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Abstract
This article develops the theory of risk budgeting portfolios, when we would like to

impose weight constraints. It appears that the mathematical problem is more complex
than the traditional risk budgeting problem. The formulation of the optimization pro-
gram is particularly critical in order to determine the right risk budgeting portfolio.
We also show that numerical solutions can be found using methods that are used in
large-scale machine learning problems. Indeed, we develop an algorithm that mixes the
method of cyclical coordinate descent (CCD), alternating direction method of multi-
pliers (ADMM), proximal operators and Dykstra’s algorithm. This theoretical body is
then applied to some investment problems. In particular, we show how to dynamically
control the turnover of a risk parity portfolio and how to build smart beta portfolios
based on the ERC approach by improving the liquidity of the portfolio or reducing the
small cap bias. Finally, we highlight the importance of the homogeneity property of
risk measures and discuss the related scaling puzzle.

Keywords: Risk budgeting, large-scale optimization, Lagrange function, cyclical coordinate
descent (CCD), alternating direction method of multipliers (ADMM), proximal operator,
Dykstra’s algorithm, turnover, liquidity, risk parity, smart beta portfolio.

JEL classification: C61, G11.

1 Introduction
Since the 2008 Global Financial Crisis, the development of risk budgeting (RB) techniques
has marked an important milestone in portfolio management by putting diversification at
the center of portfolio construction (Qian, 2005; Maillard et al., 2010). In particular, the
equal risk contribution (ERC) portfolio has been very popular and has significantly im-
pacted the asset management industry. For instance, this allocation approach is extensively
implemented in risk parity funds, factor investing and alternative risk premia (Roncalli,
2017).

The main advantages of RB portfolios are the stability of the allocation, and the diversifi-
cation management principle, which appear more robust than the diversification mechanism
of mean-variance optimized portfolios (Bourgeron et al., 2018). This is why we don’t need
∗We would like to thank Thibault Bourgeron, Joan Gonzalvez, Edmond Lezmi, Jean-Tristan Marin, Sarah

Perrin, Roman Rubsamen and Jiali Xu for their helpful comments.
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to add constraints in order to regularize the solution. This advantage is also its drawback.
Indeed, there are some situations where portfolio managers have to impose constraints. For
example, they may want to impose a minimum investment weight, a sector-neutrality or
some liquidity thresholds. The goal of this paper is then to define what does a constrained
risk budgeting portfolio mean, since adding constraints will change the risk budgets that are
targeted, meaning that ex-post risk contributions are not equal to ex-ante risk budgets.

This paper is organized as follows. Section Two illustrates the bridge between risk bud-
geting and portfolio optimization. In Section Three, we present the right mathematical
formulation of constrained risk budgeting portfolios, and develop the corresponding nu-
merical algorithms. In Section Four, we consider some applications in asset allocation, in
particular the management of turnover or the consideration of liquidity. Finally, we discuss
the compatibility puzzle of the homogeneity property of coherent risk measures.

2 The original risk budgeting portfolio
2.1 Definition of the risk budgeting portfolio
We consider a universe of n risky assets. Let µ and Σ be the vector of expected returns and
the covariance matrix of asset returns. We have Σi,j = ρi,jσiσj where σi is the volatility of
asset i and ρi,j is the correlation between asset i and asset j. Following Roncalli (2015), we
consider the standard deviation-based risk measure defined as follows:

R (x) = −x> (µ− r) + c ·
√
x>Σx (1)

where c is a scalar that measures the trade-off between the expected return of the portfolio
and its volatility. We deduce that the risk contribution of Asset i is given by:

RCi (x) = xi ·
(
− (µi − r) + c

(Σx)i√
x>Σx

)
Following Maillard et al. (2010), Roncalli (2013) defines the risk budgeting (RB) portfolio
using the following non-linear system:

RCi (x) = biR (x)
bi > 0
xi ≥ 0∑n
i=1 bi = 1∑n
i=1 xi = 1

(2)

where bi is the risk budget of Asset i expressed in relative terms. The constraint bi > 0
implies that we cannot set some risk budgets to zero. This restriction is necessary in order
to ensure that the RB portfolio is unique.

Remark 1 Roncalli (2015) shows that the existence of the RB portfolio depends on the
value taken by c. In particular, the RB portfolio exists and is unique if c > SR+ where SR+

is the maximum Sharpe ratio of the asset universe:

SR+ = max
(

sup
x∈[0,1]n

SR (x | r) , 0
)

Remark 2 The original ERC portfolio is obtained by considering the volatility risk measure
and the same risk budgets. It is equivalent to seting µi = r, c = 1 and bi = 1/n. In this
case, we have:

RCi (x) =
xi · (Σx)i√
x>Σx

= 1
n

√
x>Σx
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2.2 The associated optimization problem
2.2.1 The wrong formulation

System (2) is equivalent to solving n non-linear equations with n unknown variables. There-
fore, we can use the Newton or Broyden methods to find the numerical solution. We also
deduce that:

1
bi
RCi (x) = 1

bj
RCj (x) for all i, j

In order to find the solution, an alternative approach is to solve the optimization problem:

xRB = arg min
n∑
i=1

n∑
j=1

(
1
bi
RCi (x)− 1

bj
RCj (x)

)2
(3)

s.t.
{

1>x = 1
x ≥ 0

At the optimum xRB, the objective function f (x) must be equal to zero. This approach was
originally proposed by Maillard et al. (2010) in the case bi = bj .

At first sight, Problem (3) seems to be easy to solve because it resembles how a quadratic
functions in n variables is defined and we can analytically compute the gradient vector and
the hessian matrix of the objective function. In fact, it is not a convex problem (Feng and
Palomar, 2015), and the optimization is tricky when the number of assets is large. From a
theoretical point of view, the objective function is not well defined because the solution is
only valid if the zero can be reached: f (xRB) = 0. But the most important issue is that the
optimization problem is driven by the equality constraint: 1>x = 1. Indeed, if we remove
it, the solution is xRB = 0.

2.2.2 The right formulation

Roncalli (2013) shows that the RB portfolio is the solution of the following optimization
problem:

xRB = arg minR (x) (4)

s.t.


∑n
i=1 bi ln xi ≥ κ?

1>x = 1
x ≥ 0

where κ? is a constant to be determined. This optimization program is equivalent to finding
the optimal solution x? (κ):

x? (κ) = arg minR (x) (5)

s.t.
{ ∑n

i=1 bi ln xi ≥ κ
x ≥ 0

where κ is an arbitrary constant and to scale the solution:

xRB = x? (κ)
1>x? (κ)

Using the Lagrange formulation, we obtain an equivalent solution:

x? (λ) = arg minR (x)− λ
n∑
i=1

bi ln xi (6)

s.t. x ≥ 0
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where λ is an arbitrary positive scalar and:

xRB = x? (λ)
1>x? (λ)

x? (λ) is the solution of a standard logarithmic barrier problem, which has very appealing
characteristics. First, it defines a unique solution. Second, the constraint 1>x = 1 is
removed, meaning that the optimization exploits the scaling property. Finally, the constraint
x ≥ 0 is redundant since the logarithm is defined for strictly positive numbers.

We claim that Problem (6) is the right risk budgeting problem. For instance, Maillard
et al. (2010) used this formulation to show that the ERC portfolio exists and is unique.
Roncalli (2013) also noticed that there is a discontinuity when one or more risk budgets bi
are equal to zero. In this case, we can find several solutions that satisfy RCi (x) = biR (x)
or Problem (3), but only one solution if we consider the logarithmic barrier program.

2.3 Numerical solution
2.3.1 The Newton algorithm

Spinu (2013) proposes solving Problem (6) by using the Newton algorithm1:

x(k+1) = x(k) − η(k)

(
∂2 f

(
x(k))

∂ x ∂ x>

)−1
∂ f
(
x(k))
∂ x

where η(k) ∈ [0, 1] is the step size and k is the iteration index. Generally, we set η(k) = 1.
Spinu (2013) noticed that the Newton algorithm may be improved because the risk measure
is self-concordant. In this case, we can use the results of Nesterov (2004) to determine the
optimal size η(k) at each iteration.

2.3.2 The CCD algorithm

The descent algorithm is defined by the following rule:

x(k+1) = x(k) + ∆x(k)

= x(k) − ηD(k)

At the kth Iteration, the current solution x(k) is updated by going in the opposite direction
to D(k). For instance, D(k) is equal respectively to ∂x f

(
x(k)) in the gradient algorithm and(

∂2
x,x f

(
x(k)))−1

∂x f
(
x(k)) in the Newton algorithm. Coordinate descent is a modification

of the descent algorithm by minimizing the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x(k)

i

= x
(k)
i − ηD

(k)
i

1The first and second derivatives are computed using the following analytical expressions:
∂ f (x)
∂ xi

= − (µi − r) + c
(Σx)i√
x>Σx

− λ
bi

xi

∂2 f (x)
∂ xi ∂ xj

=
c

√
x>Σx

(
ρi,jσiσj −

(Σx)i (Σx)j
x>Σx

)
∂2 f (x)
∂ x2

i

=
c

√
x>Σx

(
σ2
i −

(Σx)2
i

x>Σx

)
+ λ

bi

x2
i
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The coordinate descent algorithm becomes a scalar problem, and we know that minimizing
a function with respect to one variable is easier than with n variables. Concerning the choice
of the variable i, there are two approaches: random coordinate descent or RCD (Nesterov,
2012) and cyclical coordinate descent or CCD (Tseng, 2001). In the first case, we assign a
random number between 1 and n to the index i. In the second case, we cyclically iterate
through the coordinates:

x
(k+1)
i = arg min

x
f
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x, x

(k)
i+1, . . . , x

(k)
n

)
This ensures that all the indices are selected during one cycle. In the CCD algorithm, k is
the cycle index while i is the iteration index within a cycle.

