 22853. The uniform random
variate is then equal to:

un =
xn − yn + 1 {xn ≤ yn} ·m1

m1 + 1

The period length of this generator is equal to 2191 ≈ 3× 1057
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We now consider X a random variable whose distribution function is noted
F. There are many ways to simulate X , but all of them are based on
uniform random variates
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Continuous random variables

We assume that F is continuous

Let Y = F (X ) be the integral transform of X

Its cumulative distribution function G is equal to:

G (y) = Pr {Y ≤ y}
= Pr {F (X ) ≤ y}
= Pr

{
X ≤ F−1 (y)

}
= F

(
F−1 (y)

)
= y

where G (0) = 0 and G (1) = 1
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Method of inversion
Continuous random variables

We deduce that F (X ) has a uniform distribution U[0,1]:

F (X ) ∼ U[0,1]

IIf U is a uniform random variable, then F−1 (U) is a random variable
whose distribution function is F:

U ∼ U[0,1] ⇒ F−1 (U) ∼ F

To simulate a sequence of random variates {x1, . . . , xn}, we can
simulate a sequence of uniform random variates {u1, . . . , un} and
apply the transform xi ← F−1 (ui )
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Example #2

If we consider the generalized uniform distribution U[a,b], we have
F (x) = (x − a) / (b − a) and F−1 (u) = a + (b − a) u. The simulation of
random variates xi is deduced from the uniform random variates ui by
using the following transform:

xi ← a + (b − a) ui
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Example #3

In the case of the exponential distribution E (λ), we have
F (x) = 1− exp (−λx). We deduce that:

xi ← −
ln (1− ui )

λ

Since 1− U is also a uniform distributed random variable, we have:

xi ← −
ln (ui )

λ
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Example #4

In the case of the Pareto distribution P (α, x−), we have

F (x) = 1− (x/x−)−α and F−1 (u) = x− (1− u)−1/α. We deduce that:

xi ←
x−

(1− ui )
1/α
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The method of inversion is easy to implement when we know the
analytical expression of F−1

When it is not the case, we use the Newton-Raphson algorithm:

xm+1
i = xmi +

ui − F (xmi )

f (xmi )

where xmi is the solution of the equation F (x) = u at the iteration m

If we apply this algorithm to the Gaussian distribution N (0, 1), we
have:

xm+1
i = xmi +

ui − Φ (xmi )

φ (xmi )

Thierry Roncalli Course 2023-2024 in Financial Risk Management 978 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of inversion
Discrete random variables

In the case of a discrete probability distribution
{(x1, p1) , (x2, p2) , . . . , (xn, pn)} where x1 < x2 < . . . < xn, we have:

F−1 (u) =


x1 if 0 ≤ u ≤ p1

x2 if p1 < u ≤ p1 + p2

...

xn if
∑n−1

k=1 pk < u ≤ 1
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We assume that:

xi 1 2 4 6 7 9 10
pi 10% 20% 10% 5% 20% 30% 5%

F (xi ) 10% 30% 40% 45% 65% 95% 100%

The inverse function is a step function

If u = 0.5517, Then X = F−1 (u) = F−1 (0.5517) = 7
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Figure: Inversion method when X is a discrete random variable
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Example #5

If we apply the method of inversion to the Bernoulli distribution B (p), we
have:

x ←
{

0 if 0 ≤ u ≤ 1− p
1 if 1− p < u ≤ 1

or:

x ←
{

1 if u ≤ p
0 if u > p
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Method of inversion
Piecewise distribution functions

A piecewise distribution function is defined as follows:

F (x) = Fm (x) if x ∈
]
x?m−1, x

?
m

]
where x?m are the knots of the piecewise function and:

Fm+1 (x?m) = Fm (x?m)

In this case, the simulated value xi is obtained using a search
algorithm:

xi ← F−1
m (ui ) if F

(
x?m−1

)
< ui ≤ F (x?m)
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We consider the piecewise exponential model

The survival function has the following expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1) if t ∈

]
t?m−1, t

?
m

]
We know that S (τ ) ∼ U

It follows that:

ti ← t?m−1 +
1

λm
ln

S
(
t?m−1

)
ui

if S (t?m) < ui ≤ S
(
t?m−1

)
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Example #6

We model the default time τ with the piecewise exponential model and
the following parameters:

λ =

 5% if t is less or equal than one year
8% if t is between one and five years
12% if t is larger than five years
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We have S (0) = 1, S (1) = 0.9512 and S (5) = 0.6907. We deduce that:

ti ←

 0 + (1/0.05) · ln (1/ui ) if ui ∈ [0.9512, 1]
1 + (1/0.08) · ln (0.9512/ui ) if ui ∈ [0.6907, 0.9512[
5 + (1/0.12) · ln (0.6907/ui ) if ui ∈ [0, 0.6907[

Table: Simulation of the piecewise exponential model

ui t?m−1 S
(
t?m−1

)
λm ti

0.9950 0 1.0000 0.05 0.1003
0.3035 5 0.6907 0.12 11.8531
0.5429 5 0.6907 0.12 7.0069
0.9140 1 0.9512 0.08 1.4991
0.7127 1 0.9512 0.08 4.6087
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Method of transformation

Let {Y1,Y2, . . .} be a vector of independent random variables. The
simulation of the random variable X = g (Y1,Y2, . . .) is straightforward if
we know how to easily simulate the random variables Yi . We notice that
the inversion method is a particular case of the transform method, because
we have:

X = g (U) = F−1 (U)
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Method of transformation

The Binomial random variable is the sum of n iid Bernoulli random
variables:

B (n, p) =
n∑

i=1

Bi (p)

We simulate the Binomial random variate x using n uniform random
numbers:

x =
n∑

i=1

1 {ui ≤ p}
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Method of transformation

To simulate the chi-squared random variable χ2 (ν), we can use the
following relationship:

χ2 (ν) =
ν∑

i=1

χ2
i (1) =

ν∑
i=1

(Ni (0, 1))2
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Method of transformation

Box-Muller algorithm

if U1 and U2 are two independent uniform random variables, then X1 and
X2 defined by: {

X1 =
√
−2 lnU1 · cos (2πU2)

X2 =
√
−2 lnU1 · sin (2πU2)

are independent and follow the Gaussian distribution distribution N (0, 1)
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Method of transformation

If Nt is a Poisson process with intensity λ, the duration T between
two consecutive events is an exponential:

Pr (T ≤ t) = 1− e−λt

Since the durations are independent, we have:

T1 + T2 + . . .+ Tn =
n∑

i=1

Ei

where Ei ∼ E (λ)

Because the Poisson random variable is the number of events that
occur in the unit interval of time, we also have:

X = max {n : T1 + T2 + . . .+ Tn ≤ 1} = max

{
n :

n∑
i=1

Ei ≤ 1

}
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Method of transformation

We notice that:

n∑
i=1

Ei = − 1

λ

n∑
i=1

lnUi = − 1

λ
ln

n∏
i=1

Ui

where Ui are iid uniform random variables

We deduce that:

X = max

{
n : − 1

λ
ln

n∏
i=1

Ui ≤ 1

}
= max

{
n :

n∏
i=1

Ui ≥ e−λ

}
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Method of transformation

We can then simulate the Poisson random variable with the following
algorithm:

1 set n = 0 and p = 1;

2 calculate n = n + 1 and p = p · ui where ui is a uniform random
variate;

3 if p ≥ e−λ, go back to step 2; otherwise, return X = n − 1
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Rejection sampling

Theorem

F (x) and G (x) are two distribution functions such that
f (x) ≤ cg (x) for all x with c > 1

We note X ∼ G and consider an independent uniform random
variable U ∼ U[0,1]

Then, the conditional distribution function of X given that
U ≤ f (X ) / (cg (X )) is F (x)
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Proof

Let us introduce the random variables B and Z :

B = 1

{
U ≤ f (X )

cg (X )

}
and Z = X

∣∣∣∣U ≤ f (X )

cg (X )

We have:

Pr {B = 1} = Pr

{
U ≤ f (X )

cg (X )

}
= E

[
f (X )

cg (X )

]
=

∫ +∞

−∞

f (x)

cg (x)
g (x) dx

=
1

c

∫ +∞

−∞
f (x) dx

=
1

c
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Proof

The distribution function of Z is defined by:

Pr {Z ≤ x} = Pr

{
X ≤ x

∣∣∣∣U ≤ f (X )

cg (X )

}
We deduce that:

Pr {Z ≤ x} =

Pr

{
X ≤ x ,U ≤ f (X )

cg (X )

}
Pr

{
U ≤ f (X )

cg (X )

} = c

∫ x

−∞

∫ f (x)/(cg(x))

0

g (x) du dx

= c

∫ x

−∞

f (x)

cg (x)
g (x) dx =

∫ x

−∞
f (x) dx

= F (x)

This proves that Z ∼ F
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Acceptance-rejection algorithm

1 generate two independent random variates x and u from G and U[0,1];

2 calculate v as follows:

v =
f (x)

cg (x)

3 if u ≤ v , return x (‘accept’); otherwise, go back to step 1 (‘reject’)

Remark

The underlying idea of this algorithm is then to simulate the distribution
function F by assuming that it is easier to generate random numbers from
G, which is called the proposal distribution. However, some of these
random numbers must be ‘rejected ’, because the function c · g (x)
‘dominates’ the density function f (x)
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The number of iterations N needed to successfully generate Z has a
geometric distribution G (p), where p = Pr {B = 1} = c−1 is the
acceptance ratio

The average number of iterations is equal to:

E [N] = 1/p = c

To maximize the efficiency (or the acceptance ratio) of the algorithm,
we have to choose the constant c such that:

c = sup
x

f (x)

g (x)
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We consider the normal distribution N (0, 1)

We use the Cauchy distribution function as the proposal distribution:

g (x) =
1

π (1 + x2)

We can show that:

φ (x) ≤
√

2π

e0.5
g (x)

meaning that c ≈ 1.52

We have:

G (x) =
1

2
+

1

π
arctan x

and:

G−1 (u) = tan

(
π

(
u − 1

2

))
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Figure: Rejection sampling applied to the normal distribution
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Acceptance-rejection algorithm for simulating N (0, 1)

1 generate two independent uniform random variates u1 and u2 and set:

x ← tan

(
π

(
u1 −

1

2

))
2 calculate v as follows:

v =
e0.5φ (x)√

2πg (x)
=

(
1 + x2

)
2e(x2−1)/2

3 if u2 ≤ v , accept x ; otherwise, go back to step 1

The acceptance ratio is 1/1.52 ≈ 65.8%
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Table: Simulation of the standard Gaussian distribution using the
acceptance-rejection algorithm

u1 u2 x v test z
0.9662 0.1291 9.3820 0.0000 reject
0.0106 0.1106 −30.0181 0.0000 reject
0.3120 0.8253 −0.6705 0.9544 accept −0.6705
0.9401 0.9224 5.2511 0.0000 reject
0.2170 0.4461 −1.2323 0.9717 accept −1.2323
0.6324 0.0676 0.4417 0.8936 accept 0.4417
0.6577 0.1344 0.5404 0.9204 accept 0.5404
0.1596 0.6670 −1.8244 0.6756 accept −1.8244
0.4183 0.3872 −0.2625 0.8513 accept −0.2625
0.9625 0.0752 8.4490 0.0000 reject
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Figure: Comparison of the exact and simulated densities
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Method of mixtures

A finite mixture can be decomposed as a weighted sum of distribution
functions:

F (x) =
n∑

k=1

πk · Gk (x)

where πk ≥ 0 and
∑n

k=1 πk = 1
The probability density function is:

f (x) =
n∑

k=1

πk · gk (x)

To simulate the probability distribution F, we introduce the random
variable B, whose probability mass function is defined by:

p (k) = Pr {B = k} = πk

It follows that:

F (x) =
n∑

k=1

Pr {B = k} · Gk (x)
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Method of mixtures

We deduce the following algorithm:

1 generate the random variate b from the probability mass function
p (k)

2 generate the random variate x from the probability distribution Gb (x)
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Method of mixtures

The previous approach can be easily extended to continuous mixtures:

f (x) =

∫
Ω

π (ω) g (x ;ω) dω

where ω ∈ Ω is a parameter of the distribution G
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Method of mixtures

The negative binomial distribution is a gamma-Poisson mixture
distribution: {

NB (r , p) ∼ P (Λ)
Λ ∼ G (r , (1− p) /p)

To simulate the negative binomial distribution, we simulate

1 the gamma random variate g ∼ G (r , (1− p) /p)

2 and then the Poisson random variable p, whose parameter λ is equal
to g
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Random vectors

The random vector X = (X1, . . . ,Xn) has a given distribution function
F (x) = F (x1, . . . , xn)
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Method of conditional distributions

If X1, . . . ,Xn are independent, we have:

F (x1, . . . , xn) =
n∏

i=1

Fi (xi )

To simulate X , we can then generate each component Xi ∼ Fi

individually, for example by applying the method of inversion
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Method of conditional distributions

If X1, . . . ,Xn are dependent, we have:

F (x1, . . . , xn) = F1 (x1) F2|1 (x2 | x1) F3|1,2 (x3 | x1, x2)× · · · ×
Fn|1,...,n−1 (xn | x1, . . . , xn−1)

=
n∏

i=1

Fi|1,...,i−1 (xi | x1, . . . , xi−1)

where Fi|1,...,i−1 (xi | x1, . . . , xi−1) is the conditional distribution of Xi

given X1 = x1, . . . ,Xi−1 = xi−1

This ‘conditional ’ random variable is denoted by
Yi = Xi | X1 = x1, . . . ,Xi−1 = xi−1

The random variables (Y1, . . . ,Yn) are independent
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Method of conditional distributions

We obtain the following algorithm:

1 generate x1 from F1 (x) and set i = 2

2 generate xi from Fi|1,...,i−1 (x | x1, . . . , xi−1) given
X1 = x1, . . . ,Xi−1 = xi−1 and set i = i + 1

3 repeat step 2 until i = n
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Fi|1,...,i−1 (x | x1, . . . , xi−1) is a univariate distribution function, which
depends on the argument x and parameters x1, . . . , xi−1. To simulate it,
we can therefore use the method of inversion:

xi ← F−1
i|1,...,i−1 (ui | x1, . . . , xi−1)

where F−1
i|1,...,i−1 is the inverse of the conditional distribution function and

ui is a uniform random variate
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Example #7

We consider the bivariate logistic distribution defined as:

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1
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We have F1 (x1) = F (x1,+∞) = (1 + e−x1 )
−1

. We deduce that the
conditional distribution of X2 given X1 = x1 is:

F2|1 (x2 | x1) =
F (x1, x2)

F1 (x1)

=
1 + e−x1

1 + e−x1 + e−x2

We obtain:
F−1

1 (u) = ln u − ln (1− u)

and:
F−1

2|1 (u | x1) = ln u − ln (1− u)− ln
(
1 + e−x1

)
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Method of conditional distributions

We deduce the following algorithm:

1 generate two independent uniform random variates u1 and u2;

2 generate x1 from u1:

x1 ← ln u1 − ln (1− u1)

3 generate x2 from u2 and x1:

x2 ← ln u2 − ln (1− u2)− ln
(
1 + e−x1

)
Because we have (1 + e−x1 )

−1
= u1, the last step can be replaced by:

3 generate x2 from u2 and u1:

x2 ← ln

(
u1u2

1− u2

)
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Method of conditional distributions

The method of conditional distributions can be used for simulating
uniform random vectors (U1, . . . ,Un) generated by copula functions

We have

C (u1, . . . , un) = C1 (u1) C2|1 (u2 | u1) C3|1,2 (u3 | u1, u2)× · · · ×
Cn|1,...,n−1 (un | u1, . . . , un−1)

=
n∏

i=1

Ci|1,...,i−1 (ui | u1, . . . , ui−1)

where Ci|1,...,i−1 (ui | u1, . . . , ui−1) is the conditional distribution of Ui

given U1 = u1, . . . ,Ui−1 = ui−1

By definition, we have C1 (u1) = u1
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Method of conditional distributions

We obtain the following algorithm:

1 generate n independent uniform random variates v1, . . . , vn;

2 generate u1 ← v1 and set i = 2;

3 generate ui by finding the root of the equation:

Ci|1,...,i−1 (ui | u1, . . . , ui−1) = vi

and set i = i + 1;

4 repeat step 3 until i = n.

For some copula functions, there exists an analytical expression of the
inverse of the conditional copula. In this case, the third step is replaced by:

3 generate ui by the inversion method:

ui ← C−1
i|1,...,i−1 (vi | u1, . . . , ui−1)
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Method of conditional distributions

For any probability distribution, the conditional distribution can be
calculated as follows:

Fi|1,...,i−1 (xi | x1, . . . , xi−1) =
F (x1, . . . , xi−1, xi )

F (x1, . . . , xi−1)

In particular, we have:

∂1 F (x1, x2) = ∂1

(
F1 (x1) · F2|1 (x2 | x1)

)
= f1 (x1) · F2|1 (x2 | x1)

For copula functions, the density f1 (x1) is equal to 1, meaning that:

C2|1 (u2 | u1) = ∂1 C (u1, u2)

We can generalize this result and show that the conditional copula given
some random variables Ui for i ∈ Ω is equal to the cross-derivative of the
copula function C with respect to the arguments ui for i ∈ Ω
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Archimedean copulas are defined as:

C (u1, u2) = ϕ−1 (ϕ (u1) + ϕ (u2))

where ϕ (u) is the generator function

We have:
ϕ (C (u1, u2)) = ϕ (u1) + ϕ (u2)

and:

ϕ′ (C (u1, u2)) · ∂ C (u1, u2)

∂ u1
= ϕ′ (u1)

We deduce the following expression of the conditional copula:

C2|1 (u2 | u1) =
∂ C (u1, u2)

∂ u1
=

ϕ′ (u1)

ϕ′ (ϕ−1 (ϕ (u1) + ϕ (u2)))

The calculation of the inverse function gives:

C−1
2|1 (v | u1) = ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u1)

v

))
− ϕ (u1)

)
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Method of conditional distributions

We obtain the following algorithm for simulating Archimedean copulas:

1 generate two independent uniform random variates v1 and v2;

2 generate u1 ← v1;

3 generate u2 by the inversion method:

u2 ← ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u1)

v2

))
− ϕ (u1)

)
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Example #8

We consider the Clayton copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
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Method of conditional distributions

The Clayton copula is an Archimedean copula, whose generator function is:

ϕ (u) = u−θ − 1

We deduce that:

ϕ−1 (u) = (1 + u)−1/θ

ϕ′ (u) = −θu−(θ+1)

ϕ′−1 (u) = (−u/θ)−1/(θ+1)

We obtain:

C−1
2|1 (v | u1) =

(
1 + u−θ1

(
v−θ/(θ+1) − 1

))−1//θ
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Table: Simulation of the Clayton copula

Random uniform Clayton copula
variates θ = 0.01 θ = 1.5

v1 v2 u1 u2 u1 u2

0.2837 0.4351 0.2837 0.4342 0.2837 0.3296
0.0386 0.2208 0.0386 0.2134 0.0386 0.0297
0.3594 0.5902 0.3594 0.5901 0.3594 0.5123
0.3612 0.3268 0.3612 0.3267 0.3612 0.3247
0.0797 0.6479 0.0797 0.6436 0.0797 0.1704
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Method of transformation

To simulate a Gaussian random vector X ∼ N (µ,Σ), we consider the
following transformation:

X = µ+ A · N

where AA> = Σ and N ∼ N (0, I )

Since Σ is a positive definite symmetric matrix, it has a unique
Cholesky decomposition:

Σ = PP>

where P is a lower triangular matrix
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The decomposition AA> = Σ is not unique. For instance, if we use the
eigendecomposition:

Σ = UΛU>

we can set A = UΛ1/2. Indeed, we have:

AA> = UΛ1/2Λ1/2U>

= UΛU>

= Σ
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Method of transformation

To simulate a multivariate Student’s t distribution
Y = (Y1, . . . ,Yn) ∼ Tn (Σ, ν), we use the relationship:

Yi =
Xi√
Z/ν

where the random vector X = (X1, . . . ,Xn) ∼ N (0,Σ) and the random
variable Z ∼ χ2 (ν) are independent
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If X = (X1, . . . ,Xn) ∼ F, then the probability distribution of the
random vector U = (U1, . . . ,Un) defined by:

Ui = Fi (X )

is the copula function C associated to F

To simulate the Normal copula with the matrix of parameters ρ, we
simulate N ∼ N (0, I ) and apply the transformation:

U = Φ (P · N)

where P is the Cholesky decomposition of the correlation matrix ρ

To simulate the Student’s t copulawith the matrix of parameters ρ
and ν degrees of freedom, we simulate T ∼ Tn (ρ, ν) and apply the
transformation:

Ui = Tv (Ti )
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Figure: Simulation of the Normal copula
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Figure: Simulation of the t1 copula
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Method of transformation

Frailty copulas are defined as:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
where ψ (x) is the Laplace transform of a random variable X
They can be generated using the following algorithm:

1 simulate n independent uniform random variates v1, . . . , vn;

2 simulate the frailty random variate x with the Laplace transform ψ;

3 apply the transformation:

(u1, . . . , un)←
(
ψ

(
− ln u1

x

)
, . . . , ψ

(
− ln un

x

))

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1030 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of transformation

The Clayton copula is a frailty copula where ψ (x) = (1 + x)−1/θ is
the Laplace transform of the gamma random variable G (1/θ, 1)

The algorithm to simulate the Clayton copula is:
x ← G (1/θ, 1)

(u1, . . . , un)←

((
1− ln u1

x

)−1/θ

, . . . ,

(
1− ln un

x

)−1/θ
)
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Figure: Simulation of the Clayton copula
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Method of transformation

We consider the multivariate distribution F (x1, . . . , xn), whose
canonical decomposition is defined as:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

If (U1, . . . ,Un) ∼ C, the random vector
(X1, . . . ,Xn) =

(
F−1

1 (U1) , . . . ,F−1
n (Un)

)
follows the distribution

function F

We deduce the following algorithm:{
(u1, . . . , un)← C
(x1, . . . , xn)←

(
F−1

1 (u1) , . . . ,F−1
n (un)

)
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We assume that τ ∼ E (5%) and LGD ∼ B (2, 2)

We also assume that the default time and the loss given default are
correlated and the dependence function is a Clayton copula
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Figure: Simulation of the correlated random vector (τ ,LGD)
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Remark

The previous algorithms suppose that we know the analytical expression Fi

of the univariate probability distributions in order to calculate the quantile
F−1
i . This is not always the case. For instance, in the operational risk, the

loss of the bank is equal to the sum of aggregate losses:

L =
K∑

k=1

Sk

where Sk is also the sum of individual losses for the kth cell of the
mapping matrix. In practice, the probability distribution of Sk is estimated
by the method of simulations
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The method of the empirical quantile function is implemented as follows:

1 for each random variable Xi , simulate m1 random variates x?i,m and

estimate the empirical distribution F̂i ;

2 simulate a random vector (u1, . . . , un) from the copula function
C (u1, . . . , un);

3 simulate the random vector (x1, . . . , xn) by inverting the empirical
distributions F̂i :

xi ← F̂−1
i (ui )

we also have:

xi ← inf

{
x

∣∣∣∣ 1

m1

∑m1

m=1
1
{
x ≤ x?i,m

}
≥ ui

}
4 repeat steps 2 and 3 m2 times
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X1 ∼ N (0, 1)

X2 ∼ N (0, 1)

The dependence function of (X1,X2) is the Clayton copula with
parameter θ = 3

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1038 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Uniform random numbers
Non-uniform random numbers
Random vectors
Random matrices

Method of transformation

Figure: Convergence of the method of the empirical quantile function
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X1 ∼ N (−1, 2), X2 ∼ N (0, 1), Y1 ∼ G (0.5) and Y2 ∼ G (1, 2) are
four independent random variables

Let (Z1 = X1 + Y1,Z2 = X2 · Y2) be the random vector

The dependence function of Z is the t copula with parameters ν = 2
and ρ = −70%

It is not possible to find an analytical expression of the marginal
distributions of Z1 and Z2
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Figure: Simulation of the random variables Z1 and Z2
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Figure: Simulation of the random vector (Z1,Z2)
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Orthogonal and covariance matrices

Correlation matrices

Wishart matrices

⇒ HFRM, Chapter 13, Section 13.1.4, pages 807-813
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Brownian motion

A Brownian motion (or a Wiener process) is a stochastic process
W (t), whose increments are stationary and independent:

W (t)−W (s) ∼ N (0, t − s)

We have: {
W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ N (0, t − s) are iid random variables

To simulate W (t) at different dates t1, t2, . . ., we have:

Wm+1 = Wm +
√
tm+1 − tm · εm

where Wm is the numerical realization of W (tm) and εm ∼ N (0, 1)
are iid random variables

In the case of fixed-interval times tm+1 − tm = h, we obtain the
recursion:

Wm+1 = Wm +
√
h · εm
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The geometric Brownian motion is described by the following SDE:{
dX (t) = µX (t) dt + σX (t) dW (t)
X (0) = x0

Its solution is given by:

X (t) = x0 · exp

((
µ− 1

2
σ2

)
t + σW (t)

)
= g (W (t))
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1 Simulating the geometric Brownian motion X (t) can be done by
applying the transform method to the process W (t)

2 Another approach to simulate X (t) consists in using the following
formula:

X (t) = X (s) · exp

((
µ− 1

2
σ2

)
(t − s) + σ (W (t)−W (s))

)
We have:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
(tm+1 − tm) + σ

√
tm+1 − tm · εm

)
where Xm = X (tm) and εm ∼ N (0, 1) are iid random variables

3 If we consider fixed-interval times, the numerical realization becomes:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
h + σ

√
h · εm

)
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Figure: Simulation of the geometric Brownian motion
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The stochastic differential equation of the Ornstein-Uhlenbeck
process is: {

dX (t) = a (b − X (t)) dt + σ dW (t)
X (0) = x0

The solution of the SDE is:

X (t) = x0e
−at + b

(
1− e−at

)
+ σ

∫ t

0

ea(θ−t) dW (θ)

We also have:

X (t) = X (s) e−a(t−s) + b
(

1− e−a(t−s)
)

+ σ

∫ t

s

ea(θ−t) dW (θ)

where: ∫ t

s

ea(θ−t) dW (θ) ∼ N
(

0,
1− e−2a(t−s)

2a

)
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If we consider fixed-interval times, we obtain the following simulation
scheme:

Xm+1 = Xme
−ah + b

(
1− e−ah

)
+ σ

√
1− e−2ah

2a
· εm

where εm ∼ N (0, 1) are iid random variables
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Figure: Simulation of the Ornstein-Uhlenbeck process
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Let X (t) be the solution of the following SDE:{
dX (t) = µ (t,X ) dt + σ (t,X ) dW (t)
X (0) = x0

The Euler-Maruyama scheme uses the following approximation:

X (t)− X (s) ≈ µ (t,X (s)) · (t − s) + σ (t,X (s)) · (W (t)−W (s))

If we consider fixed-interval times, the Euler-Maruyama scheme
becomes:

Xm+1 = Xm + µ (tm,Xm) h + σ (tm,Xm)
√
h · εm

where εm ∼ N (0, 1) are iid random variables
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The fixed-interval Milstein scheme is:

Xm+1 = Xm + µ (tm,Xm) h + σ (tm,Xm)
√
h · εm +

1

2
σ (tm,Xm) ∂xσ (tm,Xm) h

(
ε2
m − 1

)
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If we consider the geometric Brownian motion, the Euler-Maruyama
scheme is:

Xm+1 = Xm + µXmh + σXm

√
h · εm

whereas the Milstein scheme is:

Xm+1 = Xm + µXmh + σXm

√
h · εm +

1

2
σ2Xmh

(
ε2
m − 1

)
= Xm +

(
µ− 1

2
σ2

)
Xmh + σXm

√
h

(
1 +

1

2
σ
√
hεm

)
εm
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Figure: Comparison of exact, Euler-Maruyama and Milstein schemes (monthly
discretization)
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When we don’t know the analytical solution of X (t), it is natural to
simulate the numerical solution of X (t) using Euler-Maruyama and
Milstein schemes. However, it may be sometimes more efficient to find the
numerical solution of Y (t) = f (t,X (t)) instead of X (t) itself, in
particular when Y (t) is more regular than X (t)
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Stochastic differential equations without an explicit
solution

By Itô’s lemma, we have:

dY (t) =

(
∂t f (t,X ) + µ (t,X ) ∂x f (t,X ) +

1

2
σ2 (t,X ) ∂2

x f (t,X )

)
dt +

σ (t,X ) ∂x f (t,X ) dW (t)

By using the inverse function X (t) = f −1 (t,Y (t)), we obtain:

dY (t) = µ′ (t,Y ) dt + σ′ (t,Y ) dW (t)

where µ′ (t,Y ) and σ′ (t,Y ) are functions of µ (t,X ), σ (t,X ) and
f (t,X )

We can then simulate the solution of Y (t) using an approximation
scheme and deduce the numerical solution of X (t) by applying the
transformation method:

Xm = f −1 (tm,Ym)
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Stochastic differential equations without an explicit
solution

Let us consider the geometric Brownian motion X (t). The solution of
Y (t) = lnX (t) is equal to:

dY (t) =

(
µ− 1

2
σ2

)
dt + σ dW (t)

We deduce that the Euler-Maruyama (or Milstein) scheme with
fixed-interval times is:

Ym+1 = Ym +

(
µ− 1

2
σ2

)
h + σ

√
h · εm

It follows that:

lnXm+1 = lnXm +

(
µ− 1

2
σ2

)
h + σ

√
h · εm
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Stochastic differential equations without an explicit
solution

The CIR process is dX (t) = (α + βX (t)) dt + σ
√

X (t) dW (t). Using

the transformation Y (t) =
√

X (t), we obtain the following SDE:

dY (t) =

(
1

2

(α + βX (t))√
X (t)

− 1

8

σ2X (t)

X (t)3/2

)
dt +

1

2

σ
√

X (t)√
X (t)

dW (t)

=
1

2Y (t)

(
α + βY 2 (t)− 1

4
σ2

)
dt +

1

2
σ dW (t)

We deduce that the Euler-Maruyama scheme of Y (t) is:

Ym+1 = Ym +
1

2Ym

(
α + βY 2

m −
1

4
σ2

)
h +

1

2
σ
√
h · εm

It follows that:

Xm+1 =

(√
Xm +

1

2
√
Xm

(
α + βXm −

1

4
σ2

)
h +

1

2
σ
√
h · εm

)2
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Poisson process

Let tm be the time when the mth event occurs. The numerical algorithm is
then:

1 we set t0 = 0 and N (t0) = 0

2 we generate a uniform random variate u and calculate the random
variate e ∼ E (λ) with the formula:

e = − ln u

λ

3 we update the Poisson process with:

tm+1 ← tm + e and N (tm+1)← N (tm) + 1

4 we go back to step 2
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Mixed Poisson process (MPP)

The algorithm is initialized with a realization λ of the random intensity Λ
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λ (t) varies with time

The inter-arrival times remain independent and exponentially
distributed with:

Pr {T1 > t} = exp (−Λ (t))

where T1 is the duration of the first event and Λ (t) is the integrated
intensity function:

Λ (t) =

∫ t

0

λ (s) ds

It follows that:

Pr
{
T1 > Λ−1 (t)

}
= exp (−t)⇔ Pr {Λ (T1) > t} = exp (−t)
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We deduce that if {t1, t2, . . . , tM} are the occurrence times of the NHPP
of intensity λ (t), then {Λ (t1) ,Λ (t2) , . . . ,Λ (tM)} are the occurrence
times of the homogeneous Poisson process (HPP) of intensity one.
Therefore, the algorithm is:

1 we simulate t ′m the time arrivals of the homogeneous Poisson process
with intensity λ = 1

2 we apply the transform tm = Λ−1 (t ′m)
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Figure: Simulation of a non-homogenous Poisson process with cyclical intensity

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1063 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Univariate continuous-time processes
Multivariate continuous-time processes

Multidimensional Brownian motion

Let W (t) = (W1 (t) , . . . ,Wn (t)), be a n-dimensional Brownian
motion

Each component Wi (t) is a Brownian motion:

Wi (t)−Wi (s) ∼ N (0, t − s)

We have:
E [Wi (t)Wj (s)] = min (t, s) · ρi,j

where ρi,j is the correlation between the two Brownian motions Wi

and Wj

We deduce that: {
W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ Nn (0, (t − s) ρ) are iid random vectors
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It follows that the numerical solution is:

Wm+1 = Wm +
√
tm+1 − tm · P · εm

where P is the Cholesky decomposition of the correlation matrix ρ
and εm ∼ Nn (0, I ) are iid random vectors

In the case of fixed-interval times, the recursion becomes:

Wm+1 = Wm +
√
h · P · εm
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Figure: Brownian motion in the plane (independent case)
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Figure: Brownian motion in the plane (ρ1,2 = 85%)
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We consider the multidimensional geometric Brownian motion:{
dX (t) = µ� X (t) dt + diag (σ � X (t)) dW (t)
X (0) = x0

where X (t) = (X1 (t) , . . . ,Xn (t)), µ = (µ1, . . . , µn),
σ = (σ1, . . . , σn) and W (t) = (W1 (t) , . . . ,Wn (t)) is a

n-dimensional Brownian motion with E
[
W (t)W (t)>

]
= ρ t

If we consider the jth component of X (t), we have:

dXj (t) = µjXj (t) dt + σjXj (t) dWj (t)

The solution of the multidimensional SDE is a multivariate log-normal
process with:

Xj (t) = Xj (0) · exp

((
µj −

1

2
σ2
j

)
t + σjWj (t)

)
where W (t) ∼ Nn (0, ρ t)
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We deduce that the exact scheme to simulate the multivariate GBM
is:

X1,m+1 = X1,m · exp
((
µ1 − 1

2σ
2
1

)
(tm+1 − tm) + σ1

√
tm+1 − tm · ε1,m

)
...

