Thierry Roncalli

Introduction to Risk Parity and Budgeting

Introduction

The death of Markowitz optimization?

For a long time, investment theory and practice has been summarized as follows. The capital asset pricing model stated that the market portfolio is optimal. During the 1990s, the development of passive management confirmed the work done by William Sharpe. At that same time, the number of institutional investors grew at an impressive pace. Many of these investors used passive management for their equity and bond exposures. For asset allocation, they used the optimization model developed by Harry Markowitz, even though they knew that such an approach was very sensitive to input parameters, and in particular, to expected returns (Merton, 1980). One reason is that there was no other alternative model. Another reason is that the Markowitz model is easy to use and simple to explain. For expected returns, these investors generally considered long-term historical figures, stating that past history can serve as a reliable guide for the future. Management boards of pension funds were won over by this scientific approach to asset allocation.

The first serious warning shot came with the dot-com crisis. Some institutional investors, in particular defined benefit pension plans, lost substantial amounts of money because of their high exposure to equities (Ryan and Fabozzi, 2002). In November 2001, the pension plan of The Boots Company, a UK pharmacy retailer, decided to invest 100% in bonds (Sutcliffe, 2005). Nevertheless, the performance of the equity market between 2003 and 2007 restored confidence that standard financial models would continue to work and that the dot-com crisis was a non-recurring exception. However, the 2008 financial crisis highlighted the risk inherent in many strategic asset allocations. Moreover, for institutional investors, the crisis was unprecedentedly severe. In 2000, the internet crisis was limited to large capitalization stocks and certain sectors. Small capitalizations and value stocks were not affected, while the performance of hedge funds was flat. In 2008, the subprime crisis led to a violent drop in credit strategies and asset-backed securities. Equities posted negative returns of about -50%. The performance of hedge funds and alternative assets was poor. There was also a paradox. Many institutional investors diversified their portfolios by considering several asset classes and different regions. Unfortunately, this diversification was not enough to protect them. In

the end, the 2008 financial crisis was more damaging than the dot-com crisis. This was particularly true for institutional investors in continental Europe, who were relatively well protected against the collapse of the internet bubble because of their low exposure to equities. This is why the 2008 financial crisis was a deep trauma for world-wide institutional investors.

Most institutional portfolios were calibrated through portfolio optimization. In this context, Markowitz's modern portfolio theory was strongly criticized by professionals, and several journal articles announced the death of the Markowitz model¹. These extreme reactions can be explained by the fact that diversification is traditionally associated with Markowitz optimization, and it failed during the financial crisis. However, the problem was not entirely due to the allocation method. Indeed, much of the failure was caused by the input parameters. With expected returns calibrated to past figures, the model induced an overweight in equities. It also promoted assets that were supposed to have a low correlation to equities. Nonetheless, correlations between asset classes increased significantly during the crisis. In the end, the promised diversification did not occur.

Today, it is hard to find investors who defend Markowitz optimization. However, the criticisms concern not so much the model itself but the way it is used. In the 1990s, researchers began to develop regularization techniques to limit the impact of estimation errors in input parameters and many improvements have been made in recent years. In addition, we now have a better understanding of how this model works. Moreover, we also have a theoretical framework to measure the impact of constraints (Jagannathan and Ma, 2003). More recently, robust optimization based on the lasso approach has improved optimized portfolios (DeMiguel et al., 2009). So the Markowitz model is certainly not dead. Investors must understand that it is a fabulous tool for combining risks and expected returns. The goal of Markowitz optimization is to find arbitrage factors and build a portfolio that will play on them. By construction, this approach is an aggressive model of active management. In this case, it is normal that the model should be sensitive to input parameters (Green and Hollifield, 1992). Changing the parameter values modifies the implied bets. Accordingly, if input parameters are wrong, then arbitrage factors and bets are also wrong, and the resulting portfolio is not satisfied. If investors want a more defensive model, they have to define less aggressive parameter values. This is the main message behind portfolio regularization. In consequence, reports of the death of the Markowitz model have been greatly exaggerated, because it will continue to be used intensively in active management strategies. Moreover, there are no other serious and powerful models to take into account return forecasts.

ii

¹See for example the article "Is Markowitz Dead? Goldman Thinks So" published in December 2012 by AsianInvestor.

