Financial Risk Management Examination

Thierry Roncalli

January 8th 2014

Please write entirely your answers.

1 The BCBS regulation

1. What are the main differences between the first Basle Accord and the second Basle Accord?
2. What are the three pillars of the Basle II Accord?
3. What are the new capital requirements imposed by Basle III?

2 Market risk

1. What is the difference between the banking book and the trading book? Define the perimeter of assets that require capital.
2. How is computed the capital requirement with the internal model-based approach?
3. Why do we need to compute two VaR measures for the internal model-based approach?

3 Credit risk

1. What is the definition of the default in Basle II?
2. Describe the standard approach (SA) to compute the capital requirement?
3. Define the different parameters of the internal ratings-based (IRB) approach. What are the differences between FIRB and AIRB?

4 Counterparty credit risk

1. Define the concept of counterparty credit risk. Give two examples.
2. How is computed the capital requirement for this type of risk?
3. Define the three methods to compute the exposure-at-default (EaD) parameter.

5 Operational risk

1. What is the definition of operational risk? Give two examples.
2. Describe the standardized approach (TSA) to compute the capital charge.
3. Describe the loss distribution approach (LDA) to compute the capital charge.
6 Value-at-risk of an equity portfolio

We consider an investment universe of two stocks A and B and an equity index I. The current prices of the two stocks are respectively equal to 150 and 200 euros. The other characteristics are the following:

<table>
<thead>
<tr>
<th></th>
<th>Volatility</th>
<th>Correlation matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>40%</td>
<td>64% 100%</td>
</tr>
<tr>
<td>I</td>
<td>20%</td>
<td>80% 80% 100%</td>
</tr>
</tbody>
</table>

1. The portfolio P_0 is composed of two stocks A and one stock B. Compute the Gaussian VaR of P_0 for a one-week time horizon and a 99% confidence level.

2. We would like to hedge the portfolio P_0 by adding a short position $-W_I$ on the index I. We note P_1 the hedged portfolio.
 (a) Compute the Gaussian VaR of P_1 when $W_I = 500$?
 (b) Same question when $W_I = 560$.
 (c) What do you conclude?

3. We assume that the CAPM model is valid. It implies that we have the following relationships:

\[
\begin{aligned}
R_A &= \beta_A R_I + \epsilon_A \\
R_B &= \beta_B R_I + \epsilon_B
\end{aligned}
\]

where R_A and R_B are the returns of stocks A and B, ϵ_A and ϵ_B are their idiosyncratic risks and R_I is the return of the index I. We recall that R_I, ϵ_A and ϵ_B are independent. We set $\beta_A = 80\%$ and $\beta_B = 160\%$.

(a) How do you explain the results obtained in Questions 2.(a) and 2.(b)?
(b) Compute $\sigma(\epsilon_A)$ and $\sigma(\epsilon_B)$.
(c) Retrieve the result obtained in Question 2.(b).
(d) Show that the VaR of the hedged portfolio P_1 is lower than the VaR of the original portfolio P_0 if $W_I \leq 1120$.

7 Risk contribution in the Basle II model

Let us consider a portfolio of I loans with maturity M_i. We denote L the portfolio loss:

\[
L = \sum_{i=1}^{I} EAD_i \times LGD_i \times 1 \{\tau_i \leq M_i\}
\]

We can show that, under some assumptions (\mathcal{H}), the expectation of the portfolio loss conditionally to the factors X_1, \ldots, X_m is:

\[
\mathbb{E}[L \mid X_1, \ldots, X_m] = \sum_{i=1}^{I} EAD_i \times \mathbb{E}[LGD_i] \times PD_i(X_1, \ldots, X_m)
\]

1. How do we obtain this expression? What are the necessary assumptions (\mathcal{H})? What do we call an infinitely granular portfolio?
2. Define the credit risk contribution.
3. Define the expected loss (EL) and the unexpected loss (UL). Show that the VaR measure is equal to the EL measure under the previous hypothesis (\mathcal{H}) if the default times are independent of the factors.
4. Write the expression of the loss quantile $F^{-1}(\alpha)$ when we have a single factor $X \sim H$. Why this expression is not relevant if at least one of the exposures EAD_i is negative? What do you conclude for the management of the credit portfolio?

5. In the Basle II model, we assume that the loan i defaults before the maturity M_i if a latent variable Z_i goes below a barrier B_i:

$$\tau_i \leq M_i \iff Z_i \leq B_i$$

We consider that $Z_i = \sqrt{\rho}X + \sqrt{1-\rho}\varepsilon_i$, where Z_i, X and ε_i are three independent Gaussian variables $\mathcal{N}(0,1)$. X is the factor (or the systemic risk) and ε_i is the idiosyncratic risk. Compute the conditional default probability.

6. Compute the quantile $F^{-1}(\alpha)$.

7. Interpret the correlation ρ.

8. The previous risk contribution was obtained considering the assumptions (H) and the framework of the default model defined in Question 5. What are the implications in terms of Pillar II?

8 Correlation and log-normal random variables

1. Let $X \sim \mathcal{N}(\mu, \sigma^2)$. We set $Y = e^X$ the log-normal random variable and we note $Y \sim \mathcal{LN}(\mu, \sigma^2)$.

