Financial Risk Management Examination

Thierry Roncalli

January 8^{th} 2014

Please write entirely your answers.

1 The BCBS regulation

- 1. What are the main differences between the first Basle Accord and the second Basle Accord?
- 2. What are the three pillars of the Basle II Accord?
- 3. What are the new capital requirements imposed by Basle III?

2 Market risk

- 1. What is the difference between the banking book and the trading book? Define the perimeter of assets that require capital.
- 2. How is computed the capital requirement with the internal model-based approach?
- 3. Why do we need to compute two VaR measures for the internal model-based approach?

3 Credit risk

- 1. What is the definition of the default in Basle II?
- 2. Describe the standard approach (SA) to compute the capital requirement?
- 3. Define the different parameters of the internal ratings-based (IRB) approach. What are the differences between FIRB and AIRB?

4 Counterparty credit risk

- 1. Define the concept of counterparty credit risk. Give two examples.
- 2. How is computed the capital requirement for this type of risk?
- 3. Define the three methods to compute the exposure-at-default (EaD) parameter.

5 Operational risk

- 1. What is the definition of operational risk? Give two examples.
- 2. Describe the standardized approach (TSA) to compute the capital charge.
- 3. Describe the loss distribution approach (LDA) to compute the capital charge.

6 Value-at-risk of an equity portfolio

We consider an investment universe of two stocks A and B and an equity index I. The current prices of the two stocks are respectively equal to 150 and 200 euros. The other characteristics are the following:

	Valatilitar	Correlation matrix		
	Volatility	A	B	Ι
A	20%	100%		
B	40%	64%	100%	
Ι	20%	80%	80%	100%

- 1. The portfolio \mathcal{P}_0 is composed of two stocks A and one stock B. Compute the Gaussian VaR of \mathcal{P}_0 for a one-week time horizon and a 99% confidence level.
- 2. We would like to hedge the portfolio \mathcal{P}_0 by adding a <u>short</u> position $-W_I$ on the index I. We note \mathcal{P}_1 the hedged portfolio.
 - (a) Compute the Gaussian VaR of \mathcal{P}_1 when $W_I = 500$?
 - (b) Same question when $W_I = 560$.
 - (c) What do you conclude?
- 3. We assume that the CAPM model is valid. It implies that we have the following relationships:

$$\begin{cases} R_A = \beta_A R_I + \varepsilon_A \\ R_B = \beta_B R_I + \varepsilon_B \end{cases}$$

where R_A and R_B are the returns of stocks A and B, ε_A and ε_B are their idiosyncratic risks and R_I is the return of the index I. We recall that R_I , ε_A and ε_B are independent. We set $\beta_A = 80\%$ and $\beta_B = 160\%$.

- (a) How do you explain the results obtained in Questions 2.(a) and 2.(b)?
- (b) Compute $\sigma(\varepsilon_A)$ and $\sigma(\varepsilon_B)$.
- (c) Retrieve the result obtained in Question 2.(b).
- (d) Show that the VaR of the hedged portfolio \mathcal{P}_1 is lower than the VaR of the original portfolio \mathcal{P}_0 if $W_I \leq 1120$.

7 Risk contribution in the Basle II model

Let us consider a portfolio of I loans with maturity M_i . We denote L the portfolio loss:

$$L = \sum_{i=1}^{I} \text{EAD}_i \times \text{LGD}_i \times 1 \{ \tau_i \le M_i \}$$

We can show that, under some assumptions (\mathcal{H}) , the expectation of the portfolio loss conditionally to the factors X_1, \ldots, X_m is:

$$\mathbb{E}\left[L \mid X_1, \dots, X_m\right] = \sum_{i=1}^{I} \mathrm{EAD}_i \times \mathbb{E}\left[\mathrm{LGD}_i\right] \times \mathrm{PD}_i\left(X_1, \dots, X_m\right)$$

- 1. How do we obtain this expression? What are the necessary assumptions (\mathcal{H}) ? What do we call an infinitely granular portfolio?
- 2. Define the credit risk contribution.
- 3. Define the *expected loss* (EL) and the *unexpected loss* (UL). Show that the VaR measure is equal to the EL measure under the previous hypothesis (\mathcal{H}) if the default times are independent of the factors.