Griveau-Billion et al. (2013) propose applying the CCD algorithm to find the solution
of the objective function:

f (x) = −x>π + c
√
x>Σx− λ

n∑
i=1

bi ln xi

where π = µ− r. The first-order condition is:

∂ L (x;λ)
∂ xi

= −πi + c
(Σx)i
σ (x) − λ

bi
xi

At the optimum, we have ∂xi
L (x;λ) = 0 or:

cσ2
i x

2
i +

cσi∑
j 6=i

xjρi,jσj − πiσ (x)

xi − λbiσ (x) = 0

By definition of the RB portfolio we have xi > 0. We notice that the polynomial function is
convex because we have σ2

i > 0. Since the product of the roots is negative, we always have
two solutions with opposite signs. It can be deduced that the solution is the positive root
of the second-degree equation. For the cycle k + 1 and the ith coordinate, we have:

xi =
−c
(
σi
∑
j 6=i xjρi,jσj

)
+ πiσ (x) +

√(
c
(
σi
∑
j 6=i xjρi,jσj

)
− πiσ (x)

)2
+ 4λcbiσ2

i σ (x)

2cσ2
i

In this equation, we have the following correspondence: xi → x
(k+1)
i , xj → x

(k+1)
j if j < i,

xj → x
(k)
j if j > i, and x →

(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n

)
. If the values of

(x1, . . . , xn) are strictly positive and if c > SR+, x(k+1)
i should be strictly positive. The

positivity of the solution is then achieved after each iteration and each cycle if the starting
values are positive. Therefore, the coordinate-wise descent algorithm consists in iterating
the previous equation, and we can show that it always converges (Roncalli, 2015).

Remark 3 As noted by Griveau-Billion et al. (2013), the previous algorithm can be sim-
plified by setting λ equal to 1 and by rescaling the solution once the convergence is obtained.
Our experience shows that it is better to rescale the solution once the CCD algorithm has
converged rather than after each cycle. Moreover, Griveau-Billion et al. (2013) derive ana-
lytical formulas in order to update σ (x) and

∑
j 6=i xjρi,jσj at each iteration.

5



Constrained Risk Budgeting Portfolios

3 Theory of constrained risk budgeting portfolio
3.1 Mathematical issues
If we consider the definition of Roncalli (2013), introducing constraints leads to the following
formulation of the constrained risk budgeting portfolio2: RCi (x) = biR (x)

x ∈ S
x ∈ Ω

where S is the standard simplex:

S =
{
xi ≥ 0 :

n∑
i=1

xi = 1
}

and x ∈ Ω is the set of additional constraints. Let x? (S) be the risk budgeting portfolio, i.e.
the solution such that x ∈ S, and x? (S,Ω) be the constrained risk budgeting portfolio, i.e.
the solution such that x ∈ S and x ∈ Ω. Since x? (S) is unique, we deduce that the solution
x? (S,Ω) exists only if x? (S) ∈ Ω, and we have x? (S,Ω) = x? (S). Since we generally have
x? (S) /∈ Ω, we deduce that there is almost certainly no solution.

This is why professionals generally replace the equality constraint by an approximate
equality:  RCi (x) ≈ biR (x)

x ∈ S
x ∈ Ω

Therefore, the optimization problem becomes:

x? (S,Ω) = arg min
n∑
i=1

n∑
j=1

(
1
bi
RCi (x)− 1

bj
RCj (x)

)2
(7)

s.t. x ∈ S ∩ Ω

Bai et al. (2016) show that this optimization problem can be simplified as follows:

{x? (S,Ω) , θ?} = arg min
n∑
i=1

(
1
bi
RCi (x)− θ

)2
(8)

s.t. x ∈ S ∩ Ω

Example 1 We consider a universe of four assets. Their volatilities are equal to 10%, 15%,
20% and 30%. The correlation matrix of asset returns is given by the following matrix:

ρ =


1.00
0.50 1.00
0.50 0.50 1.00
0.50 0.50 0.75 1.00


By using the volatility risk measure, we compute the ERC portfolio and the RB portfolio

corresponding to the risk budgets (30%, 30%, 19.5%, 20.5%). In Table 1, we report the
solution of ERC and RB portfolios. We also indicate the marginal risk MRi, the absolute

2We assume that bi > 0 and
∑n

i=1 bi = 1.
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Table 1: Computation of ERC and RB portfolios

Asset ERC portfolio RB portfolio
xi MRi RCi RC?i xi MRi RCi RC?i

1 41.01 7.79 3.19 25.00 45.05 8.06 3.63 30.00
2 27.34 11.68 3.19 25.00 30.04 12.09 3.63 30.00
3 18.99 16.82 3.19 25.00 14.67 16.10 2.36 19.50
4 12.66 25.23 3.19 25.00 10.24 24.23 2.48 20.50

σ (x) 12.78 12.11

Table 2: Computation of ERC and RB portfolios when xi ≤ 30%

Asset ERC portfolio RB portfolio
xi MRi RCi RC?i xi MRi RCi RC?i

1 30.00 7.19 2.16 15.50 30.00 7.19 2.16 15.48
2 30.00 11.60 3.48 24.98 30.00 11.60 3.48 24.96
3 24.57 17.43 4.28 30.74 24.43 17.42 4.26 30.52
4 15.43 25.98 4.01 28.78 15.57 26.01 4.05 29.04

σ (x) 13.93 13.94

risk contribution RCi and the relative risk contribution RC?i . Let us now introduce the
constraint xi ≤ 30% and solve the optimization problem (8). Since this constraint is not
satisfied by the previous unconstrained portfolio, it has an impact as shown in Table 2. As
expected, the relative risk contributions (or ex-post risk budgets) are completely different
from the ex-ante risk budgets. The concept of “equal risk contribution” does not make any
sense. Moreover, we observe that the ordering relationship between risk budgets are not
preserved when we introduce constraints. For example, in the case of the RB portfolio, we
have b3 < b4 (19.50% versus 20.50%) but RC?3 > RC?4 (30.52% versus 29.04%) although the
allocation in Assets 3 and 4 does not reach the upper bound constraint. We also notice that
the constrained ERC portfolio is very close to the constrained RB portfolio. This gives us
the feeling that the choice of risk budgets has little impact, and the solution is mainly driven
by the constraints.

3.2 Formulation of the optimization problem
Like for the unconstrained risk budgeting portfolio, we argue that the right optimization
problem is:

x? (S,Ω) = arg minR (x) (9)

s.t.
{ ∑n

i=1 bi ln xi ≥ κ?
x ∈ S ∩ Ω

where κ? is a constant to be determined. We notice that the previous problem can be
simplified because:

1. the logarithmic barrier constraint imposes that xi ≥ 0;

2. Roncalli (2013) shows that there is only one constant κ? such that the constraint
1>x = 1 is satisfied.
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We can then consider the following optimization problem:

x? (Ω, κ) = arg minR (x) (10)

s.t.
{ ∑n

i=1 bi ln xi ≥ κ
x ∈ Ω

and we have:

x? (S,Ω) =
{
x? (Ω, κ?) :

n∑
i=1

x?i (Ω, κ?) = 1
}

This new formulation is appealing since the constraint x ∈ S is not explicit, but it is
implicitly embedded in the optimization problem. From a computational point of view, this
reduces the complexity of the numerical algorithm. When the constraint x ∈ Ω vanishes, we
retrieve the previous scaling rule. Otherwise, we consider the Lagrange formulation:

x? (Ω, λ) = arg minR (x)− λ
n∑
i=1

bi ln xi (11)

s.t. x ∈ Ω

Again, we have:

x? (S,Ω) =
{
x? (Ω, λ?) :

n∑
i=1

x?i (Ω, λ?) = 1
}

Formulations (9), (10) and (11) have the advantage of revealing the true nature of risk
budgeting. The objective is to minimize the risk measure subject to a penalization (Richard
and Roncalli, 2015). A risk budgeting portfolio is then a minimum risk portfolio subject
to hard risk budgeting, constraints, whereas a constrained risk budgeting portfolio is a
minimum risk portfolio subject to soft risk budgeting constraints. Because of the convexity
of the optimization problem (10), it follows that:

κ2 ≥ κ1 ⇒ R (x? (Ω, κ2)) ≥ R (x? (Ω, κ1)) (12)

for a given set of constraints Ω. This property is fundamental since it is the essence of
risk budgeting, and it explains the relationships between long-only minimum variance, risk
budgeting and equally-weighted portfolios obtained by Maillard et al. (2010) and the rela-
tionships between long-only minimum risk, risk budgeting and weight-budgeting portfolios
obtained by Roncalli (2013). This property is also necessary to impose the continuity of
risk budgeting portfolios in particular when some risk budgets tend to zero. Without this
property, it is impossible to show that the RB portfolio is unique, and to determine the true
solution in the case where there are several solutions to Problem (2) when bi = 0.

Remark 4 Imposing tighter constraints does not necessarily increase the risk measure3:

Ω2 ⊂ Ω1 ; R (x? (S,Ω2)) ≥ R (x? (S,Ω1))

In order to illustrate the risk measure issue, we consider Example 1 with the risk budgets
b = (10%, 20%, 30%, 40%). Moreover, we impose that the weight x1 of Asset 1 is greater than
a given lower bound x−1 . In Figure 1, we have reported the portfolio volatility σ (x? (S,Ω)) of
the constrained risk budgeting with respect to x−1 . If we consider the least squares problem
(8), the volatility is non-monotonous. This is not the case if we consider the logarithmic
barrier problem (11). Indeed, the least squares formulation only considers the dimension of
risk contribution matching, but not the dimension of risk measure minimization.