The rise of risk parity portfolios

There are different ways to obtain less aggressive active portfolios. The first one is to use less aggressive parameters. For instance, if we assume that expected returns are the same for all of the assets, we obtain the minimum variance (or MV) portfolio. The second way is to use heuristic methods of asset allocation. The term 'heuristic' refers to experience-based techniques and trialand-error methods to find an acceptable solution, which does not correspond to the optimal solution of an optimization problem. The equally weighted (or EW) portfolio is an example of such non-optimized 'rule of thumb' portfolio. By allocating the same weight to all the assets of the investment universe, we considerably reduce the sensitivity to input parameters. In fact, there are no active bets any longer. Although these two allocation methods have been known for a long time, they only became popular after the collapse of the internet bubble.

Risk parity is another example of heuristic methods. The underlying idea is to build a balanced portfolio in such a way that the risk contribution is the same for different assets. It is then an equally weighted portfolio in terms of risk, not in terms of weights. Like the minimum variance and equally weighted portfolios, it is impossible to date the risk parity portfolio. The term risk parity was coined by Qian (2005). However, the risk parity approach was certainly used before 2005 by some CTA and equity market neutral funds. For instance, it was the core approach of the All Weather fund managed by Bridgewater for many years (Dalio, 2004). At this point, we note that the risk parity portfolio is used, because it makes sense from a practical point of view. However, it was not until the theoretical work of Maillard *et al.* (2010), first published in 2008, that the analytical properties were explored. In particular, they showed that this portfolio exists, is unique and is located between the minimum variance and equally weighted portfolios.

Since 2008, we have observed an increasing popularity of the risk parity portfolio. For example, Journal of Investing and Investment and Pensions Europe (IPE) ran special issues on risk parity in 2012. In the same year, The Financial Times and Wall Street Journal published several articles on this topic². In fact today, the term risk parity covers different allocation methods. For instance, some professionals use the term risk parity when the asset weight is inversely proportional to the asset return volatility. Others consider that the risk parity portfolio corresponds to the equally weighted risk contribution (or ERC) portfolio. Sometimes, risk parity is equivalent to a risk budgeting (or RB) portfolio. In this case, the risk budgets are not necessarily the same for all of the assets that compose the portfolio. Initially, risk parity

iii

² "New Allocation Funds Redefine Idea of Balance" (February 2012), "Same Returns, Less Risk" (June 2012), "Risk Parity Strategy Has Its Critics as Well as Fans" (June 2012), "Investors Rush for Risk Parity Shield" (September 2012), etc.

only concerned a portfolio of bonds and equities. Today, risk parity is applied to all investment universes. Nowadays, risk parity is a *marketing term* used by the asset management industry to design a portfolio based on risk budgeting techniques.

More interesting than this marketing operation is the way risk budgeting portfolios are defined. Whereas the objective of Markowitz portfolios is to reach an expected return or to target ex-ante volatility, the goal of risk parity is to assign a risk budget to each asset. Like for the other heuristic approaches, the performance dimension is then absent and the risk management dimension is highlighted. In addition, this last point is certainly truer for the risk parity approach than for the other approaches. We also note that contrary to minimum variance portfolios, which have only seduced equity investors, risk parity portfolios concern not only different traditional asset classes (equities and bonds), but also alternative asset classes (commodities and hedge funds) and multi-asset classes (stock/bond asset mix policy and diversified funds). By placing risk management at the heart of these different management processes, risk parity represents a substantial break with respect to the previous period of Markowitz optimization. Over the last decades, the main objective of institutional investors was to generate performance well beyond the riskfree rate (sometimes approaching double-digit returns). After the 2008 crisis, investors largely revised their expected return targets. Their risk aversion level increased and they do not want to experience another period of such losses. In this context, risk management has become more important than performance management.

Nevertheless, like for many other hot topics, there is some exaggeration about risk parity. Although there are people who think that it represents a definitive solution to asset allocation problems, one should remain prudent. Risk parity remains a financial model of investment and its performance also depends on the investor's choice regarding parameters. Choosing the right investment universe or having the right risk budgets is as important as using the right allocation method. As a consequence, risk parity may be useful when defining a reliable allocation, but it cannot free investors of their duty of making their own choices.

About this book

The subject of this book is risk parity approaches. As noted above, risk parity is now a generic term used by the asset management industry to designate risk-based management processes. In this book, the term risk parity is used as a synonym of risk budgeting. When risk budgets are identical, we prefer to use the term ERC portfolio, which is more explicit and less overused by

iv

the investment industry. When we speak of a risk parity fund, it corresponds to an equally weighted risk contribution portfolio of equities and bonds.

