Risk Parity Final Examination

Thierry Roncalli

January 12th 2014

Contents

1	Risk-based portfolios	2
2	Implied risk premium	3
3	Risk allocation of bond portfolios	4
4	Strategic asset allocation	7

Remark 1 The final examination on risk parity is composed of 4 exercises. Please write entirely your answers. Precise the different concepts and the different statistics you use. Provide also one excel file by question. Concerning risk¹ and performance² decompositions, present the results as follows:

Asset	x_i	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}^{\star}_i
1				
2				
:				
n				
$\mathcal{R}\left(x ight)$			\checkmark	

Asset	x_i	μ_i	\mathcal{PC}_i	\mathcal{PC}_i^\star
1				
2				
:				
n				
$\mu\left(x ight)$			\checkmark	

 $[\]overline{{}^{1}x_{i}}$ is the weight (or the exposure) of the *i*th asset in the portfolio, \mathcal{MR}_{i} is the marginal risk, \mathcal{RC}_{i} is the nominal risk contribution, \mathcal{RC}_{i}^{\star} is the relative risk contribution and $\mathcal{R}(x)$ is the risk measure of the portfolio.

 $^{^{2}}x_{i}$ is the weight (or the exposure) of the *i*th asset in the portfolio, μ_{i} is the expected return, \mathcal{PC}_{i} is the nominal (ex-ante) performance contribution, \mathcal{PC}_{i}^{\star} is the relative performance contribution and $\mu(x)$ is the expected return of the portfolio.

1 Risk-based portfolios

We consider an investment universe with 5 assets. We assume that their expected returns are 3%, 6%, 8%, 9% and 8%, and that their volatilities are 5%, 10%, 15%, 15% and 20%. The correlation matrix is given by:

- $\rho = \begin{pmatrix} 100\% & & & \\ 50\% & 100\% & & & \\ 20\% & 20\% & 100\% & & \\ 50\% & 50\% & 70\% & 100\% & \\ 0\% & -20\% & -30\% & -30\% & 100\% \end{pmatrix}$
- 1. We consider long-short portfolios x with $\sum_{i=1}^{5} x_i = 1$.
 - (a) Compute the minimum variance portfolio.
 - (b) Calculate the MVO portfolio if we target an ex-ante volatility of 5%.
 - (c) Calculate the MVO portfolio if we target an ex-ante volatility of 10%.
 - (d) Compare the three optimized portfolios in terms of expected return and volatility.

2. We restrict the analysis to long-only portfolios x meaning that $\sum_{i=1}^{5} x_i = 1$ and $x_i \ge 0$.

- (a) Compute the minimum variance portfolio.
- (b) Calculate the MVO portfolio if we target an ex-ante volatility of 5%.
- (c) Calculate the MVO portfolio if we target an ex-ante volatility of 10%.
- (d) Compare the three optimized portfolios in terms of expected return and volatility.
- (e) What is the impact of the long-only constraint?
- 3. We consider long-only portfolios. For each portfolio, compute the volatility decomposition.
 - (a) Determine the equally weighted portfolio.
 - (b) Compute the minimum variance portfolio.
 - (c) Calculate the most diversified portfolio.
 - (d) Find the ERC portfolio.
- 4. Draw the 4 previous risk-based portfolios on the efficient frontier. Comment on these results.

2 Implied risk premium

We suppose that the assets returns follow a linear factor model:

$$R_{i,t} = \beta_i R_{m,t} + \varepsilon_{i,t}$$

with $R_{m,t}$ the common factor, $\varepsilon_{i,t}$ the idiosyncratic factor, $R_{m,t} \perp \varepsilon_t$, var $(F_t) = \sigma_m^2$ and cov $(\varepsilon_t) =$ diag $(\tilde{\sigma}_1^2, \ldots, \tilde{\sigma}_n^2)$. We consider a universe of 6 assets with the following parameter values:

i	1	2	3	4	5	6
β_i	0.30	0.50	0.70	1.00	1.20	1.50
$\tilde{\sigma}_i$	0.05	0.06	0.07	0.08	0.09	

and $\sigma_m = 8\%$.