3Indeed, we have:
Ω2 ⊂ Ω1 ⇒R (x? (Ω2, κ)) ≥ R (x? (Ω1, κ))

for a given value of κ. However, the value κ? to obtain the optimal portfolio x? (S,Ω) depends on Ω.
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Figure 1: Volatility of the constrained RB portfolio when x1 ≤ x−1
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3.3 Numerical algorithms

The optimization function becomes:

L (x;λ) = R (x)− λ
n∑
i=1

bi ln xi + 1Ω (x) (13)

where 1Ω (x) is the convex indicator function of Ω, meaning that 1Ω (x) = 0 for x ∈ Ω
and 1Ω (x) = +∞ for x /∈ Ω. The choice of λ is very important, since the constrained RB
portfolio is obtained for the optimal value λ? such that the sum of weights is equal to one.
This can be done using the Newton-Raphson or the bisection algorithm. If we note x? (λ)
the solution of the minimization problem (13), we obtain Algorithm 1 in the case of the
bisection method.

3.3.1 ADMM algorithm

In order to solve Problem (13), we exploit the separability of L (x;λ). For example, we can
write:

L (x;λ) = R (x)− λ
∑n

i=1
bi ln xi︸ ︷︷ ︸

f(x)

+ 1Ω (x)︸ ︷︷ ︸
g(x)

(14)

or:
L (x;λ) = R (x) + 1Ω (x)︸ ︷︷ ︸

f(x)

+ −λ
∑n

i=1
bi ln xi︸ ︷︷ ︸

g(x)

(15)

9
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Algorithm 1 General algorithm for computing the constrained RB portfolio
The goal is to compute the optimal Lagrange multiplier λ? and the solution x? (S,Ω)
We consider two scalars aλ and bλ such that aλ < bλ and λ? ∈ [aλ, bλ]
We note ελ the convergence criterion of the bisection algorithm (e.g. 10−8)
repeat

We calculate λ = aλ + bλ
2

We compute x? (λ) the solution of the minimization problem:

x? (λ) = arg minL (x;λ)

if
∑n
i=1 x

?
i (λ) < 1 then

aλ ← λ
else
bλ ← λ

end if
until

∣∣∣∣ n∑
i=1

x?i (λ)− 1
∣∣∣∣ ≤ ελ

return λ? ← λ and x? (S,Ω)← x? (λ?)

We notice that we have:

{x? (λ) , z? (λ)} = arg min f (x) + g (z) (16)
s.t. x− z = 0

It follows that we can use the alternative direction method of multipliers (ADMM) to solve
this optimization problem. Algorithm 2 describes the different steps.

In the case of the Lagrange function (14), the x-update is equivalent to solving a penalized
risk budgeting problem whereas the z-update corresponds to a proximal operator. Therefore,
we can use the Newton algorithm4 to find x(k). For the z-update, we have:

z(k) = proxg/ϕ (v) = arg minz
{
g (z) + ϕ

2

∥∥∥z − v(k)
z

∥∥∥2

2

}
where v(k)

z = x(k) + u(k−1). If we assume that g (z) = 1Ω (z) where Ω is a convex set, we
obtain:

z(k) = arg minz
{
1Ω (z) + ϕ

2

∥∥∥z − v(k)
z

∥∥∥2

2

}
= PΩ

(
v(k)
z

)
4The first and second derivatives of f (k) (x) = f (x) +

ϕ

2

∥∥x− z(k−1) + u(k−1)
∥∥2

2
are equal to:

∂ f (k) (x)
∂ xi

=
∂ f (x)
∂ xi

+ ϕ
(
xi − z(k−1) + u(k−1)

)
∂2 f (k) (x)
∂ xi ∂ xj

=
∂2 f (x)
∂ xi ∂ xj

∂2 f (k) (x)
∂ x2

i

=
∂2 f (x)
∂ x2

i

+ ϕ

where the derivatives of f (x) are given in Footnote 1 on page 4.
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Algorithm 2 ADMM algorithm for computing the portfolio x? (λ)
The goal is to compute the solution x? (Ω, λ) for a given value of λ
We initialize x(0) and we choose 0 ≤ ϕ ≤ 1
We set z(0) = x(0) and u(0) = 0
We note ε the convergence criterion of the ADMM algorithm (e.g. 10−8)
repeat

x(k) = arg min
{
f (x) + ϕ

2

∥∥∥x− z(k−1) + u(k−1)
∥∥∥2

2

}
z(k) = arg min

{
g (z) + ϕ

2

∥∥∥x(k) − z + u(k−1)
∥∥∥2

2

}
u(k) = u(k−1) +

(
x(k) − z(k)

)
until

∥∥x(k) − z(k)
∥∥ ≤ ε

return x? (λ)← x(k)

where PΩ (v) is the standard projection. In Appendix A.2 on page 29, we give the results
for the generic constraints that we encounter in portfolio optimization. We develop some
special cases in the next section.

For the Lagrange function (15), the x-update corresponds to a constrained risk minimiza-
tion problem whereas the z-update is equivalent to solving a penalized logarithmic barrier
problem. The x-update can be done using constrained non-linear optimization methods5,
whereas the z-step corresponds to the proximal operator of the logarithmic barrier function6:

z
(k)
i =

ϕ
(
x

(k)
i + u

(k−1)
i

)
+
√
ϕ2
(
x

(k)
i + u

(k−1)
i

)2
+ 4ϕλbi

2ϕ

If we consider the volatility risk measure R (x) =
√
x>Σx instead of the standard deviation-

based risk measure given by Equation (1), the ADMM algorithm is simplified as follows7:

x(k) = arg min 1
2x
> (Σ + ϕIn)x− ϕx>

(
z(k−1) − u(k−1)

)
s.t. x ∈ Ω

z(k) =
ϕ
(
x

(k)
i + u

(k−1)
i

)
+
√
ϕ2
(
x

(k)
i + u

(k−1)
i

)2
+ 4ϕλb

2ϕ

u(k) = u(k−1) +
(
x(k) − z(k)

)
5In order to accelerate the convergence, we can implement analytical derivatives, which are the same

than those given in Footnote 4 on page 10 by setting λ = 0 in the derivatives of the function f (x).
6See Appendix A.4 on page 33.
7We have:

f (k) (x) =
1
2
x>Σx+

ϕ

2
(
x− z(k−1) + u(k−1)

)> (
x− z(k−1) + u(k−1)

)
=

1
2
x>Σx+

ϕ

2

(
x>x− 2x>v(k)

x +
(
v

(k)
x

)>
v

(k)
x

)
where v(k)

x = z(k−1) − u(k−1).
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This algorithm exploits the property that minimizing the portfolio volatility is equivalent to
minimizing the portfolio variance, even if this last risk measure does not satisfy the Euler
decomposition. If Ω is a set of linear (equality and inequality) constraints, the x-update
reduces to a standard QP problem.

3.3.2 CCD algorithm

Another route for solving Problem (14) is to consider the CCD algorithm. Convergence of
coordinate descent methods requires that the function is strictly convex and differentiable.
However, Tseng (2001) has extended the convergence properties to a non-differentiable class
of functions:

f (x) = f0 (x) +
n∑
i=1

fi (xi)

where f0 is strictly convex and differentiable and the functions fi are non-differentiable.
Dealing with convex constraints is equivalent to writing the constraints in the sum term of
f (x). If we consider the formulation (14) and the standard deviation-based risk measure,
we have:

L (x;λ) = L0 (x;λ) + 1Ω (x)
where L0 (x;λ) is defined as follows:

L0 (x;λ) = −x>π + c
√
x>Σx− λ

n∑
i=1

bi ln xi

The case of separable constraints If we assume that the set of constraints is separable
with respect to all the variables:

Ω =
n⋂
i=1

Ωi

where Ωi is the constraint on xi, we have fi (xi) = 1Ωi
(xi). We deduce that the CCD

algorithm consists in two steps. We first solve the minimization problem of L0 (x;λ) for one
coordinate, and then we compute the projection onto Ωi. For the first step, the first-order
condition is:

∂ L0 (x;λ)
∂ xi

= −πi + c
(Σx)i√
x>Σx

− λ bi
xi

= 0

It follows that cxi (Σx)i − πixiσ (x)− λbiσ (x) = 0 or equivalently:

αix
2
i + βixi + γi = 0

where: 
αi = cσ2

i

βi = cσi
∑
j 6=i xjρi,jσj − πiσ (x)

γi = −λbiσ (x)
We deduce that the coordinate solution is the positive root of the second-degree equation:

xi = −βi +
√
β2
i − 4αiγi

2αi
The second step is the projection into the set Ωi:

xi = PΩi (xi)

Finally, we obtain Algorithm 3.

12
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Algorithm 3 CCD algorithm for computing the portfolio x? (λ) when the set of constraints
is separable with respect to the variables xi

The goal is to compute the solution x? (Ω, λ) for a given value of λ
We initialize the vector x
We note ε the convergence criterion of the CCD algorithm (e.g. 10−8)
repeat
x′ ← x
for i = 1 : n do
σx ← σ (x)
We update xi as follows:

xi ←
−βi +

√
β2
i − 4αiγi

2αi
where: 

αi = cσ2
i

βi = cσi
∑
j 6=i xjρi,jσj − πiσx

γi = −λbiσx
xi ← PΩi

(xi)
end for

until
∑n
i=1 (x′i − xi)

2 ≤ ε
return x? (λ)← x(k)

Remark 5 Our algorithm differs from the one given by Nesterov (2012) and Wright (2015).
Let η > 0 be the stepsize of the gradient descent. The coordinate update is:

x?i = arg min (x− xi) gi + 1
2η (x− xi)2 + ξ · 1Ωi

(x)

where ξ is a positive scalar and:

gi = −πi + c
(Σx)i√
x>Σx

− λ bi
xi

In our case, this algorithm is very simple8, because it reduces to calculate the proximal
of xi − ηgi associated with the function 1Ωi

(x). However, we prefer to use the previous
algorithm in order to exploit the analyticity of the solution.