Xj,m+1 = Xj,m · exp
((
µj − 1

2σ
2
j

)
(tm+1 − tm) + σj

√
tm+1 − tm · εj,m

)
...

Xn,m+1 = Xn,m · exp
((
µn − 1

2σ
2
n

)
(tm+1 − tm) + σn

√
tm+1 − tm · εn,m

)
where (ε1,m, . . . , εn,m) ∼ Nn (0, ρ)
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We consider the general SDE:{
dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t)
X (0) = x0

where X (t) and µ (t,X (t)) are n × 1 vectors, σ (t,X (t)) is a n × p
matrix and W (t) is a p × 1 vector

We assume that E
[
W (t)W (t)>

]
= ρ t, where ρ is a p × p

correlation matrix
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Euler-Maruyama and Milstein schemes

The corresponding Euler-Maruyama scheme is:

Xm+1 = Xm + µ (tm,Xm) · (tm+1 − tm) + σ (tm,Xm)
√
tm+1 − tm · εm

where εm ∼ Np (0, ρ)

In the case of a diagonal system, we retrieve the one-dimensional
scheme:

Xj,m+1 = Xj,m+µj (tm,Xj,m)·(tm+1 − tm)+σj,j (tm,Xj,m)·
√
tm+1 − tmεj,m

However, the random variables εj,m and εj′,m may be correlated
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We consider the Heston model:{
dX (t) = µX (t) dt +

√
v (t)X (t) dW1 (t)

dv (t) = a (b − v (t)) dt + σ
√

v (t) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. By applying the fixed-interval
Euler-Maruyama scheme to (lnX (t) , v (t)), we obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m

and:
vm+1 = vm + a (b − vm) h + σ

√
vmh · ε2,m

Here, ε1,m and ε2,m are two standard Gaussian random variables with
correlation ρ
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The multidimensional version of the Milstein scheme is:

Xj,m+1 = Xj,m + µj (tm,Xm) (tm+1 − tm) +

p∑
k=1

σj,k (tm,Xm) ∆Wk,m +

p∑
k=1

p∑
k′=1

L(k)σj,k′ (tm,Xm) I(k,k′)

where ∆Wk,m = Wk (tm+1)−Wk (tm) and:

L(k)f (t, x) =
n∑

k′′=1

σk′′,k (tm,Xm)
∂ f (t, x)

∂ xk′′

and:

I(k,k′) =

∫ tm+1

tm

∫ s

tm

dWk (t) dWk′ (s)
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In the case of a diagonal system, the Milstein scheme may be simplified as
follows:

Xj,m+1 = Xj,m + µj (tm,Xj,m) (tm+1 − tm) + σj,j (tm,Xj,m) ∆Wj,m +

L(j)σj,j (tm,Xj,m) I(j,j)

where:

I(j,j) =

∫ tm+1

tm

∫ s

tm

dWj (t) dWj (s)

=

∫ tm+1

tm

(Wj (s)−Wj (tm)) dWj (s)

=
1

2

(
(∆Wj,m)2 − (tm+1 − tm)

)
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We deduce that the Milstein scheme is:

Xj,m+1 = Xj,m + µj (tm,Xj,m) (tm+1 − tm) +

σj,j (tm,Xj,m)
√
tm+1 − tmεj,m +

1

2
σj,j (tm,Xj,m) ∂xj σj,j (tm,Xj,m) (tm+1 − tm)

(
ε2
j,m − 1

)
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If we apply the fixed-interval Milstein scheme to the Heston model, we
obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m

and:

vm+1 = vm + a (b − vm) h + σ
√
vmh · ε2,m +

1

4
σ2h

(
ε2

2,m − 1
)

Here, ε1,m and ε2,m are two standard Gaussian random variables with
correlation ρ
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Remark

The multidimensional Milstein scheme is generally not used, because the
terms L(k)σj,k′ (tm,Xm) I(k,k′) are complicated to simulate. For the Heston
model, we obtain a very simple scheme, because we only apply the Milstein
scheme to the process v (t) and not to the vector process (lnX (t) , v (t))
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If we also apply the Milstein scheme to lnX (t), we obtain:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m + Am

where:

Am =
2∑

k=1

2∑
k′=1

(
2∑

k′′=1

σk′′,k (tm,Xm)
σ1,k′ (tm,Xm)

∂ xk′′

)
I(k,k′)

= σ
√
v (t) · 1

2
√

v (t)
· I(2,1)

=
σ

2
· I(2,1)
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Let W2 (t) = ρW1 (t) +
√

1− ρ2W ? (t) where W ? (t) is a Brownian
motion independent from W1 (t). It follows that:

I(2,1) =

∫ tm+1

tm

∫ s

tm

dW2 (t) dW1 (s)

=

∫ tm+1

tm

(
ρW1 (s) +

√
1− ρ2W ? (s)

)
dW1 (s)−∫ tm+1

tm

(
ρW1 (tm) +

√
1− ρ2W ? (tm)

)
dW1 (s)

= ρ

∫ tm+1

tm

(W1 (s)−W1 (tm)) dW1 (s) +

√
1− ρ2

∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)

and:

I(2,1) =
1

2
ρ
(

(∆W1,m)2 − (tm+1 − tm)
)

+ Bm
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We finally deduce that the multidimensional Milstein scheme of the Heston
model is:

lnXm+1 = lnXm +

(
µ− 1

2
vm

)
h +

√
vmh · ε1,m +

1

4
ρσh

(
ε2

1,m − 1
)

+ Bm

and:

vm+1 = vm + a (b − vm) h + σ
√
vmh · ε2,m +

1

4
σ2h

(
ε2

2,m − 1
)

where Bm is a correction term defined by:

Bm =
√

1− ρ2

∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)
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A basic example

Suppose we have a circle with radius r and a 2r × 2r square of the
same center. Since the area of the circle is equal to πr2, the
numerical calculation of π is equivalent to compute the area of the
circle with r = 1

In this case, the area of the square is 4, and we have:

π = 4
A (circle)

A (square)

To determine π, we simulate nS random vectors (us , vs) of uniform
random variables U[−1,1] and we obtain:

π = lim
nS→∞

4
nc
n

where nc is the number of points (us , vs) in the circle:

nc =

nS∑
s=1

1
{
u2
s + v2

s ≤ r2
}

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1081 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

A basic example

Figure: Computing π with 1 000 simulations
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Theoretical framework

We consider the multiple integral:

I =

∫
· · ·
∫

Ω

ϕ (x1, . . . , xn) dx1 · · · dxn

Let X = (X1, . . . ,Xn) be a uniform random vector with probability
distribution U[Ω], such that Ω is inscribed within the hypercube [Ω]
The pdf is:

f (x1, . . . , xn) = 1

We deduce that:

I =

∫
· · ·
∫

[Ω]

1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn) dx1 · · · dxn

= E [1 {(X1, . . . ,Xn) ∈ Ω} · ϕ (X1, . . . ,Xn)]

= E [h (X1, . . . ,Xn)]

where:

h (x1, . . . , xn) = 1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn)
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Theoretical framework

Let ÎnS be the random variable defined by:

ÎnS =
1

nS

nS∑
s=1

h (X1,s , . . . ,Xn,s)

where {X1,s , . . . ,Xn,s}s≥1 is a sequence of iid random vectors with
probability distribution U[Ω]

Using the strong law of large numbers, we obtain:

lim
ns→∞

Îns = E [h (X1, . . . ,Xn)]

=

∫
· · ·
∫

Ω

ϕ (x1, . . . , xn) dx1 · · · dxn

Moreover, the central limit theorem states that:

lim
ns→∞

√
nS

(
Îns − I

σ (h (X1, . . . ,Xn))

)
= N (0, 1)
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Theoretical framework

When nS is large, we can deduce the following confidence interval:[
ÎnS − cα ·

ŜnS√
nS
, ÎnS + cα ·

ŜnS√
nS

]

where α is the confidence level, cα = Φ−1 ((1 + α) /2) and ŜnS is the
usual estimate of the standard deviation:

ŜnS =

√√√√ 1

nS − 1

nS∑
s=1

h2 (X1,s , . . . ,Xn,s)− Îns
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Theoretical framework

Figure: Density function of π̂nS
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Extension to the calculation of mathematical expectations

Let X = (X1, . . . ,Xn) be a random vector with probability distribution
F. We have:

E [ϕ (X1, . . . ,Xn)] =

∫
· · ·
∫
ϕ (x1, . . . , xn) dF (x1, · · · , xn)

=

∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, · · · , xn) dx1 · · · dxn

=

∫
· · ·
∫

h (x1, . . . , xn) dx1 · · · dxn

where f is the density function

The Monte Carlo estimator of this integral is:

ÎnS =
1

nS

nS∑
s=1

ϕ (X1,s , . . . ,Xn,s)

where {X1,s , . . . ,Xn,s}s≥1 is a sequence of iid random vectors with
probability distribution F
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Extension to the calculation of mathematical expectations

The price of the look-back option with maturity T is given by:

C = e−rTE

[(
S (T )− min

0≤t≤T
S (t)

)+
]

The price S (t) of the underlying asset is given by the following SDE:

dS (t) = rS (t) dt + σS (t) dW (t)

where r is the interest rate and σ is the volatility of the asset
For a given simulation s, we have:

S
(s)
m+1 = S (s)

m · exp

((
r − 1

2
σ2

)
(tm+1 − tm) + σ

√
tm+1 − tm · ε(s)

m

)
where ε

(s)
m ∼ N (0, 1) and T = tM

The Monte Carlo estimator of the option price is then equal to:

Ĉ =
e−rT

nS

nS∑
s=1

(
S

(s)
M −min

m
S (s)
m

)+
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Extension to the calculation of mathematical expectations

Figure: Computing the look-back option price
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Extension to the calculation of mathematical expectations

Let us consider the following integral:

I =

∫
· · ·
∫

h (x1, . . . , xn) dx1 · · · dxn

We can write it as follows:

I =

∫
· · ·
∫

h (x1, . . . , xn)

f (x1, · · · , xn)
f (x1, · · · , xn) dx1 · · · dxn

where f (x1, · · · , xn) is a multidimensional density function

We deduce that:

I = E
[
h (X1, . . . ,Xn)

f (X1, . . . ,Xn)

]
This implies that we can compute an integral with the MC method by
using any multidimensional distribution function
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Extension to the calculation of mathematical expectations

If we apply this result to the calculation of π, we have:

π =
x

x2+y2≤1
dx dy =

x
1
{
x2 + y2 ≤ 1

}
dx dy

=
x 1

{
x2 + y2 ≤ 1

}
φ (x)φ (y)

φ (x)φ (y) dx dy

We deduce that:

π = E

[
1
{
X 2 + Y 2 ≤ 1

}
φ (X )φ (Y )

]
where X and Y are two independent standard Gaussian random variables.
We can then estimate π by:

π̂nS =
1

nS

nS∑
s=1

1
{
x2
s + y2

s ≤ 1
}

φ (xs)φ (ys)

where xs and ys are two independent random variates from the probability
distribution N (0, 1)
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Extension to the calculation of mathematical expectations

Figure: Computing pi with normal random numbers
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Variance reduction

We consider two unbiased estimators Î
(1)
nS and Î

(2)
nS of the integral I ,

meaning that E
[
Î

(1)
nS

]
= E

[
Î

(2)
nS

]
= I

We say that Î
(1)
nS is more efficient than Î

(2)
nS if the inequality

var
(
Î

(1)
nS

)
≤ var

(
Î

(2)
nS

)
holds for all values of nS that are larger than

n?S
Variance reduction is then the search of more efficient estimators
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Antithetic variates

We have:
I = E [ϕ (X1, . . . ,Xn)] = E [Y ]

where Y = ϕ (X1, . . . ,Xn) is a one-dimensional random variable

It follows that:

ÎnS = ȲnS =
1

nS

nS∑
s=1

Ys

We now consider the estimators ȲnS and Ȳ ′nS based on two different

samples and define Ȳ ? as follows:

Ȳ ? =
ȲnS + Ȳ ′nS

2
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Antithetic variates

We have:

E
[
Ȳ ?
]

= E

[
ȲnS + Ȳ ′nS

2

]
= E

[
ȲnS

]
= I

and:

var
(
Ȳ ?
)

= var

(
ȲnS + Ȳ ′nS

2

)

=
1

4
var
(
ȲnS

)
+

1

4
var
(
Ȳ ′nS
)

+
1

2
cov

(
ȲnS , Ȳ

′
nS

)
=

1 + ρ
〈
ȲnS , Ȳ

′
nS

〉
2

var
(
ȲnS

)
=

1 + ρ 〈Ys ,Y
′
s 〉

2
var
(
ȲnS

)
where ρ 〈Ys ,Y

′
s 〉 is the correlation between Ys and Y ′s
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Because we have ρ 〈Ys ,Y
′
s 〉 ≤ 1, we deduce that:

var
(
Ȳ ?
)
≤ var

(
ȲnS

)
If we simulate the random variates Ys and Y ′s independently,
ρ 〈Ys ,Y

′
s 〉 is equal to zero and the variance of the estimator is divided

by 2

However, the number of simulations have been multiplied by two.
The efficiency of the estimator has then not been improved
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Antithetic variates

The underlying idea of antithetic variables is therefore to use two
perfectly dependent random variables Ys and Y ′s :

Y ′s = ψ (Ys)

where ψ is a deterministic function

This implies that:

Ȳ ?
nS =

1

nS

nS∑
s=1

Y ?
s

where:

Y ?
s =

Ys + Y ′s
2

=
Ys + ψ (Ys)

2

It follows that:

ρ
〈
ȲnS , Ȳ

′
nS

〉
= ρ 〈Y ,Y ′〉 = ρ 〈Y , ψ (Y )〉
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Antithetic variates

Minimizing the variance var
(
Ȳ ?
)

is then equivalent to minimize the
correlation ρ 〈Y , ψ (Y )〉
We also know that the correlation reaches its lower bound if the
dependence function between Y and ψ (Y ) is equal to the lower
Fréchet copula:

C 〈Y , ψ (Y )〉 = C−

However, ρ 〈Y , ψ (Y )〉 is not necessarily equal to −1 except in some
special cases
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We consider the one-dimensional case with Y = ϕ (X )

If we assume that ϕ is an increasing function, it follows that:

C 〈Y , ψ (Y )〉 = C 〈ϕ (X ) , ψ (ϕ (X ))〉 = C 〈X , ψ (X )〉

To obtain the lower bound C−, X and ψ (X ) must be
countermonotonic:

ψ (X ) = F−1 (1− F (X ))

where F is the probability distribution of X

For instance, if X ∼ U[0,1], we have X ′ = 1− X . In the case where
X ∼ N (0, 1), we have:

X ′ = Φ−1 (1− Φ (X )) = Φ−1 (Φ (−X )) = −X
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Example #9

We consider the following functions:

1 ϕ1 (x) = x3 + x + 1

2 ϕ2 (x) = x4 + x2 + 1

3 ϕ3 (x) = x4 + x3 + x2 + x + 1

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1100 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

Antithetic variates

For each function, we want to estimate I = E [ϕ (N (0, 1))] using the
antithetic estimator:

Ȳ ?
nS =

1

nS

nS∑
s=1

ϕ (Xs) + ϕ (−Xs)

2

where Xs ∼ N (0, 1)

Let X ∼ N (0, 1). We have E
[
X 2
]

= 1,

E
[
X 2m

]
= (2m − 1)E

[
X 2m−2

]
and E

[
X 2m+1

]
= 0 for m ∈ N

We obtain the following results:

ϕ (x) ϕ1 (x) ϕ2 (x) ϕ3 (x)
E [ϕ (Xs)] or E [ϕ (−Xs)] 1 5 5

var (ϕ (Xs)) or var (ϕ (−Xs)) 22 122 144
cov (ϕ (Xs) , ϕ (−Xs)) −22 122 100
ρ 〈ϕ (Xs) , ϕ (−Xs)〉 −1 1 25/36
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To understand these numerical results, we must study the relationship
between C 〈X ,X ′〉 and C 〈Y ,Y ′〉. Indeed, we have:{

C 〈X ,X ′〉 = C− ⇒ C 〈Y ,Y ′〉 = C−
}
⇔ ϕ′ (x) ≥ 0
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Figure: Functions ϕ1 (x), ϕ2 (x) and ϕ3 (x)
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Application to the geometric Brownian motion

In the Gaussian case X ∼ N (0, 1), the antithetic variable is:

X ′ = −X

As the simulation of Y ∼ N
(
µ, σ2

)
is obtained using the relationship

Y = µ+ σX , we deduce that the antithetic variable is:

Y ′ = µ− σX = µ− σ (Y − µ)

σ
= 2µ− Y

If we consider the geometric Brownian motion, the fixed-interval
scheme is:

Xm+1 = Xm · exp

((
µ− 1

2
σ2

)
h + σ

√
h · εm

)
whereas the antithetic path is given by:

X ′m+1 = X ′m · exp

((
µ− 1

2
σ2

)
h − σ

√
h · εm

)
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Figure: Antithetic simulation of the GBM process

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1105 / 1695



Random variate generation
Simulation of stochastic processes

Monte Carlo methods

Computing integrals
Variance reduction
Quasi-Monte Carlo simulation methods

Application to the geometric Brownian motion

In the multidimensional case, we recall that:

Xj,m+1 = Xj,m · exp

((
µj −

1

2
σ2
j

)
h + σj

√
h · εj,m

)
where εm = (ε1,m, . . . , εn,m) ∼ Nn (0, ρ)

We simulate εm by using the relationship εm = P · ηm where
ηm ∼ Nn (0, In) and P is the Cholesky matrix satisfying PP> = ρ

The antithetic trajectory is then:

X ′j,m+1 = X ′j,m · exp

((
µj −

1

2
σ2
j

)
h + σj

√
k · ε′j,m

)
where:

ε′m = −P · ηm = −εm
We verify that ε′m =

(
ε′1,m, . . . , ε

′
n,m

)
∼ Nn (0, ρ)
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Application to the geometric Brownian motion

In the Black-Scholes model, the price of the spread option with maturity T
and strike K is given by:

C = e−rTE
[
(S1 (T )− S2 (T )− K )+

]
where the prices S1 (t) and S2 (t) of the underlying assets are given by the
following SDE: {

dS1 (t) = rS1 (t) dt + σ1S1 (t) dW1(t)
dS2 (t) = rS2 (t) dt + σ2S2 (t) dW2(t)

and E [W1 (t)W2 (t)] = ρ t
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Application to the geometric Brownian motion

To calculate the option price using Monte Carlo methods, we simulate
the bivariate GBM S1 (t) and S2 (t) and the MC estimator is:

ĈMC =
e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S

(s)
2 (T )− K

)+

where S
(s)
j (T ) is the sth simulation of the terminal value Sj (T )

For the AV estimator, we obtain:

ĈAV =
e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S

(s)
2 (T )− K

)+

+
(
S
′(s)
1 (T )− S

′(s)
2 (T )− K

)+

2

where S
′(s)
j (T ) is the antithetic variate of S

(s)
j (T )
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Figure: Probability density function of ĈMC and ĈAV (nS = 1 000)
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Control variates

Let Y = ϕ (X1, . . . ,Xn) and V be a random variable with known
mean E [V ]

We define Z as follows: Z = Y + c · (V − E [V ])

We deduce that:

E [Z ] = E [Y + c · (V − E [V ])]

= E [Y ] + c · E [V − E [V ]]

= E [ϕ (X1, . . . ,Xn)]

and:

var (Z ) = var (Y + c · (V − E [V ]))

= var (Y ) + 2 · c · cov (Y ,V ) + c2 · var (V )
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It follows that:

var (Z ) ≤ var (Y ) ⇔ 2 · c · cov (Y ,V ) + c2 · var (V ) ≤ 0

⇒ c · cov (Y ,V ) ≤ 0

In order to obtain a lower variance, a necessary condition is that c
and cov (Y ,V ) have opposite signs

The minimum is obtained when ∂c var (Z ) = 0 or equivalently when:

c? = −cov (Y ,V )

var (V )
= −β
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The optimal value c? is then equal to the opposite of the beta of Y
with respect to the control variate V . In this case, we have:

Z = Y − cov (Y ,V )

var (V )
· (V − E [V ])

and:

var (Z ) = var (Y )− cov2 (Y ,V )

var (V )
=
(
1− ρ2 〈Y ,V 〉

)
· var (Y )

This implies that we have to choose a control variate V that is highly
(positively or negatively) correlated with Y in order to reduce the
variance
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Example

We consider that X ∼ U[0,1] and ϕ (x) = ex . We would like to estimate:

I = E [ϕ (X )] =

∫ 1

0

ex dx
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We set Y = eX and V = X

We know that E [V ] = 1/2 and var (V ) = 1/12

It follows that:

var (Y ) = E
[
Y 2
]
− E2 [Y ]

=

∫ 1

0

e2x dx −
(∫ 1

0

ex dx

)2

=

[
e2x

2

]1

0

−
(
e1 − e0

)2

=
4e − e2 − 3

2
≈ 0.2420
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We have:

cov (Y ,V ) = E [VY ]− E [V ]E [Y ]

=

∫ 1

0

xex dx − 1

2

(
e1 − e0

)
=

[
xex
]1

0

−
∫ 1

0

ex dx − 1

2

(
e1 − e0

)
=

3− e

2
≈ 0.1409

If we consider the VC estimator Z defined by:

Z = Y − cov (Y ,V )

var (V )
· (V − E [V ])

= Y − (18− 6e) ·
(
V − 1

2

)
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We have β ≈ 1.6903

We obtain:

var (Z ) = var (Y )− cov2 (Y ,V )

var (V )

=
4e − e2 − 3

2
− 3 · (3− e)2

≈ 0.0039

We conclude that we have dramatically reduced the variance of the
estimator, because we have:

var
(
ÎCV

)
var
(
ÎMC

) =
var (Z )

var (Y )
= 1.628%
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Figure: Understanding the variance reduction in control variates
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Ŷ is the conditional expectation of Y with respect to V :

E [Y | V ] = E [Y ] + β (V − E [V ])

This is the best linear estimator of Y

The residual U of the linear regression is then equal to:

U = Y − Ŷ = (Y − E [Y ])− β (V − E [V ])

The CV estimator Z is a translation of the residual in order to satisfy
E [Z ] = E [Y ]:

Z = E [Y ] + U = Y − β (V − E [V ])

By construction, the variance of the residual U is lower than the
variance of the random variable Y . We conclude that:

var (Z ) = var (U) ≤ var (Y )
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We can therefore obtain a large variance reduction if the following
conditions are satisfied:

the control variate V largely explains the random variable Y

the relationship between Y and V is almost linear
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The price of an arithmetic Asian call option is given by:

C = e−rTE
[(
S̄ − K

)+
]

where K is the strike of the option and S̄ denotes the average of S (t) on
a given number of fixing dates21 {t1, . . . , tnF }:

S̄ =
1

nF

nF∑
m=1

S (tm)

We can estimate the option price using the Black-Scholes model

21We have tnF = T .
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We can also reduce the variance of the MC estimator by considering the
following control variates:

1 the terminal value V1 = S (T ) of the underlying asset;

2 the average value V2 = S̄ ;

3 the discounted payoff of the call option V3 = e−rT (S (T )− K )+;

4 the discounted payoff of the geometric Asian call option

V4 = e−rT
(
S̃ − K

)+

where:

S̃ =
(∏nF

m=1
S (tm)

)1/nF
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For these control variates, we know the expected value

In the first case, we have:

E [S (T )] = S0e
rT

In the first case, we have:

E
[
S̄
]

=
S0

nF

nF∑
m=1

ertm
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The expected value of the third control variate is the Black-Scholes
formula of the European call option:

S̃ =
(∏nF

m=1
S0e

(r− 1
2σ

2)tm+σW (tm)
)1/nF

= S0·exp

((
r − 1

2
σ2

)
t̄ + σW̄

)
where:

t̄ =
1

nF

∑nF

m=1
tm

and:

W̄ =
1

nF

∑nF

m=1
W (tm)

Because S̃ has a log-normal distribution, we deduce that the expected
value of the fourth control variate is also given by a Black-Scholes
formula
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Figure: CV estimator of the arithmetic Asian call option
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The previous approach can be extended in the case of several control
variates:

Z = Y +

nCV∑
i=1

ci · (Vi − E [Vi ]) = Y + c> (V − E [V ])

where c = (c1, . . . , cnCV ) and V = (V1, . . . ,VnCV )
We can show that the optimal value of c is equal to:

c? = − cov (V ,V )−1 · cov (V ,Y )

Minimizing the variance of Z is equivalent to minimize the variance of
U:

U = Y − Ŷ = Y −
(
α + β>V

)
We deduce that c? = −β. It follows that

var (Z ) = var (U) =
(
1− R2

)
· var (Y )

where R2 is the R-squared coefficient of the linear regression
Y = α + β>V + U
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Table: Linear regression between the Asian call option and the control variates

α̂ β̂1 β̂2 β̂3 β̂4 R2 1− R2

−51.482 0.036 0.538 90.7% 9.3%
−24.025 −0.346 0.595 0.548 96.5% 3.5%
−4.141 0.069 0.410 81.1% 18.9%
−38.727 0.428 0.174 92.9% 7.1%
−1.559 −0.040 0.054 0.111 0.905 99.8% 0.2%
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Importance sampling

Let X = (X1, . . . ,Xn) be a random vector with distribution function F

We have:

I = E [ϕ (X1, . . . ,Xn) | F]

=

∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, . . . , xn) dx1 · · · dxn

where f (x1, . . . , xn) is the probability density function of X
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It follows that:

I =

∫
· · ·
∫ (

ϕ (x1, . . . , xn)
f (x1, . . . , xn)

g (x1, . . . , xn)

)
g (x1, . . . , xn) dx1 · · · dxn

= E
[
ϕ (X1, . . . ,Xn)

f (X1, . . . ,Xn)

g (X1, . . . ,Xn)

∣∣∣∣G]
= E [ϕ (X1, . . . ,Xn)L (X1, . . . ,Xn) | G]

where g (x1, . . . , xn) is the probability density function of G and L is
the likelihood ratio:

L (x1, . . . , xn) =
f (x1, . . . , xn)

g (x1, . . . , xn)

The values taken by L (x1, . . . , xn) are also called the importance
sampling weights
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Using the vector notation, the relationship becomes:

E [ϕ (X ) | F] = E [ϕ (X )L (X ) | G]

It follows that:
E
[
ÎMC

]
= E

[
ÎIS
]

= I

where ÎMC and ÎIS are the Monte Carlo and importance sampling
estimators of I

We also deduce that:

var
(
ÎIS
)

= var (ϕ (X )L (X ) | G)
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It follows that:

var
(
ÎIS
)

= E
[
ϕ2 (X )L2 (X ) | G

]
− E2 [ϕ (X )L (X ) | G]