1. What is the interpretation of the common factor?

- 2. (a) We assume that the volatility of the 6th asset is equal to 20%. Compute the value of the parameter $\tilde{\sigma}_6$.
 - (b) Compute the volatilities of the assets and the corresponding correlation matrix.
- 3. We assume that the risk-free rate is equal to 2% and the expected returns μ_i are given by the following table:

i	1	2	3	4	5	6
μ_i	3.5%	4.5%	5.5%	7.0%	8.0%	9.5%

- (a) Find the tangency portfolio x^* . Deduce its expected return $\mu(x^*)$ and its volatility $\sigma(x^*)$.
- (b) Compute the beta $\beta_i(x^*)$ of each asset with respect to the tangency portfolio x^* .
- (c) Compute the implied risk premium of each asset by considering the CAPM theory. Comment on these results.
- 4. We include the risk-free asset in the investment universe.
 - (a) Give the vector μ of expected returns and the covariance matrix Σ with the seven-asset investment universe.
 - (b) Draw the efficient frontier by considering the long-only constraint. Explain the obtained results.
 - (c) An institutional investor targets an expected return of 9%. However, the regulation imposes that he cannot use short positions and leverage the portfolio.
 - i. Explain why he cannot consider the tangency portfolio x^* obtained in Question 3(a).
 - ii. Find his optimal portfolio \tilde{x} .
 - iii. Compute the beta $\beta_i(\tilde{x})$ of each asset with respect to the optimal portfolio \tilde{x} .
 - iv. Compute the implied risk premium of each asset for this investor.
 - v. Draw the relationship between the beta $\beta_i(\tilde{x})$ and the alpha α_i of asset *i*. Explain why we don't retrieve the result of Frazzini and Pedersen (2010).

3 Risk allocation of bond portfolios

We assume that the zero-coupon rates from one to five years are equal to:

- $R_t(1Y) = 1.0\%$
- $R_t(2Y) = 1.5\%$
- $R_t(3Y) = 2.0\%$
- $R_t(4Y) = 2.5\%$
- $R_t(5Y) = 3.0\%$

We also assume that the risk factors are the variations of the zero-coupon rates:

$$\Delta_h R_t \left(T \right) = R_t \left(T \right) - R_{t-h} \left(T \right)$$

We note:

$$\Delta_h R_t = \begin{pmatrix} \Delta_h R_t (1Y) \\ \Delta_h R_t (2Y) \\ \Delta_h R_t (3Y) \\ \Delta_h R_t (4Y) \\ \Delta_h R_t (5Y) \end{pmatrix}$$

For this exercise, the holding period h is set to 10 days. Using historical data, we estimate the covariance matrix Σ of the five risk factors $\Delta_h R_t$. The volatilities (expressed in bps) are equal to:

$$\begin{pmatrix} \sigma_{1Y} \\ \sigma_{2Y} \\ \sigma_{3Y} \\ \sigma_{3Y} \\ \sigma_{4Y} \\ \sigma_{5Y} \end{pmatrix} = \begin{pmatrix} 5.49 \\ 8.69 \\ 12.22 \\ 14.52 \\ 15.85 \end{pmatrix}$$

whereas the correlation matrix is equal to:

$$\rho = \begin{pmatrix} 100.00\% \\ 79.32\% & 100.00\% \\ 60.02\% & 95.24\% & 100.00\% \\ 49.54\% & 88.97\% & 98.36\% & 100.00\% \\ 41.85\% & 82.81\% & 94.93\% & 98.98\% & 100.00\% \end{pmatrix}$$

In what follows, we assume that $\Delta_h R_t \sim N(\mathbf{0}, \Sigma)$. The risk measure corresponds to the Gaussian value-at-risk with a 99% confidence level and a 10-days holding period. It is expressed in euros.

- 1. We note $C^{(i)}(T)$ the value of the coupon with maturity T for the bond i. We also note $\overline{\omega}_i$ the number of bonds i held in the portfolio.
 - (a) Show that the P&L Π for the holding period h can be expressed as follows:

$$\Pi = \sum_{i=1}^{n} \sum_{T=1Y}^{5Y} \varpi_{i} C^{(i)}(T) \left(B_{t+h}(T) - B_{t}(T) \right)$$

where n is the number of different bonds and $B_t(T)$ is the zero-coupon price at time t with maturity T.