The case of non-separable constraints A first idea is to replace the projection step
xi ← PΩi

(xi) by something equivalent that ensures that the constraints are verified. The
natural approach is to apply the proximal operator or equivalently the projection: x ←
PΩ (x). In practice, we observe that the CCD solution does not always converge to the true
solution. It will depend on how the constraints and the variables are ordered. In fact, the
true approach is to use a block-coordinate algorithm if constraints are separable by blocks.
This is not always the case. This is why we prefer to use the previous ADMM algorithms
or the ADMM-CCD algorithm, which is described in the next paragraph.

3.3.3 Mixed ADMM-CCD algorithm

If we consider the formulation (14), we have already shown that the x-update of the ADMM
algorithm corresponds to a regularized risk budgeting problem. Therefore, we can use the

8See Appendix A.5 on page 34.
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Algorithm 4 ADMM-CCD algorithm for computing the portfolio x? (λ)
The goal is to compute the solution x? (Ω, λ) for a given value of λ
We initialize x(0) and we choose 0 ≤ ϕ ≤ 1
We set z(0) = x(0) and u(0) = 0
We note ε and ε′ the convergence criterion of ADMM and CCD algorithms
We note kmax the maximum number of ADMM iterations
for k = 1 : kmax do

I. x-update

v
(k)
x ← z(k−1) − u(k−1)

x̃← x(k−1)

repeat
x̃′ ← x̃
for i = 1 : n do

We update the volatility σx ← σ (x̃) and calculate:
αi = cσ2

i + ϕσx

βi = cσi
∑
j 6=i x̃jρi,jσj −

(
πi + ϕv

(k)
xi

)
σx

γi = −λbiσx

We update x̃i as follows:

x̃i ←
−βi +

√
β2
i − 4αiγi

2αi

end for
until

∑n
i=1 (x̃′i − x̃i)

2 ≤ ε′
x(k) ← x̃

II. z-update

v
(k)
z ← x(k) + u(k−1)

z(k) ← PΩ

(
v

(k)
z

)
III. u-update

u(k) ← u(k−1) + x(k) − z(k)

IV. Convergence test

if
∥∥x(k) − z(k)

∥∥ ≤ ε then
Break

end if
end for
return x? (λ)← x(k)

14
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CCD algorithm to find the solution x(k). We remind that:

f (k) (x) = −x>π + c
√
x>Σx− λ

n∑
i=1

bi ln xi + ϕ

2

∥∥∥x− v(k)
x

∥∥∥2

2

where v(k)
x = z(k−1) − u(k−1). The first-order condition is:

∂ f (k) (x)
∂ xi

= −πi + c
(Σx)i√
x>Σx

− λ bi
xi

+ ϕ
(
xi − v(k)

xi

)
= 0

It follows that:

cxi (Σx)i − πixiσ (x)− λbiσ (x) + ϕx2
iσ (x)− ϕxiv(k)

xi
σ (x) = 0

or:
αix

2
i + βixi + γi = 0

where: 
αi = cσ2

i + ϕσ (x)
βi = cσi

∑
j 6=i xjρi,jσj −

(
πi + ϕv

(k)
xi

)
σ (x)

γi = −λbiσ (x)
We deduce that the coordinate solution is the positive root of the previous second-degree
equation:

xi = −βi +
√
β2
i − 4αiγi

2αi
Finally, we obtain the ADMM-CCD algorithm, which is described on the previous page.

3.3.4 Efficiency of the algorithms

We may investigate the efficiency of the previous algorithms. Firstly, our experience shows
that traditional constrained optimization algorithms (SQP, trust region, constrained inte-
rior point, etc.) fail to find the solution. It is somewhat surprising because we have the
feeling that the optimization problem of constrained risk budgeting portfolios seems to be
standard. Unfortunately, this is not the case, because the mixing of the logarithmic bar-
rier and constraints is not usual. This is why it is important to implement the previous
algorithms. Secondly, all the algorithms are not equal and the implementation is key in par-
ticular when we consider large problems with more than one hundred assets. In Table 3, we
have reported the computational time we have obtained for solving the example described
on page 18. For that, we consider five different methods: ADMM-Newton, ADMM-BFGS,
ADMM-QP, ADMM-CCD and CCD. For each method, we consider three implementations:

1. The first one considers that the primal variable ϕ is constant (ϕ = 1) and we use the
classical bisection method described in Algorithm 1.

2. The second one considers that the penalization variable ϕ is constant (ϕ = 1), and
we use an accelerated bisection method. The underlying idea is to choose a starting
value x(0) for the ADMM/CCD algorithm, which is not constant and depends on the
Lagrange coefficient λ. The corresponding method is described in Appendix A.6 on
page 35.

3. The third uses the accelerated bisection algorithm, and considers the adaptive method
for the variable ϕ(k), which is given in Appendix A.7 on page 35. The underlying idea
is to accelerate the convergence of the ADMM algorithm by using the right scale of
the primal residual variable u(k).
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Results using our Matlab implementation are reported in Table 3. Absolute figures are not
interesting, because they depend on the processing power of the computer. Relative figures
show that computational times can differ dramatically from one algorithm to another, from
one implementation to another. The best algorithms are ADMM-Newton and CCD, followed
by ADMM-CCD. Curiously, the ADMM-QP method is less efficient9. Finally, the worst
algorithm is the ADMM-BFGS algorithm. However, we notice a large improvement in this
algorithm if we implement the accelerated bisection and the adaptive method for scaling the
regularization parameter. Indeed, the computational time is divided by a factor of 15!

Table 3: Computational time using our Matlab implementation (relative value)

Algorithm x-update (1) (2) (3)
ADMM Newton 2 1 1
ADMM BFGS 380 280 25
ADMM QP 220 120 110
ADMM CCD 10 9 8

CCD 1 1

3.4 Special cases
3.4.1 Box constrained optimization

In portfolio optimization, imposing lower and upper bounds is frequent:

Ω =
{
x ∈ Rn : x− ≤ x ≤ x+}

For example, box constraints are used when limiting single exposures because of regulatory
constraints or controlling the turnover of the portfolio.

The optimization framework In the box constrained case, the Lagrange function be-
comes:

L
(
x;λ, λ−, λ+) = −x>π + c

√
x>Σx− λ

n∑
i=1

bi ln xi −

n∑
i=1

λ−i
(
xi − x−i

)
−

n∑
i=1

λ+
i

(
x+
i − xi

)
(17)

The first-order condition is:

∂ L (x;λ, λ−, λ+)
∂ xi

= −πi + c
(Σx)i√
x>Σx

− λ bi
xi
− λ−i + λ+

i = 0

We deduce that:
RCi (x) = λbi + λ−i xi − λ

+
i xi

Since the Kuhn-Tucker conditions are:{
min

(
λ−i , xi − x

−
i

)
= 0

min
(
λ+
i , x

+
i − xi

)
= 0

we obtain three cases:
9This is due to the quadprog procedure of Matlab. Indeed, we do not observe same results in Python.
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1. If no bound is reached, we have λ−i = 0 and λ+
i = 0, and we retrieve the RB portfolio

xRB;

2. If the lower bound is reached, λ−i > 0 and the risk contribution of Asset i is higher
than bi;

3. If the upper bound is reached, λ+
i > 0 and the risk contribution of Asset i is lower

than bi.

Remark 6 When we compare the logarithmic barrier solution with the least squares solution
of the ERC portfolio, we observe that the first one preserves the “equal risk contribution”
property for all the assets that do not reach lower or upper bounds. This is not the case with
the least squares solution, since the risk contribution is different for all the assets.

The previous algorithms require the proximal operator to be computed:

x? = proxg (x̃)
= PΩ (x̃)

where x̃ = x(k) + u(k−1) is the value of vkz in the ADMM procedure. In Appendix A.2 on
page 29, we show that the proximal operator corresponds to the truncation operator:

proxg (x̃) = T
(
x̃;x−, x+)

where:

T
(
x̃;x−, x+) =


x−i if x̃i < x−i
x̃i if x−i ≤ x̃i ≤ x

+
i

x+
i if x̃i > x+

i

For the CCD algorithm, the projection xi ← PΩi
(xi) reduces to apply the truncation

operator to the single coordinate xi.
At the optimum, we deduce that:

λ−?i = max
(
RCi (x? (S,Ω))− λ?bi

x?i (S,Ω) , 0
)

and:
λ+?
i = max

(
λ?bi −RCi (x? (S,Ω))

x?i (S,Ω) , 0
)

where λ? is the solution of the bisection algorithm.

Remark 7 In order to find the optimal value λ?, we need an initial guess λ0 for the Newton-
Raphson algorithm or an interval [aλ, bλ] for the bisection method. Let xRB be the RB
portfolio without constraints. The optimal Lagrange coefficient associated with xRB is equal
to10:

λRB =
n∑
i=1
RCi (xRB) = R (xRB)

10Indeed, the first-order condition is:
∂R (x)
∂ xi

− λ
bi

xi
= 0 ⇔ xi

∂R (x)
∂ xi

− λbi = 0

⇔
n∑
i=1

xi
∂R (x)
∂ xi

− λ
n∑
i=1

bi = 0

⇔ λ =
n∑
i=1

xi
∂R (x)
∂ xi

= R (x)

because
∑n

i=1 bi = 1.
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It follows that a good initial guess is λ0 = R (xRB). We also notice that:

λ? =
n∑
i=1
RCi (x? (S,Ω)) +

n∑
i=1

(
λ+?
i − λ

−?
i

)
x?i (S,Ω)

= R (x? (S,Ω)) +
n∑
i=1

(
λ+?
i − λ

−?
i

)
x?i (S,Ω)

We deduce that aλ = ma · R (xRB) and bλ = mb · R (xRB) where the parameters ma and
mb depends on the tightness of constraints11. Generally, we have R (x? (S,Ω)) ≈ R (xRB),
implying that the values ma = 0.5 and mb = 2.0 are sufficient.