This book comprises two parts. The first part is more theoretical. Its first chapter is dedicated to modern portfolio theory whereas the second chapter is a comprehensive guide to risk budgeting. The second part contains four chapters, each of which presents an application of risk parity to a specific asset class. The third chapter concerns risk-based equity indexation, also called smart indexing. In the fourth chapter, we show how risk budgeting techniques can be applied to the management of bond portfolios. The fifth chapter deals with alternative investments, such as commodities and hedge funds. Finally, the sixth chapter applies risk parity techniques to multi-asset classes. The book also contains two appendices. The first appendix provides the reader with technical materials on optimization problems, copula functions and dynamic asset allocation. The second appendix contains 30 tutorial exercises. The relevant solutions are not included in this book, but can be accessed at the following web page³:

http://www.thierry-roncalli.com/riskparitybook.html

This book began with an invitation by Professor Diethelm Würtz to present a tutorial on risk parity at the 6^{th} R/Rmetrics Meielisalp Workshop & Summer School on Computational Finance and Financial Engineering. This seminar is organized every year at the end of June in Meielisalp, Lake Thune, Switzerland. The idea of tutorial sessions is to offer an overview on a specialized topic in statistics or finance. When preparing this tutorial, I realized that I had sufficient material to write a book on risk parity. First of all, I would like to thank Diethelm Würtz and the participants of the Meielisalp Summer School for their warm welcome and the different discussions we had about risk parity. I would also like to thank all of the people who have invited me to academic and professional conferences in order to speak about risk parity techniques and applications since 2008, in particular Yann Braouezec, Rama Cont, Nathalie Columelli, Felix Goltz, Marie Kratz, Jean-Luc Prigent, Fahd Rachidy and Peter Tankov. I would also like to thank Jérôme Glachant and my other colleagues of the Master of Science in Asset and Risk Management program at the Évry University where I teach the course on Risk Parity. I am also grateful to the CRC editorial staff, in particular Sunil Nair, for their support, encouragement and suggestions.

I would also like to thank my different co-authors on this subject, Benjamin Bruder, Pierre Hereil, Sébastien Maillard, Jérôme Teïletche and Guillaume Weisang, my colleagues at Lyxor Asset Management who work or have worked with me on risk parity strategies, in particular Cyrille Albert-Roulhac, Florence Barjou, Cédric Baron, Benjamin Bruder, Zélia Cazalet, Léo Culerier, Raphael Dieterlen, Nicolas Gaussel, Pierre Hereil, Julien Laplante, Guillaume

V

³This web page also provides readers and instructors other materials related to the book (errata, code, slides, etc.).

Lasserre, Sébastien Maillard, François Millet and Jean-Charles Richard. I am also grateful to Abdelkader Bousabaa, Jean-Charles Richard and Zhengwei Wu for their careful reading of the preliminary versions of this book. Special thanks to Zhengwei Wu who has been a helpful and efficient research assistant.

Last but not least, I express my deep gratitude to Théo, Eva, Sarah, Lucie and Nathalie for their support and encouragement during the writing of this book.

Paris, January 2013

Thierry Roncalli

vi

Contents

In	trod	uction			i
Li	List of Figures				xiii
Li	st of	Tables	5		xvii
Li	st of	Symbo	ols and I	Notations	xxi
Ι	Fre	om Po	ortfolio	Optimization to Risk Parity	1
1	Mo 1.1	dern P From 6 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 Practic 1.2.1 1.2.2 1.2.3	ortfolio pptimized The effic 1.1.1.1 1.1.1.2 1.1.1.3 The tang Market of Portfolic The Blac 1.1.5.1 1.1.5.2 1.1.5.3 ce of port Estimati 1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 Designin Regulari 1.2.3.1 1.2.3.2 1.2.3.3	Theory . portfolios to the market portfolio . ient frontier . Introducing the quadratic utility function . Adding some constraints . Analytical solution . analytical solution . gency portfolio . optimization in the presence of a benchmark ck-Litterman model . Computing the implied risk premia . The optimization problem . Numerical implementation of the model . folio optimization . on of the covariance matrix . Empirical covariance matrix estimator . GARCH approach . Factor models . stability issues . stability issues . Stability issues . Danoising the covariance matrix	$\begin{array}{c} 3 \\ 4 \\ 4 \\ 6 \\ 9 \\ 111 \\ 122 \\ 160 \\ 190 \\ 222 \\ 233 \\ 244 \\ 255 \\ 277 \\ 277 \\ 277 \\ 277 \\ 277 \\ 277 \\ 277 \\ 299 \\ 322 \\ 355 \\ 400 \\ 444 \\ 455 \\ 457 \\ 477 \end{array}$
		1.2.4	1.2.3.4 Introduc	Shrinkage methods	49 53

