Risk Management & Financial Regulation Final Examination

Thierry Roncalli

January 10th 2018

Please write entirely your answers. The correction of exercises will be available in the next release of the lecture notes.

1 The BCBS regulation

- 1. What are the main differences between the first Basel Accord and the second Basel Accord?
- 2. Explain how the Basel III Accord strengthens the banking regulation?

2 Market risk

- 1. What is the difference between the banking book and the trading book? Define the perimeter of assets for capital requirements.
- 2. How is calculated the capital requirement with the internal model-based approach in Basel II?
- 3. How is calculated the capital requirement with the internal model approach in Basel IV (FRTB)?

3 Credit risk

- 1. What is the definition of the default in Basle II?
- 2. Describe the standard approach (SA) to compute the capital requirement.
- 3. Define the different parameters of the internal ratings-based (IRB) approach. What are the differences between FIRB and AIRB?

4 Counterparty credit risk (CCR) and credit value adjustment (CVA)

- 1. Define the concept of counterparty credit risk.
- 2. What differences do you make between the CCR capital charge in Basel II and the CVA capital charge in Basel III?
- 3. How is calculated the CCR capital requirement? Explain why the exposure-at-default (EAD) has to be estimated.
- 4. How is calculated the CVA capital requirement?

5 Liquidity risk

- 1. What is the difference between market and funding liquidity risk? Give an example.
- 2. Describe the liquidity coverage ratio (LCR).
- 3. Describe the net stable funding ratio (NSFR).

6 Risk measure of a long/short portfolio

We consider an investment universe, which is composed of two stocks A and B. The current prices of the two stocks are respectively equal to \$50 and \$20. Their volatilities are equal to 25% and 20% whereas the cross-correlation is equal to +12.5%. The portfolio is long of 2 stocks A and short of 5 stocks B.

1. Gaussian risk measure

- (a) Calculate the Gaussian value-at-risk at the 99% confidence level for a ten-day time horizon.
- (b) Calculate the Gaussian expected shortfall at the 97.5% confidence level for a ten-day time horizon.

2. Historical risk measure

The ten worst scenarios of daily stock returns (expressed in %) among the last 250 historical scenarios are the following:

s	1	2	3	4	5	6	7	8	9	10
R_A	-0.6	-3.7	-5.8	-4.2	-3.7	0.0	-5.7	-4.3	-1.7	-4.1
R_B	5.7	2.3	-0.7	0.6	0.9	4.5	-1.4	0.0	2.3	-0.2
$R_A - R_B$	-6.3	-6.0	-5.1	-4.8	-4.6	-4.5	-4.3	-4.3	-4.0	-3.9

- (a) Calculate the historical value-at-risk at the 99% confidence level for a ten-day time horizon.
- (b) Calculate the historical expected shortfall at the 97.5% confidence level for a ten-day time horizon.
- (c) Give an approximation of the capital charge under Basel II, Basel II.5 and Basel IV/FRTB Standards by considering the historical risk measure¹.

7 Credit spreads

We consider a CDS 3M with two-year maturity and \$1 mn notional principal. The recovery rate \mathcal{R} is equal to 40% whereas the spread s is equal to 150 bps at the inception date. We assume that the protection leg is paid at the default time.

- 1. Give the cash flow chart. What is the P&L of the protection seller A if the reference entity does not default? What is the P&L of the protection buyer B if the reference entity defaults in one year and two months?
- 2. What is the relationship between s, \mathcal{R} and λ ? What is the implied one-year default probability at the inception date?
- 3. Seven months later, the CDS spread has increased and is equal to 450 bps. Estimate the new default probability. The protection buyer B decides to realize his P&L. For that, he reassigns the CDS contract to the counterparty C. Explain the offsetting mechanism if the risky PV01 is equal to 1.189.

8 Calculation of CVA and DVA measures

We consider an OTC contract with maturity T between Bank A and Bank B. We denote by MtM (t) the risk-free mark-to-market of Bank A. The current date is set to t = 0 and we assume that:

$$MtM(t) = N\sigma\sqrt{t}X$$

where N is the notional of the OTC contract, σ is the volatility of the underlying asset and X is a random variable, which is defined on the support [-1,1] and whose density function is:

$$f\left(x\right) = \frac{1}{2}$$

 $^{^{1}}$ We assume that the multiplicative factor is equal to 3, and the 'stressed' risk measure is 2 times the 'normal' risk measure.

1. Define the concept of positive exposure $e^+(t)$. Show that the cumulative distribution function $\mathbf{F}_{[0,t]}$ of $e^+(t)$ has the following expression:

$$\mathbf{F}_{[0,t]}(x) = \mathbb{1}\left(0 \le x \le \sigma\sqrt{t}\right) \cdot \left(\frac{1}{2} + \frac{x}{2N\sigma\sqrt{t}}\right)$$

where $\mathbf{F}_{[0,t]}(x) = 0$ if $x \le 0$ and $\mathbf{F}_{[0,t]}(x) = 1$ if $x \ge \sigma \sqrt{t}$.

