Asset Management & Sustainable Finance Final Examination

Thierry Roncalli

5 February 2024

Deadline: 21 March 2024

Remark 1 The final exam consists of 2 exercises. Please write your answers completely¹. Be specific about the different concepts and different statistics you use. Define the optimization program associated with each portfolio. Provide also one Python program by exercise.

• Concerning risk decomposition², present the results as follows:

Asset	x_i	\mathcal{MR}_i	\mathcal{RC}_i	\mathcal{RC}^{\star}_i
1				
2				
n				
$\mathcal{R}\left(x ight)$			\checkmark	

- The report is a zipped file whose filename is <u>yourname.zip</u> if you are doing the project alone or yourname1-yourname2.zip if you are doing the project in groups of two.
- The zipped file contains three files:
 - 1. The PDF document containing the answers to the two exercises and a cover sheet with your names;
 - 2. The Python program of each exercise with an explicit filename, e.g. exercise1.py.
- The project seems very long. However, once you understand how to solve a mean-variance optimization problem with a QP solver, you can duplicate your code for many questions. For example, Question 2.(c) is a duplication of Question 2.(b), as are Questions 3.(a), 3.(b) and 3.(c) in Exercise 1. The same is true for Questions 2.(b), 2.(c), 3.(a), 3.(b), 3.(c) and 3.(d) in Exercise 2.

¹Read the questions carefully and answer all elements of the questions. For example, when I say "Find the portfolio x and compute its volatility $\sigma(x)$ ", you must give the numeric values of x and $\sigma(x)$. If you just give the numeric value of $\sigma(x)$, the answer is wrong because I don't know what the portfolio's weights are.

 $^{^{2}}x_{i}$ is the weight (or the exposure) of the *i*th asset in the portfolio, \mathcal{MR}_{i} is the marginal risk, \mathcal{RC}_{i} is the nominal risk contribution, \mathcal{RC}_{i}^{*} is the relative risk contribution and $\mathcal{R}(x)$ is the risk measure of the portfolio.

1 Portfolio optimization and risk budgeting

We consider an investment universe of n = 5 stocks. We assume that the expected returns μ_i are equal to 5%, 5%, 6%, 4%, and 7%, whereas the volatilities σ_i are equal to 20%, 22%, 25%, 18% and 45%. The correlation matrix is equal to:

$$\mathbb{C} = (\rho_{i,j}) = \begin{pmatrix} 100\% & & & \\ 50\% & 100\% & & & \\ 30\% & 30\% & 100\% & & \\ 60\% & 60\% & 60\% & 100\% & \\ 40\% & 30\% & 70\% & 30\% & 100\% \end{pmatrix}$$

The risk free return is set to 2%.

- 1. (a) Compute the covariance matrix Σ of stock returns.
 - (b) Compte the Sharpe ratio of each asset.
- 2. We consider long/short MVO portfolios such that $\sum_{i=1}^{n} x_i = 1$.
 - (a) Give the QP formulation of the mean-variance optimization problem:

$$x^{\star} = \arg \min \frac{1}{2} x^{\top} \Sigma x - \gamma x^{\top} (\mu - r \mathbf{1}_{5})$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} x_{i} = 1\\ -10 \le x_{i} \le 10 \end{cases}$$

- (b) Using the γ -problem, find the optimal solution³ $x^*(\gamma)$ when the coefficient γ is equal to 0, 0.10, 0.20, 0.50 and 1.00. For each optimized portfolio, compute its expected return $\mu(x^*(\gamma))$, its volatility $\sigma(x^*(\gamma))$ and its Sharpe ratio SR $(x^*(\gamma) | r)$.
- (c) Draw the efficient frontier by considering granular values⁴ of γ .
- (d) Using a bisection algorithm, calculate the MVO portfolio if we target an ex-ante volatility of 16% and 20%. Give the corresponding values γ of the QP problem. For each optimized portfolio, compute its expected return $\mu(x^*(\gamma))$, its volatility $\sigma(x^*(\gamma))$ and its Sharpe ratio SR $(x^*(\gamma) \mid r)$.
- (e) Using the efficient frontier with a fine grid of γ , find the tangency portfolio. Compute its expected return $\mu(x^*(\gamma))$, its volatility $\sigma(x^*(\gamma))$ and its Sharpe ratio SR $(x^*(\gamma) | r)$.
- (f) Compare the previous brute force solution with the analytical solution. Comment on these results.
- 3. We consider **long-only MVO portfolios** such that $\sum_{i=1}^{n} x_i = 1$ and $0 \le x_i \le 1$.
 - (a) Using the γ -problem, find the optimal solution⁵ $x^*(\gamma)$ when the coefficient γ is equal to 0, 0.10, 0.20, 0.50 and 1.00. For each optimized portfolio, compute its expected return $\mu(x^*(\gamma))$, its volatility $\sigma(x^*(\gamma))$ and its Sharpe ratio SR $(x^*(\gamma) \mid r)$.
 - (b) Compare the efficient frontier by considering granular values of γ with the long/short efficient frontier obtained in Question 2.(c). Comment on these results.
 - (c) Using a bisection algorithm, calculate the MVO portfolio if we target an ex-ante volatility of 16% and 20%. Give the corresponding values of γ of the QP problem. For each optimized portfolio, compute its expected return $\mu(x^*(\gamma))$, its volatility $\sigma(x^*(\gamma))$ and its Sharpe ratio SR $(x^*(\gamma) | r)$.