vii

		1.2.4.1	Why regularization techniques are not suffi-	
			$\operatorname{cient} \ldots \ldots$	54
		$1.2.4.2 \\ 1.2.4.3$	How to specify the constraints Shrinkage interpretation of the constrained so-	57
			lution	65
Risk	. Budg	eting A	pproach	71
2.1	Risk al	location	principle	72
	2.1.1	Properti	es of a risk measure	72
		2.1.1.1	Coherency and convexity of risk measures	72
		2.1.1.2	Euler allocation principle	77
	2.1.2	Risk con	tribution of portfolio assets	79
		2.1.2.1	Computing the risk contributions	79
		2.1.2.2	Interpretation of risk contributions	82
	2.1.3	Applicat	ion to non-normal risk measures	84
		2.1.3.1	Non-normal value-at-risk and expected short-	
			fall	84
		2.1.3.2	Historical value-at-risk	92
2.2	Analys	is of risk	budgeting portfolios	97
	2.2.1	Definitio	n of a risk budgeting portfolio	98
		2.2.1.1	The right specification of the RB portfolio .	99
		2.2.1.2	Solving the non-linear system of risk budget-	
			ing contraints	102
	2.2.2	Some pr	operties of the RB portfolio	102
		2.2.2.1	Particular solutions with the volatility risk	
			measure	102
		2.2.2.2	Existence and uniqueness of the RB portfolio	108
	2.2.3	Optimal	ity of the risk budgeting portfolio	113
	2.2.4	Stability	of the risk budgeting approach	116
2.3	Special	l case: the	e ERC portfolio	119
	2.3.1	The two-	-asset case $(n=2)$	119
	2.3.2	The gene	eral case $(n > 2)$	121
	2.3.3	Optimal	ity of the ERC portfolio	123
	2.3.4	Back to	the notion of diversification	125
		2.3.4.1	Diversification index	125
		2.3.4.2	Concentration indices	126
		2.3.4.3	Difficulty of reconciling the different diversifi-	1.0.0
~ (D 1 1 1		cation concepts	128
2.4	Risk b	udgeting	versus weight budgeting	130
	2.4.1	Compari	ng weight budgeting and risk budgeting port-	1.00
		tolios		130
05	2.4.2	New con	struction of the minimum variance portfolio .	131
2.5	Using	risk facto	rs instead of assets	135
	2.5.1	Pittalls o	of the risk budgeting approach based on assets	135
		2.5.1.1	Duplication invariance property	135

viii

 $\mathbf{2}$

			2.5.1.2 2.5.1.3	Polico invariance property Impact of the reparametrization on the asset	137
				universe	138
		2.5.2	Risk dec	omposition with respect to the risk factors	141
		2.5.3	Some illu	strations	144
			2.5.3.1	Matching the risk budgets	144
			2.5.3.2	Minimizing the risk concentration between the	
			0 F 0 0	risk factors	145
			2.5.3.3	Solving the duplication and polico invariance properties	146
тт	٨	nnlia	tions	f the Dick Denity Approach	140
11	\mathbf{A}	ррпса	utions o	i the Risk Farity Approach	149
3	Risł	-Base	d Indexa	tion	151
	3.1	Capita	lization-w	veighted indexation	152
		3.1.1	Theory s	support	152
		3.1.2	Construc	eting and replicating an equity index	153
		3.1.3	Pros and	l cons of CW indices	154
	3.2	Altern	ative-weig	ghted indexation	157
		3.2.1	Desirable	e properties of AW indices	159
		3.2.2	Fundame	ental indexation	160
		3.2.3	Risk-bas	ed indexation	162
			3.2.3.1	The equally weighted portfolio	163
			3.2.3.2	The minimum variance portfolio	164
			3.2.3.3 2.9.2.4	The EBC portfolio	108
			0.2.0.4 2.9.2.5	Comparison of the risk based allocation an	112
			0.2.0.0	proaches	173
	33	Some i	Illustratio	ns	181
	0.0	3.3.1	Simulati	on of risk-based indices	181
		3.3.2	Practical	l issues of risk-based indexation	183
		3.3.3	Findings	of other empirical works	187
			3.3.3.1	What is the best alternative-weighted indexa-	
				tion? \ldots \ldots \ldots \ldots \ldots \ldots \ldots	187
			3.3.3.2	Style analysis of alternative-weighted indexa-	
				tion	189
4	Арр	olicatio	n to Bo	nd Portfolios	191
	4.1	Some i	ssues in b	bond management	191
		4.1.1	Debt-wei	ighted indexation	191
		4.1.2	Yield ver	rsus risk	193
	4.2	Bond 1	portfolio 1	nanagement	194
		4.2.1	Term str	ucture of interest rates	194
		4.2.2	Pricing of	of bonds	197
			4.2.2.1	Without default risk	197