An example of dynamic allocation We consider a universe of five assets. Their volatil-
ities are equal to 15%, 20%, 25%, 30% and 10%. The correlation matrix of asset returns is
given by the following matrix:

ρ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00
0.50 0.40 0.05 0.10 1.00


Let us assume that the current portfolio is x0 = (25%, 25%, 10%, 15%, 30%). In Table 4,
we report the volatility breakdown of this portfolio. We notice that there are some large
differences in terms of risk contributions. In particular, the second asset has a volatility
contribution of 31.1%. We would like to obtain a more balanced portfolio. Table 5 shows
the results of the ERC portfolio.

Table 4: Volatility breakdown (in %) of the current portfolio

Asset xi MRi RCi RC?i
1 25.00 10.00 2.50 20.21
2 25.00 15.40 3.85 31.10
3 10.00 20.30 2.03 16.41
4 10.00 22.24 2.22 17.98
5 30.00 5.90 1.77 14.30

σ (x) 12.37

We notice that the ERC portfolio is relatively far from the current portfolio. In particular,
the turnover is equal to 22.18%. In order to obtain a solution closer to the current allocation,
we impose that the weights cannot deviate from the current ones by 5%:

x0 − 5% ≤ x ≤ x0 + 5%

The underlying idea is to move from the initial portfolio to a risk budgeting portfolio, which
presents the risk parity property as much as possible. In this case, we obtain the results
in Table 6. We notice that three assets (#1, #3 and #4) present the same contributions
(2.35%) because they do not reach the bounds. On the contrary, the second and fifth assets
have respectively a higher and lower risk contribution (2.98% and 2.10%) because the lower
and upper bounds are reached. This solution helps to reduce the turnover, since it is equal
to 14.22%.

11We have ma ≤ 1 and mb ≥ 1.
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Table 5: Volatility breakdown (in %) of the ERC portfolio

Asset xi MRi RCi RC?i
1 22.40 10.61 2.38 20.00
2 16.51 14.39 2.38 20.00
3 12.03 19.74 2.38 20.00
4 10.51 22.60 2.38 20.00
5 38.54 6.16 2.38 20.00

σ (x) 11.88

Table 6: Volatility breakdown (in %) of the constrained RB portfolio

Asset xi MRi RCi RC?i λ−i λ+
i

1 22.89 10.28 2.35 19.39 0.00 0.00
2 20.00 14.90 2.98 24.55 3.13 0.00
3 11.69 20.13 2.35 19.39 0.00 0.00
4 10.42 22.57 2.35 19.39 0.00 0.00
5 35.00 6.00 2.10 17.29 0.00 0.73

σ (x) 12.14 λ = 11.76

A naive solution to obtain a risk parity portfolio that matches the constraints would be
to identify the assets that reach the lower and upper bounds and to allocate the remaining
weight between the other assets by imposing the same risk contribution. In this example,
the second and fifth assets do not satisfy the constraints. Therefore, we have to allocate
45% of the allocation between the first, third and fourth assets. This naive solution is
given in Table 7. The ERC portfolio between the three unconstrained assets is equal to
(22.84%, 12.34%, 9.83%). In this case, the risk contributions are the same and are equal to
2.65%. However, the equal risk contribution property does not hold if we consider the full
portfolio, when we take into account the constrained assets. Indeed, we obtainRC1 = 2.34%,
RC3 = 2.49% and RC4 = 2.21%. The reason is that risk budgeting portfolios are sensitive
to the asset universe definition (Roncalli and Weisang, 2016). This is why this two-step
naive procedure does not give the right answer. In Table 7, we also report the least squares
solution corresponding to the optimization problem (8). Again, no assets verify the equal
risk contribution property.

Table 7: Volatility breakdown (in %) of naive and least squares solutions

Naive solution Least squares solution
Asset xi MRi RCi RC?i xi MRi RCi RC?i

1 22.84 10.25 2.34 19.30 23.13 10.32 2.39 19.70
2 20.00 14.98 3.00 24.70 20.00 14.86 2.97 24.53
3 12.34 20.18 2.49 20.53 11.39 20.07 2.29 18.87
4 9.83 22.46 2.21 18.20 10.48 22.55 2.36 19.51
5 35.00 5.99 2.10 17.28 35.00 6.02 2.11 17.39

σ (x) 12.13 12.11
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Remark 8 The previous example shows how to take into account a current allocation when
building a risk budgeting portfolio. This approach is particularly relevant when considering
dynamic rebalancing and tactical asset allocation. One of the main advantages of the RB
approach is that it produces a stable allocation. However, it does not enable us to consider
investment constraints such as the current allocation. Introducing weight constraints allows
the fund manager to better control the portfolio construction.

3.4.2 Risk budgeting with linear constraints

We now consider general linear constraints:

Ω =
{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}

These constraints generalize the case of lower and upper bounds. For example, it is common
to add some (lower and upper) limits in terms of exposures by asset classes, sectors, rat-
ings, etc. These types of limits are implemented thanks to inequality constraints Cx ≤ D.
Equality constraints Ax = B are less common in portfolio optimization. In Appendix A.2
on page 29, we provide some closed-form formulas to calculate PΩ (x), when Ω corresponds
to Ax = B or c>x ≤ d or x− ≤ x ≤ x+. First, we notice that the analytical formula
only exists for the half-space constraint c>x ≤ d, but not for multiple inequality constraints
Ω = {x ∈ Rn : Cx ≤ D} when card Ω = m > 1. The underlying idea is then to break down
Ω as the intersection of m half-space sets:

Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

where Ωj =
{
x ∈ Rn : c>(j)x ≤ d(j)

}
, c>(j) corresponds to the jth row of C and d(j) is the jth

element of D. In this case, we can apply the Dykstra’s algorithm for computing the proximal
operator of 1Ω (x). This algorithm is given on page 33. Second, mixing the constraints is
not straightforward. Again, we can break down Ω as the intersection of three basic convex
sets:

Ω = Ω1 ∩ Ω2 ∩ Ω3

where Ω1 = {∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}.
Since we know how to project each basic set, we calculate the projection PΩ (x) with the
Dykstra’s algorithm, which is described on page 34.

Table 8: Volatility and correlation matrix of asset returns (in %)

σi
1 2 3 4 5 6 7 8
5.0 5.0 7.0 10.0 15.0 15.0 15.0 18.0

ρi,j

1 100
2 80 100
3 60 40 100
4 −20 −20 50 100
5 −10 −20 30 60 100
6 −20 −10 20 60 90 100
7 −20 −20 20 50 70 60 100
8 −20 −20 30 60 70 70 70 100
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Let us consider an example of multi-asset allocation12. We consider a universe of eight
asset classes: (1) US 10Y Bonds, (2) Euro 10Y Bonds, (3) Investment Grade Bonds, (4) High
Yield Bonds, (5) US Equities, (6) Euro Equities, (7) Japan Equities and (8) EM Equities.
In Table 8, we indicate the statistics used to compute the optimal allocation.

Using these figures, we calculate the risk parity portfolio, which corresponds to the second
column in Table 9. We notice that the bond allocation is equal to 76.72% whereas the equity
allocation is equal to 23.28%. In order to increase the equity allocation, we impose that the
weight of the last four assets is greater than 30%. The solution is given in the fourth column.
Finally, we overweight the allocation in European assets with respect to American assets by
5% (sixth column).

Table 9: The case of inequality constraints

x5 + x6 + x7 + x8 ≥ 30% X X
x2 + x6 ≥ x1 + x5 + 5% X

Asset xi RC?i xi RC?i xi RC?i
1 26.83 12.50 25.78 8.64 24.52 8.16
2 28.68 12.50 27.41 8.64 28.69 9.13
3 11.41 12.50 9.51 8.64 9.52 8.61
4 9.80 12.50 7.29 8.64 7.27 8.61
5 5.61 12.50 7.06 15.91 6.97 15.69
6 5.90 12.50 7.71 16.58 7.80 16.82
7 6.66 12.50 9.23 18.14 9.23 18.16
8 5.11 12.50 6.00 14.82 6.00 14.81

σ (x) (in %) 4.78 5.20 5.19

Remark 9 Algorithm 3 is no longer valid when the coordinates are coupled via constraints.
This is generally the case when we impose Ax = B and Cx ≤ D. This is why we use
the ADMM-Newton or ADMM-CCD algorithms for solving this type of constrained risk
budgeting problem.

4 Applications
We consider two applications that are based on our professional experience. The first appli-
cation is the design of risk-based equity indices. Building an ERC portfolio on the Eurostoxx
50 universe is straightforward. This is not the case if we consider the universe of the Eu-
rostoxx index. Indeed, this universe contains many small cap stocks, and having the same
risk contribution for small cap and large cap stocks may induce some liquidity issues. In par-
ticular, this type of problem occurs when considering a large universe of non-homogenous
stocks. The second application is the control of rebalancing effects. This issue happens
when we consider short-term covariance matrices. In this case, the allocation can be very
reactive, implying large turnovers. For example, this type of situation is observed when we
implement multi-asset risk parity strategies with daily or weekly rebalancing and empirical
covariance matrices that are estimated with less than one year of historical data. These two
applications are illustrated below.