=

∫
ϕ2 (x)L2 (x) g (x) dx − I 2

=

∫
ϕ2 (x)

f 2 (x)

g2 (x)
g (x) dx − I 2

=

∫
ϕ2 (x)

f 2 (x)

g (x)
dx − I 2
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If we compare the variance of the two estimators ÎMC and ÎIS, we
obtain:

var
(
ÎIS
)
− var

(
ÎMC

)
=

∫
ϕ2 (x)

f 2 (x)

g (x)
dx −

∫
ϕ2 (x) f (x) dx

=

∫
ϕ2 (x)

(
f (x)

g (x)
− 1

)
f (x) dx

=

∫
ϕ2 (x) (L (x)− 1) f (x) dx

The difference may be negative if the weights L (x) are small
(L (x)� 1) because the values of ϕ2 (x) f (x) are positive

The importance sampling approach changes then the importance of
some values x by transforming the original probability distribution F
into another probability distribution G
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The first-order condition is:

−ϕ2 (x) · f
2 (x)

g2 (x)
= λ

where λ is a constant

We have:

g? (x) = arg min var
(
ÎIS
)

= arg min

∫
ϕ2 (x)

f 2 (x)

g (x)
dx

= c · |ϕ (x)| · f (x)

where c is the normalizing constant such that
∫
g? (x) dx = 1

A good choice of the IS density g (x) is then an approximation of
|ϕ (x)| · f (x) such that g (x) can easily be simulated
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Remark

In order to simplify the notation and avoid confusions, we consider that
X ∼ F and Z ∼ G in the sequel. This means that ÎMC = ϕ (X ) and
ÎIS = ϕ (Z )L (Z )
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We consider the estimation of the probability
p = Pr {X ≥ 3} ≈ 0.1350% when X ∼ N (0, 1)

We have:
ϕ (x) = 1 {x ≥ 3}

Importance sampling with Z ∼ N
(
µz , σ

2
z

)
, µz = 3 and σz = 1⇒ the

probability Pr {Z ≥ 3} is equal to 50%
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Figure: Histogram of the MC and IS estimators (nS = 1 000)
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Figure: Standard deviation (in %) of the estimator p̂IS (nS = 1 000)
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We consider the pricing of the put option:

P = e−rTE
[
(K − S (T ))+

]
We can estimate the option price by using the Monte Carlo method
with:

ϕ (x) = e−rT (K − x)+

In the case where K � S (0), the probability of exercise
Pr {S (T ) ≤ K} is very small

Therefore, we have to increase the probability of exercise in order to
obtain a more efficient estimator
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In the case of the Black-Scholes model, the density function of S (T )
is equal to:

f (x) =
1

xσx
φ

(
ln x − µx

σx

)
where µx = lnS0 +

(
r − σ2/2

)
T and σx = σ

√
T

We consider the IS density g (x) defined by:

g (x) =
1

xσz
φ

(
ln x − µz

σz

)
where µz = θ + µx and σz = σx
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For instance, we can choose θ such that the probability of exercise is
equal to 50%. It follows that:

Pr {Z ≤ K} =
1

2
⇔ Φ

(
lnK − θ − µx

σx

)
=

1

2

⇔ θ = lnK − µx

⇔ θ = ln
K

S0
−
(
r − 1

2
σ2

)
T
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We deduce that:

P = E [ϕ (S (T ))] = E [ϕ (S ′ (T )) · L (S ′ (T ))]

where:

L (x) =

1

xσx
φ

(
ln x − µx

σx

)
1

xσz
φ

(
ln x − µz

σz

) = exp

(
θ2

2σ2
x

−
(

ln x − µx

σx

)
· θ
σx

)

and S ′ (T ) is the same geometric Brownian motion than S (T ), but
with another initial value:

S ′ (0) = S (0) eθ = Ke−(r−σ2/2)T
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Example #10

We assume that S0 = 100, K = 60, r = 5%, σ = 20% and T = 2. If we
consider the previous method, the IS process is simulated using the initial

value S ′ (0) = Ke−(r−σ2/2)T = 56.506, whereas the value of θ is equal to
−0.5708
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Figure: Density function of the estimators P̂MC and P̂IS (nS = 1 000)
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Quasi-Monte Carlo simulation methods

We consider the following Monte Carlo problem:

I =

∫
· · ·
∫

[0,1]n
ϕ (x1, . . . , xn) dx1 · · · dxn

Let X be the random vector of independent uniform random
variables. It follows that I = E [ϕ (X )]

The Monte Carlo method consists in generating uniform coordinates
in the hypercube [0, 1]n

Quasi-Monte Carlo methods use non-random coordinates in order to
obtain a more nicely uniform distribution
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Quasi-Monte Carlo simulation methods

A low discrepancy sequence U = {u1, . . . , unS} is a set of deterministic
points distributed in the hypercube [0, 1]n
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Figure: Comparison of different low discrepancy sequences
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Figure: The Sobol generator
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Quasi-Monte Carlo simulation methods

Figure: Quasi-random points on the unit sphere
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Quasi-Monte Carlo simulation methods

Example #11

We consider a spread option whose payoff is equal to
(S1 (T )− S2 (T )− K )+. The price is calculated using the Black-Scholes
model, and the following parameters: S1 (0) = S2 (0) = 100,
σ1 = σ2 = 20%, ρ = 50% and r = 5%. The maturity T of the option is
set to one year, whereas the strike K is equal to 5. The true price of the
spread option is equal to 5.8198.
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Table: Pricing of the spread option using quasi-Monte Carlo methods

nS 102 103 104 105 106 5× 106

LCG (1) 4.3988 5.9173 5.8050 5.8326 5.8215 5.8139
LCG (2) 6.1504 6.1640 5.8370 5.8219 5.8265 5.8198
LCG (3) 6.1469 5.7811 5.8125 5.8015 5.8142 5.8197
Hammersley (1) 32.7510 26.5326 21.5500 16.1155 9.0914 5.8199
Hammersley (2) 32.9082 26.4629 21.5465 16.1149 9.0914 5.8199
Halton (1) 8.6256 6.1205 5.8493 5.8228 5.8209 5.8208
Halton (2) 10.6415 6.0526 5.8544 5.8246 5.8208 5.8207
Halton (3) 8.5292 6.0575 5.8474 5.8235 5.8212 5.8208
Sobol 5.7181 5.7598 5.8163 5.8190 5.8198 5.8198
Faure 5.7256 5.7718 5.8157 5.8192 5.8197 5.8198
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Exercises

Exercise 13.4.1 – Simulating random numbers using the inversion
method

Exercise 13.4.6 – Simulation of the bivariate Normal copula

Exercise 13.4.7 – Computing the capital charge for operational risk
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Methodologies

“Stress testing is now a critical element of risk management for
banks and a core tool for banking supervisors and macroprudential
authorities” (BCBS, 2017, page 5).
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General objective

If we consider a trading book portfolio, we recall that:

Ls (w) = Pt (w)− g (F1,s , . . . ,Fm,s ;w)

In the case of a stress testing program, we have:

Lstress (w) = Pt (w)− g (F1,stress, . . . ,Fm,stress;w)

where (F1,stress, . . . ,Fm,stress) is the stress scenario
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Scenario design and risk factors

2004 FSAP stress scenarios applied to the French banking system

F1 flattening of the yield curve due to an increase in interest rates:
increase of 150 basis points (bp) in overnight rates, increase of 50 bp
in 10-year rates, with interpolation for intermediate maturities

F5 share price decline of 30% in all stock markets

F9 flattening of the yield curve (increase of 150 basis points in overnight
rates, increase of 50 bp in 10-year rates) together with a 30% drop in
stock markets

M2 increase to USD 40 in the price per barrel of Brent crude for two years
(an increase of 48% compared with USD 27 per barrel in the baseline
case), without any reaction from the central bank; the increase in the
price of oil leads to an increase in the general rate of inflation and a
decline in economic activity in France together with a drop in global
demand
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Scenario design and risk factors

Classification

1 historical scenario: “a stress test scenario that aims at replicating the
changes in risk factor shocks that took place in an actual past
episode”

2 hypothetical scenario: “a stress test scenario consisting of a
hypothetical set of risk factor changes, which does not aim to
replicate a historical episode of distress”

3 macroeconomic scenario: “a stress test that implements a link
between stressed macroeconomic factors [...] and the financial
sustainability of either a single financial institution or the entire
financial system”

4 liquidity scenario: “a liquidity stress test is the process of assessing
the impact of an adverse scenario on institution’s cash flows as well as
on the availability of funding sources, and on market prices of liquid
assets”
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Scenario design and risk factors

Figure: 2017 DFAST supervisory scenarios: Domestic variables
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Scenario design and risk factors

Figure: 2017 DFAST supervisory scenarios: International variables
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Firm-specific versus supervisory stress testing

Examples of hard trading limits:

Unobservable parameters (e.g. correlations of basket options)

Less liquid assets

Examples of supervisory stress testing:

Financial sector assessment program (FSAP)

Dodd-Frank Act stress test (DFAST)

EU-wide stress testing
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Historical approach

Table: Worst historical scenarios of the S&P 500 index

Sc. 1D 1W 1M
1 1987-10-19 −20.47 1987-10-19 −27.33 2008-10-27 −30.02
2 2008-10-15 −9.03 2008-10-09 −18.34 1987-10-26 −28.89
3 2008-12-01 −8.93 2008-11-20 −17.43 2009-03-09 −22.11
4 2008-09-29 −8.79 2008-10-27 −13.85 2002-07-23 −19.65
5 1987-10-26 −8.28 2011-08-08 −13.01 2001-09-21 −16.89

Sc. 2M 3M 6M
1 2008-11-20 −37.66 2008-11-20 −41.11 2009-03-09 −46.64
2 1987-10-26 −31.95 1987-11-30 −30.17 1974-09-13 −34.33
3 2002-07-23 −27.29 1974-09-13 −28.59 2002-10-09 −31.29
4 2009-03-06 −26.89 2002-07-23 −27.55 1962-06-27 −26.59
5 1962-06-22 −23.05 2009-03-09 −25.63 1970-05-26 −25.45
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Macro-economic approach

Exogenous

Shock
Model

Risk

Factors

Figure: Macroeconomic approach of stress testing
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Macro-economic approach
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En

Figure: Feedback effects in stress testing models
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Probabilistic approach

At first approximation, a stress scenario can be seen as an extreme
quantile or value-at-risk ⇒ we can use EVT (extreme value theory)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1164 / 1695



Stress testing framework
Quantitative approaches

Univariate stress scenarios
Joint stress scenarios
Conditional stress scenarios
Reverse stress testing

Univariate stress scenarios

Let X be the random variable that produces the stress scenario S (X ).
If X ∼ F and the relationship between L (w) and X is decreasing, we
have:

Pr {X ≤ S (X )} = F (S (X ))

Given a stress scenario S (X ), we deduce its severity:

α = F (S (X ))

We can also compute the stressed value given the probability of
occurrence α:

S (X ) = F−1 (α)

α ≈ 0 (6= value-at-risk)
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Univariate stress scenarios

Return time

We have T = α−1 and α = T −1

We reiterate that:

T = α−1 = n · (1− αGEV)−1

where n is the length of the block maxima

Table: Probability (in %) associated to the return period T in years

Return period 1 5 10 20 30 50
Daily 0.3846 0.0769 0.0385 0.0192 0.0128 0.0077
Weekly 1.9231 0.3846 0.1923 0.0962 0.0641 0.0385
Monthly 8.3333 1.6667 0.8333 0.4167 0.2778 0.1667
1− αGEV 7.6923 1.5385 0.7692 0.3846 0.2564 0.1538
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Univariate stress scenarios

Table: GEV parameter estimates (in %) of MSCI USA and MSCI EMU indices

Parameter
Long position Short position

MSCI USA MSCI EMU MSCI USA MSCI EMU
µ 1.242 1.572 1.317 1.599
σ 0.720 0.844 0.577 0.730
ξ 19.363 21.603 26.341 26.494
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Univariate stress scenarios

Table: Stress scenarios (in %) of MSCI USA and MSCI EMU indices

Year
Long position Short position

MSCI USA MSCI EMU MSCI USA MSCI EMU
5 −5.86 −7.27 5.69 7.16

10 −7.06 −8.83 7.01 8.84
25 −8.92 −11.29 9.17 11.60
50 −10.56 −13.49 11.18 14.17
75 −11.62 −14.94 12.54 15.91

100 −12.43 −16.05 13.59 17.26
Extreme −9.51 −10.94 11.04 10.87
statistic
T ? 32.49 22.24 47.87 20.03
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Univariate stress scenarios

Figure: Stress scenarios (in %) of MSCI USA and MSCI EMU indices
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Bivariate stress scenarios

We note p = Pr {Xn:n,1 > S (X1) ,Xn:n,2 > S (X2)} the joint
probability of stress scenarios (S (X1) ,S (X2))

We have:

p = 1− F1 (S (X1))− F2 (S (X2)) + C (F1 (S (X1)) ,F2 (S (X2)))

= C̄ (F1 (S (X1)) ,F2 (S (X2)))

where C̄ (u1, u2) = 1− u1 − u2 + C (u1, u2)

We deduce that the failure area is represented by:{
(S (X1) ,S (X2)) ∈ R2

+ | C̄ (F1 (S (X1)) ,F2 (S (X2))) ≤ n

T

}
We have:

T =
n

C̄ (F1 (S (X1)) ,F2 (S (X2)))

and:
max (T1, T2) ≤ T ≤ nT1T2
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Figure: Failure area of MSCI USA and MSCI EMU indices (blockwise
dependence)
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Bivariate stress scenarios

Figure: Failure area of MSCI USA and MSCI EMU indices (daily dependence)
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Multivariate stress scenarios

⇒ C̄ has a compliacted expression (see HFRM, Section 14.2.2.2, page 908)
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The conditional expectation solution

Given a joint stress scenario S (X ) = (S (X1) , . . . ,S (Xn)), the conditional
stress scenario of Y is:

S (Y ) = E [Yt | Xt = (S (X1) , . . . ,S (Xn))]

= β0 +
n∑

i=1

βiS (Xi )

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1174 / 1695



Stress testing framework
Quantitative approaches

Univariate stress scenarios
Joint stress scenarios
Conditional stress scenarios
Reverse stress testing

The conditional expectation solution

Logit transformation

We use the following transformation:

Zt = ln

(
Yt

1− Yt

)
We have:

Yt =
exp (Zt)

1 + exp (Zt)
=

1

1 + exp (−Zt)
= h (Zt)

where h (z) is the logit transformation

We deduce that:

E [Yt | Xt = (x1, . . . , xn)] =

∫ ∞
−∞

h

(
β0 +

n∑
i=1

βiXi,t + ω

)
1

σ
φ
(ω
σ

)
dω
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The conditional expectation solution

Example

We assume that the probability of default PDt at time t is explained
by the following linear regression model:

ln

(
PDt

1− PDt

)
= −2.5− 5gt − 3πt + 2ut + εt

where εt ∼ N (0, 0.25), gt is the growth rate of the GDP, πt is the
inflation rate, and ut is the unemployment rate

The baseline scenario is defined by gt = 2%, πt = 2% and ut = 5%

The stress scenario is equal to gt = −8%, πt = 5% and ut = 10%
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Figure: Probability density function of PDt
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The conditional expectation solution

⇒ The conditional expectation is equal to 7.90% for the baseline scenario
and 12.36% for the stress scenario

⇒ The figure of 7.90% can be interpreted as the long-run (or
unconditional) probability of default that is used in the IRB formula (i.e.
Pillar I)

⇒ The figure of 12.36% may be used in Pillar II
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Figure: Relationship between the macroeconomic variables and PDt
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The conditional expectation solution

Table: Stress scenario of the probability of default

t gt πt ut E [PDt | S (X )] q90% (S (X ))
0 2.00 2.00 5.00 7.90 12.78
1 −6.00 2.00 6.00 11.45 18.26
2 −7.00 1.00 7.00 12.47 19.79
3 −9.00 1.00 9.00 14.03 22.14
4 −7.00 1.00 10.00 13.12 20.78
5 −7.00 2.00 11.00 13.01 20.59
6 −6.00 2.00 10.00 12.26 19.49
7 −4.00 4.00 9.00 10.49 16.80
8 −2.00 3.00 8.00 9.70 15.58
9 −1.00 3.00 7.00 9.11 14.68

10 2.00 3.00 6.00 7.82 12.68
11 4.00 3.00 6.00 7.14 11.60
12 4.00 3.00 6.00 7.14 11.60
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The conditional quantile solution

We could also define the conditional stress scenario S (Y ) = qα (S (X )) as
the solution of the quantile regression:

Pr {Yt ≤ qα (S) | Xt = S} = α

The solution is given by:

S (Y ) = qα (S)

= F−1
y

(
C−1

2|1 (Fx (S (X )) , α)
)

⇒ See HFRM, Section 14.2.3.2, pages 912-915
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Reverse stress testing

Reverse stress test “means an institution stress test that starts from the
identification of the pre-defined outcome (e.g. points at which an
institution business model becomes unviable, or at which the institution
can be considered as failing or likely to fail) and then explores scenarios
and circumstances that might cause this to occur”

In stress testing, extreme scenarios of risk factors are used to test the
viability of the bank:

(S (F1) , . . . ,S (Fm))⇒ S (L (w))⇒
{

D = 0 if S (L (w)) < C
D = 1 otherwise

In reverse stress testing, extreme scenarios of risk factors are deduced
from the bankruptcy scenario:

D = 1⇒ RS (L (w))⇒ (RS (F1) , . . . ,RS (Fm))
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Reverse stress testing

We recall that:
L (w) = ` (F1, . . . ,Fm;w)

The reverse stress scenario RS is the set of risk factors that corresponds to
the stressed loss RS (L (w)):

RS = {(RS (F1) , . . . ,RS (Fm)) : ` (S (F1) , . . . ,S (Fm) ;w) = RS (L (w))}

⇒ Not a unique solution

Mathematical solution

We can use the following optimization program

(RS (F1) , . . . ,RS (Fm)) = arg max ln f (F1, . . . ,Fm)

s.t. ` (S (F1) , . . . ,S (Fm) ;w) = RS (L (w))

where f (x1, . . . , xm) is the probability density function of the risk factors
(F1, . . . ,Fm)
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Reverse stress testing

We assume that F ∼ N (µF ,ΣF ) and L (w) =
∑m

j=1 wjFj = w>F . The
optimization problem becomes:

RS (F) = arg min
1

2
(F − µF )>Σ−1

F (F − µF )

s.t. w>F = RS (L (w))

The Lagrange function is:

L (F ;λ) =
1

2
(F − µF )>Σ−1

F (F − µF )− λ
(
w>F − RS (L (w))

)
The first-order condition is Σ−1

F (F − µF )− λw = 0. It follows that
F = µF + λΣFw , w>F = w>µF + λw>ΣFw ,
λ =

(
RS (L (w))− w>µF

)
/w>ΣFw and:

RS (F) = µF +
ΣFw

w>ΣFw

(
RS (L (w))−w>µF

)
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Reverse stress testing

Another approach for solving the inverse problem is to consider the joint
distribution of F and L (w):(

F
L (w)

)
∼ N

((
µF

w>µF

)
,

(
ΣF ΣFw

w>ΣF w>ΣFw

))
The conditional distribution of F given L (w) = RS (L (w)) is Gaussian:

F | L (w) = RS (L (w)) ∼ N
(
µF|L(w),ΣF|L(w)

)
We know that the maximum of the probability density function of the
multivariate normal distribution is reached when the random vector is
exactly equal to the mean. We deduce that:

RS (F) = µF|L(w) = µF +
ΣFw

w>ΣFw

(
RS (L (w))−w>µF

)
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Reverse stress testing

Example

We assume that F = (F1,F2), µF = (5, 8), σF = (1.5, 3.0) and
ρ (F1,F2) = −50%. The sensitivity vector w to the risk factors is equal to
(10, 3)

The stress scenario is the collection of univariate stress scenarios at the
99% confidence level:

S (F1) = 5 + 1.5 · Φ−1 (99%) = 8.49

S (F2) = 8 + 3.0 · Φ−1 (99%) = 14.98

The stressed loss is then equal to:

S (L (w)) = 10 · 8.49 + 3 · 14.98 = 129.53
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Reverse stress testing

We assume that the reverse stressed loss is equal to 129.53 ⇒ we deduce
that RS (F1) = 10.14 and RS (F2) = 9.47

Remark

The reverse stress scenario is very different than the stress scenario even if
they give the same loss. In fact, we have f (S (F1) ,S (F2)) = 0.8135 · 10−6

and f (RS (F1) ,RS (F2)) = 4.4935 · 10−6, meaning that the occurrence
probability of the reverse stress scenario is more than five times higher
than the occurrence probability of the stress scenario
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Reverse stress testing

In the general case, we consider the following optimization problem:

(RS (F1) , . . . ,RS (Fm)) = arg max ln f (F1, . . . ,Fm)

s.t. ` (S (F1) , . . . ,S (Fm) ;w) ≥ RS (L (w))

and we use the Monte Carlo simulation method to estimate the reverse
stress scenario

Hard to implement in practice!
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Exercises

Exercise 14.3.1 – Construction of a stress scenario with the GEV
distribution
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Credit scoring

Credit scoring refers to statistical models to measure the
creditworthiness of a person or a company

Mortgage, credit card, personal loan, etc.

Credit scoring first emerged in the United States

The FICO score was introduced in 1989 by Fair Isaac Corporation
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Judgmental credit systems versus credit scoring systems

In 1941, Durand presented a statistical analysis of credit valuation

He showed that credit analysts uses similar factors, and proposed a
credit rating formula based on nine factors: (1) age, (2) sex, (3)
stability of residence, (4) occupation, (5) industry, (6) stability of
employment, (7) bank account, (8) real estate and (9) life insurance

The score is additive and can take values between 0 and 3.46

From an industrial point of view, a credit scoring system has two
main advantages compared to a judgmental credit system:

1 it is cost efficient, and can treat a huge number of applicants;
2 decision-making process is rapid and consistent across customers.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1194 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

The emergence of credit scoring
Variable selection
Score modeling, validation and follow-up

Scoring models for corporate bankruptcy

Altman Z score model (1968)

The score was equal to:

Z = 1.2 · X1 + 1.4 · X2 + 3.3 · X3 + 0.6 · X4 + 1.0 · X5

The variables Xj represent the following financial ratios:

Xj Ratio
X1 Working capital / Total assets
X2 Retained earnings / Total assets
X3 Earnings before interest and tax / Total assets
X4 Market value of equity / Total liabilities
X5 Sales / Total assets

If we note Zi the score of the firm i , we can calculate the normalized score:

Z?i = (Zi −mz) /σz

where mz and σz are the mean and standard deviation of the observed scores

A low value of Z?i (for instance Z?i < 2.5) indicates that the firm has a high probability of
default
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New developments

Default of corporate firms

Consumer credit and retail debt management (credit cards,
mortgages, etc.)

Statistical methods: discriminant analysis, logistic regression, survival
model, machine learning techniques
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Choice of the risk factors

The five Cs:

1 Capacity measures the applicant’s ability to meet the loan payments
(e.g., debt-to-income, job stability, cash flow dynamics)

2 Capital is the size of assets that are held by the borrower (e.g. net
wealth of the borrower)

3 Character measures the willingness to repay the loan (e.g. payment
history of the applicant)

4 Collateral concerns additional forms of security that the borrower can
provide to the lender

5 Conditions refer to the characteristics of the loan and the economic
conditions that might affect the borrower (e.g. maturity, interests
paid)
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Choice of the risk factors

Table: An example of risk factors for consumer credit

Character Age of applicant
Marital status
Number of children
Educational background
Time with bank
Time at present address

Capacity Annual income
Current living expenses
Current debts
Time with employer

Capital Purpose of the loan
Home status
Saving account

Condition Maturity of the loan
Paid interests
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Choice of the risk factors

Scores are developed by banks and financial institutions, but they can
also be developed by consultancy companies

This is the case of the FICO R© scores, which are the most widely used
credit scoring systems in the world

5 main categories

1 Payment history (35%)

2 Amount of debt (30%)

3 Length of credit history (15%)

4 New credit (10%)

5 Credit mix (10%)

Range

Generally from 300 to 850 (average
score of US consumers is 695)

Exceptional (800+)

Very good (740-799)

Good (670-739)

Fair (580-669)

Poor (580−)
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Choice of the risk factors

Corporate credit scoring systems use financial ratios:

1 Profitability: gross profit margin, operating profit margin,
return-on-equity (ROE), etc.

2 Solvency: debt-to-assets ratio, debt-to-equity ratio, interest coverage
ratio, etc.

3 Leverage: liabilities-to-assets ratio (financial leverage ratio),
long-term debt/assets, etc.

4 Liquidity: current assets/current liabilities (current ratio), quick
assets/current liabilities (quick or cash ratio), total net working
capital, assets with maturities of less than one year, etc.
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Data preparation

Check the data and remove outliers or fill missing values

Variable transformation

Slicing-and-dicing segmentation

Potential interaction
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Variable selection

Many candidate variables X = (X1, . . . ,Xm) for explaining the
variable Y

The variable selection problem consists in finding the best set of
optimal variables

We assume the following statistical model:

Y = f (X ) + u

where u ∼ N
(
0, σ2

)
We denote the prediction by Ŷ = f̂ (X ). We have:

E
[(

Y − Ŷ
)2
]

= E
[(

f (X ) + u − f̂ (X )
)2
]

=
(
E
[
f̂ (X )

]
− f (X )

)2

+ E
[(

f̂ (X )− E
[
f̂ (X )

])2
]

+ σ2

= Bias2 + Variance + Error
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Variable selection

Best subset selection:

AIC (α) = −2`(k)

(
θ̂
)

+ α · df
(model)
(k)

Stepwise approach:

F =
RSS

(
θ̂(k)

)
− RSS

(
θ̂(k+1)

)
RSS

(
θ̂(k+1)

)
/ df

(residual)
(k+1)

Lasso approach:

yi =
K∑

k=1

βkxi,k + ui s.t.
K∑

k=1

|βk | ≤ τ
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Score modeling, validation and follow-up

Cross-validation approach (leave-p-out cross-validation or LpOCV,
leave-one-out cross-validation or LOOCV, Press statistic)

Score modeling

S = f
(
X ; θ̂

)
is the score

Decision rule: {
S < s =⇒ Y = 0 =⇒ reject
S ≥ s =⇒ Y = 1 =⇒ accept

Score follow-up

Stability
Rejected applicants (reject inference)
Backtesting

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1204 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Statistical methods

Unsupervised learning is a branch of statistical learning, where test
data does not include a response variable

It is opposed to supervised learning, whose goal is to predict the value
of the response variable Y given a set of explanatory variables X

In the case of unsupervised learning, we only know the X -values,
because the Y -values do not exist or are not observed

Supervised and unsupervised learning are also called ‘learning
with/without a teacher ’ (Hastie et al., 2009)
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Clustering

K -means clustering

Hierarchical clustering
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Clustering

Figure: An example of dendrogram
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Dimension reduction

Principal component analysis

Non-negative matrix factorization

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1208 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Unsupervised learning
Parametric supervised methods
Non-parametric supervised methods

Discriminant analysis

Figure: Classification statistical problem
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Discriminant analysis
The two-dimensional case

Using the Bayes theorem, we have:

Pr {A ∩ B} = Pr {A | B} · Pr {B} = Pr {B | A} · Pr {A}

It follows that:

Pr {A | B} = Pr {B | A} · Pr {A}
Pr {B}

If we apply this result to the conditional probability
Pr {i ∈ C1 | X = x}, we obtain:

Pr {i ∈ C1 | X = x} = Pr {X = x | i ∈ C1} ·
Pr {i ∈ C1}
Pr {X = x}
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The two-dimensional case

The log-probability ratio is then equal to:

ln
Pr {i ∈ C1 | X = x}
Pr {i ∈ C2 | X = x}

= ln

(
Pr {X = x | i ∈ C1}
Pr {X = x | i ∈ C2}

· Pr {i ∈ C1}
Pr {i ∈ C2}

)
= ln

f1 (x)

f2 (x)
+ ln

π1

π2

where πj = Pr {i ∈ Cj} is the probability of the jth class and
fj (x) = Pr {X = x | i ∈ Cj} is the conditional pdf of X
By construction, the decision boundary is defined such that we are
indifferent to an assignment rule (i ∈ C1 and i ∈ C2), implying that:

Pr {i ∈ C1 | X = x} = Pr {i ∈ C2 | X = x} =
1

2

Finally, we deduce that the decision boundary satisfies the following
equation:

ln
f1 (x)

f2 (x)
+ ln

π1

π2
= 0
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Quadratic discriminant analysis (QDA)

If we model each class density as a multivariate normal distribution:

X | i ∈ Cj ∼ N (µj ,Σj)

we have:

fj (x) =
1

(2π)K/2 |Σj |1/2
exp

(
−1

2
(x − µj)

>Σ−1
j (x − µj)

)
We deduce that:

ln
f1 (x)

f2 (x)
=

1

2
ln
|Σ2|
|Σ1|
−1

2
(x − µ1)> Σ−1

1 (x − µ1)+
1

2
(x − µ2)>Σ−1

2 (x − µ2)

The decision boundary is then given by:

1

2
ln
|Σ2|
|Σ1|
−1

2
(x − µ1)> Σ−1

1 (x − µ1)+
1

2
(x − µ2)>Σ−1

2 (x − µ2)+ln
π1

π2
= 0
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Linear discriminant analysis (LDA)

If we assume that Σ1 = Σ2 = Σ, we obtain:

1

2
(x − µ2)>Σ−1 (x − µ2)− 1

2
(x − µ1)>Σ−1 (x − µ1) + ln

π1

π2
= 0

We deduce that:

(µ2 − µ1)>Σ−1x =
1

2

(
µ>2 Σ−1µ2 − µ>1 Σ−1µ1

)
+ ln

π2

π1

The decision boundary is then linear in x (and not quadratic)
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Discriminant analysis

Example #1

We consider two classes and two explanatory variables X = (X1,X2) where
π1 = 50%, π2 = 1− π1 = 50%, µ1 = (1, 3), µ2 = (4, 1), Σ1 = I2 and
Σ2 = γI2 where γ = 1.5.
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Figure: Boundary decision of discriminant analysis
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Figure: Impact of the parameters on LDA/QDA boundary decisions
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Discriminant analysis
The general case