ix

			4.2.2.2 With default risk	200
		4.2.3	Risk management of bond portfolios	203
			4.2.3.1 Using the yield curve as risk factors	204
			4.2.3.2 Taking into account the default risk	209
	4.3	Some	illustrations	215
		4.3.1	Managing risk factors of the yield curve	216
		4.3.2	Managing sovereign credit risk	220
			4.3.2.1 Measuring the credit risk of sovereign bond	
			portfolios	222
			4.3.2.2 Comparing debt-weighted, gdp-weighted and	
			risk-based indexations	231
5	Riel	2 Pari	ty Applied to Alternative Investments	2/3
0	5 1		of commodities	240 244
	0.1	511	Why investing in commodities is different	244
		0.1.1	5 1 1 1 Commodity futures markets	244 944
			5.1.1.2 How to define the commodity rick promium	244
		519	5.1.1.2 How to define the commodity fisk premium .	240 247
		0.1.2	5.1.2.1 Diversification return	241
			5.1.2.2 Comparing EW and EBC partfoliog	247
	59	Hodge	5.1.2.2 Comparing EW and ERC portionos	251
	0.2	5.9.1	Position giging	204
		5.2.1	Portfolio allocation of hodge funds	254
		0.2.2	5.2.2.1 Choosing the risk measure	207
			5.2.2.1 Choosing the fisk measure	200
			5.2.2.2 Comparing End anocations	200
			5.2.2.4 Limiting the turnover	202
			5.2.2.4 Emitting the turnover	200
6	Por	tfolio .	Allocation with Multi-Asset Classes	269
	6.1	Const	ruction of diversified funds	270
		6.1.1	Stock/bond asset mix policy	270
		6.1.2	Growth assets versus hedging assets	273
			6.1.2.1 Are bonds growth assets or hedging assets? .	273
			6.1.2.2 Analytics of these results	277
		6.1.3	Risk-balanced allocation	278
		6.1.4	Pros and cons of risk parity funds	280
	6.2	Long-	term investment policy $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	284
		6.2.1	Capturing the risk premia	285
		6.2.2	Strategic asset allocation	286
			$6.2.2.1 \text{Allocation between asset classes} \dots \dots .$	286
			6.2.2.2 Asset classes or risk factor classes $\ldots \ldots$	288
			6.2.2.3 Allocation within an asset class $\ldots \ldots$	291
		6.2.3	Risk budgeting with liability constraints	294
	6.3	Absol	ute return and active risk parity $\ldots \ldots \ldots \ldots$	294