- 4. Write the expression of the loss quantile $\mathbf{F}^{-1}(\alpha)$ when we have a single factor $X \sim \mathbf{H}$. Why this expression is not relevant if at least one of the exposures EAD_i is negative? What do you conclude for the management of the credit portfolio?
- 5. In the Basle II model, we assume that the loan *i* defaults before the maturity M_i if a latent variable Z_i goes below a barrier B_i :

$$\tau_i \le M_i \Leftrightarrow Z_i \le B_i$$

We consider that $Z_i = \sqrt{\rho}X + \sqrt{1-\rho}\varepsilon_i$ where Z_i , X and ε_i are three independent Gaussian variables $\mathcal{N}(0,1)$. X is the factor (or the systemic risk) and ε_i is the idiosyncratic risk. Compute the conditional default probability.

- 6. Compute the quantile $\mathbf{F}^{-1}(\alpha)$.
- 7. Interpret the correlation ρ .
- 8. The previous risk contribution was obtained considering the assumptions (\mathcal{H}) and the framework of the default model defined in Question 5. What are the implications in terms of Pillar II?

8 Correlation and log-normal random variables

- 1. Let $X \sim \mathcal{N}(\mu, \sigma^2)$. We set $Y = e^X$ the log-normal random variable and we note $Y \sim \mathcal{LN}(\mu, \sigma^2)$.
 - (a) Compute the density function of Y.
 - (b) Deduce the expression of the first moment $\mathbb{E}[Y]$.
 - (c) Let $m \ge 1$ be an integer. Show the following result:

$$\mathbb{E}[Y^m] = e^{m\mu + \frac{1}{2}m^2\sigma^2}$$

- (d) Deduce the variance of Y.
- (e) Let $Y = (Y_1, \ldots, Y_n)$ be a sample of *iid* random variables. We assume that $Y_i \sim \mathcal{LN}(\mu, \sigma^2)$. Explain how to estimate the parameters μ and σ by the generalized method of moments (GMM).
- 2. Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$. We also assume that (X_1, X_2) is a Gaussian random vector and the correlation between X_1 and X_2 is equal to ρ .
 - (a) Find the distribution of $X_1 + X_2$.
 - (b) Deduce that the covariance between $Y_1 = e^{X_1}$ and $Y_2 = e^{X_2}$ is:

$$\operatorname{cov}\left(Y_{1}, Y_{2}\right) = e^{\mu_{1} + \frac{1}{2}\sigma_{1}^{2}} e^{\mu_{2} + \frac{1}{2}\sigma_{2}^{2}} \left(e^{\rho\sigma_{1}\sigma_{2}} - 1\right)$$

- (c) Compute the correlation between Y_1 and Y_2 . Then, find the cases when $\rho(Y_1, Y_2) = -1$ (resp. $\rho(Y_1, Y_2) = +1$).
- (d) By using the previous results, explain why the linear correlation can not be a concordance measure.

9 Credit spreads

- 1. We assume that the default time τ follows an exponential distribution $\mathcal{E}(\lambda)$ of parameter λ . Write the distribution function **F** and the survival function **S** of τ . How do we simulate the default time τ ?
- 2. We consider a CDS 3M with a two-year maturity. Give the flow chart assuming that the protection leg is paid at default and the recovery rate is fixed and equal to R.
- 3. What is the spread s of the CDS? What is the relationship between s, R and λ ?
- 4. We assume a recovery rate of 25%. What is the implied one-year default probability if the CDS spread is equal to 200 bps? What is the *relative value* strategy?