We can generalize the previous analysis to J classes

The Bayes formula gives:

Pr {i ∈ Cj | X = x} = Pr {X = x | i ∈ Cj} ·
Pr {i ∈ Cj}
Pr {X = x}

= c · fj (x) · πj

where c = 1/Pr {X = x} is a normalization constant that does not
depend on j

We note Sj (x) = ln Pr {i ∈ Cj | X = x} the discriminant score
function for the j th class

We have:
Sj (x) = ln c + ln fj (x) + lnπj
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The general case

If we again assume that X | i ∈ Cj ∼ N (µj ,Σj), the QDA score
function is:

Sj (x) = ln c ′ + lnπj −
1

2
ln |Σj | −

1

2
(x − µj)

> Σ−1
j (x − µj)

∝ lnπj −
1

2
ln |Σj | −

1

2
(x − µj)

>Σ−1
j (x − µj)

where ln c ′ = ln c − K

2
ln 2π

Given an input x , we calculate the scores Sj (x) for j = 1, . . . , J and
we choose the label j? with the highest score value
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The general case

If we assume an homoscedastic model (Σj = Σ), the LDA score
function becomes:

Sj (x) = ln c ′′ + lnπj −
1

2
(x − µj)

>Σ−1
j (x − µj)

∝ lnπj + µ>j Σ−1x − 1

2
µ>j Σ−1µj

where ln c ′′ = ln c ′ − 1

2
ln |Σ| − 1

2
x>Σ−1x

Remark

In practice, the parameters πj , µj and Σj are unknown. We replace them

by the corresponding estimates π̂j , µ̂j and Σ̂j . For the linear discriminant

analysis, Σ̂ is estimated by pooling all the classes.
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Example #2

We consider the classification problem of 33 observations with two
explanatory variables X1 and X2, and three classes C1, C2 and C3:

i Cj X1 X2 i Cj X1 X2 i Cj X1 X2

1 1 1.03 2.85 12 2 3.70 5.08 23 3 3.55 0.58
2 1 0.20 3.30 13 2 2.81 1.99 24 3 3.86 1.83
3 1 1.69 3.73 14 2 3.66 2.61 25 3 5.39 0.47
4 1 0.98 3.52 15 2 5.63 4.19 26 3 3.15 −0.18
5 1 0.98 5.15 16 2 3.35 3.64 27 3 4.93 1.91
6 1 3.47 6.56 17 2 2.97 3.55 28 3 3.87 2.61
7 1 3.94 4.68 18 2 3.16 2.92 29 3 4.09 1.43
8 1 1.55 5.99 19 3 3.00 0.98 30 3 3.80 2.11
9 1 1.15 3.60 20 3 3.09 1.99 31 3 2.79 2.10

10 2 1.20 2.27 21 3 5.45 0.60 32 3 4.49 2.71
11 2 3.66 5.49 22 3 3.59 −0.46 33 3 3.51 1.82
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Table: Parameter estimation of the discriminant analysis

Class C1 C2 C3

π̂j 0.273 0.273 0.455
µ̂j 1.666 4.376 3.349 3.527 3.904 1.367

Σ̂j
1.525 0.929 1.326 0.752 0.694 −0.031
0.929 1.663 0.752 1.484 −0.031 0.960

For the LDA method, we have:

Σ̂ =

(
1.91355 −0.71720
−0.71720 3.01577

)
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Table: Computation of the discriminant scores Sj (x)

i
QDA LDA LDA2

S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x)
1 −2.28 −3.69 −7.49 0.21 −0.96 −0.79 6.93 5.60 5.76
2 −2.28 −6.36 −12.10 −0.26 −2.17 −2.34 1.38 −2.13 −1.89
3 −1.76 −3.13 −6.79 2.84 2.16 1.71 12.13 12.01 11.38
4 −1.80 −4.43 −8.88 1.35 0.09 −0.22 7.73 6.20 5.93
5 −2.36 −7.75 −13.70 4.32 2.93 1.45 8.12 5.54 4.76
6 −3.16 −5.63 −14.68 10.75 11.36 8.95 14.82 13.99 12.96
7 −3.79 −1.92 −6.32 8.06 9.22 8.15 17.36 19.03 17.89
8 −2.85 −8.43 −15.23 6.73 5.76 3.70 10.47 8.09 7.15
9 −1.74 −4.12 −8.37 1.76 0.64 0.27 8.94 7.77 7.39

10 −3.14 −3.21 −6.17 −0.58 −1.56 −0.98 6.59 5.55 6.15
11 −2.87 −3.01 −9.45 9.10 9.96 8.31 16.89 17.65 16.42
12 −3.04 −2.38 −7.77 8.42 9.34 7.98 17.28 18.50 17.28
13 −6.32 −2.29 −1.62 1.41 1.82 2.64 12.48 13.94 14.46
14 −6.91 −2.07 −1.42 3.86 4.94 5.34 15.15 17.41 17.34
15 −9.79 −3.62 −7.12 9.79 12.43 11.75 12.58 14.01 13.50
16 −3.90 −1.47 −3.44 5.25 5.99 5.65 16.84 18.82 18.03
17 −3.31 −1.55 −3.61 4.50 4.92 4.63 16.25 17.95 17.21
18 −4.84 −1.60 −2.19 3.65 4.28 4.45 15.51 17.48 17.14
19 −10.21 −4.12 −1.27 −0.13 0.52 2.06 8.98 9.99 11.70
20 −7.05 −2.41 −1.24 1.85 2.50 3.32 12.99 14.72 15.22
21 −23.11 −11.16 −2.56 2.98 5.75 7.61 3.79 4.57 7.26
22 −19.22 −9.53 −2.42 −1.84 −0.57 2.01 1.81 1.53 5.51
23 −13.86 −5.92 −1.01 −0.01 1.15 2.98 7.65 8.67 10.95
24 −10.01 −3.43 −0.70 2.75 4.07 5.02 12.84 14.95 15.65
25 −23.48 −11.44 −2.54 2.65 5.38 7.33 3.40 4.09 6.95
26 −15.87 −7.59 −2.30 −2.01 −1.14 1.23 3.19 3.02 6.50
27 −14.09 −5.40 −1.52 4.56 6.78 7.70 11.17 13.24 14.08
28 −7.55 −2.27 −1.39 4.18 5.45 5.85 15.10 17.44 17.40
29 −12.40 −4.67 −0.61 2.38 3.92 5.17 11.21 13.14 14.33
30 −8.85 −2.87 −0.88 3.17 4.41 5.17 13.77 15.97 16.37
31 −5.97 −2.17 −1.72 1.58 1.97 2.70 12.78 14.26 14.67
32 −9.40 −2.97 −1.81 5.33 7.11 7.46 14.55 16.95 16.93
33 −8.84 −3.01 −0.80 2.19 3.21 4.16 12.82 14.77 15.45
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Figure: Comparing QDA, LDA and LDA2 predictions
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Figure: QDA, LDA and LDA2 decision regions
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We note xi = (xi,1, . . . , xi,K ) the K × 1 vector of exogenous variables
X for the i th observation

The mean vector and the variance (or scatter) matrix of Class Cj is
equal to µ̂j = 1

nj

∑
i∈Cj xi and

Sj = nΣ̂j =
∑

i∈Cj (xi − µ̂j) (xi − µ̂j)
>where nj is the number of

observations in the jth class

If consider the total population, we also have µ̂ = 1
n

∑n
i=1 xi and

S = nΣ̂ =
∑n

i=1 (xi − µ̂) (xi − µ̂)>
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We notice that:

µ̂ =
1

n

J∑
j=1

nj µ̂j

We define the between-class variance matrix as:

SB =
J∑

j=1

nj (µ̂j − µ̂) (µ̂j − µ̂)>

and the within-class variance matrix as:

SW =
J∑

j=1

Sj

We can show that the total variance matrix can be decomposed into
the sum of the within-class and between-class variance matrices:

S = SW + SB
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The discriminant analysis consists in finding the discriminant linear
combination β>X that has the maximum between-class variance
relative to the within-class variance:

β? = arg max J (β)

where J (β) is the Fisher criterion:

J (β) =
β>SBβ

β>SWβ

Since the objective function is invariant if we rescale the vector β –
J (β′) = J (β) if β′ = cβ, we can impose that β>SWβ = 1. It follows
that:

β̂ = arg maxβ>SBβ

s.t. β>SWβ = 1
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The Lagrange function is:

L (β;λ) = β>SBβ − λ
(
β>SWβ − 1

)
We deduce that the first-order condition is equal to:

∂ L (β;λ)

∂ β>
= 2SBβ − 2λSWβ = 0

It is remarkable that we obtain a generalized eigenvalue SBβ = λSWβ
or equivalently:

S−1
W SBβ = λβ

Even if SW and SB are two symmetric matrices, it is not necessarily
the case for the product S−1

W SB

Using the eigendecomposition SB = VΛV>, we have

S
1/2
B = VΛ1/2V>
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With the parametrization α = S
1/2
B β, the first-order condition

becomes:
S

1/2
B S−1

W S
1/2
B α = λα

because β = S
−1/2
B α

We have a right regular eigenvalue problem

Let λk and vk be the kth eigenvalue and eigenvector of the symmetric

matrix S
1/2
B S−1

W S
1/2
B

It is obvious that the optimal solution α? is the first eigenvector v1

corresponding to the largest eigenvalue λ1

We conclude that the estimator is β̂ = S
−1/2
B v1 and the discriminant

linear relationship is Y c = v>1 S
−1/2
B X

Moreover, we have:

λ1 = J
(
β̂
)

=
β̂>SB β̂

β̂>SW β̂
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Example #3

We consider a problem with two classes C1 and C2, and two explanatory
variables (X1,X2). Class C1 is composed of 7 observations: (1, 2), (1, 4),
(3, 6), (3, 3), (4, 2), (5, 6), (5, 5), whereas class C2 is composed of 6
observations: (1, 0), (2, 1), (4, 1), (3, 2), (6, 4) and (6, 5).
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Figure: Linear projection and the Fisher solution
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Concerning the assignment decision, we can consider the midpoint rule:{
si < µ̄⇒ i ∈ C1

si > µ̄⇒ i ∈ C2

where µ̄ = (µ̄1 + µ̄2) /2, µ̄1 = β>µ̂1 and µ̄2 = β>µ̂2

This rule is not optimal because it does not depend
on the variance s̄2

1 and s̄2
2 of each class
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Figure: Class separation and the cut-off criterion
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We assume that Y can take two values 0 and 1

We consider models that link the outcome to a set of factors X :

Pr {Y = 1 | X = x} = F
(
x>β

)
F must be a cumulative distribution function in order to ensure that
F (z) ∈ [0, 1]

We also assume that the model is symmetric, implying that
F (z) + F (−z) = 1

Given a sample {(xi , yi ) , i = 1, . . . , n}, the log-likelihood function is
equal to:

` (θ) =
n∑

i=1

ln Pr {Yi = yi}

where yi takes the values 0 or 1
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We have:
Pr {Yi = yi} = pyii · (1− pi )

1−yi

where pi = Pr {Yi = 1 | Xi = xi}
We deduce that:

` (θ) =
n∑

i=1

yi ln pi + (1− yi ) ln (1− pi )

=
n∑

i=1

yi ln F
(
x>i β

)
+ (1− yi ) ln

(
1− F

(
x>i β

))
We notice that the vector θ includes only the parameters β
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By noting f (z) the probability density function, it follows that the
associated score vector of the log-likelihood function is:

S (β) =
∂ ` (β)

∂ β

=
n∑

i=1

f
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) (yi − F
(
x>i β

))
xi
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The Hessian matrix is:

H (β) =
∂2 ` (β)

∂ β ∂ β>
= −

n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi =
f
(
x>i β

)2

F
(
x>i β

)
F
(
−x>i β

) − (yi − F
(
x>i β

))
·(

f ′
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) − f
(
x>i β

)2 (
1− 2F

(
x>i β

))
F
(
x>i β

)2
F
(
−x>i β

)2

)
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Once β̂ is estimated by the method of maximum likelihood, we can
calculated the predicted probability for the i th observation:

p̂i = F
(
x>i β̂

)
Like a linear regression model, we can define the residual as the
difference between the observation yi and the predicted value p̂i
We can also exploit the property that the conditional distribution of
Yi is a Bernoulli distribution B (pi )
It is better to use the standardized (or Pearson) residuals:

ûi =
yi − p̂i√
p̂i (1− p̂i )

These residuals are related to the Pearson’s chi-squared statistic:

χ2
Pearson =

n∑
i=1

û2
i =

n∑
i=1

(yi − p̂i )
2

p̂i (1− p̂i )
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This statistic may used to measure the goodness-of-fit of the model

Under the assumption H0 that there is no lack-of-fit, we have
χ2

Pearson ∼ χ2
n−K where K is the number of exogenous variables

Another goodness-of-fit statistic is the likelihood ratio. For the
‘saturated ’ model, the estimated probability p̂i is exactly equal to yi

We deduce that the likelihood ratio is equal to:

−2 ln Λ = 2
n∑

i=1

yi ln

(
yi
p̂i

)
+ (1− yi ) ln

(
1− yi
1− p̂i

)
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In binomial choice models, D = −2 ln Λ is also called the deviance
and we have D ∼ χ2

n−K

In a perfect fit p̂i = yi , the likelihood ratio is exactly equal to zero

The forecasting procedure consists of estimating the probability

p̂ = F
(
x>β̂

)
for a given set of variables x and to use the following

decision criterion:

Y = 1⇔ p̂ ≥ 1

2
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The logit model uses the following cumulative distribution function:

F (z) =
1

1 + e−z
=

ez

ez + 1

The probability density function is then equal to:

f (z) =
e−z

(1 + e−z)2

The log-likelihood function is equal to:

` (β) =
n∑

i=1

(1− yi ) ln
(
1− F

(
x>i β

))
+ yi ln F

(
x>i β

)
=

n∑
i=1

(1− yi ) ln

(
e−x

>
i β

1 + e−x
>
i β

)
− yi ln

(
1 + e−x

>
i β
)

= −
n∑

i=1

ln
(

1 + e−x
>
i β
)

+ (1− yi )
(
x>i β

)
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We also have:

S (β) =
n∑

i=1

(
yi − F

(
x>i β

))
xi

and:

H (β) = −
n∑

i=1

f
(
x>i β

)
·
(
xix
>
i

)
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The probit model assumes that F (z) is the Gaussian distribution

The log-likelihood function is then:

` (β) =
n∑

i=1

(1− yi ) ln
(
1− Φ

(
x>i β

))
+ yi ln Φ

(
x>i β

)
The probit model can be seen as a latent variable model

Let us consider the linear model Y ? = β>X +U where U ∼ N
(
0, σ2

)
We assume that we do not observe Y ? but Y = g (Y ?)

For example, if g (z) = 1 {z > 0}, we obtain:

Pr {Y = 1 | X = x} = Pr
{
β>X + U > 0 | X = x

}
= Φ

(
β>x

σ

)
We notice that only the ratio β/σ is identifiable

Since we can set σ = 1, we obtain the probit model
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The regularized log-likelihood function is equal to:

` (θ;λ) = ` (θ)− λ

p
‖θ‖pp

The case p = 1 is equivalent to consider a lasso penalization

The case p = 2 corresponds to the ridge regularization
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We assume that Y can take J labels (L1, . . . ,LJ) or belongs to J
disjoint classes (C1, . . . , CJ)
We define the conditional probability as follows:

pj (x) = Pr {Y = Lj | X = x} = Pr {Y ∈ Cj | X = x} =
eβ
>
j x

1 +
∑J−1

j=1 eβ
>
j x

The probability of the last label is then equal to:

pJ (x) = 1−
J−1∑
j=1

pj (x) =
1

1 +
∑J−1

j=1 eβ
>
j x

The log-likelihood function becomes:

` (θ) =
n∑

i=1

ln

 J∏
j=1

pj (xi )
i∈Cj


where θ is the vector of parameters (β1, . . . , βJ−1)
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Non-parametric supervised methods

k-nearest neighbor classifier (k-NN)

Neural networks (NN)

Support vector machines (SVM)

Model averaging (bagging or bootstrap aggregation, random forests,
boosting)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1246 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Shannon entropy
Graphical methods
Statistical measures

Definition and properties

The entropy is a measure of unpredictability or uncertainty of a
random variable

Let (X ,Y ) be a random vector where pi,j = Pr {X = xi ,Y = yj},
pi = Pr {X = xi} and pj = Pr {Y = yj}
The Shannon entropy of the discrete random variable X is given by:

H (X ) = −
∑n

i=1
pi ln pi

We have the property 0 ≤ H (X ) ≤ ln n.

The Shannon entropy is a measure of the average information of the
system

The lower the Shannon entropy, the more informative the system
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Definition and properties

For a random vector (X ,Y ), we have:

H (X ,Y ) = −
∑n

i=1

∑n

j=1
pi,j ln pi,j

We deduce that the conditional information of Y given X is equal to:

H (Y | X ) = EX [H (Y | X = x)]

= −
∑n

i=1

∑n

j=1
pi,j ln

pi,j
pi

= H (X ,Y )− H (X )
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Definition and properties

We have the following properties:

if X and Y are independent, we have H (Y | X ) = H (Y ) and
H (X ,Y ) = H (Y ) + H (X );

if X and Y are perfectly dependent, we have H (Y | X ) = 0 and
H (X ,Y ) = H (X ).

The amount of information obtained about one random variable, through
the other random variable is measured by the mutual information:

I (X ,Y ) = H (Y ) + H (X )− H (X ,Y )

=
∑n

i=1

∑n

j=1
pi,j ln

pi,j
pipj
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H (X ) = H (Y ) = 1.792
H (X ,Y ) = 3.584

I (X ,Y ) = 0

1/6

1/6

1/6

1/6

1/6

1/6

H (X ) = H (Y ) = 1.792
H (X ,Y ) = 1.792
I (X ,Y ) = 1.792

Figure: Examples of Shannon entropy calculation
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Definition and properties

1/24 1/24

1/24 1/24 1/24

1/24 1/24

1/24 1/24

1/24 1/24 1/24

1/24 1/24

1/48

1/48

1/48

1/48

1/6

1/6

H (X ) = H (Y ) = 1.683
H (X ,Y ) = 2.774
I (X ,Y ) = 0.593

3/24 1/24 1/24

3/24 1/24

5/24 1/24

1/24

1/8 1/8

1/12

H (X ) = 1.658
H (Y ) = 1.328
I (X ,Y ) = 0.750

Figure: Examples of Shannon entropy calculation
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Application to scoring

Let S and Y be the score and the control variable

For instance, Y is a binary random variable that may indicate a bad
credit (Y = 0) or a good credit (Y = 1)

We consider the following decision rule:{
S ≤ 0⇒ S? = 0
S > 0⇒ S? = 1
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Application to scoring

We note ni,j the number of observations such that S? = i and Y = j .
We obtain the following system (S?,Y ):

Y = 0 Y = 1
S? = 0 n0,0 n0,1

S? = 1 n1,0 n1,1

where n = n0,0 + n0,1 + n1,0 + n1,1 is the total number of observations

The hit rate is the ratio of good bets:

H =
n0,0 + n1,1

n

This statistic can be viewed as an information measure of the system
(S ,Y )

When there are more states, we can consider the Shannon entropy
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Application to scoring

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

10 9

7 9

3 7 2

2 10 4 5

10 2

3 4 13

H (S1) = 1.767
H (Y ) = 1.609
H (S1,Y ) = 2.614
I (S1,Y ) = 0.763

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

7 10

10 8

5 4 3

3 10 6 4

2 5 8

5 5 5

H (S1) = 1.771
H (Y ) = 1.609
H (S1,Y ) = 2.745
I (S1,Y ) = 0.636

Figure: Scorecards S1 and S2
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Graphical methods

We assume that the control variable Y can takes two values

Y = 0 corresponds to a bad risk (or bad signal)
Y = 1 corresponds to a good risk (or good signal)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1255 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

Shannon entropy
Graphical methods
Statistical measures

Graphical methods

We assume that the probability Pr {Y = 1 | S ≥ s} is increasing with
respect to the level s ∈ [0, 1], which corresponds to the rate of
acceptance.

We deduce that the decision rule is the following:

if the score of the observation is above the threshold s, the
observation is selected;
if the score of the observation is below the threshold s, the
observation is not selected.

If s is equal to one, we select no observation

If s is equal to zero, we select all the observations
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Performance curve

The performance curve is the parametric function y = P (x) defined
by:  x (s) = Pr {S ≥ s}

y (s) =
Pr {Y = 0 | S ≥ s}

Pr {Y = 0}

where x (s) corresponds to the proportion of selected observations
and y (s) corresponds to the ratio between the proportion of selected
bad risks and the proportion of bad risks in the population

The score is efficient if the ratio is below one

If y (s) > 1, the score selects more bad risks than those we can find in
the population

If y (s) = 1, the score is random and the performance is equal to zero.
In this case, the selected population is representative of the total
population
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Selection curve

The selection curve is the parametric curve y = S (x) defined by:{
x (s) = Pr {S ≥ s}
y (s) = Pr {S ≥ s | Y = 0}

where y (s) corresponds to the ratio of observations that are wrongly
selected

By construction, we would like that the curve y = S (x) is located
below the bisecting line y = x in order to verify that
Pr {S ≥ s | Y = 0} < Pr {S ≥ s}
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Performance and selection curves

We have:

Pr {S ≥ s | Y = 0} =
Pr {S ≥ s,Y = 0}

Pr {Y = 0}

= Pr {S ≥ s} · Pr {S ≥ s,Y = 0}
Pr {S ≥ s}Pr {Y = 0}

= Pr {S ≥ s} · Pr {Y = 0 | S ≥ s}
Pr {Y = 0}

The performance and selection curves are related as follows:

S (x) = xP (x)
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Discriminant curve

The discriminant curve is the parametric curve y = D (x) defined by:

D (x) = g1

(
g−1

0 (x)
)

where:
gy (s) = Pr {S ≥ s | Y = y}

It represents the proportion of good risks in the selected population
with respect to the proportion of bad risks in the selected population

The score is said to be discriminant if the curve y = D (x) is located
above the bisecting line y = x
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Some properties

1 the performance curve (respectively, the selection curve) is located
below the line y = 1 (respectively, the bisecting line y = x) if and
only if cov (f (Y ) , g (S)) ≥ 0 for any increasing functions f and g

2 the performance curve is increasing if and only if:

cov (f (Y ) , g (S) | S ≥ s) ≥ 0

for any increasing functions f and g , and any threshold level s

3 the selection curve is convex if and only if E [f (Y ) | S = s] is
increasing with respect to the threshold level s for any increasing
function f

4 We can show that (3)⇒ (2)⇒ (1)
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Some properties

A score is perfect or optimal if there is a threshold level s? such that
Pr {Y = 1 | S ≥ s?} = 1 and Pr {Y = 0 | S < s?} = 1

It separates the population between good and bad risks

Graphically, the selection curve of a perfect score is equal to:

y = 1 {x > Pr {Y = 1}} ·
(

1 +
x − 1

Pr {Y = 0}

)
Using the relationship S (x) = xP (x), we deduce that the
performance curve of a perfect score is given by:

y = 1 {x > Pr {Y = 1}} ·
(
x − Pr {Y = 1}
x · Pr {Y = 0}

)
For the discriminant curve, a perfect score satisfies D (x) = 1

When the score is random, we have S (x) = D (x) = x and P (x) = 1
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Some properties

Figure: Performance, selection and discriminant curves
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Some properties

The score S1 is more performing on the population P1 than the score
S2 on the population P2 if and only if the performance (or selection)
curve of (S1,P1) is below the performance (or selection) curve of
(S2,P2)

The score S1 is more discriminatory on the population P1 than the
score S2 on the population P2 if and only if the discriminant curve of
(S1,P1) is above the discriminant curve of (S2,P2)
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Some properties

Figure: The score S1 is better than the score S2
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Figure: Illustration of the partial ordering between two scores
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Kolmogorov-Smirnov test

We consider the cumulative distribution functions:

F0 (s) = Pr {S ≤ s | Y = 0}

and:
F1 (s) = Pr {S ≤ s | Y = 1}

The score S is relevant if we have the stochastic dominance order
F0 � F1

In this case, the score quality is measured by the Kolmogorov-Smirnov
statistic:

KS = max
s
|F0 (s)− F1 (s)|

It takes the value 1 if the score is perfect

The KS statistic may be used to verify that the score is not random
(H0 : KS = 0)
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Kolmogorov-Smirnov test

Figure: Comparison of the distributions F0 (s) and F1 (s)
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Gini coefficient
The Lorenz curve

Let X and Y be two random variables

The Lorenz curve y = L (x) is the parametric curve defined by:{
x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

In economics, x represents the proportion of individuals that are
ranked by income while y represents the proportion of income

In this case, the Lorenz curve is a graphical representation of the
distribution of income and is used for illustrating inequality of the
wealth distribution between individuals
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Gini coefficient
The Lorenz curve

Figure: An example of Lorenz curve
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Gini coefficient
Definition

We define the Gini coefficient by:

Gini (L) =
A

A + B

where A is the area between the Lorenz curve and the curve of perfect
equality, and B is the area between the curve of perfect concentration
and the Lorenz curve

By construction, we have 0 ≤ Gini (L) ≤ 1

The Gini coefficient is equal to zero in the case of perfect equality and
one in the case of perfect concentration

We have:

Gini (L) = 1− 2

∫ 1

0

L (x) dx
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Gini coefficient
Application to credit scoring

We can interpret the selection curve as a Lorenz curve

We recall that F (s) = Pr {S ≤ s}, F0 (s) = Pr {S ≤ s | Y = 0} and
F1 (s) = Pr {S ≤ s | Y = 1}
The selection curve is defined by the following parametric coordinates:{

x (s) = 1− F (s)
y (s) = 1− F0 (s)

The selection curve measures the capacity of the score for not
selecting bad risks

We could also build the Lorenz curve that measures the capacity of
the score for selecting good risks:{

x (s) = Pr {S ≥ s} = 1− F (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

It is called the precision curve
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Another popular graphical tool is the receiver operating characteristic
(or ROC curve), which is defined by:{

x (s) = Pr {S ≥ s | Y = 0} = 1− F0 (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

The Gini coefficient associated to the Lorenz curve L becomes:

Gini (L) = 2

∫ 1

0

L (x) dx − 1

The Gini coefficient of the score S is then computed as follows:

Gini? (S) =
Gini (L)

Gini (L?)

where L? is the Lorenz curve associated to the perfect score
An alternative to the Gini coefficient is the AUC measure, which
corresponds to the area under the ROC curve:

Gini (ROC) = 2×AUC (ROC)− 1
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Figure: Selection, precision and ROC curves
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Choice of the optimal cut-off
Confusion matrix

A confusion matrix is a special case of contingency matrix

Each row of the matrix represents the frequency in a predicted class
while each column represents the frequency in an actual class

Using the test set, it takes the following form:

Y = 0 Y = 1
S < s n0,0 n0,1

S ≥ s n1,0 n1,1

n0 = n0,0 + n1,0 n1 = n0,1 + n1,1

where ni,j represents the number of observations of the cell (i , j)
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Choice of the optimal cut-off
Confusion matrix

We notice that each cell of this table can be interpreted as follows:

Y = 0 Y = 1
It is rejected It is rejected,

S < s and it is a bad risk but it is a good risk
(true negative) (false negative)
It is accepted, It is accepted

S ≥ s but it is a bad risk and it is a good risk
(false positive) (true positive)

(negative) (positive)

The cells (S < s,Y = 0) and (S ≥ s,Y = 1) correspond to
observations that are well-classified: true negative (TN) and true
positive (TP)
The cells (S ≥ s,Y = 0) and (S < s,Y = 1) correspond to two types
of errors:

1 a false positive (FP) can induce a future loss, because it may default:
this is a type I error

2 a false negative (FN) potentially corresponds to a loss of a future
P&L: this is a type II error
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Choice of the optimal cut-off
Classification ratios

We have

True Positive Rate TPR =
TP

TP + FN

False Negative Rate FNR =
FN

FN + TP
= 1− TPR

True Negative Rate TNR =
TN

TN + FP

False Positive Rate FPR =
FP

FP + TN
= 1− TNR

The true positive rate (TPR) is also known as the sensitivity or the
recall

It measures the proportion of real good risks that are correctly
predicted good risk
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Classification ratios

The precision or the positive predictive value (PPV) is

PPV =
TP

TP + FP

It measures the proportion of predicted good risks that are correctly
real good risk

The accuracy considers the classification of both negatives and
positives:

ACC =
TP + TN

P + N
=

TP + TN

TP + FN + TN + FP

The F1 score is the harmonic mean of precision and sensitivity:

F1 =
2

1/precision + 1/sensitivity
=

2 · PPV · TPR

PPV + TPR
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Classification ratios

Table: Confusion matrix of three scoring systems and three cut-off values s

Score s = 100 s = 200 s = 500

S1
386 616 698 1 304 1 330 3 672

1 614 7 384 1 302 6 696 670 4 328

S2
372 632 700 1 304 1 386 3 616

1 628 7 368 1 300 6 696 614 4 384

S3
382 616 656 1 344 1 378 3 624

1 618 7 384 1 344 6 656 622 4 376

Perfect
1 000 0 2 000 0 2 000 3 000
1 000 8 000 0 8 000 0 5 000
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Classification ratios

Table: Binary classification ratios (in %) of the three scoring systems

Score s TPR FNR TNR FPR PPV ACC F1

S1

100 92.3 7.7 19.3 80.7 82.1 77.7 86.9
200 83.7 16.3 34.9 65.1 83.7 73.9 83.7
500 54.1 45.9 66.5 33.5 86.6 56.6 66.6

S2

100 92.1 7.9 18.6 81.4 81.9 77.4 86.7
200 83.7 16.3 35.0 65.0 83.7 74.0 83.7
500 54.8 45.2 69.3 30.7 87.7 57.7 67.5

S3

100 92.3 7.7 19.1 80.9 82.0 77.7 86.9
200 83.2 16.8 32.8 67.2 83.2 73.1 83.2
500 54.7 45.3 68.9 31.1 87.6 57.5 67.3

Perfect
100 100.0 0.0 50.0 50.0 88.9 90.0 94.1
200 100.0 0.0 100.0 0.0 100.0 100.0 100.0
500 62.5 37.5 100.0 0.0 100.0 70.0 76.9
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Classification ratios

Table: Best scoring system

Cut-off TPR FNR TNR FPR PPV ACC F1

100 S1/S3 S1/S3 S1 S1 S1 S1 S1

200 S1/S2 S1/S2 S2 S2 S2 S2 S2

500 S2 S2 S2 S2 S2 S2 S2
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Exercises

Exercise 15.4.5 – Two-class separation maximization

Exercise 15.4.6 – Maximum likelihood estimation of the probit model

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1282 / 1695



The method of scoring
Statistical methods

Performance evaluation criteria and score consistency

References

Gouriéroux, C., and Jasiak, J. (2007)
The Econometrics of Individual Risk: Credit, Insurance, and
Marketing, Princeton University Press.

