## Risk Management & Financial Regulation Final Examination

Thierry Roncalli

January 4<sup>th</sup> 2017

**Please write entirely your answers.** The correction of exercises will be available in the next release of the lecture notes.

#### 1 The BCBS regulation

- 1. What are the main differences between the first Basel Accord and the second Basel Accord?
- 2. Explain how the Basel III Accord strengthens the banking regulation ?

#### 2 Market risk

- 1. What is the difference between the banking book and the trading book? Define the perimeter of assets for capital requirements.
- 2. How is calculated the capital requirement with the internal model-based approach in Basel II?
- 3. How is calculated the capital requirement with the internal model approach in Basel IV (FRTB)?

### 3 Credit risk

- 1. What is the definition of the default in Basle II?
- 2. Describe the standard approach (SA) to compute the capital requirement.
- 3. Define the different parameters of the internal ratings-based (IRB) approach. What are the differences between FIRB and AIRB?

# 4 Counterparty credit risk (CCR) and credit value adjustment (CVA)

- 1. Define the concept of counterparty credit risk.
- 2. What differences do you make between the CCR capital charge in Basel II and the CVA capital charge in Basel III?
- 3. How is calculated the CCR capital requirement? Explain why the exposure-at-default (EAD) has to be estimated.
- 4. How is calculated the CVA capital requirement?

#### 5 Liquidity risk

- 1. What is the difference between market and funding liquidity risk? Give an example.
- 2. Describe the liquidity coverage ratio (LCR).
- 3. Describe the net stable funding ratio (NSFR).

#### 6 Risk measure of a long/short portfolio

We consider an investment universe, which is composed of two stocks A and B. The current prices of the two stocks are respectively equal to \$50 and \$20. Their volatilities are equal to 25% and 20% whereas the cross-correlation is equal to +12.5%. The portfolio is long of 2 stocks A and short of 5 stocks B.

- 1. Gaussian risk measure
  - (a) Calculate the Gaussian value-at-risk at the 99% confidence level for a ten-day time horizon.
  - (b) Calculate the Gaussian expected shortfall at the 97.5% confidence level for a ten-day time horizon.
- 2. Historical risk measure

The ten worst scenarios of daily stock returns (expressed in %) among the last 250 historical scenarios are the following:

| s           | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------------|------|------|------|------|------|------|------|------|------|------|
| $R_A$       | -0.6 | -3.7 | -5.8 | -4.2 | -3.7 | 0.0  | -5.7 | -4.3 | -1.7 | -4.1 |
| $R_B$       | 5.7  | 2.3  | -0.7 | 0.6  | 0.9  | 4.5  | -1.4 | 0.0  | 2.3  | -0.2 |
| $R_A - R_B$ | -6.3 | -6.0 | -5.1 | -4.8 | -4.6 | -4.5 | -4.3 | -4.3 | -4.0 | -3.9 |

- (a) Calculate the historical value-at-risk at the 99% confidence level for a ten-day time horizon.
- (b) Calculate the historical expected shortfall at the 97.5% confidence level for a ten-day time horizon.
- (c) Give an approximation of the capital charge under Basel II, Basel II.5 and Basel IV/FRTB Standards by considering the historical risk measure<sup>1</sup>.

#### 7 The bivariate Pareto copula

We consider the bivariate Pareto distribution:

$$\mathbf{F}(x_1, x_2) = 1 - \left(\frac{\theta_1 + x_1}{\theta_1}\right)^{-\alpha} - \left(\frac{\theta_2 + x_2}{\theta_2}\right)^{-\alpha} + \left(\frac{\theta_1 + x_1}{\theta_1} + \frac{\theta_2 + x_2}{\theta_2} - 1\right)^{-\alpha}$$

where  $x_1 \ge 0, x_2 \ge 0, \theta_1 > 0, \theta_2 > 0$  and  $\alpha > 0$ .

- 1. Show that the marginal functions of  $\mathbf{F}(x_1, x_2)$  correspond to univariate Pareto distributions.
- 2. Find the copula function associated to the bivariate Pareto distribution.
- 3. Deduce the copula density function.
- 4. Show that the bivariate Pareto copula function has no lower tail dependence, but an upper tail dependence.
- 5. Do you think that the bivariate Pareto copula family can reach the copula functions  $\mathbf{C}^-$ ,  $\mathbf{C}^{\perp}$  and  $\mathbf{C}^+$ ? Justify your answer.
- 6. Let  $X_1$  and  $X_2$  be two Pareto-distributed random variables, whose parameters are  $(\alpha_1, \theta_1)$  and  $(\alpha_2, \theta_2)$ .
  - (a) Show that the linear correlation between  $X_1$  and  $X_2$  is equal to 1 if and only if the parameters  $\alpha_1$  and  $\alpha_2$  are equal.
  - (b) Show that the linear correlation between  $X_1$  and  $X_2$  can never reached the lower bound -1.
  - (c) Build a new bivariate Pareto distribution by assuming that the marginal distributions are  $\mathcal{P}(\alpha_1, \theta_1)$  and  $\mathcal{P}(\alpha_2, \theta_2)$  and the dependence is a bivariate Pareto copula function with parameter  $\alpha$ . What is the relevance of this approach for building bivariate Pareto distributions?