10 Extreme value theory and stress-testing

- 1. Define the stress-testing. What is its usefulness in risk management? How is it used by the regulation? Give an example of stress-testing for credit risk.
- 2. Let X be the daily return of a portfolio. Using the standard assumptions, what is the probability distribution \mathbf{G}_n of the maximum of daily returns for a period of n days if we suppose that $X \sim \mathcal{N}(\mu, \sigma)$:

$$\max\left(X_1,\ldots,X_n\right)\sim\mathbf{G}_r$$

- 3. Recall the Fisher-Tippet theorem characterizing the asymptotic distribution \mathbf{G}_{∞} of max (X_1, \ldots, X_n) where X_i are *iid* random variables.
- 4. Extreme value theory in the bivariate case.
 - (a) What is an extreme value (EV) copula \mathbf{C} ?
 - (b) Is the product copula $\mathbf{C}^{\perp}(u_1, u_2) = u_1 u_2$ an EV copula?
 - (c) We define the Gumbel-Houggaard copula as follows:

$$\mathbf{C}(u_1, u_2) = \exp\left(-\left[\left(-\ln u_1\right)^{\theta} + \left(-\ln u_2\right)^{\theta}\right]^{1/\theta}\right)$$

with $\theta \geq 1$. Verify that it is an EV copula.

- (d) What is the definition of the upper tail dependence λ ? What is its usefulness in multivariate extreme value theory?
- (e) Let f(x) and g(x) be two functions such that $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. If $g'(x_0) \neq 0$, L'Hospital's rule states that:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Deduce that the upper tail dependence λ of the Gumbel-Houggaard copula is $2-2^{1/\theta}$.

- (f) What is the correlation of two extremes when $\theta = 1$?
- 5. Maximum domain of attraction in the bivariate case.
 - (a) We note a_n and b_n the normalization parameters of the Fisher-Tippet theorem. We obtain the following results for three univariate distributions:

Distribution	$\mathbf{F}\left(x ight)$	a_n	b_n	$\mathbf{G}_{\infty}\left(x ight)$
Exponential $\mathcal{E}(\lambda)$	$1 - e^{-\lambda x}$	λ^{-1}	$\lambda^{-1} \ln n$	$\Lambda(x) \qquad e^{-e^{-x}}$
Uniform $\mathcal{U}_{[0,1]}$	x	n^{-1}	$1 - n^{-1}$	$\Psi_1 \left(x - 1 \right) + e^{x - 1}$
Pareto $\mathcal{P}(\theta, \alpha)$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\theta \alpha^{-1} n^{1/\alpha}$	$\theta n^{1/\alpha} - \theta$	$\Phi_{\alpha}\left(1+\frac{x}{\alpha}\right) + e^{-\left(1+\frac{x}{\alpha}\right)^{-\alpha}}$

We note $\mathbf{G}_{\infty}(x_1, x_2)$ the asymptotic distribution of the bivariate random vector¹ $(X_{1,n:n}, X_{2,n:n})$ where $X_{1,i}$ (resp. $X_{2,i}$) are *iid* random variables. What is the expression of $\mathbf{G}_{\infty}(x_1, x_2)$ when $X_{1,i}$ and $X_{2,i}$ are independent and:

- i. $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{U}_{[0,1]}$?
- ii. $X_{1,i} \sim \mathcal{E}(\lambda)$ and $X_{2,i} \sim \mathcal{P}(\theta, \alpha)$?
- (b) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gaussian copula with parameter $\rho < 1$.
- (c) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gaussian copula with parameter $\rho = 1$.
- (d) Same question if the dependence function between $X_{1,i}$ and $X_{2,i}$ is the Gumbel-Houggaard copula with parameter $\theta > 1$.

¹We recall that $X_{1,n:n} = \max(X_{1,1}, \dots, X_{1,n})$ and $X_{2,n:n} = \max(X_{2,1}, \dots, X_{2,n})$.