Roncalli, T. (2020)
Handbook of Financial Risk Management, Chapman and Hall/CRC
Financial Mathematics Series, Chapter 15.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1283 / 1695



Market Risk

Course 2023-2024 in Financial Risk Management
Tutorial Session 1

Thierry Roncalli?

?Amundi Asset Management24

?University of Paris-Saclay

September 2023

24The opinions expressed in this presentation are those of the authors and are not
meant to represent the opinions or official positions of Amundi Asset Management.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1284 / 1695



Market Risk

Agenda

Tutorial Session 1: Market Risk

Tutorial Session 2: Credit Risk

Tutorial Session 3: Counterparty Credit Risk and Collateral Risk

Tutorial Session 4: Operational Risk & Asset Liability Management
Risk

Tutorial Session 5: Copulas, EVT & Stress Testing

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1285 / 1695



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options

Covariance matrix

Exercise

We consider a universe of three stocks A, B and C .
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Covariance matrix

Question 1

The covariance matrix of stock returns is:

Σ =

 4%
3% 5%
2% −1% 6%


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Question 1.a

Calculate the volatility of stock returns.
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Covariance matrix

We have:
σA =

√
Σ1,1 =

√
4% = 20%

For the other stocks, we obtain σB = 22.36% and σC = 24.49%.
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Covariance matrix

Question 1.b

Deduce the correlation matrix.
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The correlation is the covariance divided by the product of volatilities:

ρ (RA,RB) =
Σ1,2√

Σ1,1 × Σ2,2

=
3%

20%× 22.36%
= 67.08%

We obtain:

ρ =

 100.00%
67.08% 100.00%
40.82% −18.26% 100.00%


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Covariance matrix

Question 2

We assume that the volatilities are 10%, 20% and 30%. whereas the
correlation matrix is equal to:

ρ =

 100%
50% 100%
25% 0% 100%



Thierry Roncalli Course 2023-2024 in Financial Risk Management 1292 / 1695



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options

Covariance matrix

Question 2.a

Write the covariance matrix.
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Covariance matrix

Using the formula Σi,j = ρi,jσiσj , it follows that:

Σ =

 1.00%
1.00% 4.00%
0.75% 0.00% 9.00%


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Question 2.b

Calculate the volatility of the portfolio (50%, 50%, 0).
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Covariance matrix

We deduce that:

σ2 (w) = 0.52 × 1% + 0.52 × 4% + 2× 0.5× 0.5× 1%

= 1.75%

and σ (w) = 13.23%.
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Question 2.c

Calculate the volatility of the portfolio (60%,−40%, 0). Comment on this
result.
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Covariance matrix

It follows that:

σ2 (w) = 0.62 × 1% + (−0.4)2 × 4% + 2× 0.6× (−0.4)× 1%

= 0.52%

and σ (w) = 7.21%. This long/short portfolio has a lower volatility than
the previous long-only portfolio, because part of the risk is hedged by the
positive correlation between stocks A and B.
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Question 2.d

We assume that the portfolio is long $150 in stock A, long $500 in stock B
and short $200 in stock C . Find the volatility of this long/short portfolio.
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Covariance matrix

We have:

σ2 (w) = 1502 × 1% + 5002 × 4% + (−200)2 × 9% +

2× 150× 500× 1% +

2× 150× (−200)× 0.75% +

2× 500× (−200)× 0%

= 14 875

The volatility is equal to $121.96 and is measured in USD contrary to the
two previous results which were expressed in %.
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Question 3

We consider that the vector of stock returns follows a one-factor model:

R = βF + ε

We assume that F and ε are independent. We note σ2
F the variance of F

and D = diag
(
σ̃2

1 , σ̃
2
2 , σ̃

2
3

)
the covariance matrix of idiosyncratic risks εt .

We use the following numerical values: σF = 50%, β1 = 0.9, β2 = 1.3,
β3 = 0.1, σ̃1 = 5%, σ̃2 = 5% and σ̃3 = 15%.
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Question 3.a

Calculate the volatility of stock returns.
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Covariance matrix

We have:
E [R] = βE [F ] + E [ε]

and:
R − E [R] = β (F−E [F ]) + ε− E [ε]

It follows that:

cov (R) = E
[
(R − E [R]) (R − E [R])>

]
= E

[
β (F−E [F ]) (F−E [F ])β>

]
+

2× E
[
β (F−E [F ]) (ε− E [ε])>

]
+

E
[
(ε− E [ε]) (ε− E [ε])>

]
= σ2

Fββ
> + D
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Covariance matrix

We deduce that:

σ (Ri ) =
√
σ2
Fβ

2
i + σ̃2

i

We obtain σ (RA) = 18.68%, σ (RB) = 26.48% and σ (RC ) = 15.13%.
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Question 3.b

Calculate the correlation between stock returns.
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The correlation between stocks i and j is defined as follows:

ρ (Ri ,Rj) =
σ2
Fβiβj

σ (Ri )σ (Rj)

We obtain:

ρ =

 100.00%
94.62% 100.00%
12.73% 12.98% 100.00%



Thierry Roncalli Course 2023-2024 in Financial Risk Management 1306 / 1695



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options

Expected shortfall of an equity portfolio

Exercise

We consider an investment universe, which is composed of two stocks A
and B. The current prices of the two stocks are respectively equal to $100
and $200. Their volatilities are equal to 25% and 20% whereas the
cross-correlation is equal to −20%. The portfolio is long of 4 stocks A and
3 stocks B.
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Expected shortfall of an equity portfolio

Question 1

Calculate the Gaussian expected shortfall at the 97.5% confidence level for
a ten-day time horizon.
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Expected shortfall of an equity portfolio

We have:

Π = 4 (PA,t+h − PA,t) + 3 (PB,t+h − PB,t)

= 4PA,tRA,t+h + 3PB,tRB,t+h

= 400× RA,t+h + 600× RB,t+h

where RA,t+h and RB,t+h are the stock returns for the period [t, t + h].
We deduce that the variance of the P&L is:

σ2 (Π) = 400× (25%)2 + 600× (20%)2 +

2× 400× 600× (−20%)× 25%× 20%

= 19 600
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Expected shortfall of an equity portfolio

We deduce that σ (Π) = $140. We know that the one-year expected
shortfall is a linear function of the volatility:

ESα (w ; one year) =
φ
(
Φ−1 (α)

)
1− α

× σ (Π)

= 2.34× 140

= $327.60

The 10-day expected shortfall is then equal to $64.25:

ESα (w ; ten days) =

√
10

260
× 327.60

= $64.25
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Expected shortfall of an equity portfolio

Question 2

The eight worst scenarios of daily stock returns among the last 250
historical scenarios are the following:

s 1 2 3 4 5 6 7 8
RA −3% −4% −3% −5% −6% +3% +1% −1%
RB −4% +1% −2% −1% +2% −7% −3% −2%

Calculate then the historical expected shortfall at the 97.5% confidence
level for a ten-day time horizon.
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Expected shortfall of an equity portfolio

We have:
Πs = 400× RA,s + 600× RB,s

We deduce that the value Πs of the daily P&L for each scenario s is:

s 1 2 3 4 5 6 7 8
Πs −36 −10 −24 −26 −12 −30 −14 −16

Πs:250 −36 −30 −26 −24 −16 −14 −12 −10
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The value-at-risk at the 97.5% confidence level correspond to the 6.25th

order statistic25. We deduce that the historical expected shortfall for a
one-day time horizon is equal to:

ESα (w ; one day) = −E [Π | Π ≤ −VaRα (Π)]

= −1

6

6∑
s=1

Πs:250

=
1

6
(36 + 30 + 26 + 24 + 16 + 14)

= 24.33

By considering the square-root-of-time rule, it follows that the 10-day
expected shortfall is equal to $76.95.

25We have 2.5%× 250 = 6.25.
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Value-at-risk of a long/short portfolio

Exercise

We consider a long/short portfolio composed of a long (buying) position in
asset A and a short (selling) position in asset B. The long exposure is $2
mn whereas the short exposure is $1 mn. Using the historical prices of the
last 250 trading days of assets A and B, we estimate that the asset
volatilities σA and σB are both equal to 20% per year and that the
correlation ρA,B between asset returns is equal to 50%. In what follows,
we ignore the mean effect.
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We note SA,t (resp. SB,t) the price of stock A (resp. B) at time t. The
portfolio value is:

Pt (w) = wASA,t + wBSB,t

where wA and wB are the number of stocks A and B. We deduce that the
P&L between t and t + 1 is:

Π (w) = Pt+1 − Pt

= wA (SA,t+1 − SA,t) + wB (SB,t+1 − SB,t)

= wASA,tRA,t+1 + wBSB,tRB,t+1

= WA,tRA,t+1 + WB,tRB,t+1

where RA,t+1 and RB,t+1 are the asset returns of A and B between t and
t + 1, and WA,t and WB,t are the nominal wealth invested in stocks A and
B at time t.
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Question 1

Calculate the Gaussian VaR of the long/short portfolio for a one-day
holding period and a 99% confidence level.
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We have WA,t = +2 and WB,t = −1. The P&L (expressed in USD
million) has the following expression:

Π (w) = 2RA,t+1 − RB,t+1

We have Π (w) ∼ N
(
0, σ2 (Π)

)
with:

σ (Π) =

√
(2σA)2 + (−σB)2 + 2ρA,B × (2σA)× (−σB)

=

√
4× 0.202 + (−0.20)2 − 4× 0.5× 0.202

=
√

3× 20%

' 34.64%
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The annual volatility of the long/short portfolio is then equal to $346 400.
We consider the square-root-of-time rule to calculate the daily
value-at-risk:

VaR99% (w ; one day) =
1√
260
× Φ−1 (0.99)×

√
3× 20%

= 5.01%

The 99% value-at-risk is then equal to $50 056.
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Question 2

How do you calculate the historical VaR? Using the historical returns of
the last 250 trading days, the five worst scenarios of the 250 simulated
daily P&L of the portfolio are −58 700, −56 850, −54 270, −52 170 and
−49 231. Calculate the historical VaR for a one-day holding period and a
99% confidence level.
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Value-at-risk of a long/short portfolio

We use the historical data to calculate the scenarios of asset returns
(RA,t+1,RB,t+1). We then deduce the empirical distribution of the P&L
with the formula Π (w) = 2RA,t+1 − RB,t+1. Finally, we calculate the
empirical quantile. With 250 scenarios, the 1% decile is between the
second and third worst cases:

VaR99% (w ; one day) = −
[
−56 850 +

1

2
(−54 270− (−56 850))

]
= 55 560

The probability to lose $55 560 per day is equal to 1%. We notice that the
difference between the historical VaR and the Gaussian VaR is equal to
11%.
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Question 3

We assume that the multiplication factor mc is 3. Deduce the required
capital if the bank uses an internal model based on the Gaussian
value-at-risk. Same question when the bank uses the historical VaR.
Compare these figures with those calculated with the standardized
measurement method.
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If we assume that the average of the last 60 VaRs is equal to the current
VaR, we obtain:

KIMA = mc ×
√

10×VaR99% (w ; one day)

KIMA is respectively equal to $474 877 and $527 088 for the Gaussian and
historical VaRs. In the case of the standardized measurement method, we
have:

KSpecific = 2× 8% + 1× 8%

= $240 000

and:

KGeneral = |2− 1| × 8%

= $80 000
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We deduce that:

KSMM = KSpecific + KGeneral

= $320 000

The internal model-based approach does not achieve a reduction of the
required capital with respect to the standardized measurement method.
Moreover, we have to add the stressed VaR under Basel 2.5 and the IMA
regulatory capital is at least multiplied by a factor of 2.
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Question 4

Show that the Gaussian VaR is multiplied by a factor equal to
√

7/3 if the
correlation ρA,B is equal to −50%. How do you explain this result?
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If ρA,B = −0.50, the volatility of the P&L becomes:

σ (Π) =

√
4× 0.202 + (−0.20)2 − 4× (−0.5)× 0.202

=
√

7× 20%

We deduce that:

VaRα (ρA,B = −50%)

VaRα (ρA,B = +50%)
=
σ (Π; ρA,B = −50%)

σ (Π; ρA,B = +50%)
=

√
7

3
= 1.53

The value-at-risk increases because the hedging effect of the positive
correlation vanishes. With a negative correlation, a long/short portfolio
becomes more risky than a long-only portfolio.
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Question 5

The portfolio manager sells a call option on the stock A. The delta of the
option is equal to 50%. What does the Gaussian value-at-risk of the
long/short portfolio become if the nominal of the option is equal to $2
mn? Same question when the nominal of the option is equal to $4 mn.
How do you explain this result?
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The P&L formula becomes:

Π (w) = WA,tRA,t+1 + WB,tRB,t+1 − (CA,t+1 − CA,t)

where CA,t is the call option price. We have:

CA,t+1 − CA,t ' ∆t (SA,t+1 − SA,t)

where ∆t is the delta of the option. If the nominal of the option is USD 2
million, we obtain:

Π (w) = 2RA − RB − 2× 0.5× RA

= RA − RB (1)

and:

σ (Π) =

√
0.202 + (−0.20)2 − 2× 0.5× 0.202

= 20%
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If the nominal of the option is USD 4 million, we obtain:

Π (w) = 2RA − RB − 4× 0.5× RA

= −RB (2)

and σ (Π) = 20%. In both cases, we have:

VaR99% (w ; one day) =
1√
260
× Φ−1 (0.99)× 20%

= $28 900

The value-at-risk of the long/short portfolio (1) is then equal to the
value-at-risk of the short portfolio (2) because of two effects: the absolute
exposure of the long/short portfolio is higher than the absolute exposure
of the short portfolio, but a part of the risk of the long/short portfolio is
hedged by the positive correlation between the two stocks.
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Question 6

The portfolio manager replaces the short position on the stock B by selling
a call option on the stock B. The delta of the option is equal to 50%.
Show that the Gaussian value-at-risk is minimum when the nominal is
equal to four times the correlation ρA,B . Deduce then an expression of the
lowest Gaussian VaR. Comment on these results.
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We have:
Π (w) = WA,tRA,t+1 − (CB,t+1 − CB,t)

and:
CB,t+1 − CB,t ' ∆t (SB,t+1 − SB,t)

where ∆t is the delta of the option. We note x the nominal of the option
expressed in USD million. We obtain:

Π (w) = 2RA − x ×∆t × RB

= 2RA −
x

2
RB

We have26:

σ2 (Π) = 4σ2
A +

x2σ2
B

4
+ 2ρA,B × (2σA)×

(
−x

2
σB

)
=

σ2
A

4

(
x2 − 8ρA,Bx + 16

)
26Because σA = σB = 20%.
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Minimizing the Gaussian value-at-risk is equivalent to minimizing the
variance of the P&L. We deduce that the first-order condition is:

∂ σ2 (Π)

∂ x
=
σ2
A

4
(2x − 8ρA,B) = 0

We deduce that the minimum VaR is reached when the nominal of the
option is x = 4ρA,B . We finally obtain:

σ (Π) =
σA
2

√
16ρ2

A,B − 32ρ2
A,B + 16

= 2σA

√
1− ρ2

A,B

and:

VaR99% (w ; one day) =
1√
260
× 2.33× 2× 20%×

√
1− ρ2

A,B

' 5.78%×
√

1− ρ2
A,B

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1331 / 1695



Market Risk

Covariance matrix
Expected shortfall of an equity portfolio
Value-at-risk of a long/short portfolio
Risk management of exotic options

Value-at-risk of a long/short portfolio

If ρA,B is negative (resp. positive), the exposure x is negative meaning
that we have to buy (resp. to sell) a call option on stock B in order to
hedge a part of the risk related to stock A. If ρA,B is equal to zero, the
exposure x is equal to zero because a position on stock B adds
systematically a supplementary risk to the portfolio.
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Exercise

Let us consider a short position on an exotic option, whose its current
value Ct is equal to $6.78. We assume that the price St of the underlying
asset is $100 and the implied volatility Σt is equal to 20%.
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Let Ct be the option price at time t. The P&L of the trader between t
and t + 1 is:

Π = − (Ct+1 − Ct)

The formulation of the exercise suggests that there are two main risk
factors: the price of the underlying asset St and the implied volatility Σt .
We then obtain:

Π = Ct (St ,Σt)− Ct+1 (St+1,Σt+1)
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Question 1

At time t + 1, the value of the underlying asset is $97 and the implied
volatility remains constant. We find that the P&L of the trader between t
and t + 1 is equal to $1.37. Can we explain the P&L by the sensitivities
knowing that the estimates of delta ∆t , gamma Γt and vegaa υt are
respectively equal to 49%, 2% and 40%?

ameasured in volatility points.
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Risk management of exotic options

We have:

Π = Ct (St ,Σt)− Ct+1 (St+1,Σt+1)

≈ −∆t (St+1 − St)−
1

2
Γt (St+1 − St)

2 − υt (Σt+1 − Σt)

Using the numerical values of ∆t , Γt and υt , we obtain:

Π ≈ −0.49× (97− 100)− 1

2
× 0.02× (97− 100)2

= 1.47− 0.09

= 1.38

We explain the P&L by the sensitivities very well.
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Question 2

At time t + 2, the price of the underlying asset is $97 while the implied
volatility increases from 20% to 22%. The value of the option Ct+2 is now
equal to $6.17. Can we explain the P&L by the sensitivities knowing that
the estimates of delta ∆t+1, gamma Γt+1 and vega υt+1 are respectively
equal to 43%, 2% and 38%?
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Risk management of exotic options

We have:

Π = Ct+1 (St+1,Σt+1)− Ct+2 (St+2,Σt+2)

≈ −∆t+1 (St+2 − St+1)− 1

2
Γt+1 (St+2 − St+1)2 −

υt+1 (Σt+2 − Σt+1)

Using the numerical values of ∆t+1, Γt+1 and υt+1, we obtain:

Π ≈ −0.49× 0− 1

2
× 0.02× 02 − 0.38× (22− 20)

= −0.76
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Risk management of exotic options

To compare this value with the true P&L, we have to calculate Ct+1:

Ct+1 = Ct − (Ct − Ct+1)

= 6.78− 1.37

= 5.41

We deduce that:

Π = Ct+1 − Ct+2

= 5.41− 6.17

= −0.76

Again, the sensitivities explain the P&L very well.
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Question 3

At time t + 3, the price of the underlying asset is $95 and the value of the
implied volatility is 19%. We find that the P&L of the trader between
t + 2 and t + 3 is equal to $0.58. Can we explain the P&L by the
sensitivities knowing that the estimates of delta ∆t+2, gamma Γt+2 and
vega υt+2 are respectively equal to 44%, 1.8% and 38%.
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Risk management of exotic options

We have:

Π = Ct+2 (St+2,Σt+2)− Ct+3 (St+3,Σt+3)

≈ −∆t+2 (St+3 − St+2)− 1

2
Γt+2 (St+3 − St+2)2 −

υt+2 (Σt+3 − Σt+2)

Using the numerical values of ∆t+2, Γt+2 and υt+2, we obtain:

Π ≈ −0.44× (95− 97)− 1

2
× 0.018× (95− 97)2 −

0.38× (19− 22)

= 0.88− 0.036 + 1.14

= 1.984

The P&L approximated by the Greek coefficients largely overestimate the
true value of the P&L.
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Risk management of exotic options

Question 4

What can we conclude in terms of model risk?
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We notice that the approximation using the Greek coefficients works very
well when one risk factor remains constant:

Between t and t + 1, the price of the underlying asset changes, but
not the implied volatility;

Between t + 1 and t + 2, this is the implied volatility that changes
whereas the price of the underlying asset is constant.

Therefore, we can assume that the bad approximation between t + 2 and
t + 3 is due to the cross effect between St and Σt . In terms of model risk,
the P&L is then exposed to the vanna risk, meaning that the Black-Scholes
model is not appropriate to price and hedge this exotic option.
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Single and multi-name credit default swaps

Question 1

We assume that the default time τ follows an exponential distribution
with parameter λ. Write the cumulative distribution function F, the
survival function S and the density function f of the random variable τ .
How do we simulate this default time?
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Single and multi-name credit default swaps

We have F (t) = 1− e−λt , S (t) = e−λt and f (t) = λe−λt . We know that
S (τ ) ∼ U[0,1]. Indeed, we have:

Pr {U ≤ u} = Pr {S (τ ) ≤ u}
= Pr

{
τ ≥ S−1 (u)

}
= S

(
S−1 (u)

)
= u

It follows that τ = S−1 (U) with U ∼ U[0,1]. Let u be a uniform random
variate. Simulating τ is then equivalent to transform u into t:

t = − 1

λ
ln u
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Single and multi-name credit default swaps

Question 2

We consider a CDS 3M with two-year maturity and $1 mn notional
principal. The recovery rate R is equal to 40% whereas the spread s is
equal to 150 bps at the inception date. We assume that the protection leg
is paid at the default time.
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Single and multi-name credit default swaps

Question 2.a

Give the cash flow chart. What is the P&L of the protection seller A if the
reference entity does not default? What is the PnL of the protection buyer
B if the reference entity defaults in one year and two months?
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Single and multi-name credit default swaps

The premium leg is paid quarterly. The coupon payment is then equal to:

PL (tm) = ∆tm × s × N

=
1

4
× 150× 10−4 × 106

= $3 750

In case of default, the default leg paid by protection seller is equal to:

DL = (1−R)× N

= (1− 40%)× 106

= $600 000
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Single and multi-name credit default swaps

The corresponding cash flow chart is given in Figure 189. If the reference
entity does not default, the P&L of the protection seller is the sum of
premium interests:

Πseller = 8× 3 750 = $30 000

If the reference entity defaults in one year and two months, the P&L of the
protection buyer is28:

Πbuyer = (1−R)× N −
∑
tm<τ

∆tm × s × N

= (1− 40%)× 106 −
(

4 +
2

3

)
× 3 750

= $582 500

28We include the accrued premium.
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Single and multi-name credit default swaps

'

&

$

%

τ time

The protection buyer pays $3 750

each quarter if the defaults does not occur

The protection buyer receives $600 000

if the defaults occurs before the maturity

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
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Single and multi-name credit default swaps

Question 2.b

What is the relationship between s , R and λ? What is the implied
one-year default probability at the inception date?
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Single and multi-name credit default swaps

Using the credit triangle relationship, we have:

s ' (1−R)× λ

We deduce that29:

PD ' λ

' s
1−R

=
150× 10−4

1− 40%
= 2.50%

29We recall that the one-year default probability is approximately equal to λ:

PD = 1− S (1)

= 1− e−λ

' 1− (1− λ)

' λ
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Single and multi-name credit default swaps

Question 2.c

Seven months later, the CDS spread has increased and is equal to 450 bps.
Estimate the new default probability. The protection buyer B decides to
realize his P&L. For that, he reassigns the CDS contract to the
counterparty C . Explain the offsetting mechanism if the risky PV01 is
equal to 1.189.
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Single and multi-name credit default swaps

We denote by s ′ the new CDS spread. The default probability becomes:

PD =
s ′

1−R

=
450× 10−4

1− 40%
= 7.50%

The protection buyer is short credit and benefits from the increase of the
default probability. His mark-to-market is therefore equal to:

Πbuyer = N × (s ′ − s)× RPV01

= 106 × (450− 150)× 10−4 × 1.189

= $35 671

The offsetting mechanism is then the following: the protection buyer B
transfers the agreement to C , who becomes the new protection buyer; C
continues to pay a premium of 150 bps to the protection seller A; in
return, C pays a cash adjustment of $35 671 to B.
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Single and multi-name credit default swaps

Question 3

We consider the following CDS spread curves for three reference entities:

Maturity #1 #2 #3
6M 130 bps 1 280 bps 30 bps
1Y 135 bps 970 bps 35 bps
3Y 140 bps 750 bps 50 bps
5Y 150 bps 600 bps 80 bps
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Single and multi-name credit default swaps

Question 3.a

Define the notion of credit curve. Comment the previous spread curves.
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Single and multi-name credit default swaps

For a given date t, the credit curve is the relationship between the
maturity T and the spread st (T ). The credit curve of the reference entity
#1 is almost flat. For the entity #2, the spread is very high in the
short-term, meaning that there is a significative probability that the entity
defaults. However, if the entity survive, the market anticipates that it will
improve its financial position in the long-run. This explains that the credit
curve #2 is decreasing. For reference entity #3, we obtain opposite
conclusions. The company is actually very strong, but there are some
uncertainties in the future30. The credit curve is then increasing.

30An example is a company whose has a monopoly because of a strong technology,
but faces a hard competition because technology is evolving fast in its domain (e.g.
Blackberry at the end of 2000s).
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Single and multi-name credit default swaps

Question 3.b

Using the Merton Model, we estimate that the one-year default probability
is equal to 2.5% for #1, 5% for #2 and 2% for #3 at a five-year horizon
time. Which arbitrage position could we consider about the reference
entity #2?
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Single and multi-name credit default swaps

If we consider a standard recovery rate (40%), the implied default
probability is 2.50% for #1, 10% for #2 and 1.33% for #3. We can
consider a short credit position in #2. In this case, we sell the 5Y
protection on #2 because the model tells us that the market default
probability is over-estimated. In place of this directional bet, we could
consider a relative value strategy: selling the 5Y protection on #2 and
buying the 5Y protection on #3.
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Single and multi-name credit default swaps

Question 4

We consider a basket of n single-name CDS.
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Single and multi-name credit default swaps

Question 4.a

What is a first-to-default (FtD), a second-to-default (StD) and a
last-to-default (LtD)?
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Single and multi-name credit default swaps

Let τ k:n be the kth default among the basket. FtD, StD and LtD are three
CDS products, whose credit event is related to the default times τ 1:n, τ 2:n

and τ n:n.
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Single and multi-name credit default swaps

Question 4.b

Define the notion of default correlation˙What is its impact on three
previous spreads?
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Single and multi-name credit default swaps

The default correlation ρ measures the dependence between two default
times τ i and τ j . The spread of the FtD (resp. LtD) is a decreasing (resp.
increasing) function with respect to ρ.
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Single and multi-name credit default swaps

Question 4.c

We assume that n = 3. Show the following relationship:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

where sCDS
i is the CDS spread of the i th reference entity.
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Single and multi-name credit default swaps

To fully hedge the credit portfolio of the 3 entities, we can buy the 3 CDS.
Another solution is to buy the FtD plus the StD and the LtD (or the
third-to-default). Because these two hedging strategies are equivalent, we
deduce that:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD
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Single and multi-name credit default swaps

Question 4.d

Many professionals and academics believe that the subprime crisis is due
to the use of the Normal copula. Using the results of the previous
question, what could you conclude?

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1369 / 1695



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Single and multi-name credit default swaps

We notice that the default correlation does not affect the value of the
CDS basket, but only the price distribution between FtD, StD and LtD.
We obtain a similar result for CDO31. In the case of the subprime crisis, all
the CDO tranches have suffered, meaning that the price of the underlying
basket has dropped. The reasons were the underestimation of default
probabilities.

31The junior, mezzanine and senior tranches can be viewed as FtD, StD and LtD.
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Risk contribution in the Basel II model

Question 1

We note L the portfolio loss of n credit and wi the exposure at default of
the i th credit. We have:

L (w) = w>ε =
n∑

i=1

wi × εi (3)

where εi is the unit loss of the i th credit. Let F be the cumulative
distribution function of L (w).
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Risk contribution in the Basel II model

Question 1.a

We assume that ε = (ε1, . . . , εn) ∼ N (0,Σ). Compute the value-at-risk
VaRα (w) of the portfolio when the confidence level is equal to α.
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Risk contribution in the Basel II model

The portfolio loss L follows a Gaussian probability distribution:

L (w) ∼ N
(

0,
√
w>Σw

)
We deduce that:

VaRα (w) = Φ−1 (α)
√
w>Σw
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Risk contribution in the Basel II model

Question 1.b

Deduce the marginal value-at-risk of the i th credit. Define then the risk
contribution RC i of the i th credit.
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Risk contribution in the Basel II model

We have:

∂ VaRα (w)

∂ w
=

∂

∂ w

(
Φ−1 (α)

(
w>Σw

) 1
2

)
= Φ−1 (α)

1

2

(
w>Σw

)− 1
2 (2Σw)

= Φ−1 (α)
Σw√
w>Σw

The marginal value-at-risk of the i th credit is then:

MRi =
∂ VaRα (w)

∂ wi
= Φ−1 (α)

(Σw)i√
w>Σw

The risk contribution of the i th credit is the product of the exposure by
the marginal risk:

RC i = wi ×MRi

= Φ−1 (α)
wi × (Σw)i√

x>Σx
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Risk contribution in the Basel II model

Question 1.c

Check that the marginal value-at-risk is equal to:

∂ VaRα (w)

∂ wi
= E

[
εi | L (w) = F−1 (α)

]
Comment on this result.
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Risk contribution in the Basel II model

By construction, the random vector (ε, L (w)) is Gaussian with:(
ε

L (w)

)
∼ N

((
0
0

)
,

(
Σ Σw

w>Σ w>Σw

))
We deduce that the conditional distribution function of ε given that
L (w) = ` is Gaussian and we have:

E [ε | L (w) = `] = 0 + Σw
(
w>Σw

)−1
(`− 0)

We finally obtain:

E
[
ε | L (w) = F−1 (α)

]
= Σw

(
w>Σw

)−1
Φ−1 (α)

√
w>Σw

= Φ−1 (α)
Σw√
w>Σw

=
∂ VaRα (w)

∂ w

The marginal VaR of the i th credit is then equal to the conditional mean
of the individual loss εi given that the portfolio loss is exactly equal to the
value-at-risk.Thierry Roncalli Course 2023-2024 in Financial Risk Management 1377 / 1695
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Risk contribution in the Basel II model

Question 2

We consider the Basel II model of credit risk and the value-at-risk risk
measure. The expression of the portfolio loss is given by:

L =
n∑

i=1

EADi ×LGDi ×1 {τ i < Mi} (4)
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Risk contribution in the Basel II model

Question 2.a

Define the different parameters EADi , LGDi , τ i and Mi . Show that
Model (4) can be written as Model (3) by identifying wi and εi .
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Risk contribution in the Basel II model

EADi is the exposure at default, LGDi is the loss given default, τ i is the
default time and Ti is the maturity of the credit i . We have:{

wi = EADi

εi = LGDi ×1 {τ i < Ti}

The exposure at default is not random, which is not the case of the loss
given default.
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Risk contribution in the Basel II model

Question 2.b

What are the necessary assumptions (H) to obtain this result:

E
[
εi | L = F−1 (α)

]
= E [LGDi ]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τ i < Mi}.
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Risk contribution in the Basel II model

We have to make the following assumptions:

(i) the loss given default LGDi is independent from the default time τ i ;

(ii) the portfolio is infinitely fine-grained meaning that there is no
exposure concentration:

EADi∑n
i=1 EADi

' 0

(iii) the default times depend on a common risk factor X and the
relationship is monotonic (increasing or decreasing).