- 2. Deduce the value of the expected positive exposure EpE(t).
- 3. We note \mathcal{R}_B the fixed and constant recovery rate of Bank B. Give the mathematical expression of the CVA.
- 4. We consider the following result:

$$\int_0^T \sqrt{t}e^{-\lambda t} \, dt = \frac{\gamma\left(\frac{3}{2}, \lambda T\right)}{\lambda^{3/2}}$$

where $\gamma(s,x) = \int_0^x t^{s-1}e^{-t} dt$ is the lower incomplete gamma function. Show that the CVA is equal to:

$$CVA = \frac{N(1 - \mathcal{R}_B) \sigma \gamma \left(\frac{3}{2}, \lambda_B T\right)}{4\sqrt{\lambda_B}}$$

when the default time of Bank B is exponential with parameter λ_B and interest rates are equal to zero.

5. By assuming that the default time of Bank A is exponential with parameter λ_A , deduce the value of the DVA without additional computations.

9 Risk contribution in the Basle II model

We consider a portfolio of I loans. We denote L the portfolio loss:

$$L = \sum_{i=1}^{I} \text{EAD}_i \times \text{LGD}_i \times \mathbb{1} \left\{ \boldsymbol{\tau}_i \leq M_i \right\}$$

We can show that, under some assumptions (\mathcal{H}) , the expectation of the portfolio loss conditionally to the factors X_1, \ldots, X_m is:

$$\mathbb{E}\left[L \mid X_1, \dots, X_m\right] = \sum_{i=1}^{I} \mathrm{EAD}_i \times \mathbb{E}\left[\mathrm{LGD}_i\right] \times \mathrm{PD}_i\left(X_1, \dots, X_m\right) \tag{1}$$

- 1. Explain the different notations: EAD_i, LGD_i, τ_i , M_i and PD_i.
- 2. How do we obtain the expression (1)? What are the necessary assumptions (\mathcal{H}) ? What is an infinitely fine-grained portfolio?
- 3. Define the credit risk contribution.
- 4. Define the expected loss (EL) and the unexpected loss (UL). Show that the VaR measure is equal to the EL measure under the previous hypothesis (\mathcal{H}) if the default times are independent of the factors.
- 5. Write the expression of the loss quantile $\mathbf{F}^{-1}(\alpha)$ when we have a single factor $X \sim \mathbf{H}$. Why this expression is not relevant if at least one of the exposures EAD_i is negative? What do you conclude for the management of the credit portfolio?
- 6. In the Basle II model, we assume that the loan i defaults before the maturity M_i if a latent variable Z_i goes below a barrier B_i :

$$\tau_i \leq M_i \Leftrightarrow Z_i \leq B_i$$

We consider that $Z_i = \sqrt{\rho}X + \sqrt{1-\rho}\varepsilon_i$ where Z_i , X and ε_i are three independent Gaussian variables $\mathcal{N}(0,1)$. X is the factor (or the systematic risk) and ε_i is the idiosyncratic risk. Calculate the conditional default probability.

- 7. Calculate the quantile $\mathbf{F}^{-1}(\alpha)$.
- 8. What is the interpretation of the correlation parameter ρ .
- 9. The previous risk contribution was obtained considering the assumptions (\mathcal{H}) and the framework of the default model defined in Question 6. What are the implications in terms of Pillar II?

10 The Normal copula function

- 1. Let $\tau = (\tau_1, \tau_2)$ be a random vector with distribution **F**. We assume that τ_1 and τ_2 are two exponential default times with parameters λ_1 and λ_2 . We also assume that the copula function **C** of the random vector τ is Normal with parameter ρ .
 - (a) Let $U = (U_1, U_2)$ be a random vector with copula C. We note Σ the matrix defined as follows:

$$\Sigma = \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)$$

Compute the Cholesky decomposition of Σ . Deduce an algorithm to simulate U.

(b) We remind that the bivariate cumulative density function of the gaussian standardized vector $X = (X_1, X_2)$ with correlation ρ is:

$$\Phi(x_1, x_2; \rho) = \int_{-\infty}^{x_1} \Phi\left(\frac{x_2 - \rho x}{\sqrt{1 - \rho^2}}\right) \phi(x) dx$$

Deduce the expression of the Normal copula by considering the change of variable $u = \Phi(x)$. Calculate then the conditional copula function $\mathbf{C}_{2|1}$.

- (c) Describe the simulation algorithm based on conditional distributions. Apply this algorithm to the Normal copula. Show that this algorithm is equivalent to the simulation algorithm based on the Cholesky decomposition.
- (d) How to simulate $\tau = (\tau_1, \tau_2)$ from the random variates (u_1, u_2) generated by one of the two previous algorithms.
- 2. We consider some special cases of ρ .
 - (a) Show that if $\rho = 1$, we have the following relationship:

$$\tau_1 = \frac{\lambda_2}{\lambda_1} \tau_2$$

Deduce that the linear correlation between τ_1 and τ_2 is equal to +1:

$$\rho \left\langle \tau_1, \tau_2 \right\rangle = +1$$

(b) What becomes this relationship when $\rho = -1$? Deduce that the linear correlation between τ_1 and τ_2 is not equal to -1:

$$\rho \langle \tau_1, \tau_2 \rangle > -1$$