Traiter les 4 questions suivantes.

1 La théorie des zones-cibles de change

1.1 Question de cours

La théorie des zones-cibles de change : les principaux résultats et leurs limites.

1.2 Note de synthèse

Rédigez une note sur le thème :

Processus stochastiques et modèles de zones-cibles de change

2 Les mesures de réalignement

2.1 Question de cours

Les tests de la crédibilité d'une zone-cible de change.

2.2 Exercice

Dans cet exercice, nous étudions une mesure de la probabilité de réalignement à partir des actifs contingents. Les trois parties sont indépendantes du point de vue de la résolution, mais la troisième partie utilise les concepts et notations définis dans les deux premières.

2.2.1 Processus de diffusion avec saut

Nous considérons le processus de diffusion avec saut défini par l'équation différentielle stochastique suivante :

$$\begin{cases} dX(t) = \mu(t, X(t)) dt + \sigma(t, X(t)) dW(t) + \kappa(t, X(t)) dN(t) \\ X(t_0) = x_0 \end{cases}$$

où $W\left(t\right)$ est un processus de Wiener et $N\left(t\right)$ un processus de Poisson d'intensité $\lambda\left(t,X\left(t\right)\right)$.

- 1. Explicitez le lemme d'Ito généralisé.
- 2. Calculez $E\left[dX\left(t\right)|\mathcal{F}_{t}\right]$ et var $\left[dX\left(t\right)|\mathcal{F}_{t}\right]$. Quelle est l'influence du saut sur ces deux premiers moments ?

2.2.2 Le modèle de Merton [1976]

Nous supposons que les hypothèses du modèle de Black et Scholes [1973] sont vérifiées. Nous cherchons à valoriser une option européenne d'achat sur un actif qui ne distribue pas de dividendes. Nous supposons que la dynamique de l'actif $S\left(t\right)$ est donnée par la différentielle stochastique suivante :

$$\begin{cases} dS(t) = \mu S(t) dt + \sigma S(t) dW(t) + (\theta - 1) S(t) dN(t) \\ S(t_0) = S_0 \end{cases}$$

où $W\left(t\right)$ est un processus de Wiener et $N\left(t\right)$ un processus de Poisson d'intensité λ .

- 1. Interprétez les coefficients θ , λ et $k = (\theta 1)$.
- 2. Soit C(t, S(t)) la valeur de l'option européenne d'achat de prix d'exercice K et d'échéance T. Calculez la différentielle stochastique dC(t).
- 3. En raisonnant dans une économie neutre au risque, montrez que la valeur de l'option d'achat vérifie l'équation fondamentale de la finance suivante :

$$\begin{cases} \frac{1}{2}\sigma^{2}S^{2}C_{SS} + \mu SC_{S} + C_{t} - rC + \lambda E\left[C\left(t, \theta S\right) - C\left(t, S\right)\right] = 0\\ C\left(T\right) = \left(S\left(T\right) - K\right)_{+} \end{cases}$$
 (1)

4. Soit $\tau = T - t_0$ la maturité de l'option. Nous rappelons que la solution de l'équation (1) est

$$C(t_0) = \sum_{n=0}^{\infty} e^{-\lambda \tau} \frac{(\lambda \tau)^n}{n!} BS\left(\tilde{S}^n, K, \sigma, \tau, r\right)$$

avec

$$BS\left(\tilde{S}^{n}, K, \sigma, \tau, r\right) = \tilde{S}^{n}\Phi\left(d_{1}\right) - Ke^{-r\tau}\Phi\left(d_{2}\right)$$

$$d_{1} = \frac{1}{\sigma\sqrt{\tau}}\left[\ln\frac{\tilde{S}^{n}}{K} + r\tau\right] + \frac{1}{2}\sigma\sqrt{\tau}$$

$$d_{2} = \frac{1}{\sigma\sqrt{\tau}}\left[\ln\frac{\tilde{S}^{n}}{K} + r\tau\right] - \frac{1}{2}\sigma\sqrt{\tau}$$

et

$$\tilde{S}^n = \tilde{S}^n \left(t_0 + \tau \right) = S_0 e^{-\lambda(\theta - 1)\tau} \theta^n$$

Commentez ce résultat.

5. En utilisant l'égalité suivante

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

Montrez que

$$E\left[\left.\tilde{S}^{n}\right|\mathcal{F}_{t_{0}}\right]=S_{0}$$

Interprétez ce résultat.

2.2.3 Lecture d'information sur les marchés des options de change

Nous considérons le modèle de Merton [1976] pour les options de change. Nous notons r^* le taux d'intérêt étranger. Dans ce cas, la solution de l'équation fondamentale de la finance appliquée à une option d'achat européenne sur devises est

$$C(t_0) = \sum_{n=0}^{\infty} e^{-\lambda \tau} \frac{(\lambda \tau)^n}{n!} GK\left(\tilde{S}^n, K, \sigma, \tau, r, r^*\right)$$
 (2)

où GK est la formule de Garman-Kohlagen pour une option de change dont la valeur actuelle du sous-jacent est \tilde{S}^n .

- 1. Définissez la notion de "lecture d'information sur les marchés dérivés".
- 2. Malz [1996] considère une approximation de la distribution de Poisson par une distribution de Bernoulli :

Valeurs prises par n	$\Pr\left\{N\left(t\right) = n\right\}$	\tilde{S}^n
0	$1 - \lambda \tau$	$\frac{S_0}{1+\lambda(\theta-1)\tau}$
1	$\lambda \tau$	$\frac{\theta S_0}{1+\lambda(\theta-1)\tau}$

A partir de la formulation (2), donnez l'expression de l'option d'achat dans le cas d'une distribution de Bernoulli.

- 3. Quelle est la signification des valeurs $\lambda \tau$ et λk $(k = \theta 1)$?
- 4. Pourquoi les coefficients σ , λ et θ (ou k) sont-ils les paramètres subjectifs du modèle ?
- 5. Dans son article, MALZ [1996] considère le cours de change sterling/mark. Le graphique 4 représente la volatilité implicite des options de change à la monnaie pour deux maturités différentes : 1 mois (option courte) et 1 an (option longue). A partir des prix observés des options de maturité 1 mois, il estime aussi les valeurs de σ , λ et k pour la période allant du 31 mars 1992 au 16 septembre 1992. Les graphiques 5 et 9 représentent l'anticipation de saut λk et la probabilité de réalignement $\Pr\{S(T) \leq S_*\}$ où S_* représente la borne inférieure de la marge de fluctuation du cours de change. Commentez ces résultats.