In this case, we have:

E
[
εi | L = F−1 (α)

]
= E [LGDi ]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τ i < Ti}.
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Risk contribution in the Basel II model

Question 2.c

Deduce the risk contribution RC i of the i th credit and the value-at-risk of
the credit portfolio.
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Risk contribution in the Basel II model

It follows that:

RC i = wi ×MRi

= EADi ×E [LGDi ]× E
[
Di | L = F−1 (α)

]
The expression of the value-at-risk is then:

VaRα (w) =
n∑

i=1

RC i

=
n∑

i=1

EADi ×E [LGDi ]× E
[
Di | L = F−1 (α)

]
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Risk contribution in the Basel II model

Question 2.d

We assume that the credit i defaults before the maturity Mi if a latent
variable Zi goes below a barrier Bi :

τ i ≤ Mi ⇔ Zi ≤ Bi

We consider that Zi =
√
ρX +

√
1− ρεi where Zi , X and εi are three

independent Gaussian variables N (0, 1). X is the factor (or the systematic
risk) and εi is the idiosyncratic risk.
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Risk contribution in the Basel II model

Question 2.d (i)

Interpret the parameter ρ.
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We have

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= ρ

ρ is the constant correlation between assets Zi and Zj .
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Risk contribution in the Basel II model

Question 2.d (ii)

Calculate the unconditional default probability:

pi = Pr {τ i ≤ Mi}
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We have:

pi = Pr {τi ≤ Ti}
= Pr {Zi ≤ Bi}
= Φ (Bi )
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Risk contribution in the Basel II model

Question 2.d (iii)

Calculate the conditional default probability:

pi (x) = Pr {τ i ≤ Mi | X = x}
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It follows that:

pi (x) = Pr {Zi ≤ Bi | X = x}

= Pr
{√

ρX +
√

1− ρεi ≤ Bi | X = x
}

= Pr

{
εi ≤

Bi −
√
ρX

√
1− ρ

∣∣∣∣X = x

}
= Φ

(
Bi −

√
ρx

√
1− ρ

)
= Φ

(
Φ−1 (pi )−

√
ρx

√
1− ρ

)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1391 / 1695



Credit Risk
Single and multi-name credit default swaps
Risk contribution in the Basel II model
Modeling loss given default

Risk contribution in the Basel II model

Question 2.e

Show that, under the previous assumptions (H), the risk contribution RC i
of the i th credit is:

RC i = EADi ×E [LGDi ]× Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
(5)

when the risk measure is the value-at-risk.
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Risk contribution in the Basel II model

Under the assumptions (H), we know that:

L =
n∑

i=1

EADi ×E [LGDi ]× pi (X )

=
n∑

i=1

EADi ×E [LGDi ]× Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)
= g (X )

with g ′ (x) < 0. We deduce that:

VaRα (w) = F−1 (α) ⇔ Pr {g (X ) ≤ VaRα (w)} = α

⇔ Pr
{
X ≥ g−1 (VaRα (w))

}
= α

⇔ Pr
{
X ≤ g−1 (VaRα (w))

}
= 1− α

⇔ g−1 (VaRα (w)) = Φ−1 (1− α)

⇔ VaRα (w) = g
(
Φ−1 (1− α)

)
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Risk contribution in the Basel II model

It follows that:

VaRα (w) = g
(
Φ−1 (1− α)

)
=

n∑
i=1

EADi ×E [LGDi ]× pi
(
Φ−1 (1− α)

)
The risk contribution RC i of the ith credit is then:

RC i = EADi ×E [LGDi ]× pi
(
Φ−1 (1− α)

)
= EADi ×E [LGDi ]× Φ

(
Φ−1 (pi )−

√
ρΦ−1 (1− α)

√
1− ρ

)
= EADi ×E [LGDi ]× Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
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Question 3

We now assume that the risk measure is the expected shortfall:

ESα (w) = E [L | L ≥ VaRα (w)]
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Question 3.a

In the case of the Basel II framework, show that we have:

ESα (w) =
n∑

i=1

EADi ×E [LGDi ]× E
[
pi (X ) | X ≤ Φ−1 (1− α)

]
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We note Ω the event X ≤ g−1 (VaRα (w)) or equivalently
X ≤ Φ−1 (1− α). We have:

ESα (w) = E [L | L ≥ VaRα (w)]

= E [L | g (X ) ≥ VaRα (w)]

= E
[
L | X ≤ g−1 (VaRα (w))

]
= E

[
n∑

i=1

EADi ×E [LGDi ]× pi (X ) | Ω

]

=
n∑

i=1

EADi ×E [LGDi ]× E [pi (X ) | Ω]
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Question 3.b

By using the following result:∫ c

−∞
Φ(a + bx)φ(x) dx = Φ2

(
c ,

a√
1 + b2

;
−b√

1 + b2

)
where Φ2 (x , y ; ρ) is the cdf of the bivariate Gaussian distribution with
correlation ρ on the space [−∞, x ]× [−∞, y ], deduce that the risk
contribution RC i of the i th credit in the Basel II model is:

RC i = EADi ×E [LGDi ]×
C
(
1− α, pi ;

√
ρ
)

1− α
(6)

when the risk measure is the expected shortfall. Here C (u1, u2; θ) is the
Normal copula with parameter θ.
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It follows that:

E [pi (X ) | Ω] = E
[

Φ

(
Φ−1 (pi )−

√
ρX

√
1− ρ

)∣∣∣∣Ω

]
=

∫ Φ−1(1−α)

−∞
Φ

(
Φ−1 (pi )√

1− ρ
+
−√ρ
√

1− ρ
x

)
×

φ (x)

Φ (Φ−1 (1− α))
dx

=
Φ2

(
Φ−1 (1− α) ,Φ−1 (pi ) ;

√
ρ
)

1− α

=
C
(
1− α, pi ;

√
ρ
)

1− α
where C is the Gaussian copula. We deduce that:

RC i = EADi ×E [LGDi ]×
C
(
1− α, pi ;

√
ρ
)

1− α
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Question 3.c

What become the results (5) and (6) if the correlation ρ is equal to zero?
Same question if ρ = 1.
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If ρ = 0, we have:

Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
= Φ

(
Φ−1 (pi )

)
= pi

and:

C
(
1− α, pi ;

√
ρ
)

1− α
=

(1− α) pi
1− α

= pi

The risk contribution is the same for the value-at-risk and the expected
shortfall:

RC i = EADi ×E [LGDi ]× pi

= E [Li ]

It corresponds to the expected loss of the credit.
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If ρ = 1 and α > 50%, we have:

Φ

(
Φ−1 (pi ) +

√
ρΦ−1 (α)

√
1− ρ

)
= lim

ρ→1
Φ

(
Φ−1 (pi ) + Φ−1 (α)√

1− ρ

)
= 1

If ρ = 1 and α is high (α > 1− supi pi ), we have:

C
(
1− α, pi ;

√
ρ
)

1− α
=

min (1− α; pi )

1− α
= 1

In this case, the risk contribution is the same for the value-at-risk and the
expected shortfall:

RC i = EADi ×E [LGDi ]

However, it does not depend on the unconditional probability of default pi .
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Question 4

The risk contributions (5) and (6) were obtained considering the
assumptions (H) and the default model defined in Question 2(d). What
are the implications in terms of Pillar 2?
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Pillar 2 concerns the non-compliance of assumptions (H). In particular, we
have to understand the impact on the credit risk measure if the portfolio is
not infinitely fine-grained or if asset correlations are not constant.
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Question 1

What is the difference between the recovery rate and the loss given
default?
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Modeling loss given default

The loss given default is equal to:

LGD = 1−R + c

where c is the recovery (or litigation) cost. Consider for example a $200
credit and suppose that the borrower defaults. If we recover $140 and the
litigation cost is $20, we obtain R = 70% and LGD = 40%, but not
LGD = 30%.
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Question 2

We consider a bank that grants 250 000 credits per year. The average
amount of a credit is equal to $50 000. We estimate that the average
default probability is equal to 1% and the average recovery rate is equal to
65%. The total annual cost of the litigation department is equal to $12.5
mn. Give an estimation of the loss given default?
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Modeling loss given default

The amounts outstanding of credit is:

EAD = 250 000× 50 000

= $12.5 bn

The annual loss after recovery is equal to:

L = EAD× (1−R)× PD +C

= 43.75 + 12.5

= $56.25 mn

where C is the litigation cost.
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Modeling loss given default

We deduce that:

LGD =
L

EAD×PD

=
54

12.5× 103 × 1%
= 45%

This figure is larger than 35%, which is the loss given default without
taking into account the recovery cost.
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Question 3

The probability density function of the beta probability distribution B (a, b)
is:

f (x) =
xa−1 (1− x)b−1

B (a, b)

where B (a, b) =
∫ 1

0
ua−1 (1− u)b−1

du.
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Question 3.a

Why is the beta probability distribution a good candidate to model the
loss given default? Which parameter pair (a, b) correspond to the uniform
probability distribution?
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The Beta distribution allows to obtain all the forms of LGD (bell curve,
inverted-U shaped curve, etc.). The uniform distribution corresponds to
the case α = 1 and β = 1. Indeed, we have:

f (x) =
xα−1 (1− x)β−1∫ 1

0
uα−1 (1− u)β−1

du

= 1
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Question 3.b

Let us consider a sample (x1, . . . , xn) of n losses in case of default. Write
the log-likelihood function. Deduce the first-order conditions of the
maximum likelihood estimator.
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We have:

` (α, β) =
n∑

i=1

ln f (xi )

= −n ln B (α, β) + (α− 1)
n∑

i=1

ln xi + (β − 1)
n∑

i=1

ln (1− xi )

The first-order conditions are:

∂ ` (α, β)

∂ α
= −n∂αB (α, β)

B (α, β)
+

n∑
i=1

ln xi = 0

and:
∂ ` (α, β)

∂ β
= −n∂βB (α, β)

B (α, β)
+

n∑
i=1

ln (1− xi ) = 0
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Question 3.c

We recall that the first two moments of the beta probability distribution
are:

E [X ] =
a

a + b

σ2 (X ) =
ab

(a + b)2 (a + b + 1)

Find the method of moments estimator.
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Let µLGD and σLGD be the mean and standard deviation of the LGD
parameter. The method of moments consists in estimating α and β such
that:

α

α + β
= µLGD

and:
αβ

(α + β)2 (α + β + 1)
= σ2

LGD

We have:

β = α
(1− µLGD)

µLGD

and:
(α + β)2 (α + β + 1)σ2

LGD = αβ
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It follows that:

(α + β)2 =

(
α + α

(1− µLGD)

µLGD

)2

=
α2

µ2
LGD

and:

αβ =
α2

µ2
LGD

(
α + α

(1− µLGD)

µLGD
+ 1

)
σ2

LGD = α2 (1− µLGD)

µLGD

We deduce that:

α

(
1 +

(1− µLGD)

µLGD

)
=

(1− µLGD)µLGD

σ2
LGD

− 1
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We finally obtain:

α̂MM =
µ2

LGD (1− µLGD)

σ2
LGD

− µLGD (7)

β̂MM =
µLGD (1− µLGD)2

σ2
LGD

− (1− µLGD) (8)
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Question 4

We consider a risk class C corresponding to a customer/product
segmentation specific to retail banking. A statistical analysis of 1 000 loss
data available for this risk class gives the following results:

LGDk 0% 25% 50% 75% 100%
nk 100 100 600 100 100

where nk is the number of data corresponding to LGDk .
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Question 4.a

We consider a portfolio of 100 homogeneous credits, which belong to the
risk class C. The notional is $10 000 whereas the annual default probability
is equal to 1%. Calculate the expected loss of this credit portfolio with a
one-year horizon time if we use the previous empirical distribution to
model the LGD parameter.
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The mean of the loss given default is equal to:

µLGD =
100× 0% + 100× 25% + 600× 50% + . . .

1000
= 50%

The expression of the expected loss is:

EL =
100∑
i=1

EADi ×E [LGDi ]× PDi

where PDi is the default probability of credit i . We finally obtain:

EL =
100∑
i=1

10 000× 50%× 1%

= $5 000
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Question 4.b

We assume that the LGD parameter follows a beta distribution B (a, b).
Calibrate the parameters a and b with the method of moments.
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We have µLGD = 50% and:

σLGD =

√
100× (0− 0.5)2 + 100× (0.25− 0.5)2 + . . .

1000

=

√
2× 0.52 + 2× 0.252

10

=

√
0.625

10
= 25%

Using Equations (7) and (8), we deduce that:

α̂MM =
0.52 × (1− 0.5)

0.252
− 0.5 = 1.5

β̂MM =
0.5× (1− 0.5)2

0.252
− (1− 0.5) = 1.5
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Question 4.c

We assume that the Basel II model is valid. We consider the portfolio
described in Question 4(a) and calculate the unexpected loss. What is the
impact if we use a uniform probability distribution instead of the calibrated
beta probability distribution? Why does this result hold even if we consider
different factors to model the default time?
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The previous portfolio is homogeneous and infinitely fine-grained. In this
case, we know that the unexpected loss depends on the mean of the loss
given default and not on the entire probability distribution. Because the
expected value of the calibrated Beta distribution is 50%, there is no
difference with the uniform distribution, which has also a mean equal to
50%. This result holds for the Basel model with one factor, and remains
true when they are more factors.
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Impact of netting agreements in counterparty credit risk

Question 1

The table below gives the current mark-to-market of 7 OTC contracts
between Bank A and Bank B:

Equity Fixed income FX
C1 C2 C3 C4 C5 C6 C7

A +10 −5 +6 +17 −5 −5 +1
B −11 +6 −3 −12 +9 +5 +1

The table should be read as follows: Bank A has a mark-to-market equal
to 10 for the contract C1 whereas Bank B has a mark-to-market equal to
−11 for the same contract, Bank A has a mark-to-market equal to −5 for
the contract C2 whereas Bank B has a mark-to-market equal to +6 for the
same contract, etc.
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Question 1.a

Explain why there are differences between the MtM values of a same OTC
contract.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1429 / 1695



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Impact of netting agreements in counterparty credit risk

Let MtMA (C) and MTMB (C) be the MtM values of Bank A and Bank B
for the contract C. We must theoretically verify that:

MtMA+B (C) = MTMA (C) + MTMB (C)

= 0 (9)

In the case of listed products, the previous relationship is verified. In the
case of OTC products, there are no market prices, forcing the bank to use
pricing models for the valuation. The MTM value is then a mark-to-model
price. Because the two banks do not use the same model with the same
parameters, we note a discrepancy between the two mark-to-market prices:

MTMA (C) + MTMB (C) 6= 0
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For instance, we obtain:

MTMA+B (C1) = 10− 11 = −1

MTMA+B (C2) = −5 + 6 = 1

MTMA+B (C3) = 6− 3 = 3

MTMA+B (C4) = 17− 12 = 5

MTMA+B (C5) = −5 + 9 = 4

MTMA+B (C6) = −5 + 5 = 0

MTMA+B (C7) = 1 + 1 = 2

Only the contract C6 satisfies the relationship (9).
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Question 1.b

Calculate the exposure at default of Bank A.
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Impact of netting agreements in counterparty credit risk

We have:

EAD =
7∑

i=1

max (MTM (Ci ) , 0)

We deduce that:

EADA = 10 + 6 + 17 + 1 = 34

EADB = 6 + 9 + 5 + 1 = 21
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Question 1.c

Same question if there is a global netting agreement.
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If there is a global netting agreement, the exposure at default becomes:

EAD = max

(
7∑

i=1

MTM (Ci ) , 0

)

Using the numerical values, we obtain:

EADA = max (10− 5 + 6 + 17− 5− 5 + 1, 0)

= max (19, 0)

= 19

and:

EADB = max (−11 + 6− 3− 12 + 9 + 5 + 1, 0)

= max (−5, 0)

= 0
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Question 1.d

Same question if the netting agreement only concerns equity products.
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If the netting agreement only concerns equity contracts, we have:

EAD = max

(
3∑

i=1

MTM (Ci ) , 0

)
+

7∑
i=4

max (MTM (Ci ) , 0)

It follows that:

EADA = max(10− 5 + 6, 0) + 17 + 1 = 29

EADB = max(−11 + 6− 3, 0) + 9 + 5 + 1 = 15
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Impact of netting agreements in counterparty credit risk

Question 2

In the following, we measure the impact of netting agreements on the
exposure at default.
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Impact of netting agreements in counterparty credit risk

Question 2.a

We consider a first OTC contract C1 between Bank A and Bank B. The
mark-to-market MtM1 (t) of Bank A for the contract C1 is defined as
follows:

MtM1 (t) = x1 + σ1W1 (t)

where W1 (t) is a Brownian motion. Calculate the potential future
exposure of Bank A.
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The potential future exposure e1 (t) is defined as follows:

e1 (t) = max (x1 + σ1W1 (t) , 0)

We deduce that:

E [e1 (t)] =

∫ ∞
−∞

max (x , 0) f (x) dx

=

∫ ∞
0

xf (x) dx

where f (x) is the density function of MtM1 (t). As we have
MtM1 (t) ∼ N

(
x1, σ

2
1t
)
, we deduce that:

E [e1 (t)] =

∫ ∞
0

x

σ1

√
2πt

exp

(
−1

2

(
x − x1

σ1

√
t

)2
)

dx

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1440 / 1695



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Impact of netting agreements in counterparty credit risk

With the change of variable y = σ−1
1 t−1/2 (x − x1), we obtain:

E [e1 (t)] =

∫ ∞
−x1
σ1
√

t

x1 + σ1

√
ty√

2π
exp

(
−1

2
y2

)
dy

= x1

∫ ∞
−x1
σ1
√

t

φ (y) dy + σ1

√
t

∫ ∞
−x1
σ1
√

t

yφ (y) dy

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
t
[
− φ (y)

]∞
−x1
σ1
√

t

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
tφ

(
x1

σ1

√
t

)
because φ (−x) = φ (x) and Φ (−x) = 1− Φ (x).
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Impact of netting agreements in counterparty credit risk

Question 2.b

We consider a second OTC contract between Bank A and Bank B. The
mark-to-market is also given by the following expression:

MtM2 (t) = x2 + σ2W2 (t)

where W2 (t) is a second Brownian motion that is correlated with W1 (t).
Let ρ be this correlation such that E [W1 (t)W2 (t)] = ρt. Calculate the
expected exposure of bank A if there is no netting agreement.
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Impact of netting agreements in counterparty credit risk

When there is no netting agreement, we have:

e (t) = e1 (t) + e2 (t)

We deduce that:

E [e (t)] = E [e1 (t)] + E [e2 (t)]

= x1Φ

(
x1

σ1

√
t

)
+ σ1

√
tφ

(
x1

σ1

√
t

)
+

x2Φ

(
x2

σ2

√
t

)
+ σ2

√
tφ

(
x2

σ2

√
t

)

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1443 / 1695



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Impact of netting agreements in counterparty credit risk

Question 2.c

Same question when there is a global netting agreement between Bank A
and Bank B.
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Impact of netting agreements in counterparty credit risk

In the case of a netting agreement, the potential future exposure becomes:

e (t) = max (MtM1 (t) + MtM2 (t) , 0)

= max (MtM1+2 (t) , 0)

= max (x1 + x2 + σ1W1 (t) + σ2W2 (t) , 0)

We deduce that:

MtM1+2 (t) ∼ N
(
x1 + x2,

(
σ2

1 + σ2
2 + 2ρσ1σ2

)
t
)

Using results of Question 2(a), we finally obtain:

E [e (t)] = (x1 + x2) Φ

(
x1 + x2√

(σ2
1 + σ2

2 + 2ρσ1σ2) t

)
+

√
(σ2

1 + σ2
2 + 2ρσ1σ2) tφ

(
x1 + x2√

(σ2
1 + σ2

2 + 2ρσ1σ2) t

)
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Impact of netting agreements in counterparty credit risk

Question 2.d

Comment on these results.
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Impact of netting agreements in counterparty credit risk

We have represented the expected exposure E [e (t)] in Figure 190 when
x1 = x2 = 0 and σ1 = σ2. We note that it is an increasing function of the
time t and the volatility σ. We also observe that the netting agreement
may have a big impact, especially when the correlation is low or negative.
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Impact of netting agreements in counterparty credit risk

Figure: Expected exposure E [e (t)] when there is a netting agreement
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Calculation of the CCR capital charge

We denote by e (t) the potential future exposure of an OTC contract with
maturity T . The current date is set to t = 0. Let N and σ be the notional
and the volatility of the underlying contract. We assume that
e (t) = Nσ

√
tX with 0 ≤ X ≤ 1, Pr {X ≤ x} = xγ and γ > 0.
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Calculation of the CCR capital charge

Question 1

Calculate the peak exposure PEα (t), the expected exposure EE (t) and
the effective expected positive exposure EEPE (0; t).
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Calculation of the CCR capital charge

We have:

F[0,t] (x) = Pr {e (t) ≤ x}

= Pr
{
Nσ
√
tU ≤ x

}
= Pr

{
U ≤ x

Nσ
√
t

}
=

(
x

Nσ
√
t

)γ
with x ∈

[
0,Nσ

√
t
]
. We deduce that:

PEα (t) = F−1
[0,t] (α)

= Nσ
√
tα1/γ
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Calculation of the CCR capital charge

For the expected exposure, we obtain:

EE (t) = E [e (t)]

=

∫ Nσ
√
t

0

x
γ(

Nσ
√
t
)γ xγ−1 dx

=
γ(

Nσ
√
t
)γ [ xγ+1

γ + 1

]Nσ√t

0

=
γ

γ + 1
Nσ
√
t
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Calculation of the CCR capital charge

We deduce that:
EEE (t) =

γ

γ + 1
Nσ
√
t

and:

EEPE (0; t) =
1

t

∫ t

0

EEE (s) ds

=
1

t

∫ t

0

γ

γ + 1
Nσ
√
s ds

=
γ

γ + 1
Nσ

1

t

[
2

3
s3/2

]t
0

=
2γ

3 (γ + 1)
Nσ
√
t
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Calculation of the CCR capital charge

Question 2

The bank manages the credit risk with the foundation IRB approach and
the counterparty credit risk with an internal model. We consider an OTC
contract with the following parameters: N is equal to $3 mn, the maturity
T is one year, the volatility σ is set to 20% and γ is estimated at 2.
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Calculation of the CCR capital charge

Question 2.a

Calculate the exposure at default EAD knowing that the bank uses the
regulatory value for the parameter α.
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Calculation of the CCR capital charge

When the bank uses an internal model, the regulatory exposure at default
is:

EAD = α× EEPE (0; 1)

Using the standard value α = 1.4, we obtain:

EAD = 1.4× 4

9
× 3× 106 × 0.20

= $373 333
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Calculation of the CCR capital charge

Question 2.b

The default probability of the counterparty is estimated at 1%. Calculate
then the capital charge for counterparty credit risk of this OTC contracta.

aWe will take a value of 70% for the LGD parameter and a value of 20% for the
default correlation. We can also use the approximations −1.06 ≈ −1 and
Φ(−1) ≈ 16%.
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Calculation of the CCR capital charge

While the bank uses the FIRB approach, the required capital is:

K = EAD×E [LGD]×
(

Φ

(
Φ−1 (PD) +

√
ρΦ−1 (99.9%)

√
1− ρ

)
− PD

)
When ρ is equal to 20%, we have:

Φ−1 (PD) +
√
ρΦ−1 (99.9%)

√
1− ρ

=
−2.33 +

√
0.20× 3.09√

1− 0.20
= −1.06

By using the approximations −1.06 ' 1 and Φ (−1) ' 0.16, we obtain:

K = 373 333× 0.70× (0.16− 0.01)

= $39 200

The required capital of this OTC product for counterparty credit risk is
then equal to $39 200.
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Calculation of CVA and DVA measures

We consider an OTC contract with maturity T between Bank A and Bank
B. We denote by MtM (t) the risk-free mark-to-market of Bank A. The
current date is set to t = 0 and we assume that:

MtM (t) = N · σ ·
√
t · X

where N is the notional of the OTC contract, σ is the volatility of the
underlying asset and X is a random variable, which is defined on the
support [−1, 1] and whose density function is:

f (x) =
1

2
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Calculation of CVA and DVA measures

Question 1

Define the concept of positive exposure e+ (t). Show that the cumulative
distribution function F[0,t] of e+ (t) has the following expression:

F[0,t] (x) = 1
{

0 ≤ x ≤ σ
√
t
}
·
(

1

2
+

x

2 · N · σ ·
√
t

)
where F[0,t] (x) = 0 if x ≤ 0 and F[0,t] (x) = 1 if x ≥ σ

√
t.
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Calculation of CVA and DVA measures

The positive exposure e+ (t) is the maximum between zero and the
mark-to-market value:

e+ (t) = max (0,MtM (t))

= max
(

0,Nσ
√
tX
)

We have:

F[0,t] (x) = Pr
{
e+ (t) ≤ x

}
= Pr

{
max

(
0,Nσ

√
tX
)
≤ x

}
We notice that:

max
(

0,Nσ
√
tX
)

=

{
0 if X ≤ 0
Nσ
√
tX otherwise
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Calculation of CVA and DVA measures

By assuming that x ∈
[
0,Nσ

√
t
]
, we deduce that:

F[0,t] (x) = Pr
{
e+ (t) ≤ x ,X ≤ 0

}
+ Pr

{
e+ (t) ≤ x ,X > 0

}
= Pr {0 ≤ x ,X ≤ 0}+ Pr

{
Nσ
√
tX ≤ x ,X > 0

}
=

1

2
+

1

2
Pr
{
Nσ
√
tU ≤ x

}
=

1

2
+

1

2
Pr

{
U ≤ x

Nσ
√
t

}
where U is the standard uniform random variable. We finally obtain the
following expression:

F[0,t] (x) =
1

2
+

x

2Nσ
√
t

If x ≤ 0 or x ≥ Nσ
√
t, it is easy to show that F[0,t] (x) = 0 and

F[0,t] (x) = 1.
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Calculation of CVA and DVA measures

Question 2

Deduce the value of the expected positive exposure EpE (t).
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Calculation of CVA and DVA measures

The expected positive exposure EpE (t) is defined as follows:

EpE (t) = E
[
e+ (t)

]
Using the expression of F[0,t] (x), it follows that the density function of
e+ (t) is equal to:

f[0,t] (x) =
∂ F[0,t] (x)

∂ x

=
1

2Nσ
√
t
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Calculation of CVA and DVA measures

We deduce that:

EpE (t) =

∫ Nσ
√
t

0

xf[0,t] (x) dx

=

∫ Nσ
√
t

0

x

2Nσ
√
t

dx

=

[
x2

4Nσ
√
t

]Nσ√t

0

=
Nσ
√
t

4
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Calculation of CVA and DVA measures

Question 3

We note RB the fixed and constant recovery rate of Bank B. Give the
mathematical expression of the CVA.
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Calculation of CVA and DVA measures

By definition, we have:

CVA = (1−RB)×
∫ T

0

−B0 (t) EpE (t) dSB (t)
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Calculation of CVA and DVA measures

Question 4

By using the definition of the lower incomplete gamma function γ (s, x),
show that the CVA is equal to:

CVA =
N · (1−RB) · σ · γ

(
3
2 , λBT

)
4
√
λB

when the default time of Bank B is exponential with parameter λB and
interest rates are equal to zero.
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Calculation of CVA and DVA measures

The interest rates are equal to zero meaning that B0 (t) = 1. Moreover,
we have SB (t) = e−λB t . We deduce that:

CVA = (1−RB)×
∫ T

0

Nσ
√
t

4
λBe

−λB t dt

=
NλB (1−RB)σ

4

∫ T

0

√
te−λB t dt

The definition of the incomplete gamma function is:

γ (s, x) =

∫ x

0

ts−1e−t dt
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Calculation of CVA and DVA measures

By considering the change of variable y = λBt, we obtain:∫ T

0

√
te−λB t dt =

∫ λBT

0

√
y

λB
e−y

dy

λB

=
1

λ
3/2

B

∫ λBT

0

y
3/2−1e−y dy

=
γ
(

3
2 , λBT

)
λ

3/2

B

It follows that:

CVA =
N (1−RB)σγ

(
3
2 , λBT

)
4
√
λB

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1470 / 1695



Counterparty Credit Risk and Collateral Risk
Impact of netting agreements in counterparty credit risk
Calculation of the capital charge for counterparty credit risk
Calculation of CVA and DVA measures

Calculation of CVA and DVA measures

Question 5

Comment on this result.
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Calculation of CVA and DVA measures

The CVA is proportional to the notional N of the OTC contract, the loss
given default (1−RB) of the counterparty and the volatility σ of the
underlying asset. It is an increasing function of the maturity T because we
have γ

(
3
2 , λBT2

)
> γ

(
3
2 , λBT1

)
when T2 > T1. If the maturity is not

very large (less than 10 years), the CVA is an increasing function of the
default intensity λB .
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Calculation of CVA and DVA measures

The limit cases are33:

lim
λB→∞

CVA = lim
λB→∞

N (1−RB)σγ
(

3
2 , λBT

)
4
√
λB

= 0

and:

lim
T→∞

CVA =
N (1−RB)σΓ

(
3
2

)
4
√
λB

When the counterparty has a high default intensity, meaning that the
default is imminent, the CVA is equal to zero because the mark-to-market
value is close to zero. When the maturity is large, the CVA is a decreasing
function of the intensity λB . Indeed, the probability to observe a large
mark-to-market in the future increases when the default time is very far
from the current date. We have illustrated these properties in Figure ??
with the following numerical values: N = $1 mn, RB = 40% and
σ = 30%.