³You have to give the composition of each optimized portfolios.

⁴For instance, you can consider that $\gamma = -0.5, -0.4, \dots, -0.1, 0, 0.05, 0.10, \dots, 0.95, 1, 2, \dots, 10.$

⁵You have to give the composition of each optimized portfolios.

- (d) Find the long-only tangency portfolio x_{MSR}^{\star} . Compute its expected return $\mu(x_{\text{MSR}}^{\star})$, its volatility $\sigma(x_{\text{MSR}}^{\star})$ and its Sharpe ratio SR $(x_{\text{MSR}}^{\star} | r)$.
- (e) Compute the beta coefficient β_i of each asset with respect to the long-only tangency portfolio x_{MSR}^{\star} . Deduce the implied expected return μ_i that is priced in by the market⁶, and the corresponding alpha coefficient α_i of each asset.
- 4. We consider risk-budgeting portfolios.
 - (a) Give the risk decomposition of the long-only tangency portfolio $x^{\star}_{\rm MSR}$ (MSR).
 - (b) Give the risk decomposition of the equally-weighted portfolio (EW).
 - (c) Give the risk decomposition of the long-only minimum variance portfolio (MV).
 - (d) Give the risk decomposition of the long-only most diversified portfolio (MDP).
 - (e) Compute the equal risk contribution portfolio using the CCD algorithm. Give its risk decomposition.
 - (f) Compute the beta $\beta(x \mid b)$ of the portfolios MSR, EW, MV, MDP and ERC with respect to the benchmark *b* when *b* is the long-only tangency portfolio x_{MSR}^{\star} . Same question when *b* is the EW portfolio. Comment on these results.

 $^{^6\}mathrm{We}$ assume that the market portfolio is the long-only tangency portfolio $x^\star_\mathrm{MSR}.$

2 Equity portfolio optimization with net zero objectives

We decompose an investment universe of several stocks using the GICS classification. Therefore, each sector is represented by a synthetic asset (*e.g.*, a futures contract) and we invest directly in these synthetic assets. We assume that the risk model is the CAPM:

$$R_i = r + \beta_i \left(R_m - r \right) + \varepsilon_i$$

where r is the return of the risk-free asset, $R_m \sim \mathcal{N}(\mu_m, \sigma_m^2)$ is the return of the market portfolio, β_i is the beta of sector i, and $\varepsilon_i \sim \mathcal{N}(0, \tilde{\sigma}_i^2)$ is the idiosyncratic risk of sector i. The numerical value of β_i and $\tilde{\sigma}_i$ are given in Table 1. For each sector, we also provide the carbon intensity \mathcal{CI}_i and the carbon momentum \mathcal{CM}_i . There are two measures of carbon intensity and momentum, based on Scope 1 and 2 emissions, while the second is based on Scope 1, 2 and 3 upstream emissions. The green intensity \mathcal{GI}_i is the green revenue share aligned with the EU taxonomy. We also assume that the benchmark b is the market portfolio and its composition is shown in the third column in Table 1. In the following, the volatility of the market portfolio is set to 20%, the return of the risk-free asset is 3%, and we assume that all portfolios w have a Sharpe ratio SR ($w \mid r$) of 0.25. We also assume that the portfolio-level climate risk measures are calculated as a weighted average of the sector-level climate risk measures. This means that $\mathcal{CI}(w) = \sum_{i=1}^{11} w_i \mathcal{CI}_i$, $\mathcal{CM}(w) = \sum_{i=1}^{11} w_i \mathcal{CM}_i$ and $\mathcal{GI}(w) = \sum_{i=1}^{11} w_i \mathcal{GI}_i$. In addition, investors are constrained and cannot short assets, which means that all optimized portfolios are long only.

		b_i	β_i	$ ilde{\sigma}_i$	\mathcal{CI}_i		\mathcal{CM}_i		\mathcal{GI}_i
#	Sector				\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	\mathcal{SC}_{1-2}	$\mathcal{SC}_{1-3}^{\mathrm{up}}$	I
				%	tCO_2e	e/\$ mn	%	%	%
1	Communication Services	8.20	0.95	26.2	24	78	-2.8	-0.8	0.0
2	Consumer Discretionary	12.30	1.05	32.9	54	203	-7.2	-1.6	1.5
3	Consumer Staples	6.90	0.45	21.1	47	392	-1.8	-0.1	0.0
4	Energy	3.10	1.40	33.8	434	803	-1.5	-0.2	0.7
5	Financials	13.20	1.15	23.1	19	55	-8.3	-1.9	0.0
6	Health Care	12.60	0.75	25.9	21	124	-7.8	-2.0	0.0
7	Industrials	10.20	1.00	26.5	105	283	-8.5	-2.5	2.4
8	Information Technology	23.00	1.20	27.1	23	123	-4.3	+2.1	0.2
9	Materials	4.50	1.10	30.1	559	892	-7.1	-3.6	0.8
10	Real Estate	2.80	0.80	27.4	89	135	-2.7	-0.8	1.4
11	Utilities	3.20	0.70	22.8	1655	1867	-9.9	-6.8	8.4