12This example is taken from Roncalli (2013) on page 287.
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4.1 Risk-based indexation and smart beta portfolios

We now consider a capitalization-weighted index composed of seven stocks. The weights are
equal to 34%, 25%, 20%, 15%, 3%, 2% and 1%. We assume that the volatilities of these
stocks are equal to 15%, 16%, 17%, 18%, 19%, 20% and 21%, whereas the correlation matrix
of stock returns is given by:

ρ =



1.00
0.75 1.00
0.73 0.75 1.00
0.70 0.70 0.75 1.00
0.65 0.68 0.69 0.75 1.00
0.62 0.65 0.63 0.67 0.70 1.00
0.60 0.60 0.65 0.68 0.75 0.80 1.00


As shown by Demey et al. (2010), the ERC portfolio defined by Maillard et al (2010) is a
good candidate for building a risk-based equity index. However, an ERC index does not take
into account liquidity constraints. For instance, we notice that the ERC allocation does not
take into account the size of stocks in Table 10. We may assume that the three last assets
are small cap stocks. In this case, it can be more realistic to distinguish small cap and large
cap stocks. A first idea is to keep the CW weights on the small cap universe and to apply
the ERC on the large cap universe. This solution called LC-ERC (for Large Cap ERC) is
presented in Table 10. We face an issue here, because the ERC portfolio on large cap stocks
does not depend on the full correlation matrix. Therefore, this solution assumes that the
two universes of stocks are not correlated. We have the same issue if we consider the least
squares solution (LS-ERC). A better approach is to find the ERC portfolio by imposing that
the weights of small cap stocks are exactly equal to the corresponding CW weights. Let ΩSC
be the universe of small cap stocks. We have xi = xcw,i if i ∈ ΩSC . This is equivalent to
imposing the following weight constraints:{

0 ≤ xi if i /∈ ΩSC
xcw,i ≤ xi ≤ xcw,i if i ∈ ΩSC

The result corresponds to the C-ERC portfolio. Again, we notice that the property of equal
risk contribution is satisfied at the global level for large cap stocks, contrary to LC-ERC
and LS-ERC portfolios.

Table 10: Volatility breakdown (in %) of constrained ERC portfolios

Asset CW ERC LC-ERC LS-ERC C-ERC
xi RC?i xi RC?i xi RC?i xi RC?i xi RC?i

1 34.00 32.08 17.22 14.29 25.81 23.39 26.62 24.23 25.87 23.46
2 25.00 24.82 15.90 14.29 24.06 23.44 24.20 23.63 24.07 23.46
3 20.00 20.92 14.78 14.29 22.44 23.44 22.09 23.08 22.46 23.46
4 15.00 16.01 13.83 14.29 21.69 23.57 21.09 22.89 21.59 23.46
5 3.00 3.10 13.17 14.29 3.00 3.10 3.00 3.10 3.00 3.10
6 2.00 2.03 12.86 14.29 2.00 2.02 2.00 2.02 2.00 2.02
7 1.00 1.05 12.23 14.29 1.00 1.05 1.00 1.05 1.00 1.05

σ (x) 14.50 15.23 14.68 14.66 14.68
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4.2 Managing the portfolio turnover
On page 18, we have considered a dynamic allocation and imposed some constraints in
order to control the turnover of the portfolio. For that, we have used lower and upper
bounds in order to impose a maximum deviation between the current allocation and the
new allocation. This is a way of controlling the turnover. However, we can directly impose
a turnover control. Let x0 be the current allocation. The two-way turnover of Portfolio x
with respect to Portfolio x0 is defined by:

τ (x | x0) =
n∑
i=1
|xi − x0,i|

= ‖x− x0‖1

It corresponds to the `1-norm of x with respect to the centroid vector x0. Therefore, the
corresponding Lagrange function is:

L (x;λ) = R (x)− λ
n∑
i=1

bi ln xi + 1Ω (x)

where Ω = {x ∈ R : τ (x | x0) ≤ τ?} and τ? is the turnover limit. If we use the previous
algorithms, the only difficulty is calculating the proximal operator13 of g (x) = 1Ω (x):

proxg (x) = proxf (x− x0) + x0

where f (x) = 1Ω′ (x) and Ω′ = {x ∈ R : ‖x‖1 ≤ τ?}. Finally, we deduce that:

proxg (x) = x− proxτ? max (|x− x0|)� sign (x− x0)

where proxλmax (v) is the proximal operator given by Equation (24) on page 31.
We consider the example of multi-asset allocation on page 20. Let us assume that the

current allocation is a 50/50 asset mix policy, where the weight of each asset class is 12.5%.
In Table 11, we have reported the solution for different turnover limits τ?. If the turnover
limit is very low, the optimized RB portfolio is close to the current allocation. We verify
that the optimized portfolio tends to the ERC portfolio when we increase the turnover limit.

Table 11: Constrained RB portfolios (in %) with turnover control

Asset τ?

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
1 12.50 14.86 17.28 19.68 22.01 24.28 26.58 26.83
2 12.50 15.14 17.72 20.32 22.99 25.72 28.42 28.68
3 12.50 12.50 12.50 12.50 12.50 12.50 11.65 11.41
4 12.50 12.50 12.50 12.50 12.50 11.50 9.90 9.80
5 12.50 11.20 9.70 8.49 7.27 6.28 5.66 5.61
6 12.50 12.02 10.36 9.02 7.69 6.63 5.95 5.90
7 12.50 12.50 11.72 10.16 8.66 7.47 6.71 6.66
8 12.50 9.28 8.22 7.33 6.39 5.62 5.14 5.11

τ (x? | x0) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 61.02

13We use the properties of proximal operators described in Appendix A.2 on page 29.
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5 Discussion and limitations of constrained risk budget-
ing portfolios

In this section, we discuss the concept of constrained risk budgeting allocation, and shows
that it is not natural and has some limitations.

5.1 Coherent risk measures and the homogeneity property
Many people believe that the risk budgeting allocation is only related to the Euler decom-
position:

R (x) =
n∑
i=1

xi
∂R (x)
∂ xi

implying that the risk measure is “convex”. However, this concept is not always well-defined,
and is often confused with the concept of coherent risk measure. Following Artzner et al.
(1999), a risk measure R (x) is said to be coherent if it satisfies the following properties:

1. Subadditivity
R (x1 + x2) ≤ R (x1) +R (x2)

The risk of two portfolios should be less than adding the risk of the two separate
portfolios.

2. Homogeneity
R (λx) = λR (x) if λ ≥ 0

Leveraging or deleveraging of the portfolio increases or decreases the risk measure in
the same magnitude.

3. Monotonicity
if x1 ≺ x2, then R (x1) ≥ R (x2)

If Portfolio x2 has a better return than Portfolio x1 under all scenarios, risk measure
R (x1) should be higher than risk measure R (x2).

4. Translation invariance

if m ∈ R, then R (x+m) = R (x)−m

Adding a cash position of amount m to the portfolio reduces the risk by m.

Föllmer and Schied (2002) propose replacing the homogeneity and subadditivity conditions
by a weaker condition called the convexity property:

R (λx1 + (1− λ)x2) ≤ λR (x1) + (1− λ)R (x2)

This condition means that diversification should not increase the risk. Saying that the
risk measure is convex is ambiguous. For some people, this means that R (x) satisfies
the convexity property of Föllmer and Schied (2002), while for other people, this means
that R (x) satisfies the Euler decomposition. It is true that these two concepts are related
(Tasche, 2008), but they recover two different things (Kalkbrener, 2005). First, there is a
confusion between the Euler decomposition and the Euler allocation principle (Tasche, 2008).
Second, the Euler allocation principle does make sense only if the risk measure is subadditive
(Kalkbrener, 2005). But another property is very important. Roncalli (2015) shows that
risk budgeting is valid only if the homogeneity property is satisfied — R (λx) = λR (x)
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— because this property ensures that there is a solution and the solution is unique. By
definition, this property is related to the scaling property of the RB portfolio when there
are no constraints. When we impose some constraints, it is obvious that the homogeneity
property is valid only if the constraints Ω are compatible with the scaling property. This is
not generally true except for some special cases. However, we don’t need the homogeneity
property to be satisfied for all values λ ≥ 0. We need the homogeneity property to be met
for a range of λ around the unconstrained risk budgeting portfolio. This is why imposing
tight constraints can lead to a numerical solution without knowing if it corresponds to the
true constrained risk budgeting portfolio.

5.2 The scaling puzzle
We consider the example given on page 20. If we consider the optimized portfolio subject to
the constraint

∑8
i=5 xi ≥ 30%, we may think that it is equivalent to the optimized portfolio

subject to the constraint
∑4
i=1 xi ≤ 70%. Results are given in Table 12, when we use

the equally-weighted portfolio as the starting value x(0) in the ADMM algorithms. It is
surprising to obtain two different solutions. Nevertheless, they are very close. If we do the
same exercise with a minimum allocation of 40% in the equity asset class, the two solutions
are very different (see columns 6 and 8 in Table 12). The problem is that we assume that the
constraint

∑n
i=1 xi = 1 is managed by the set Ω. This is not the case, because the constraint∑n

i=1 xi = 1 is managed by the Lagrange multiplier λ associated to the logarithmic barrier.
Here, we face an important issue called the scaling compatibility problem. This means that a
solution is acceptable if and only if the constraints Ω are “compatible” with the homogeneity
property14.