 $<sup>^{1}</sup>$ We assume that the multiplicative factor is equal to 3, and the 'stressed' risk measure is 2 times the 'normal' risk measure.

#### 8 Credit spreads

We consider a CDS 3M with two-year maturity and \$1 mn notional principal. The recovery rate  $\mathcal{R}$  is equal to 40% whereas the spread s is equal to 150 bps at the inception date. We assume that the protection leg is paid at the default time.

- 1. Give the cash flow chart. What is the P&L of the protection seller A if the reference entity does not default? What is the P&L of the protection buyer B if the reference entity defaults in one year and two months?
- 2. What is the relationship between s,  $\mathcal{R}$  and  $\lambda$ ? What is the implied one-year default probability at the inception date?
- 3. Seven months later, the CDS spread has increased and is equal to 450 bps. Estimate the new default probability. The protection buyer B decides to realize his P&L. For that, he reassigns the CDS contract to the counterparty C. Explain the offsetting mechanism if the risky PV01 is equal to 1.189.

#### 9 Continuous-time modeling of default risk

We consider a credit rating system with 4 risk classes (A, B, C and D), where rating D represents the default. The one-year transition probability matrix is equal to:

$$P = P(1) = \begin{pmatrix} 0.94 & 0.03 & 0.02 & 0.01 \\ 0.10 & 0.80 & 0.07 & 0.03 \\ 0.05 & 0.15 & 0.60 & 0.20 \\ 0.00 & 0.00 & 0.00 & 1.00 \end{pmatrix}$$

We denote by  $\mathbf{S}_{A}(t)$ ,  $\mathbf{S}_{B}(t)$  and  $\mathbf{S}_{C}(t)$  the survival functions of each risk class A, B and C.

- 1. Explain how we can calculate the *n*-year transition probability matrix P(n)?
- 2. Let  $V = \left(V_1 \vdots V_2 \vdots V_3 \vdots V_4\right)$  and  $D = \text{diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$  be the matrix of eigenvectors and eigenvalues associated to P. Show that:

$$P(n)V = VD^{n}$$

Deduce a second approach for calculating the *n*-year transition probability matrix P(n).

3. We assume that the default time is a piecewise exponential distribution. Let  $\mathbf{S}_i(n)$  and  $\lambda_i(n)$  be the survival function and the hazard rate of a firm whose initial rating is the state i (A, B or C). Give the expression of  $\mathbf{S}_i(n)$  and  $\lambda_i(n)$ . Show that:

$$\lambda_i\left(1\right) = -\ln\left(1 - \mathbf{e}_i^\top P^n \mathbf{e}_4\right)$$

- 4. Give the definition of a Markovian generator. How can we estimate the generator  $\Lambda$  associated to the transition probability matrices?
- 5. We have:

$$\hat{\Lambda} = \begin{pmatrix} -6.4293 & 3.2282 & 2.4851 & 0.7160 \\ 11.3156 & -23.5006 & 9.9915 & 2.1936 \\ 5.3803 & 21.6482 & -52.3649 & 25.3364 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 \end{pmatrix} \times 10^{-2}$$

Explain how we can calculate the transition probability matrix P(t) for the horizon time  $t \ge 0$ . Give the theoretical approximation of P(t) based on Taylor expansion.

- 6. Deduce the expression of  $\mathbf{S}_{i}(t)$  and  $\lambda_{i}(t)$ .
- 7. In Figure 1, we have reported the values taken by  $\lambda_i(n)$  and  $\lambda_i(t)$ . Why do we obtain an increasing curve for rating A, a decreasing curve for rating C and an inverted U-shaped curve for rating B? We notice that:

$$\lim_{t \to \infty} \lambda_i(t) = 2.87\% \quad \text{for } i \in \{A, B, C\}$$

How do you interpret this result?



Figure 1: Hazard function  $\lambda(t)$  (in bps) estimated respectively with the piecewise exponential model and the Markov generator

#### 10 Calculation of the capital charge for counterparty credit risk

We denote by e(t) the potential future exposure of an OTC contract with maturity T. The current date is set to t = 0. Let N and  $\sigma$  be the notional and the volatility of the underlying contract. We assume that  $e(t) = N\sigma\sqrt{t}X$  with  $0 \le X \le 1$ ,  $\Pr\{X \le x\} = x^{\gamma}$  and  $\gamma > 0$ .

- 1. Calculate the peak exposure  $PE_{\alpha}(t)$ , the expected exposure EE(t) and the effective expected positive exposure EEPE(0; t).
- 2. The bank manages the credit risk with the foundation IRB approach and the counterparty credit risk with an internal model. We consider an OTC contract with the following parameters: N is equal to \$3 mn, the maturity T is one year, the volatility  $\sigma$  is set to 20% and  $\gamma$  is estimated at 2.
  - (a) Calculate the exposure at default EAD knowing that the bank uses the regulatory value for the parameter  $\alpha$ .
  - (b) The default probability of the counterparty is estimated at 1%. Calculate then the capital charge for counterparty credit risk of this OTC contract<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>We will take a value of 70% for the LGD parameter and a value of 20% for the default correlation. We remind that  $\Phi^{-1}(0.01) \approx -2.33$  and  $\Phi^{-1}(0.999) \approx 3.09$ . We can also use the approximations  $-1.06 \approx -1$  and  $\Phi(-1) \approx 16\%$ .