(b) Compute the duration $D_t(T)$ associated to the zero-coupon bond $B_t(T)$. Deduce that:

$$\Pi \simeq -\sum_{i=1}^{n} \sum_{T=1Y}^{5Y} \varpi_{i} C^{(i)}(T) D_{t}(T) B_{t}(T) \Delta_{h} R_{t}(T)$$

(c) Let $\delta(T)$ be the exposure of the P&L to the factor $\Delta_h R_t(T)$. Give the expression of $\delta(T)$ and show that the Gaussian value-at-risk is:

$$\operatorname{VaR}_{\alpha}(L) = \Phi^{-1}(\alpha) \sqrt{\delta^{\top} \Sigma \delta}$$

with:

$$\delta = \begin{pmatrix} \delta (1Y) \\ \delta (2Y) \\ \delta (3Y) \\ \delta (3Y) \\ \delta (4Y) \\ \delta (5Y) \end{pmatrix}$$

(d) Let Π_i be the P&L of the bond *i*:

$$\Pi_{i} = -\sum_{T=1Y}^{5Y} C^{(i)}(T) D_{t}(T) B_{t}(T) \Delta_{h} R_{t}(T)$$

Compute the covariance matrix of (Π_1, \ldots, Π_n) . Deduce another expression of the Gaussian value-at-risk.

2. We consider that the bond portfolio is composed of 5 zero-coupon bonds with maturities $1Y, \ldots, 5Y$. This means that:

i	1	2	3	4	5
$C^{(i)}\left(1Y\right)$	1	0	0	0	0
$C^{(i)}\left(2Y\right)$	0	1	0	0	0
$C^{(i)}(3Y)$	0	0	1	0	0
$C^{(i)}\left(4Y\right)$	0	0	0	1	0
$C^{(i)}(5Y)$	0	0	0	0	1

- (a) We assume that $\varpi_i = 1$. Compute the value-at-risk and the risk decomposition. Deduce the ratio between the risk measure and the value of the bond portfolio.
- (b) We assume that the composition of the bond portfolio is the following:

$$\begin{pmatrix} \varpi_1\\ \varpi_2\\ \varpi_3\\ \varpi_4\\ \varpi_5 \end{pmatrix} = \begin{pmatrix} 10\\ 8\\ 6\\ 4\\ 2 \end{pmatrix}$$

Compute the value-at-risk and the risk decomposition. Deduce the ratio between the risk measure and the value of the bond portfolio.

(c) We note N_i the notional³ invested in the bond *i*. We have:

$$N_i = \varpi_i P_t^{(i)}$$

where $P_t^{(i)}$ is the price of the bond *i*:

$$P_{t}^{(i)} = \sum_{T=1Y}^{5Y} C^{(i)}(T) B_{t}(T)$$

Compute the price $P_t^{(i)}$ for the 5 different bonds. We assume that:

$$\begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_5 \end{pmatrix} = \begin{pmatrix} 5000 \\ 2000 \\ 1000 \\ 1000 \\ 1000 \end{pmatrix}$$

 $^{^3}N_i$ is expressed in euros.

Find the composition $(\varpi_1, \ldots, \varpi_5)$ of the bond portfolio. Compute then the value-at-risk and the risk decomposition. Deduce also the ratio between the risk measure and the value of the bond portfolio.

- (d) Compute the composition $(\varpi_1, \ldots, \varpi_5)$ of the ERC portfolio if we assume that the portfolio value is equal to 1 million euros.
- 3. We consider that the bond portfolio is composed of 2 bonds with maturities 3Y and 5Y:

i	1	2
$C^{(i)}\left(1Y\right)$	6	2
$C^{(i)}\left(2Y\right)$	6	2
$C^{(i)}\left(3Y\right)$	106	2
$C^{(i)}\left(4Y\right)$	0	2
$C^{(i)}(5Y)$	0	102

- (a) We assume that $\varpi_1 = \varpi_2 = 1$. Compute the value-at-risk. Deduce then the ratio between the risk measure and the value of the bond portfolio.
- (b) Compute the risk decomposition with respect to the fixing dates.
- (c) Compute the risk decomposition with respect to the bonds.
- (d) Repeat Questions 3(a), 3(b) and 3(c) if $\varpi_1 = 100$ and $\varpi_2 = 50$.
- (e) Compute the composition (ϖ_1, ϖ_2) of the ERC portfolio if we assume that the portfolio value is equal to 1 million euros.