Table 12: Illustration of the scaling puzzle∑8
i=5 xi ≥ 30% X∑4
i=1 xi ≤ 70% X∑8
i=5 xi ≥ 40% X∑4
i=1 xi ≤ 60% X

Asset xi RC?i xi RC?i xi RC?i xi RC?i
1 25.78 8.64 23.39 6.50 24.09 4.35 18.73 2.01
2 27.41 8.64 24.34 6.11 25.09 4.35 19.08 1.68
3 9.51 8.64 12.46 10.98 6.57 4.35 12.48 7.84
4 7.29 8.64 9.81 12.07 4.24 4.35 9.71 10.43
5 7.06 15.91 7.30 16.09 8.74 18.59 9.82 19.51
6 7.71 16.58 7.66 16.09 10.75 21.87 10.27 19.51
7 9.23 18.14 8.46 16.09 14.09 27.32 11.15 19.51
8 6.00 14.82 6.57 16.09 6.42 14.82 8.76 19.51

σ (x) (in %) 5.20 5.43 5.98 6.56
L (x?;λ?) (in %) 13.29 20.86 10.68 28.27
Global minimum X X

How do we explain these results? The first reason is the choice of the starting value for
initializing the algorithm. It is obvious that the bisection algorithm takes a road that depends
on the initialization step. However, this reason is not the primary answer, because we observe

14For example, Ω = {x ∈ Rn : x2 ≥ 2x1} is compatible with the scaling property.
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that we converge to the same solution whatever the starting value or the algorithm when
we consider box or pointwise constraints. In fact, the main reason is the scaling property.
In this case, the convergence path is crucial, because we can obtain local minima.

When the constraints are incompatible with the homogeneity property of the risk measure
R (x), we may wonder if one solution is better than the others. In order to answer this
question, we recall that the numerical algorithms solve the minimization problem x? (λ) =
arg minL (x;λ) where:

L (x;λ) = R (x)− λ
n∑
i=1

bi ln xi + 1Ω (x)

The idea is then to calculate L (x? (λ?) ;λ?) for the different solutions and to take the solution
that gives the lowest value. In Table 12, the first and third portfolios are the best solutions.
They have the lowest volatility and Lagrange function.

Remark 10 Let us assume that the set of constraints includes the standard simplex: S ⊂ Ω.
By construction, the sum of weights is always equal to 1 whatever the value of the Lagrange
multiplier λ:

n∑
i=1

x?i (Ω, λ) = 1

It gives the impression that there are two solutions. However, there is only one solution
which corresponds to the portfolio with the lowest risk measure.

6 Conclusion
In this paper15, we propose an approach to find the risk budgeting portfolio when we impose
some constraints. The underlying idea is to consider the logarithmic barrier problem and to
use recent optimization algorithms in order to find the numerical solution. In particular, we
use cyclical coordinate descent (CCD), alternative direction method of multipliers (ADMM),
proximal operators and Dykstra’s algorithm.

We provide different examples that are focused on the ERC portfolio. This portfolio
is very interesting since it imposes the same risk contribution between the assets of the
investment universe. We may then wonder what does an ERC portfolio mean when we
impose some constraints. Most of the times, we observe that the ERC property continues to
be satisfied for the assets that are not impacted by the constraints. This type of approach
is very appealing when we would like to manage the liquidity of a portfolio, the small cap
bias of risk-based indices or the turnover of a risk parity fund.

This study also highlights the importance of the homogeneity property of RB portfolios.
Roncalli (2015) has already pointed out that the risk measure must be coherent, which
can be incompatible when imposing constraints. The homogeneity property really asks
the question of the compatibility between risk budgeting allocation and imposing some
constraints. However, even if the calibration of the Lagrange multiplier λ remains an issue
in some cases, our approach extends the optimization framework defined by Richard and
Roncalli (2015), and reinforces that idea that risk budgeting and risk minimization are highly
connected.

15This aim of this paper is also to help to popularize large-scale optimization algorithms that are very
popular in machine learning, but are not well-known in finance. However, we think that they are relevant
for many financial applications, in particular for portfolio optimization. Our paper which is focused on
risk-budgeting optimization can then be seen as a companion work of Bourgeron et al. (2018) which focuses
on mean-variance optimization.
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Appendix

A Optimization algorithms
A.1 ADMM algorithm
The alternating direction method of multipliers (ADMM) is an algorithm introduced by
Gabay and Mercier (1976) to solve problems which can be expressed as16:

{x?, z?} = arg min f (x) + g (z) (18)
s.t. Ax+Bz − c = 0

where A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and the functions f : Rn → R ∪ {+∞} and g : Rm →
R ∪ {+∞} are proper closed convex functions. Boyd et al. (2011) show that the ADMM
algorithm consists of three steps:

1. The x-update is:

x(k) = arg min
{
f (x) + ϕ

2

∥∥∥Ax+Bz(k−1) − c+ u(k−1)
∥∥∥2

2

}
(19)

2. The z-update is:

z(k) = arg min
{
g (z) + ϕ

2

∥∥∥Ax(k) +Bz − c+ u(k−1)
∥∥∥2

2

}
(20)

3. The u-update is:
u(k) = u(k−1) +

(
Ax(k) +Bz(k) − c

)
(21)

In this approach, u(k) is the dual variable of the primal residual r = Ax+Bz−c and ϕ is the
`2 penalty variable. In the paper, we use the notations f (k) (x) and g(k) (z) when referring
to the objective functions that are defined in the x- and z-steps.

A.2 Proximal operator
In what follows, we give the main results that are summarized in Bourgeron et al. (2017).
Let f : Rn → R ∪ {+∞} be a proper closed convex function. The proximal operator
proxf (v) : Rn → Rn is defined by:

proxf (v) = x? = arg minx
{
f (x) + 1

2 ‖x− v‖
2
2

}
(22)

Since the function fv (x) = f (x) + 1
2 ‖x− v‖

2
2 is strongly convex, it has a unique minimum

for every v ∈ Rn (Parikh and Boyd, 2014). For example, if we consider the logarithmic
barrier function f (x) = − ln x, we have:

f (x) + 1
2 ‖x− v‖

2
2 = − ln x+ 1

2 (x− v)2

= − ln x+ 1
2x

2 − xv + 1
2v

2

16We follow the standard presentation of Boyd et al. (2011) on ADMM.
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The first-order condition is −x−1 + x − v = 0. We obtain two roots with opposite signs.
Since the logarithmic function is defined for x > 0, we deduce that the proximal operator is:

proxf (v) = v +
√
v2 + 4
2

More generally, if we consider f (x) = −λ
∑n
i=1 ln xi, we have:

(
proxf (v)

)
i

= vi +
√
v2
i + 4λ

2

Let us now consider some special cases. If we assume that f (x) = 1Ω (x) where Ω is a
convex set, we have:

proxf (v) = arg minx
{
1Ω (x) + 1

2 ‖x− v‖
2
2

}
= PΩ (v) (23)

where PΩ (v) is the standard projection. Here, we give the results of Parikh and Boyd (2014)
for some simple polyhedra:

Ω PΩ (v)
Ax = B v −A† (Av −B)

a>x = b v −
(
a>v − b

)
‖a‖22

a

c>x 6 d v −
(
c>v − d

)
+

‖c‖22
c

x− 6 x 6 x+ T (v;x−, x+)

where A† is the Moore-Penrose pseudo-inverse of A, and T (v;x−, x+) is the truncation
operator:

T
(
v;x−, x+) = v � 1

{
x− 6 v 6 x+}+

x− � 1
{
v < x−

}
+

x+ � 1
{
v > x+}

In the case of complex polyhedra, the reader can find analytical formulas and numerical
algorithms in Parikh and Boyd (2014), and Combettes and Pesquet (2011).

We also have:

x? = arg min 1
2 ‖x− v‖

2
2

s.t. x ∈ Ω

If we define Ω as follows:

Ω =
{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}

we obtain:

x? = arg min 1
2x
>x− v>x

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+
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Imposing linear constraints is then equivalent to solving a standard QP problem.
We now consider the case of norm functions. For that, we need a preliminary result. In

the case of the pointwise maximum function f (x) = max x, we have:

proxλf (v) = min (v, s?) (24)

where s? is the solution of the following equation:

s? =
{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}

If we assume that f (x) = ‖x‖p, we obtain17:

p proxλf (v)
p = 1 Sλ (v) = (|v| − λ1)+ � sign (v)

p = 2
(

1− 1
max (λ, ‖v‖2)

)
v

p =∞ proxλmax (|v|)� sign (v)

An important property of the proximal operator is the Moreau decomposition theorem:

proxf (v) + proxf∗ (v) = v

where f∗ is the convex conjugate of f . If f (x) is a `p-norm function, then f∗ (x) = 1Bp
(x)

where Bp is the `p unit ball. Since we have proxf∗ (v) = PBp
(v), we deduce that:

proxf (v) + PBp (v) = v

More generally, we have:
proxλf (v) + λPBp

( v
λ

)
= v

It follows that the projection on `p ball can be deduced from the proximal operator of the
`p-norm function. Let Bp (c, λ) =

{
x ∈ Rn : ‖x− c‖p ≤ λ

}
be the `p ball with center c and

radius λ. We obtain:

p PBp(0,λ) (v)
p = 1 v − proxλmax (|v|)� sign (v)
p = 2 v − proxλ‖·‖2

(|v|)
p =∞ T (v;−λ, λ)

In the case where the center c is not equal to 0, we consider the translation property:

proxg (v) = proxf (v + c)− c

where g (x) = f (x+ c). Since we have the equivalence Bp (0, λ) = {x ∈ Rn : f (x) ≤ λ}
where f (x) = ‖x‖p, we deduce that:

PBp(c,λ) (v) = PBp(0,λ) (v − c) + c

17The proximal operator Sλ (v) is known as the soft thresholding operator. In particular, it is used for
solving lasso regression problems (Friedman et al., 2010).
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A.3 Dykstra’s algorithm
We consider the following proximal problem:

x? = proxf (v)

where f (x) = 1Ω (x) and:
Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

The solution can be found thanks to Dykstra’s algorithm (Dykstra, 1983; Bauschke and
Borwein, 1994), which consists in the following two steps until convergence:

1. The x-update is:
x(k) = PΩmod(k,m)

(
x(k−1) + z(k−m)

)
2. The z-update is:

z(k) = x(k−1) + z(k−m) − x(k)

where x(0) = v, z(k) = 0 for k < 0 and mod (k,m) denotes the modulo operator taking
values in {1, . . . ,m}.