33We have limx→∞ γ (s, x) = Γ (s).
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Figure: Evolution of the CVA with respect to maturity T and intensity λB
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Calculation of CVA and DVA measures

Question 6

By assuming that the default time of Bank A is exponential with parameter
λA, deduce the value of the DVA without additional computations.
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Calculation of CVA and DVA measures

We notice that the mark-to-market is perfectly symmetric about 0. We
deduce that the expected negative exposure EnE (t) is equal to the
expected positive exposure EpE (t). It follows that the DVA is equal to:

DVA =
N (1−RA)σγ

(
3
2 , λAT

)
4
√
λA
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Estimation of the loss severity distribution

Exercise

We consider a sample of n individual losses {x1, . . . , xn}. We assume that they can be
described by different probability distributions:

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.

(ii) X follows a Pareto distribution P
(
α, x−

)
defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.

(iv) The natural logarithm of the loss X follows a gamma distribution: lnX ∼ Γ (α;β).
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Estimation of the loss severity distribution

Question 1

We consider the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Estimation of the loss severity distribution

Question 1.a

Show that the probability density function is:

f (x) =
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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Estimation of the loss severity distribution

The density of the Gaussian distribution Y ∼ N
(
µ, σ2

)
is:

g (y) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)

Let X ∼ LN
(
µ, σ2

)
. We have X = expY . It follows that:

f (x) = g (y)

∣∣∣∣dydx

∣∣∣∣
with y = ln x . We deduce that:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)
× 1

x

=
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)
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Estimation of the loss severity distribution

Question 1.b

Calculate the two first moments of X . Deduce the orthogonal conditions
of the generalized method of moments.
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Estimation of the loss severity distribution

For m ≥ 1, the non-centered moment is equal to:

E [Xm] =

∫ ∞
0

xm
1

xσ
√

2π
exp

(
−1

2

(
ln x − µ

σ

)2
)

dx
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Estimation of the loss severity distribution

By considering the change of variables y = σ−1 (ln x − µ) and
z = y −mσ, we obtain:

E [Xm] =

∫ ∞
−∞

emµ+mσy 1√
2π

e−
1
2 y

2

dy

= emµ ×
∫ ∞
−∞

1√
2π

e−
1
2 y

2+mσy dy

= emµ × e
1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

e−
1
2 (y−mσ)2

dy

= emµ+ 1
2 m

2σ2

×
∫ ∞
−∞

1√
2π

exp

(
−1

2
z2

)
dz

= emµ+ 1
2 m

2σ2
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We deduce that:
E [X ] = eµ+ 1

2σ
2

and:

var (X ) = E
[
X 2
]
− E2 [X ]

= e2µ+2σ2

− e2µ+σ2

= e2µ+σ2
(
eσ

2

− 1
)

We can estimate the parameters µ and σ with the generalized method of
moments by using the following empirical moments: hi,1 (µ, σ) = xi − eµ+ 1

2σ
2

hi,2 (µ, σ) =
(
xi − eµ+ 1

2σ
2
)2

− e2µ+σ2
(
eσ

2 − 1
)
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Question 1.c

Find the maximum likelihood estimators µ̂ and σ̂.
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The log-likelihood function of the sample {x1, . . . , xn} is:

` (µ, σ) =
n∑

i=1

ln f (xi )

= −n

2
lnσ2 − n

2
ln 2π −

n∑
i=1

ln xi −
1

2

n∑
i=1

(
ln xi − µ

σ

)2

To find the ML estimators µ̂ and σ̂, we can proceed in two different way.
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#1 X ∼ LN
(
µ, σ2

)
implies that Y = lnX ∼ N

(
µ, σ2

)
. We know that

the ML estimators µ̂ and σ̂ associated to Y are:

µ̂ =
1

n

n∑
i=1

yi

σ̂ =

√√√√1

n

n∑
i=1

(yi − µ̂)2

We deduce that the ML estimators µ̂ and σ̂ associated to the sample
{x1, . . . , xn} are:

µ̂ =
1

n

n∑
i=1

ln xi

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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#2 We maximize the log-likelihood function. The first-order conditions
are ∂µ ` (µ, σ) = 0 and ∂σ ` (µ, σ) = 0. We deduce that:

∂µ ` (µ, σ) =
1

σ2

n∑
i=1

(ln xi − µ) = 0

and:

∂σ ` (µ, σ) = − n

σ
+

n∑
i=1

(ln xi − µ)2

σ3
= 0

We finally obtain:

µ̂ =
1

n

n∑
i=1

ln xi

and:

σ̂ =

√√√√1

n

n∑
i=1

(ln xi − µ̂)2
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Question 2

We consider the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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Question 2.a

Calculate the two first moments of X . Deduce the GMM conditions for
estimating the parameter α.
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The probability density function is:

f (x) =
∂ Pr {X ≤ x}

∂ x

= α
x−(α+1)

x−α−

For m ≥ 1, we have:

E [Xm] =

∫ ∞
x−

xmα
x−(α+1)

x−α−
dx

=
α

x−α−

∫ ∞
x−

xm−α−1 dx

=
α

x−α−

[
xm−α

m − α

]∞
x−

=
α

α−m
xm−
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We deduce that:
E [X ] =

α

α− 1
x−

and:

var (X ) = E
[
X 2
]
− E2 [X ]

=
α

α− 2
x2
− −

(
α

α− 1
x−

)2

=
α

(α− 1)2 (α− 2)
x2
−
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We can then estimate the parameter α by considering the following
empirical moments:

hi,1 (α) = xi −
α

α− 1
x−

hi,2 (α) =

(
xi −

α

α− 1
x−

)2

− α

(α− 1)2 (α− 2)
x2
−

The generalized method of moments can consider either the first moment
hi,1 (α), the second moment hi,2 (α) or the joint moments
(hi,1 (α) , hi,2 (α)). In the first case, the estimator is:

α̂ =

∑n
i=1 xi∑n

i=1 xi − nx−
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Question 2.b

Find the maximum likelihood estimator α̂.
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The log-likelihood function is:

` (α) =
n∑

i=1

ln f (xi ) = n lnα− (α + 1)
n∑

i=1

ln xi + nα ln x−

The first-order condition is:

∂α ` (α) =
n

α
−

n∑
i=1

ln xi +
n∑

i=1

ln x− = 0

We deduce that:

n = α
n∑

i=1

ln
xi
x−

The ML estimator is then:

α̂ =
n∑n

i=1 (ln xi − ln x−)
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Question 3

We consider the case (iii). Write the log-likelihood function associated to
the sample of individual losses {x1, . . . , xn}. Deduce the first-order
conditions of the maximum likelihood estimators α̂ and β̂.

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The probability density function of (iii) is:

f (x) =
∂ Pr {X ≤ x}

∂ x
=
βαxα−1e−βx

Γ (α)

It follows that the log-likelihood function is:

` (α, β) =
n∑

i=1

ln f (xi ) = −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi

The first-order conditions ∂α ` (α, β) = 0 and ∂β ` (α, β) = 0 imply that:

n

(
lnβ − Γ′ (α)

Γ (α)

)
+

n∑
i=1

ln xi = 0

and:

n
α

β
−

n∑
i=1

xi = 0
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Question 4

We consider the case (iv). Show that the probability density function of X
is:

f (x) =
βα (ln x)α−1

Γ (α) xβ+1

What is the support of this probability density function? Write the
log-likelihood function associated to the sample of individual losses
{x1, . . . , xn}.

(iv) The natural logarithm of the loss X follows a gamma distribution:
lnX ∼ Γ (α;β).
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Let Y ∼ Γ (α, β) and X = expY . We have:

fX (x) |dx | = fY (y) |dy |

where fX and fY are the probability density functions of X and Y . We
deduce that:

fX (x) =
βαyα−1e−βy

Γ (α)
× 1

ey

=
βα (ln x)α−1 e−β ln x

xΓ (α)

=
βα (ln x)α−1

Γ (α) xβ+1

The support of this probability density function is [0,+∞).
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The log-likelihood function associated to the sample of individual losses
{x1, . . . , xn} is:

` (α, β) =
n∑

i=1

ln f (xi )

= −n ln Γ (α) + nα lnβ + (α− 1)
n∑

i=1

ln (ln xi )− (β + 1)
n∑

i=1

ln xi

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1502 / 1695



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss severity distribution

Question 5

We now assume that the losses {x1, . . . , xn} have been collected beyond a
threshold H meaning that X ≥ H.
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Question 5.a

What becomes the generalized method of moments in the case (i).

(i) X follows a log-normal distribution LN
(
µ, σ2

)
.
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Using Bayes’ formula, we have:

Pr {X ≤ x | X ≥ H} =
Pr {H ≤ X ≤ x}

Pr {X ≥ H}

=
F (x)− F (H)

1− F (H)

where F is the cdf of X . We deduce that the conditional probability
density function is:

f (x | X ≥ H) = ∂x Pr {X ≤ x | X ≥ H}

=
f (x)

1− F (H)
× 1 {x ≥ H}
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For the log-normal probability distribution, we obtain:

f (x | X ≥ H) =
1

1− Φ
(

ln H−µ
σ

) × 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ× 1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx
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We note Mm (µ, σ) the conditional moment E [Xm | X ≥ H]. We have:

Mm (µ, σ) = ϕ×
∫ ∞
H

xm−1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ×
∫ ∞

ln H

1

σ
√

2π
e−

1
2 ( x−µ

σ )2
+mx dx

= ϕ× emµ+ 1
2 m

2σ2

×
∫ ∞

ln H

1

σ
√

2π
e−

1
2

(x−(µ+mσ2))2

σ2 dx

=
1− Φ

(
ln H−µ−mσ2

σ

)
1− Φ

(
ln H−µ
σ

) emµ+ 1
2 m

2σ2
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The first two moments of X | X ≥ H are then:

M1 (µ, σ) = E [X | X ≥ H] =
1− Φ

(
ln H−µ−σ2

σ

)
1− Φ

(
ln H−µ
σ

) eµ+ 1
2σ

2

and:

M2 (µ, σ) = E
[
X 2 | X ≥ H

]
=

1− Φ
(

ln H−µ−2σ2

σ

)
1− Φ

(
ln H−µ
σ

) e2µ+2σ2
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We can therefore estimate µ and σ by considering the following empirical
moments:{

hi,1 (µ, σ) = xi −M1 (µ, σ)

hi,2 (µ, σ) = (xi −M1 (µ, σ))2 −
(
M2 (µ, σ)−M2

1 (µ, σ)
)
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Question 5.b

Calculate the maximum likelihood estimator α̂ in the case (ii).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(

x

x−

)−α
with x ≥ x− and α > 0.
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We have:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
α
x−(α+1)

x−α−

)/(
H−α

x−α−

)

= α
x−(α+1)

H−α

The conditional probability function is then a Pareto distribution with the
same parameter α but with a new threshold x− = H. We can then deduce
that the ML estimator α̂ is:

α̂ =
n(∑n

i=1 ln xi
)
− n lnH
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Question 5.c

Write the log-likelihood function in the case (iii).

(iii) X follows a gamma distribution Γ (α, β) defined by:

Pr {X ≤ x} =

∫ x

0

βαtα−1e−βt

Γ (α)
dt

with x ≥ 0, α > 0 and β > 0.
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The conditional probability density function is:

f (x | X ≥ H) =
f (x)

1− F (H)
× 1 {x ≥ H}

=

(
βαxα−1e−βx

Γ (α)

)/∫ ∞
H

βαtα−1e−βt

Γ (α)
dt

=
βαxα−1e−βx∫∞

H
βαtα−1e−βt dt

We deduce that the log-likelihood function is:

` (α, β) = nα lnβ − n ln

(∫ ∞
H

βαtα−1e−βt dt

)
+

(α− 1)
n∑

i=1

ln xi − β
n∑

i=1

xi
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Exercise

We consider a dataset of individual losses {x1, . . . , xn} corresponding to a
sample of T annual loss numbers {NY1 , . . . ,NYT

}. This implies that:

T∑
t=1

NYt = n

If we measure the number of losses per quarter {NQ1 , . . . ,NQ4T
}, we use

the notation:
4T∑
t=1

NQt = n
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Question 1

We assume that the annual number of losses follows a Poisson distribution
P (λY ). Calculate the maximum likelihood estimator λ̂Y associated to the
sample {NY1 , . . . ,NYT

}.
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We have:

Pr {N = n} = e−λY
λnY
n!

We deduce that the expression of the log-likelihood function is:

` (λY ) =
T∑
t=1

ln Pr {N = NYt} = −λYT +

(
T∑
t=1

NYt

)
lnλY −

T∑
t=1

ln (NYt !)

The first-order condition is:

∂ ` (λY )

∂ λY
= −T +

1

λY

(
T∑
t=1

NYt

)
= 0

We deduce that the ML estimator is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T
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Question 2

We assume that the quarterly number of losses follows a Poisson
distribution P (λQ). Calculate the maximum likelihood estimator λ̂Q
associated to the sample {NQ1 , . . . ,NQ4T

}.
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Using the same arguments, we obtain:

λ̂Q =
1

4T

4T∑
t=1

NQt =
n

4T
=
λ̂Y
4
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Question 3

What is the impact of considering a quarterly or annual basis on the
computation of the capital charge?
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Considering a quarterly or annual basis has no impact on the capital
charge. Indeed, the capital charge is computed with a one-year time
horizon. If we use a quarterly basis, we have to find the distribution of the
annual loss number. In this case, the annual loss number is the sum of the
four quarterly loss numbers:

NY = NQ1 + NQ2 + NQ3 + NQ4

We know that each quarterly loss number follows a Poisson distribution

P
(
λ̂Q

)
and that they are independent. Because the Poisson distribution

is infinitely divisible, we obtain:

NQ1 + NQ2 + NQ3 + NQ4 ∼ P
(

4λ̂Q
)

We deduce that the annual loss number follows a Poisson distribution
P
(
λ̂Y

)
in both cases.
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Question 4

What does this result become if we consider a method of moments based
on the first moment?
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Since we have E [P (λ)] = λ, the MM estimator in the case of annual loss
numbers is:

λ̂Y =
1

T

T∑
t=1

NYt =
n

T

The MM estimator is exactly the ML estimator.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1522 / 1695



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss frequency distribution

Question 5

Same question if we consider a method of moments based on the second
moment.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1523 / 1695



Operational Risk
Asset Liability Management Risk

Estimation of the loss severity distribution
Estimation of the loss frequency distribution

Estimation of the loss frequency distribution

Since we have var (P (λ)) = λ, the MM estimator in the case of annual
loss numbers is:

λ̂Y =
1

T

T∑
t=1

N2
Yt
− n2

T 2

If we use a quarterly basis, we obtain:

λ̂Q =
1

4

(
1

T

4T∑
t=1

N2
Qt
− n2

4T 2

)

6= λ̂Y
4

There is no reason that λ̂Y = 4λ̂Q meaning that the capital charge will
not be the same.
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Exercise

In what follows, we consider a debt instrument, whose remaining maturity
is equal to m. We note t the current date and T = t + m the maturity
date.
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Question 1

We consider a bullet repayment debt. Define its amortization function
S (t, u). Calculate the survival function S? (t, u) of the stock. Show that:

S? (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
in the case where the new production is constant. Comment on this result.
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By definition, we have:

S (t, u) = 1 {t ≤ u < t + m} =

{
1 if u ∈ [t, t + m[
0 otherwise

This means that the survival function is equal to one when u is between
the current date t and the maturity date T = t + m. When u reaches T ,
the outstanding amount is repaid, implying that S (t,T ) is equal to zero.
It follows that:

S? (t, u) =

∫ t

−∞NP (s) S (s, u) ds∫ t

−∞NP (s) S (s, t) ds

=

∫ t

−∞NP (s) · 1 {s ≤ u < s + m} ds∫ t

−∞NP (s) · 1 {s ≤ t < s + m} ds
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For the numerator, we have:

1 {s ≤ u < s + m} = 1 ⇒ u < s + m

⇔ s > u −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ u < s + m} ds =

∫ t

u−m
NP (s) ds
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For the denominator, we have:

1 {s ≤ t < s + m} = 1 ⇒ t < s + m

⇔ s > t −m

and: ∫ t

−∞
NP (s) · 1 {s ≤ t < s + m} ds =

∫ t

t−m
NP (s) ds

We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m NP (s) ds∫ t

t−m NP (s) ds
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In the case where the new production is a constant, we have NP (s) = c
and:

S? (t, u) = 1 {t ≤ u < t + m} ·
∫ t

u−m ds∫ t

t−m ds

= 1 {t ≤ u < t + m} ·
[
s
]t
u−m[

s
]t
t−m

= 1 {t ≤ u < t + m} ·
(
t − u + m

t − t + m

)
= 1 {t ≤ u < t + m} ·

(
1− u − t

m

)
The survival function S? (t, u) corresponds to the case of a linear
amortization.
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Question 2

Same question if we consider a debt instrument, whose amortization rate
is constant.
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If the amortization is linear, we have:

S (t, u) = 1 {t ≤ u < t + m} ·
(

1− u − t

m

)
We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m
NP (s)

(
1− u − s

m

)
ds∫ t

t−m
NP (s)

(
1− t − s

m

)
ds

In the case where the new production is a constant, we obtain:

S? (t, u) = 1 {t ≤ u < t + m} ·

∫ t

u−m

(
1− u − s

m

)
ds∫ t

t−m

(
1− t − s

m

)
ds
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For the numerator, we have:∫ t

u−m

(
1− u − s

m

)
ds =

[
s − su

m
+

s2

2m

]t
u−m

=

(
t − tu

m
+

t2

2m

)
−(

u −m − u2 −mu

m
+

(u −m)2

2m

)

=

(
t − tu

m
+

t2

2m

)
−
(
u − m

2
− u2

2m

)
=

m2 + u2 + t2 + 2mt − 2mu − 2tu

2m

=
(m − u + t)2

2m
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For the denominator, we use the previous result and we set u = t:∫ t

t−m

(
1− t − s

m

)
ds =

(m − t + t)2

2m

=
m

2
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We deduce that:

S? (t, u) = 1 {t ≤ u < t + m} ·

(m − u + t)2

2m
m

2

= 1 {t ≤ u < t + m} · (m − u + t)2

m2

= 1 {t ≤ u < t + m} ·
(

1− u − t

m

)2

The survival function S? (t, u) corresponds to the case of a parabolic
amortization.
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Question 3

Same question if we assumea that the amortization function is exponential
with parameter λ.

aBy definition of the exponential amortization, we have m = +∞.
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If the amortization is exponential, we have:

S (t, u) = e−
∫ u
t
λ ds = e−λ(u−t)

It follows that:

S? (t, u) =

∫ t

−∞NP (s) e−λ(u−s) ds∫ t

−∞NP (s) e−λ(t−s) ds

In the case where the new production is a constant, we obtain:

S? (t, u) =

∫ t

−∞ e−λ(u−s) ds∫ t

−∞ e−λ(t−s) ds

=

[
λ−1e−λ(u−s)

]t
−∞[

λ−1e−λ(t−s)
]t
−∞

= e−λ(u−t)

= S (t, u)

The stock amortization function is equal to the flow amortization function.
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Question 4

Find the expression of D? (t) when the new production is constant.
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We recall that the liquidity duration is equal to:

D (t) =

∫ ∞
t

(u − t) f (t, u) du

where f (t, u) is the density function associated to the survival function
S (t, u). For the stock, we have:

D? (t) =

∫ ∞
t

(u − t) f ? (t, u) du

where f ? (t, u) is the density function associated to the survival function
S? (t, u):

f ? (t, u) =

∫ t

−∞NP (s) f (s, u) ds∫ t

−∞NP (s) S (s, t) ds
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In the case where the new production is constant, we obtain:

D? (t) =

∫∞
t

(u − t)
∫ t

−∞ f (s, u) ds du∫ t

−∞ S (s, t) ds

Since we have
∫ t

−∞ f (s, u) ds = S (t, u), we deduce that:

D? (t) =

∫∞
t

(u − t) S (t, u) du∫ t

−∞ S (s, t) ds
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Computation of the amortization functions

Question 5

Calculate the durations D (t) and D? (t) for the three previous cases.
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In the case of the bullet repayment debt, we have:

D (t) = m

and:

D? (t) =

∫ t+m

t
(u − t) du∫ t

t−m ds

=

[
1
2 (u − t)2

]t+m

t[
s
]t
t−m

=
m

2
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In the case of the linear amortization, we have:

f (t, u) = 1 {t ≤ u < t + m} · 1

m

and:

D (t) =

∫ t+m

t

(u − t)

m
du

=
1

m

[
1

2
(u − t)2

]t+m

t

=
m

2
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For the stock duration, we deduce that

D? (t) =

∫ t+m

t

(u − t)

(
1− u − t

m

)
du∫ t

t−m

(
1− t − s

m

)
ds

=

∫ t+m

t

(
u − t − u2

m
+ 2

tu

m
− t2

m

)
du∫ t

t−m

(
1− t

m
+

s

m

)
ds

=

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t[
s − st

m
+

s2

2m

]t
t−m
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The numerator is equal to:

(∗) =

[
u2

2
− tu − u3

3m
+

tu2

m
− t2u

m

]t+m

t

=
1

6m

[
3mu2 − 6mtu − 2u3 + 6tu2 − 6t2u

]t+m

t

=
1

6m

(
m3 − 3mt2 − 2t3

)
+

1

6m

(
3mt2 + 2t3

)
=

m2

6
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The denominator is equal to:

(∗) =

[
s − st

m
+

s2

2m

]t
t−m

=
1

2m

[
s2 − 2s (t −m)

]t
t−m

=
1

2m

(
t2 − 2t (t −m)− (t −m)2 + 2 (t −m)2

)
=

1

2m

(
t2 − 2t2 + 2mt + t2 − 2mt + m2

)
=

m

2
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We deduce that:
D? (t) =

m

3
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For the exponential amortization, we have:

f (t, u) = λe−λ(u−t)

and35:

D (t) =

∫ ∞
t

(u − t)λe−λ(u−t) du =

∫ ∞
0

vλe−λv dv =
1

λ

For the stock duration, we deduce that:

D? (t) =

∫∞
t

(u − t) e−λ(u−t) du∫ t

−∞ e−λ(t−s) ds
=

∫∞
0

ve−λv dv∫∞
0

e−λv dv
=

1

λ

We verify that D (t) = D? (t) since we have demonstrated that
S? (t, u) = S (t, u).

35We use the change of variable v = u − t.
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Question 6

Calculate the corresponding dynamics dN (t).
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In the case of the bullet repayment debt, we have:

dN (t) = (NP (t)−NP (t −m)) dt
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In the case of the linear amortization, we have:

f (s, t) =
1 {s ≤ t < s + m}

m

It follows that:∫ t

−∞
NP (s) f (s, t) ds =

1

m

∫ t

−∞
1 {s ≤ t < s + m} ·NP (s) ds

=
1

m

∫ t

t−m
NP (s) ds

We deduce that:

dN (t) =

(
NP (t)− 1

m

∫ t

t−m
NP (s) ds

)
dt
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For the exponential amortization, we have:

f (s, t) = λe−λ(t−s)

and: ∫ t

−∞
NP (s) f (s, t) ds =

∫ t

−∞
NP (s)λe−λ(t−s) ds

= λ

∫ t

−∞
NP (s) e−λ(t−s) ds

= λN (t)

We deduce that:
dN (t) = (NP (t)− λN (t)) dt
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Impact of prepayment

Exercise

We recall that the outstanding balance of a CAM (constant amortization
mortgage) at time t is given by:

N (t) = 1 {t < m} · N0 ·
1− e−i(m−t)

1− e−im

where N0 is the notional, i is the interest rate and m is the maturity.
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Question 1

Find the dynamics dN (t).
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We deduce that the dynamics of N (t) is equal to:

dN (t) = 1 {t < m} · N0
−ie−i(m−t)

1− e−im
dt

= −ie−i(m−t)

(
1 {t < m} · N0

1

1− e−im

)
dt

= − ie−i(m−t)

1− e−i(m−t)
N (t) dt
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Question 2

We note Ñ (t) the modified outstanding balance that takes into account
the prepayment risk. Let λp (t) be the prepayment rate at time t. Write

the dynamics of Ñ (t).
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The prepayment rate has a negative impact on dN (t) because it reduces
the outstanding amount N (t):

dÑ (t) = − ie−i(m−t)

1− e−i(m−t)
Ñ (t) dt − λp (t) Ñ (t) dt
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Question 3

Show that Ñ (t) = N (t) Sp (t) where Sp (t) is the prepayment-based
survival function.
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It follows that:

d lnÑ (t) = −
(

ie−i(m−t)

1− e−i(m−t)
+ λp (t)

)
dt

and:

lnÑ (t)− lnÑ (0) =

∫ t

0

−ie−i(m−s)

1− e−i(m−s)
ds −

∫ t

0

λp (s) ds

=

[
ln
(

1− e−i(m−s)
)]t

0

−
∫ t

0

λp (s) ds

= ln

(
1− e−i(m−t)

1− e−im

)
−
∫ t

0

λp (s) ds
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We deduce that:

Ñ (t) =

(
N0

1− e−i(m−t)

1− e−im

)
e−

∫ t
0
λp(s) ds

= N (t) Sp (t)

where Sp (t) is the survival function associated to the hazard rate λp (t).
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Impact of prepayment

Question 4

Calculate the liquidity duration D̃ (t) associated to the outstanding balance
Ñ (t) when the hazard rate of prepayments is constant and equal to λp.
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We have:

Ñ (t, u) = 1 {t ≤ u < t + m} · N (t)
1− e−i(t+m−u)

1− e−im
e−λp(u−t)

this implies that:

S̃ (t, u) = 1 {t ≤ u < t + m} · e
−λp(u−t) − e−im+(i−λp)(u−t)

1− e−im

and:

f̃ (t, u) = 1 {t ≤ u < t + m} · λpe
−λp(u−t) + (i − λp) e−im+(i−λp)(u−t)

1− e−im
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It follows that:

D̃ (t) =
λp

1− e−im

∫ t+m

t

(u − t) e−λp(u−t) du +

(i − λp) e−im

1− e−im

∫ t+m

t

(u − t) e(i−λp)(u−t) du

=
λp

1− e−im

∫ m

0

ve−λpv dv +
(i − λp) e−im

1− e−im

∫ m

0

ve(i−λp)v dv

=
λp

1− e−im

(
me−λpm

−λp
− e−λpm − 1

λ2
p

)
+

(i − λp) e−im

1− e−im

(
me(i−λp)m

(i − λp)
− e(i−λp)m − 1

(i − λp)2

)

=
1

1− e−im

(
e−im − e−λpm

i − λp
+

1− e−λpm

λp

)
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because we have:∫ m

0

veαv dv =

[
veαv

α

]m
0

−
∫ m

0

eαv

α
dv

=

[
veαv

α

]m
0

−
[
eαv

α2

]m
0

=
meαm

α
− eαm − 1

α2
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Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

The bivariate Pareto copula

Exercise

We consider the bivariate Pareto distribution:

F (x1, x2) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 + x2

θ2

)−α
+(

θ1 + x1

θ1
+
θ2 + x2

θ2
− 1

)−α
where x1 ≥ 0, x2 ≥ 0, θ1 > 0, θ2 > 0 and α > 0.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1567 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory
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The bivariate Pareto copula
Calculation of correlation bounds
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Question 1

Show that the marginal functions of F (x1, x2) correspond to univariate
Pareto distributions.
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We have:

F1 (x1) = Pr {X1 ≤ x1}
= Pr {X1 ≤ x1,X2 ≤ ∞}
= F (x1,∞)

We deduce that:

F1 (x1) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 +∞
θ2

)−α
+(

θ1 + x1

θ1
+
θ2 +∞
θ2

− 1

)−α
= 1−

(
θ1 + x1

θ1

)−α
We conclude that F1 (and F2) is a Pareto distribution.
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Question 2

Find the copula function associated to the bivariate Pareto distribution.
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We have:
C (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
It follows that:

1−
(
θ1 + x1

θ1

)−α
= u1

⇔
(
θ1 + x1

θ1

)−α
= 1− u1

⇔ θ1 + x1

θ1
= (1− u1)−1/α

We deduce that:

C (u1, u2) = 1− (1− u1)− (1− u2) +(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
= u1 + u2 − 1 +

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
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Question 3

Deduce the copula density function.
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We have:

∂ C (u1, u2)

∂ u1
= 1− α

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−1

×(
− 1

α

)
(1− u1)−1/α−1 × (−1)

= 1−
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−1

×

(1− u1)−1/α−1
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We deduce that the probability density function of the copula is:

c (u1, u2) =
∂2 C (u1, u2)

∂ u1 ∂ u2

= − (−α− 1)
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−2

×(
− 1

α

)
(1− u2)−1/α−1 × (−1)× (1− u1)−1/α−1

=

(
α + 1

α

)(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−2

×

(1− u1 − u2 + u1u2)−1/α−1
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Remark

Another expression of c (u1, u2) is:

c (u1, u2) =

(
α + 1

α

)
((1− u1) (1− u2))1/α ×(

(1− u1)1/α + (1− u2)1/α − (1− u1)1/α (1− u2)1/α
)−α−2
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In this Figure, we have reported the density of the Pareto copula when α is
equal to 1 and 10.
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Question 4

Show that the bivariate Pareto copula function has no lower tail
dependence, but an upper tail dependence.
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We have:

λ− = lim
u→0+

C (u, u)

u

= 2 lim
u→0+

∂ C (u, u)

∂ u1

= 2 lim
u→0+

1−
(

(1− u)−1/α + (1− u)−1/α − 1
)−α−1

(1− u)−1/α−1

= 2 lim
u→0+

(1− 1)

= 0
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We have:

λ+ = lim
u→1−

1− 2u + C (u, u)

1− u

= lim
u→1−

(
(1− u)−1/α + (1− u)−1/α − 1

)−α
1− u

= lim
u→1−

(
1 + 1− (1− u)1/α

)−α
= 2−α

The tail dependence coefficients λ− and λ+ are given with respect to the
parameter α in previous Figure. We deduce that the bivariate Pareto
copula function has no lower tail dependence (λ− = 0), but an upper tail
dependence (λ+ = 2−α).