4 Strategic asset allocation

We consider a sovereign fund which is invested in the following asset classes:

- EQ-DM: equity developed markets
- EQ-EM: equity emerging markets
- BD-SB: sovereign bonds
- BD-IG: corporate IG bonds
- BD-HY: high yield bonds

Its current portfolio is:

$$x_0 = \begin{pmatrix} 25\% \\ 5\% \\ 45\% \\ 15\% \\ 10\% \end{pmatrix}$$

The department of the strategic asset allocation has to propose a new long-run allocation for the next 5 years. Its expectations in terms of performance, risk and correlation are the following:

Asset Class	μ_i	σ_i	EQ-DM	EQ-EM	$\rho_{i,j}$ BD-SB	BD-IG	BD-HY
EQ-DM	8%	15%	100%				
EQ-EM	10%	20%	70%	100%			
BD-SB	3%	5%	-20%	0%	100%		
BD-IG	5%	7%	30%	30%	50%	100%	
BD-HY	9%	10%	50%	50%	-10%	60%	100%

The risk-free rate is set to 2%. The objective of the sovereign fund is to define a <u>long-only</u> portfolio that generates a performance of 6% per year.

- 1. (a) What is the goal of strategic asset allocation?
 - (b) Comment on the figures of performance, risk and correlation.
 - (c) Compute the expected return $\mu(x_0)$ of the current allocation and the corresponding (ex-ante) performance decomposition.
- 2. We consider the mean-variance allocation approach with $x_i \ge 0\%$.
 - (a) Compute the optimal portfolio if the sovereign fund targets a return of 6% per year.
 - (b) Deduce the ex-ante performance decomposition.
 - (c) Calculate the tracking error $\sigma(x^* \mid x^0)$ and the turnover $\tau(x^* \mid x^0)$. Comment on these results.

3. In order to limit the turnover, we impose the following constraints:

$$|x_i - x_{0,i}| \le 10\%$$

- (a) What mean these constraints?
- (b) Compute the optimal portfolio if the sovereign fund targets a return of 6% per year.
- (c) Deduce the ex-ante performance decomposition.
- (d) Calculate the tracking error $\sigma(x^* \mid x^0)$ and the turnover $\tau(x^* \mid x^0)$. Comment on these results.
- 4. We consider the tracking-error optimization model with the following constraint:

$$\tau\left(x \mid x^{0}\right) \leq 1\%$$

- (a) Compute the optimal portfolio.
- (b) Deduce the ex-ante performance decomposition. Verify that the objective of the sovereign fund is reached.
- (c) Calculate the tracking error $\sigma(x^* \mid x^0)$ and the turnover $\tau(x^* \mid x^0)$. Comment on these results.
- (d) What do you think if we replace the tracking-error optimization model by the Black-Litterman allocation model?
- 5. We consider the risk budgeting approach.
 - (a) Compute the implied expected return $\tilde{\mu}$ of the current allocation x_0 and the three optimized portfolios x^* obtained in Questions 2(a), 3(b) and 4(a) if we assume that these portfolios are optimal.
 - (b) Compute the risk decomposition of the current allocation x_0 . Which risk budgets should we increase or decrease in order to match the objective of the pension fund? What is the implicit assumption behind this approach?
 - (c) The SAA department considers the following risk budgets:

$$b = \begin{pmatrix} 25\% \\ 5\% \\ 45\% \\ 15\% \\ 10\% \end{pmatrix}$$

- i. What is the rationale of this risk allocation?
- ii. Compute the risk budgeting portfolio and the corresponding risk decomposition. Verify that the objective of the sovereign fund is reached.
- iii. Compute the implied expected return $\tilde{\mu}$ of the RB portfolio. Deduce the corresponding (ex-ante) risk premium decomposition.
- 6. What portfolio do you prefer to define the long-run allocation of the sovereign fund? Justify your choice.

Remark 2 The bonus question is:

• Find the Jagannathan-Ma implied covariance matrix of the optimized portfolios defined in Questions 2(a) and 3(b). Comment on these results.