Table 1: Metrics of the financial and climate risk models

- 1. We consider the benchmark b.
 - (a) Compute the covariance matrix Σ , the correlation matrix ρ , and the vector σ of sector volatilities.
 - (b) Compute the volatility $\sigma(b)$ of the benchmark. Why do we have $\sigma(b) \neq \sigma_m$?
 - (c) Compute the weighted average $\beta(b) = \sum_{i=1}^{11} b_i \beta_i$. How do you explain this result?
 - (d) Compute the vector $\tilde{\pi}$ of implied risk premia and derive the expected return $\tilde{\mu}_i$ of each sector as priced by the market.
 - (e) Compute $\mathcal{CI}(b)$, $\mathcal{CM}(b)$ and $\mathcal{GI}(b)$.
- 2. The investor's decarbonization pathway follows the CTB trajectory, meaning that the carbon intensity of the investor's portfolio at time t must be less than a threshold $\mathcal{CI}^{\star}(t)$:

$$\mathcal{CI}(t,w) \le \mathcal{CI}^{\star}(t) := (1-30\%) (1-7\%)^{t} \mathcal{CI}(b)$$
(1)

The investor's objective is to minimize the volatility of the tracking error relative to the benchmark and to meet the decarbonization constraint based on Scope 1 and 2 emissions.

- (a) What is the optimization problem? Deduce the QP form.
- (b) Compute the optimized portfolio $w^{\star}(t)$ for $t \in \{0, 1, 2, 5, 10\}$. For each optimized portfolio, compute the tracking error volatility, the carbon intensity, the carbon momentum, the green intensity and the reduction rate:

$$\mathcal{R}(t,w) = 1 - \frac{\mathcal{CI}(t,w)}{\mathcal{CI}(b)}$$

Comment on these results.

- (c) Same question if we take into account Scope 3 emissions.
- (d) Let $\tilde{\mu}_i(w)$ be the implied expected return of sector *i* that the investor has priced in, assuming that portfolio *w* is optimal. For each solution given in Questions 2.(b) and 2.(c), give the implied bet $\tilde{\mu}_i(w^*(t)) \tilde{\mu}_i$. Comment on these results.
- (e) At time t = 0, the investor implements the solution given in Question 2.(b). What level of carbon intensity do we expect just before the rebalancing time t = 1? Comment on these results.
- 3. In addition to the decarbonization scenario, the investor wants to add new constraints. In this question, we focus on Scope 1+2 emissions.
 - (a) The investor imposes the following constraint:

$$w_i \ge \frac{b_i}{2} \tag{2}$$

What is the reason for this constraint? Write the QP form of the problem to be optimized. Find the optimal portfolio $w^{\star}(t)$ for t = 0. Compute the tracking error volatility, the carbon intensity, the reduction rate, the carbon momentum and the green intensity.

(b) The investor imposes the following constraint:

$$\mathcal{CM}(t,w) := \sum_{i=1}^{11} w_i \mathcal{CM}_i \le \mathcal{CM}^*$$
(3)

What is the reason for this constraint? Write the QP form of the problem to be optimized. Find the optimal portfolio $w^*(t)$ for t = 0 and $\mathcal{CM}^* \in \{-5\%, -6\%, -7\%, -8\%\}$. For each optimized portfolio, compute the tracking error volatility, the carbon intensity, the reduction rate, the carbon momentum and the green intensity.

(c) The investor imposes the following constraint:

$$\mathcal{GI}(t,w) := \sum_{i=1}^{11} w_i \mathcal{GI}_i \ge (1+\mathcal{G}) \, \mathcal{GI}(b)$$
(4)

where $\mathcal{G} \geq 1$. How do you interpret this constraint? Write the QP form of the problem to be optimized. Find the optimal portfolio $w^{\star}(t)$ for t = 0 and $\mathcal{G} \in \{0, 0.5, 1, 2\}$. For each optimized portfolio, compute the tracking error volatility, the carbon intensity, the reduction rate, the carbon momentum and the green intensity.

- (d) The investor imposes the three constraints (2), (3) and (4). Write the QP form of the problem to be optimized. Find the optimal portfolio $w^*(t)$ for t = 0 and $(\mathcal{CM}^*, \mathcal{G}) \in \{(-6\%, 0.25), (0, 0.50), (-7\%, 0), (-7\%, 0.25)\}$. For each optimized portfolio, compute the tracking error volatility, the carbon intensity, the reduction rate, the carbon momentum and the green intensity.
- (e) Comment on the previous results. What solutions are realistic?