Let us consider the case Ω = {x ∈ Rn : Cx ≤ D} where the number of inequality con-
straints is equal to m. We can write:

Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

where Ωj =
{
x ∈ Rn : c>(j)x ≤ d(j)

}
, c>(j) corresponds to the jth row of C and d(j) is the

jth element of D. We follow Tibshirani (2017) to define the corresponding algorithm. In
particular, we introduce two iteration indices j and k. The index j refers to the constraint
number, whereas the index k refers to the main loop. Algorithm 5 describes the Dykstra’s
approach for solving this proximal problem.

If we define Ω as follows:

Ω =
{
x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}

we decompose Ω as the intersection of three basic convex sets:

Ω = Ω1 ∩ Ω2 ∩ Ω3

where Ω1 = {x ∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}.
Using Dykstra’s algorithm is equivalent to formulating Algorithm 6.

Remark 11 An alternative approach is to write the constraints in the following way18:

Ω = {x ∈ Rn : C?x ≤ D?}

where C? = (A,−A,C,−In, In) and D? = (B,−B,D,−x−, x+). Therefore, we can use
Algorithm 5 to find the solution.

18We use the following properties:

Ax = B ⇔ Ax ≤ B and Ax ≥ B

and:
x− ≤ x ≤ x+ ⇔ −x ≤ −x− and x ≤ x+
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Algorithm 5 Dykstra’s algorithm for solving the proximal problem with inequality con-
straints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω =
{x ∈ Rn : Cx ≤ D}
We initialize x(0)

m ← v
We set z(0)

1 ← 0, . . . , z(0)
m ← 0

We note kmax the maximum number of iterations
for k = 1 : kmax do
x

(k)
0 ← x

(k−1)
m

for j = 1 : m do
The x-update is:

x
(k)
j = PΩj

(
x

(k)
j−1 + z

(k−1)
j

)
= x

(k)
j−1 + z

(k−1)
j −

(
c>(j)x

(k)
j−1 + c>(j)z

(k−1)
j − d(j)

)
+∥∥c(j)∥∥2

2

c(j)

The z-update is:
z

(k)
j = x

(k)
j−1 + z

(k−1)
j − x(k)

j

end for
if x(k)

m = x
(k−1)
0 then

Break
end if

end for
return x? ← x

(k)
m

A.4 Proximal operator of the risk budgeting logarithmic barrier
We have:

z(k) = arg min g(k) (z)

where:

g(k) (z) = g (z) + ϕ

2

∥∥∥x(k) − z + u(k−1)
∥∥∥2

2

= −λ
n∑
i=1

bi ln zi + ϕ

2

n∑
i=1

(
x

(k)
i − zi + u

(k−1)
i

)2

=
n∑
i=1

(
ϕ

2

(
x

(k)
i − zi + u

(k−1)
i

)2
− λbi ln zi

)
The first-order condition is:

∂ g(k) (z)
∂ zi

= −ϕ
(
x

(k)
i − zi + u

(k−1)
i

)
− λbi

1
zi

= 0

We deduce that z(k)
i is the solution of the quadratic equation:{

ϕz2
i − ϕ

(
x

(k)
i + u

(k−1)
i

)
zi − λbi = 0

zi > 0
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Algorithm 6 Dykstra’s algorithm for solving the proximal problem with general linear
constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω =
{x ∈ Rn : Ax = B,Cx ≤ D,x− ≤ x ≤ x+}
We initialize x(0)

m ← v
We set z(0)

1 ← 0, z(0)
2 ← 0 and z

(0)
3 ← 0

We note kmax the maximum number of iterations
for k = 1 : kmax do
x

(k)
0 ← x

(k−1)
m

For the set Ω1, we have:{
x

(k)
1 ← x

(k)
0 + z

(k−1)
1 −A†

(
Ax

(k)
0 +Az

(k−1)
1 −B

)
z

(k)
1 ← x

(k)
0 + z

(k−1)
1 − x(k)

1

For the set Ω2, we have19: {
x

(k)
2 ← PΩ2

(
x

(k)
1 + z

(k−1)
2

)
z

(k)
2 ← x

(k)
1 + z

(k−1)
2 − x(k)

2

For the set Ω3, we have:{
x

(k)
3 ← T

(
x

(k)
2 + z

(k−1)
3 ;x−, x+

)
z

(k)
3 ← x

(k)
2 + z

(k−1)
3 − x(k)

3

if x(k)
3 = x

(k)
0 then

Break
end if

end for
return x? ← x

(k)
3

We have:

∆ = ϕ2
(
x

(k)
i + u

(k−1)
i

)2
+ 4ϕλbi

Since ∆ > 0 and −λϕbi < 0, we have two roots with opposite signs. Therefore, the solution
is equal to:

z
(k)
i =

ϕ
(
x

(k)
i + u

(k−1)
i

)
+
√
ϕ2
(
x

(k)
i + u

(k−1)
i

)2
+ 4ϕλbi

2ϕ

A.5 CCD algorithm with separable constraints

The coordinate update proposed by Nesterov (2012) and Wright (2015) is:

x?i = arg min (x− xi) gi + 1
2η (x− xi)2 + ξ · 1Ωi

(xi)

19This step is done using Algorithm 5.
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where ξ is a positive scalar, η > 0 is the stepsize of the gradient descent and gi is the
first-derivative of the function with respect to xi:

gi = −πi + c
(Σx)i√
x>Σx

− λ bi
xi

The objective function is equivalent to:

(∗) = (x− xi) gi + 1
2η (x− xi)2 + ξ · 1Ωi

(xi)

= 1
2η

(
(x− xi)2 + 2 (x− xi) ηgi

)
+ ξ · 1Ωi

(xi)

= 1
2η (x− xi + ηgi)2 + ξ · 1Ωi (xi)−

η

2g
2
i

By taking ξ = η−1, we deduce that:

x?i = arg min1Ωi
(xi) + 1

2 ‖x− (xi − ηgi)‖2

= proxψ (xi − ηgi)

where ψ (x) = 1Ωi
(x).

A.6 Accelerated bisection algorithm
The classic bisection algorithm consists in calculating the solution x? (λ) = arg minL (x;λ)
and updating the bounds of the interval [aλ, bλ] that contains the solution λ? such that
n∑
i=1

x? (λ) = 1. One of the issues is that x? (λ) is obtained by an optimization algorithm and

is not an analytical formula. This means that we can write:

x?
(
λ;x(0)

)
= arg minL

(
x;λ, x(0)

)
where x(0) is the starting value of the ADMM or CCD algorithm. Therefore, we can update
the starting value x(0) of the algorithm at each iteration of the bisection method. This helps
to accelerate the convergence of the x-update. In practice, we can replace Algorithm 1 by
Algorithm 7.

A.7 Adaptive penalization parameter
The convergence of the ADMM algorithm holds regardless of the value of the penalization
parameter ϕ > 0. But the choice of ϕ affects the speed of convergence. In practice, the
penalization parameter ϕ may be changed at each iteration, implying that ϕ is replaced by
ϕ(k). This may improve the convergence and make the performance of the ADMM algorithm
less dependent of the initial choice ϕ(0). To update ϕ(k) in practice, He et al. (2000) and
Wang and Liao (2001) provide a simple and efficient scheme. Let r(k) = Ax(k) + Bz(k) − c
and s(k) = ϕA>B

(
z(k) − z(k−1)) be the primal and dual residual variables (Boyd et al.,

2011). On the one hand, the x and z-updates essentially comes from placing a penalty on∥∥r(k)
∥∥2

2. As a consequence, if ϕ(k) is large,
∥∥r(k)

∥∥2
2 tends to be small. On the other hand,

s(k) depends linearly on ϕ. As a consequence, if ϕ(k) is small,
∥∥s(k)

∥∥2
2 is small and

∥∥r(k)
∥∥2

2
may be large. To keep

∥∥r(k)
∥∥2

2 and
∥∥s(k)

∥∥2
2 within a factor µ, one may consider the following

scheme:
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Algorithm 7 Accelerated bisection method
The goal is to compute the optimal Lagrange multiplier λ? and the solution x? (S,Ω)
We consider two scalars aλ and bλ such that aλ < bλ and λ? ∈ [aλ, bλ]
We note ελ the convergence criterion of the bisection algorithm (e.g. 10−8)
We note x(0) the starting value of the ADMM/CCD algorithm
repeat

We calculate λ = aλ + bλ
2

We compute x?
(
λ;x(0)) the solution of the minimization problem:

x?
(
λ;x(0)

)
= arg minL

(
x;λ, x(0)

)
if
∑n
i=1 x

?
i

(
λ;x(0)) < 1 then

aλ ← λ
else
bλ ← λ

end if
x(0) ← x?

(
λ;x(0))

until
∣∣∣∣ n∑
i=1

x?i
(
λ;x(0))− 1

∣∣∣∣ ≤ ελ
return λ? ← λ and x? (S,Ω)← x?

(
λ?;x(0))

1. If
∥∥r(k)

∥∥2
2 > µ

∥∥s(k)
∥∥2

2, the ϕ-update is: ϕ(k+1) ← τϕ(k)

u(k+1) ← u(k+1)

τ

2. If
∥∥s(k)

∥∥2
2 > µ

∥∥r(k)
∥∥2

2, we have: ϕ(k+1) ← ϕ(k)

τ ′
u(k+1) ← τ ′u(k+1)

3. Otherwise, the penalization parameter remains the same ϕ(k+1) ← ϕ(k), implying that
we do not rescale the dual variable u(k+1).

The previous scheme corresponds to the ϕ-update and must be placed after the u-update of
the ADMM algorithm. In practice, we use the following default values: ϕ(0) = 1, u(0) = 0,
µ = 106 and τ = τ ′ = 2.

B Implementation
A Python implementation is available on the following webpage:

https://github.com/jcrichard
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