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1579 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

The bivariate Pareto copula

Question 5

Do you think that the bivariate Pareto copula family can reach the copula
functions C−, C⊥ and C+? Justify your answer.
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The bivariate Pareto copula family cannot reach C− because λ− is never
equal to 1. We notice that:

lim
α→∞

λ+ = 0

and
lim
α→0

λ+ = 1

This implies that the bivariate Pareto copula may reach C⊥ and C+ for
these two limit cases: α→∞ and α→ 0. In fact, α→ 0 does not
correspond to the copula C+ because λ− is always equal to 0.
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The bivariate Pareto copula

Question 6

Let X1 and X2 be two Pareto-distributed random variables, whose
parameters are (α1, θ1) and (α2, θ2).
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Question 6.a

Show that the linear correlation between X1 and X2 is equal to 1 if and
only if the parameters α1 and α2 are equal.
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We note U1 = F1 (X1) and U2 = F2 (X2). X1 and X2 are comonotonic if
and only if:

U2 = U1

We deduce that:

1−
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

=

(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

((
θ1 + X1

θ1

)α1/α2

− 1

)
We know that ρ 〈X1,X2〉 = 1 if and only if there is an increasing linear
relationship between X1 and X2. This implies that:

α1

α2
= 1

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1584 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

The bivariate Pareto copula
Calculation of correlation bounds

The bivariate Pareto copula

Question 6.b

Show that the linear correlation between X1 and X2 can never reached the
lower bound −1.
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X1 and X2 are countermonotonic if and only if:

U2 = 1− U1

We deduce that: (
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔
(
θ2 + X2

θ2

)−α2

= 1−
(
θ1 + X1

θ1

)−α1

⇔ X2 = θ2

(1−
(
θ1 + X1

θ1

)−α1
)1/α2

− 1


It is not possible to obtain a decreasing linear function between X1 and X2.
This implies that ρ 〈X1,X2〉 > −1.
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Question 6.c

Build a new bivariate Pareto distribution by assuming that the marginal
distributions are P (α1, θ1) and P (α2, θ2) and the dependence is a
bivariate Pareto copula function with parameter α. What is the relevance
of this approach for building bivariate Pareto distributions?
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We have:

F′ (x1, x2) = C (F1 (x1) ,F2 (x2))

= 1−
(
θ1 + x1

θ1

)−α1

−
(
θ2 + x2

θ2

)−α2

+((
θ1 + x1

θ1

)α1/α

+

(
θ2 + x2

θ2

)α2/α

− 1

)−α
The traditional bivariate Pareto distribution F (x1, x2) is a special case of
F′ (x1, x2) when:

α1 = α2 = α

Using F′ instead of F, we can control the tail dependence, but also the
univariate tail index of the two margins.
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Question 1

Give the mathematical definition of the copula functions C−, C⊥ and C+.
What is the probabilistic interpretation of these copulas?
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We have:

C− (u1, u2) = max (u1 + u2 − 1, 0)

C⊥ (u1, u2) = u1u2

C+ (u1, u2) = min (u1, u2)

Let X1 and X2 be two random variables. We have:

(i) C 〈X1,X2〉 = C− if and only if there exists a non-increasing function f
such that we have X2 = f (X1);

(ii) C 〈X1,X2〉 = C⊥ if and only if X1 and X2 are independent;

(iii) C 〈X1,X2〉 = C+ if and only if there exists a non-decreasing function
f such that we have X2 = f (X1).
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Question 2

We note τ and LGD the default time and the loss given default of a
counterparty. We assume that τ ∼ E (λ) and LGD ∼ U[0,1].
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We note U1 = 1− exp (−λτ ) and U2 = LGD.
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Question 2.a

Show that the dependence between τ and LGD is maximum when the
following equality holds:

LGD +e−λτ − 1 = 0
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Calculation of correlation bounds

The dependence between τ and LGD is maximum when we have
C 〈τ ,LGD〉 = C+. Since we have U1 = U2, we conclude that:

LGD +e−λτ − 1 = 0
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Question 2.b

Show that the linear correlation ρ (τ ,LGD) verifies the following
inequality:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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We know that:

ρ 〈τ ,LGD〉 ∈ [ρmin 〈τ ,LGD〉 , ρmax 〈τ ,LGD〉]

where ρmin 〈τ ,LGD〉 (resp. ρmax 〈τ ,LGD〉) is the linear correlation
corresponding to the copula C− (resp. C+). It comes that:

E [τ ] = σ (τ ) =
1

λ

and:

E [LGD] =
1

2

σ (LGD) =

√
1

12
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In the case C 〈τ ,LGD〉 = C−, we have U1 = 1− U2. It follows that
LGD = e−λτ . We have:

E [τ LGD] = E
[
τ e−λτ

]
=

∫ ∞
0

te−λtλe−λt dt

=

∫ ∞
0

tλe−2λt dt

=

[
− te−2λt

2

]∞
0

+
1

2

∫ ∞
0

e−2λt dt

= 0 +
1

2

[
−e−2λt

2λ

]∞
0

=
1

4λ

We deduce that:

ρmin 〈τ ,LGD〉 =

(
1

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
= −
√

3

2
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In the case C 〈τ ,LGD〉 = C+, we have LGD = 1− e−λτ . We have:

E [τ LGD] = E
[
τ
(
1− e−λτ

)]
=

∫ ∞
0

t
(
1− e−λt

)
λe−λt dt

=

∫ ∞
0

tλe−λt dt −
∫ ∞

0

tλe−2λt dt

=

([
−te−λt

]∞
0

+

∫ ∞
0

e−λt dt

)
− 1

4λ

= 0 +

[
−e−λt

λ

]∞
0

− 1

4λ

=
3

4λ

We deduce that:

ρmax 〈τ ,LGD〉 =

(
3

4λ
− 1

2λ

)/(
1

λ

√
1

12

)
=

√
3

2
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We finally obtain the following result:

|ρ 〈τ ,LGD〉| ≤
√

3

2
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Question 2.c

Comment on these results.
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We notice that |ρ 〈τ ,LGD〉| is lower than 86.6%, implying that the
bounds −1 and +1 can not be reached.
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Question 3

We consider two exponential default times τ 1 and τ 2 with parameters λ1

and λ2.
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Question 3.a

We assume that the dependence function between τ 1 and τ 2 is C+.
Demonstrate that the following relation is true:

τ 1 =
λ2

λ1
τ 2
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If the copula function of (τ 1, τ 2) is the Fréchet upper bound copula, τ 1

and τ 2 are comonotone. We deduce that:

U1 = U2 ⇐⇒ 1− e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
λ2

λ1
τ 2
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Question 3.b

Show that there exists a function f such that τ 2 = f (τ 2) when the
dependence function is C−.
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We have U1 = 1− U2. It follows that S1 (τ 1) = 1− S2 (τ 2). We deduce
that:

e−λ1τ 1 = 1− e−λ2τ 2

and:

τ 1 =
− ln

(
1− e−λ2τ 2

)
λ1

There exists then a function f such that τ 1 = f (τ 2) with:

f (t) =
− ln

(
1− e−λ2t

)
λ1
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Question 3.c

Show that the lower and upper bounds of the linear correlation satisfy the
following relationship:

−1 < ρ 〈τ 1, τ 2〉 ≤ 1
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Using Question 2(b), we known that ρ ∈ [ρmin, ρmax] where ρmin and ρmax

are the correlations of (τ 1, τ 2) when the copula function is respectively
C− and C+. We also know that ρ = 1 (resp. ρ = −1) if there exists a
linear and increasing (resp. decreasing) function f such that τ 1 = f (τ 2).
When the copula is C+, we have f (t) = λ2

λ1
t and f ′ (t) = λ2

λ1
> 0. As it is

a linear and increasing function, we deduce that ρmax = 1. When the
copula is C−, we have:

f (t) =
− ln

(
1− e−λ2t

)
λ1

and:

f ′ (t) = −
λ2e
−λ2t ln

(
1− e−λ2t

)
λ1 (1− e−λ2t)

< 0

The function f (t) is decreasing, but it is not linear. We deduce that
ρmin 6= −1 and:

−1 < ρ ≤ 1
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Question 3.d

In the more general case, show that the linear correlation of a random
vector (X1,X2) can not be equal to −1 if the support of the random
variables X1 and X2 is [0,+∞].
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When the copula is C−, we know that there exists a decreasing function f
such that X2 = f (X1). We also know that the linear correlation reaches
the lower bound −1 if the function f is linear:

X2 = a + bX1

This implies that b < 0. When X1 takes the value +∞, we obtain:

X2 = a + b ×∞

As the lower bound of X2 is equal to zero 0, we deduce that a = +∞.
This means that the function f (x) = a + bx does not exist. We conclude
that the lower bound ρ = −1 can not be reached.
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Question 4

We assume that (X1,X2) is a Gaussian random vector where
X1 ∼ N

(
µ1, σ

2
1

)
, X2 ∼ N

(
µ2, σ

2
2

)
and ρ is the linear correlation between

X1 and X2. We note θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.
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Question 4.a

Find the probability distribution of X1 + X2.
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Calculation of correlation bounds

X1 +X2 is a Gaussian random variable because it is a linear combination of
the Gaussian random vector (X1,X2). We have:

E [X1 + X2] = µ1 + µ2

and:
var (X1 + X2) = σ2

1 + 2ρσ1σ2 + σ2
2

We deduce that:

X1 + X2 ∼ N
(
µ1 + µ2, σ

2
1 + 2ρσ1σ2 + σ2

2

)
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Question 4.b

Then show that the covariance between Y1 = eX1 and Y2 = eX2 is equal to:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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We have:

cov (Y1,Y2) = E [Y1Y2]− E [Y2]E [Y2]

= E
[
eX1+X2

]
− E [Y2]E [Y2]

We know that eX1+X2 is a lognormal random variable. We deduce that:

E
[
eX1+X2

]
= exp

(
E [X1 + X2] +

1

2
var (X1 + X2)

)
= exp

(
µ1 + µ2 +

1

2

(
σ2

1 + 2ρσ1σ2 + σ2
2

))
= eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2eρσ1σ2

We finally obtain:

cov (Y1,Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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Question 4.c

Deduce the correlation between Y1 and Y2.
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We have:

ρ 〈Y1,Y2〉 =
eµ1+ 1

2σ
2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)√

e2µ1+σ2
1

(
eσ

2
1 − 1

)√
e2µ2+σ2

2

(
eσ

2
2 − 1

)
=

eρσ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1
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Question 4.d

For which values of θ does the equality ρ 〈Y1,Y2〉 = +1 hold? Same
question when ρ 〈Y1,Y2〉 = −1.
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ρ 〈Y1,Y2〉 is an increasing function with respect to ρ. We deduce that:

ρ 〈Y1,Y2〉 = 1⇐⇒ ρ = 1 and σ1 = σ2

The lower bound of ρ 〈Y1,Y2〉 is reached if ρ is equal to −1. In this case,
we have:

ρ 〈Y1,Y2〉 =
e−σ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

> −1

It follows that ρ 〈Y1,Y2〉 6= −1.
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Question 4.e

We consider the bivariate Black-Scholes model:{
dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρt. Deduce the linear correlation between S1 (t)
and S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) ,S2 (t)〉.
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It is obvious that:

ρ 〈S1 (t) ,S2 (t)〉 =
eρσ1σ2t − 1√

eσ
2
1t − 1

√
eσ

2
2t − 1

In the case σ1 = σ2 and ρ = 1, we have ρ 〈S1 (t) ,S2 (t)〉 = 1. Otherwise,
we obtain:

lim
t→∞

ρ 〈S1 (t) ,S2 (t)〉 = 0
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Question 4.f

Comment on these results.
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In the case of lognormal random variables, the linear correlation does not
necessarily range between −1 and +1.
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Question 1

What is an extreme value (EV) copula C?
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An extreme value copula C satisfies the following relationship:

C
(
ut1, u

t
2

)
= Ct (u1, u2)

for all t > 0.
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Question 2

Show that C⊥ and C+ are EV copulas. Why C− can not be an EV copula?
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The product copula C⊥ is an EV copula because we have:

C⊥
(
ut1, u

t
2

)
= ut1u

t
2

= (u1u2)t

=
[
C⊥ (u1, u2)

]t
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For the copula C+, we obtain:

C+
(
ut1, u

t
2

)
= min

(
ut1, u

t
2

)
=

{
ut1 if u1 ≤ u2

ut2 otherwise

= (min (u1, u2))t

=
[
C+ (u1, u2)

]t
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However, the EV property does not hold for the Fréchet lower bound
copula C−:

C−
(
ut1, u

t
2

)
= max

(
ut1 + ut2 − 1, 0

)
6= max (u1 + u2 − 1, 0)t

Indeed, we have C− (0.5, 0.8) = max (0.5 + 0.8− 1, 0) = 0.3 and:

C−
(
0.52, 0.82

)
= max (0.25 + 0.64− 1, 0)

= 0

6= 0.32
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Question 3

We define the Gumbel-Hougaard copula as follows:

C (u1, u2) = exp

(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

with θ ≥ 1. Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= exp

(
−
[(
− ln ut1

)θ
+
(
− ln ut2

)θ]1/θ
)

= exp

(
−
[
(−t ln u1)θ + (−t ln u2)θ

]1/θ
)

= exp

(
−t
[
(− ln u1)θ + (− ln u2)θ

]1/θ
)

=
(
e−[(− ln u1)θ+(− ln u2)θ]1/θ)t

= Ct (u1, u2)
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Question 4

What is the definition of the upper tail dependence λ? What is its
usefulness in multivariate extreme value theory?
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Extreme value theory in the bivariate case

The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u + C (u1, u2)

1− u

It measures the probability to have an extreme in one direction knowing
that we have already an extreme in the other direction. If λ is equal to 0,
extremes are independent and the EV copula is the product copula C⊥. If
λ is equal to 1, extremes are comonotonic and the EV copula is the
Fréchet upper bound copula C+. Moreover, the upper tail dependence of
the copula between the random variables is equal to the upper tail
dependence of the copula between the extremes.
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Question 5

Let f (x) and g (x) be two functions such that
limx→x0 f (x) = limx→x0 g (x) = 0. If g ′ (x0) 6= 0, L’Hospital’s rule states
that:

lim
x→x0

f (x)

g (x)
= lim

x→x0

f ′ (x)

g ′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula
is 2− 21/θ. What is the correlation of two extremes when θ = 1?
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Using L’Hospital’s rule, we have:

λ = lim
u→1+

1− 2u + e−[(− ln u)θ+(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + e−[2(− ln u)θ]1/θ

1− u

= lim
u→1+

1− 2u + u21/θ

1− u

= lim
u→1+

0− 2 + 21/θu21/θ−1

−1

= lim
u→1+

2− 21/θu21/θ−1

= 2− 21/θ
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If θ is equal to 1, we obtain λ = 0. It comes that the EV copula is the
product copula. Extremes are then not correlated. This result is not
surprising because the Gumbel-Houggard copula is equal to the product
copula when θ = 1:

e−[(− ln u1)1+(− ln u2)1]1

= u1u2 = C⊥ (u1, u2)
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Question 6

We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 u1−θ2

2 min
(
uθ1

1 , u
θ2
2

)
with {θ1, θ2} ∈ [0, 1]2.
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Question 6.a

Verify that it is an EV copula.
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We have:

C
(
ut1, u

t
2

)
= u

t(1−θ1)
1 u

t(1−θ2)
2 min

(
utθ1

1 , utθ2
2

)
=

(
u1−θ1

1

)t (
u1−θ2

2

)t (
min

(
uθ1

1 , u
θ2
2

))t
=

(
u1−θ1

1 u1−θ2
2 min

(
uθ1

1 , u
θ2
2

))t
= Ct (u1, u2)
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Question 6.b

Find the upper tail dependence λ of the Marshall-Olkin copula.
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If θ1 > θ2, we obtain:

λ = lim
u→1+

1− 2u + u1−θ1u1−θ2 min
(
uθ1 , uθ2

)
1− u

= lim
u→1+

1− 2u + u1−θ1u1−θ2uθ1

1− u

= lim
u→1+

1− 2u + u2−θ2

1− u

= lim
u→1+

0− 2 + (2− θ2) u1−θ2

−1

= lim
u→1+

2− 2u1−θ2 + θ2u
1−θ2

= θ2

If θ2 > θ1, we have λ = θ1. We deduce that the upper tail dependence of
the Marshall-Olkin copula is min (θ1, θ2).
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Question 6.c

What is the correlation of two extremes when min (θ1, θ2) = 0?

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1642 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Extreme value theory in the bivariate case

If θ1 = 0 or θ2 = 0, we obtain λ = 0. It comes that the copula of the
extremes is the product copula. Extremes are then not correlated.
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Question 6.d

In which case are two extremes perfectly correlated?
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Two extremes are perfectly correlated when we have θ1 = θ2 = 1. In this
case, we obtain:

C (u1, u2) = min (u1, u2) = C+ (u1, u2)
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Question 1

We consider the following distributions of probability:

Distribution F (x)
Exponential E (λ) 1− e−λx

Uniform U[0,1] x

Pareto P (α, θ) 1−
(
θ+x
θ

)−α
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Question 1

For each distribution, we give the normalization parameters an and bn of
the Fisher-Tippet theorem and the corresponding limit distribution
distribution G (x):

Distribution an bn G (x)

Exponential λ−1 λ−1 ln n Λ (x) = e−e
−x

Uniform n−1 1− n−1 Ψ1 (x − 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )−α

We note G (x1, x2) the asymptotic distribution of the bivariate random
vector (X1,n:n,X2,n:n) where X1,i (resp. X2,i ) are iid random variables.
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Let (X1,X2) be a bivariate random variable whose probability distribution
is:

F (x1, x2) = C〈X1,X2〉 (F1 (x1) ,F2 (x2))

We know that the corresponding EV probability distribution is:

G (x1, x2) = C?〈X1,X2〉 (G1 (x1) ,G2 (x2))

where G1 and G2 are the two univariate EV probability distributions and
C?〈X1,X2〉 is the EV copula associated to C〈X1,X2〉.
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Question 1.a

What is the expression of G (x1, x2) when X1,i and X2,i are independent,
X1,i ∼ E (λ) and X2,i ∼ U[0,1]?
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We deduce that:

G (x1, x2) = C⊥ (G1 (x1) ,G2 (x2))

= Λ (x1) Ψ1 (x2 − 1)

= exp
(
−e−x1 + x2 − 1

)
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Question 1.b

Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1651 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Maximum domain of attraction in the bivariate case

We have:

G (x1, x2) = Λ (x1) Φα

(
1 +

x2

α

)
= exp

(
−e−x1 −

(
1 +

x2

α

)−α)
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Question 1.c

Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).
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We have:

G (x1, x2) = Ψ1 (x1 − 1) Φα

(
1 +

x2

α

)
= exp

(
x1 − 1−

(
1 +

x2

α

)−α)
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Question 2

What becomes the previous results when the dependence function between
X1,i and X2,i is the Normal copula with parameter ρ < 1?

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1655 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Extreme value theory in the bivariate case
Maximum domain of attraction in the bivariate case

Maximum domain of attraction in the bivariate case

We know that the upper tail dependence is equal to zero for the Normal
copula when ρ < 1. We deduce that the EV copula is the product copula.
We then obtain the same results as previously.
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Question 3

Same question when the parameter of the Normal copula is equal to one.
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When the parameter ρ is equal to 1, the Normal copula is the Fréchet
upper bound copula C+, which is an EV copula. We deduce the following
results:

G (x1, x2) = min (Λ (x1) ,Ψ1 (x2 − 1))

= min
(
exp

(
−e−x1

)
, exp (x2 − 1)

)
(a)

G (x1, x2) = min
(

Λ (x1) ,Φα

(
1 +

x2

α

))
= min

(
exp

(
−e−x1

)
, exp

(
−
(

1 +
x2

α

)−α))
(b)

G (x1, x2) = min
(

Ψ1 (x1 − 1) ,Φα

(
1 +

x2

α

))
= min

(
exp (x2 − 1) , exp

(
−
(

1 +
x2

α

)−α))
(c)
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Question 4

Find the expression of G (x1, x2) when the dependence function is the
Gumbel-Hougaard copula.
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In the previous exercise, we have shown that the Gumbel-Houggard copula
is an EV copula.
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We deduce that:

G (x1, x2) = e−[(− ln Λ(x1))θ+(− ln Ψ1(x2−1))θ]1/θ

= exp

(
−
[
e−θx1 + (1− x2)θ

]1/θ
)

(a)

G (x1, x2) = e
−
[

(− ln Λ(x1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[
e−θx1 +

(
1 +

x2

α

)−αθ]1/θ
)

(b)

G (x1, x2) = e
−
[

(− ln Ψ1(x1−1))θ+(− ln Φα(1+
x2
α ))θ

]1/θ

= exp

(
−
[

(1− x1)θ +
(

1 +
x2

α

)−αθ]1/θ
)

(c)
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Exercise

Let X = (X1,X2) be a standard Gaussian vector with correlation ρ. We
note U1 = Φ (X1) and U2 = Φ (X2).
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Question 1

We note Σ the matrix defined as follows:

Σ =

(
1 ρ
ρ 1

)
Calculate the Cholesky decomposition of Σ. Deduce an algorithm to
simulate X .

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1663 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Simulation of the bivariate Normal copula

Simulation of the bivariate Normal copula

P is a lower triangular matrix such that we have Σ = PP>. We know that:

P =

(
1 0

ρ
√

1− ρ2

)
We verify that:

PP> =

(
1 0

ρ
√

1− ρ2

)(
1 ρ

0
√

1− ρ2

)
=

(
1 ρ
ρ 1

)
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We deduce that: (
X1

X2

)
=

(
1 0

ρ
√

1− ρ2

)(
N1

N2

)
where N1 and N2 are two independent standardized Gaussian random
variables. Let n1 and n2 be two independent random variates, whose
probability distribution is N (0, 1). Using the Cholesky decomposition, we
deduce that can simulate X in the following way:{

x1 ← n1

x2 ← ρn1 +
√

1− ρ2n2
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Question 2

Show that the copula of (X1,X2) is the same that the copula of the
random vector (U1,U2).
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We have

C 〈X1,X2〉 = C 〈Φ (X1) ,Φ (X2)〉
= C 〈U1,U2〉

because the function Φ (x) is non-decreasing. The copula of U = (U1,U2)
is then the copula of X = (X1,X2).
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Question 3

Deduce an algorithm to simulate the Normal copula with parameter ρ.

Thierry Roncalli Course 2023-2024 in Financial Risk Management 1668 / 1695



Copulas and Stochastic Dependence Modeling
Extreme Value Theory

Monte Carlo Simulation Methods
Stress Testing and Scenario Analysis

Simulation of the bivariate Normal copula

Simulation of the bivariate Normal copula

We deduce that we can simulate U with the following algorithm:{
u1 ← Φ (x1) = Φ (n1)

u2 ← Φ (x2) = Φ
(
ρn1 +

√
1− ρ2n2

)
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Question 4

Calculate the conditional distribution of X2 knowing that X1 = x . Then
show that:

Φ2 (x1, x2; ρ) =

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Let X3 be a Gaussian random variable, which is independent from X1 and
X2. Using the Cholesky decomposition, we know that:

X2 = ρX1 +
√

1− ρ2X3

It follows that:

Pr {X2 ≤ x2|X1 = x} = Pr
{
ρX1 +

√
1− ρ2X3 ≤ x2

∣∣∣X1 = x
}

= Pr

{
X3 ≤

x2 − ρx√
1− ρ2

}

= Φ

(
x2 − ρx√

1− ρ2

)
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Then we deduce that:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1,X2 ≤ x2}

= Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

}

= E

[
Pr

{
X1 ≤ x1,X3 ≤

x2 − ρX1√
1− ρ2

∣∣∣∣∣X1

}]

=

∫ x1

−∞
Φ

(
x2 − ρx√

1− ρ2

)
φ (x) dx
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Question 5

Deduce an expression of the Normal copula.
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Using the relationships u1 = Φ (x1), u2 = Φ (x2) and
Φ2 (x1, x2; ρ) = C (Φ (x1) ,Φ (x2) ; ρ), we obtain:

C (u1, u2; ρ) =

∫ Φ−1(u1)

−∞
Φ

(
Φ−1 (u2)− ρx√

1− ρ2

)
φ (x) dx

=

∫ u1

0

Φ

(
Φ−1 (u2)− ρΦ−1 (u)√

1− ρ2

)
du
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Question 6

Calculate the conditional copula function C2|1. Deduce an algorithm to
simulate the Normal copula with parameter ρ.
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We have:

C2|1 (u2 | u1) = ∂u1 C (u1, u2)

= Φ

(
Φ−1 (u2)− ρΦ−1 (u1)√

1− ρ2

)

Let v1 and v2 be two independent uniform random variates. The
simulation algorithm corresponds to the following steps:{

u1 = v1

C2|1 (u1, u2) = v2

We deduce that:{
u1 ← v1

u2 ← Φ
(
ρΦ−1 (v1) +

√
1− ρ2Φ−1 (v2)

)
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Question 7

Show that this algorithm is equivalent to the Cholesky algorithm found in
Question 3.
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We obtain the same algorithm, because we have the following
correspondence: {

v1 = Φ (n1)
v2 = Φ (n2)

The algorithm described in Question 6 is then a special case of the
Cholesky algorithm if we take n1 = Φ−1 (v1) and n2 = Φ−1 (v2). Whereas
n1 and n2 are directly simulated in the Cholesky algorithm with a Gaussian
random generator, they are simulated using the inverse transform in the
conditional distribution method.
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Question 1

We note an and bn the normalization constraints and G the limit
distribution of the Fisher-Tippet theorem.
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We recall that:

Pr

{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx + bn}

= Fn (anx + bn)

and:
G (x) = lim

n→∞
Fn (anx + bn)
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Question 1.a

Find the limit distribution G when X ∼ E (λ), an = λ−1 and bn = λ−1 ln n.
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We have:

Fn (anx + bn) =
(

1− e−λ(λ−1x+λ−1 ln n)
)n

=

(
1− 1

n
e−x

)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n
e−x

)n

= e−e
−x

= Λ (x)
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Question 1.b

Same question when X ∼ U[0,1], an = n−1 and bn = 1− n−1.
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We have:

Fn (anx + bn) =
(
n−1x + 1− n−1

)n
=

(
1 +

1

n
(x − 1)

)n

We deduce that:

G (x) = lim
n→∞

(
1 +

1

n
(x − 1)

)n

= ex−1 = Ψ1 (x − 1)
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Question 1.c

Same question when X is a Pareto distribution:

F (x) = 1−
(
θ + x

θ

)−α
,

an = θα−1n1/α and bn = θn1/α − θ.
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We have:

Fn (anx + bn) =

(
1−

(
θ

θ + θα−1n1/αx + θn1/α − θ

)α)n

=

(
1−

(
1

α−1n1/αx + n1/α

)α)n

=

(
1− 1

n

(
1 +

x

α

)−α)n

We deduce that:

G (x) = lim
n→∞

(
1− 1

n

(
1 +

x

α

)−α)n

= e−(1+ x
α )−α = Φα

(
1 +

x

α

)
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Question 2

We denote by G the GEV probability distribution:

G (x) = exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

What is the interest of this probability distribution? Write the
log-likelihood function associated to the sample {x1, . . . , xT}.
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The GEV distribution encompasses the three EV probability distributions.
This is an interesting property, because we have not to choose between the
three EV distributions. We have:

g (x) =
1

σ

[
1 + ξ

(
x − µ
σ

)]−( 1+ξ
ξ )

exp

{
−
[

1 + ξ

(
x − µ
σ

)]− 1
ξ

}

We deduce that:

` = −n

2
lnσ2 −

(
1 + ξ

ξ

) n∑
i=1

ln

(
1 + ξ

(
xi − µ
σ

))
−

n∑
i=1

[
1 + ξ

(
xi − µ
σ

)]− 1
ξ
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Question 3

Show that for ξ → 0, the distribution G tends toward the Gumbel
distribution:

Λ (x) = exp

(
− exp

(
−
(
x − µ
σ

)))
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We notice that:
lim
ξ→0

(1 + ξx)−1/ξ = e−x

Then we obtain:

lim
ξ→0

G (x) = lim
ξ→0

exp

{
−
[

1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

{
− lim
ξ→0

[
1 + ξ

(
x − µ
σ

)]−1/ξ
}

= exp

(
− exp

(
−
(
x − µ
σ

)))
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Question 4

We consider the minimum value of daily returns of a portfolio for a period
of n trading days. We then estimate the GEV parameters associated to the
sample of the opposite of the minimum values. We assume that ξ is equal
to 1.
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Question 4.a

Show that we can approximate the portfolio loss (in %) associated to the
return period T with the following expression:

r (T ) ' −
(
µ̂+

(
T
n
− 1

)
σ̂

)
where µ̂ and σ̂ are the ML estimates of GEV parameters.
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We have:
G−1 (α) = µ− σξ−1

[
1− (− lnα)−ξ

]
When the parameter ξ is equal to 1, we obtain:

G−1 (α) = µ− σ
(

1− (− lnα)−1
)

By definition, we have T = (1− α)−1 n. The return period T is then
associate to the confidence level α = 1− n/T . We deduce that:

R (T ) ≈ −G−1 (1− n/t)

= −
(
µ− σ

(
1− (− ln (1− n/T ))−1

))
= −

(
µ+

(
T
n
− 1

)
σ

)
We then replace µ and σ by their ML estimates µ̂ and σ̂.
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Question 4.b

We set n equal to 21 trading days. We obtain the following results for two
portfolios:

Portfolio µ̂ σ̂ ξ
#1 1% 3% 1
#2 10% 2% 1

Calculate the stress scenario for each portfolio when the return period is
equal to one year. Comment on these results.
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For Portfolio #1, we obtain:

R (1Y) = −
(

1% +

(
252

21
− 1

)
× 3%

)
= −34%

For Portfolio #2, the stress scenario is equal to:

R (1Y) = −
(

10% +

(
252

21
− 1

)
× 2%

)
= −32%

We conclude that Portfolio #1 is more risky than Portfolio #2 if we
consider a stress scenario analysis.
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