(a) Compute the density function of Y.
(b) Deduce the expression of the first moment $\mathbb{E}[Y]$.
(c) Let $m \geq 1$ be an integer. Show the following result:

$$\mathbb{E}[Y^m] = e^{m\mu + \frac{1}{2}m^2\sigma^2}$$

(d) Deduce the variance of Y.

(e) Let $Y = (Y_1, \ldots, Y_n)$ be a sample of iid random variables. We assume that $Y_i \sim \mathcal{LN}(\mu, \sigma^2)$. Explain how to estimate the parameters μ and σ by the generalized method of moments (GMM).

2. Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$. We also assume that (X_1, X_2) is a Gaussian random vector and the correlation between X_1 and X_2 is equal to ρ.

(a) Find the distribution of $X_1 + X_2$.
(b) Deduce that the covariance between $Y_1 = e^{X_1}$ and $Y_2 = e^{X_2}$ is:

$$\text{cov}(Y_1, Y_2) = e^{\mu_1 + \frac{1}{2}\sigma_1^2} e^{\mu_2 + \frac{1}{2}\sigma_2^2} (e^{\rho\sigma_1\sigma_2} - 1)$$

(c) Compute the correlation between Y_1 and Y_2. Then, find the cases when $\rho(Y_1, Y_2) = -1$ (resp. $\rho(Y_1, Y_2) = +1$).
(d) By using the previous results, explain why the linear correlation can not be a concordance measure.

9 Credit spreads

1. We assume that the default time τ follows an exponential distribution $\mathcal{E}(\lambda)$ of parameter λ. Write the distribution function F and the survival function S of τ. How do we simulate the default time τ?

2. We consider a CDS 3M with a two-year maturity. Give the flow chart assuming that the protection leg is paid at default and the recovery rate is fixed and equal to R.

3. What is the spread s of the CDS? What is the relationship between s, R and λ?

4. We assume a recovery rate of 25%. What is the implied one-year default probability if the CDS spread is equal to 200 bps? What is the relative value strategy?
10 Extreme value theory and stress-testing

1. Define the stress-testing. What is its usefulness in risk management? How is it used by the regulation? Give an example of stress-testing for credit risk.

2. Let X be the daily return of a portfolio. Using the standard assumptions, what is the probability distribution G_n of the maximum of daily returns for a period of n days if we suppose that $X \sim \mathcal{N}(\mu, \sigma)$:

$$\max (X_1, \ldots, X_n) \sim G_n$$

3. Recall the Fisher-Tippet theorem characterizing the asymptotic distribution G of the maximum of n iid random variables.

4. Extreme value theory in the bivariate case.

 (a) What is an extreme value (EV) copula C?
 (b) Is the product copula $C^\perp (u_1, u_2) = u_1 u_2$ an EV copula?
 (c) We define the Gumbel-Hougaard copula as follows:

 $$C(u_1, u_2) = \exp \left(- \left[(- \ln u_1)^\theta + (- \ln u_2)^\theta \right]^{1/\theta} \right)$$

 with $\theta \geq 1$. Verify that it is an EV copula.
 (d) What is the definition of the upper tail dependence λ? What is its usefulness in multivariate extreme value theory?
 (e) Let $f(x)$ and $g(x)$ be two functions such that $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$. If $g'(x_0) \neq 0$, L'Hospital’s rule states that:

 $$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

 Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula is $2 - 2^{1/\theta}$.
 (f) What is the correlation of two extremes when $\theta = 1$?

5. Maximum domain of attraction in the bivariate case.

 (a) We note a_n and b_n the normalization parameters of the Fisher-Tippet theorem. We obtain the following results for three univariate distributions:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$F(x)$</th>
<th>a_n</th>
<th>b_n</th>
<th>$G_\infty(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>$\mathcal{E}(\lambda)$</td>
<td>$1 - e^{-\lambda x}$</td>
<td>λ^{-1}</td>
<td>$\Lambda(x)$</td>
</tr>
<tr>
<td>Uniform</td>
<td>$\mathcal{U}[0,1]$</td>
<td>x</td>
<td>n^{-1}</td>
<td>$\Psi_1(x-1)$</td>
</tr>
<tr>
<td>Pareto</td>
<td>$\mathcal{P}(\theta, \alpha)$</td>
<td>$1 - \left(\frac{\theta}{\theta + x} \right)^\alpha$</td>
<td>$\theta \alpha^{-1} n^{1/\alpha}$</td>
<td>$\Phi_\alpha \left(1 + \frac{\alpha}{\lambda} \right)$</td>
</tr>
</tbody>
</table>

 We note $G_\infty(x_1, x_2)$ the asymptotic distribution of the bivariate random vector $X_{1,n} = (X_{1,1}, \ldots, X_{1,n})$ and $X_{2,n} = (X_{2,1}, \ldots, X_{2,n})$ where $X_{1,i}$ (resp. $X_{2,i}$) are iid random variables. What is the expression of $G_\infty(x_1, x_2)$ when $X_{1,i}$ and $X_{2,i}$ are independent and:

 i. $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{U}[0,1]$?
 ii. $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$?

 (b) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gaussian copula with parameter $\rho < 1$.

 (c) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gaussian copula with parameter $\rho = 1$.

 (d) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gumbel-Hougaard copula with parameter $\theta > 1$.

1 We recall that $X_{1,n} = \max (X_{1,1}, \ldots, X_{1,n})$ and $X_{2,n} = \max (X_{2,1}, \ldots, X_{2,n})$.

4