х

Co	onclu	sion		2
A	Tecl	hnical A	Appendix	3
	A.1	Optimi	zation problems	:
		A.1.1	Quadratic programming problem	-
		A.1.2	Non-linear unconstrained optimization	:
		A.1.3	Sequential quadratic programming algorithm	
		A.1.4	Numerical solutions of the RB problem	
	A.2	Copula	functions	
		A.2.1	Definition and main properties	
		A 2 2	Parametric functions	
		A 2 3	Simulation of copula models	
		11.2.0	A 2.3.1 Distribution approach	
			A 2.3.2 Simulation based on conditional copula func-	
			tions	
		A 2.4	Copulas and risk management	
		A 2 5	Multivariate survival modeling	
	A 3	Dynam	ic portfolio optimization	
	11.0	A 3 1	Stochastic optimal control	
		11.0.1	A 3 1 1 Bellman approach	
			A 3.1.2 Martingale approach	
		A 3 2	Portfolio optimization in continuous-time	
		A 3 3	Some extensions of the Merton model	
		11.0.0	A 3 3 1 Lifestyle funds	
			A 3.3.2 Lifecycle funds	
			A.3.3.3 Liability driven investment	
D	m.	anial Fr		
D	D 1	Fuencia	vercises	•
	D.1	D 1 1	Markowitz antimized nortfoliog	
		D.1.1 D 1 9	Variations on the efficient function	
		D.1.2 D 1 2	Variations on the encient frontier	
		D.1.3 D 1 4	Data coefficient	
		D.1.4		
		B.1.0	Langency portiono	
		B.1.0 D 1 7	Information ratio	ļ
		D.1.(Building a tilted portiono	
		D.1.8		
		Б.1.9 D 1 10	Diack-Litterman model	
		D.1.10	Fortiono optimization with transaction costs	
		B.I.II D 1 10	Impact of constraints on the CAPM theory	
		В.1.12	Generalization of the Jagannathan-Ma shrinkage ap-	
	DO	E	proach	
	Б.2	L'Xercis	Piele and a second	•
		D.2.1	nisk measures	

B.2.2 Weight concentration of a portfolio

xi

	B.2.3	ERC portfolio	353	
	B.2.4	Computing the Cornish-Fisher value-at-risk	354	
	B.2.5	Risk budgeting when risk budgets are not strictly posi-		
		tive	355	
	B.2.6	Risk parity and factor models	356	
	B.2.7	Risk allocation with the expected shortfall risk measure	358	
	B.2.8	ERC optimization problem	359	
	B.2.9	Risk parity portfolios with skewness and kurtosis	360	
B.3	Exercis	ses related to risk parity applications	362	
	B.3.1	Computation of heuristic portfolios	362	
	B.3.2	Equally weighted portfolio	362	
	B.3.3	Minimum variance portfolio	363	
	B.3.4	Most diversified portfolio	365	
	B.3.5	Risk allocation with yield curve factors	366	
	B.3.6	Credit risk analysis of sovereign bond portfolios	368	
	B.3.7	Risk contributions of long-short portfolios	370	
	B.3.8	Risk parity funds	371	
	B.3.9	The Frazzini-Pedersen model	372	
	B.3.10	Dynamic risk budgeting portfolios	374	
Bibliog	Bibliography			
Subject	Subject Index 3			
Author Index				

xii

List of Figures

1.1	Optimized Markowitz portfolios	6
1.2	The efficient frontier of Markowitz	8
1.3	The efficient frontier with some weight constraints	10
1.4	The capital market line	13
1.5	The efficient frontier with a risk-free asset	15
1.6	The efficient frontier with a benchmark	20
1.7	The tangency portfolio with respect to a benchmark	22
1.8	Trading hours of asynchronous markets (UTC time)	30
1.9	Density of the estimator $\hat{\rho}$ with asynchronous returns	31
1.10	Hayashi-Yoshida estimator	33
1.11	Cumulative weight W_m of the IGARCH model	35
1.12	Estimation of the S&P 500 volatility	36
1.13	Density of the uniform correlation estimator	38
1.14	Time horizon of MT, TAA and SAA	41
1.15	Fundamental approach of SAA	42
1.16	Uncertainty of the efficient frontier	46
1.17	Resampled efficient frontier	48
1.18	Weights of penalized MVO portfolios (in %)	54
1.19	PCA applied to the stocks of the FTSE index (June 2012)	56
1.20	Sampling the SX5E and SPX indices	65
2.1	Three budgeting methods with a $30/70$ policy rule \ldots .	72
2.2	Density of the risk contribution estimator \mathcal{RC}_1	90
2.3	Density of the P&L with a skew normal distribution $\ldots \ldots$	97
2.4	Evolution of the weight w^{\star} in the RB portfolio with respect to	
	$b \text{ and } \rho$	104
2.5	Simulation of the weight x_1 when the correlation is constant .	107
2.6	Evolution of the portfolio's volatility with respect to x_3	112
2.7	Location of the ERC portfolio in the mean-variance diagram	
	when the Sharpe ratios are the same and the asset correlations	
	are uniform	124
2.8	Location of the ERC portfolio in the mean-variance diagram	
	when the Sharpe ratios are identical and the asset correlations	
	are not uniform	125
2.9	Geometry of the Lorenz curve	128

xiii

2.10	Convergence of the iterative RB portfolio $x^{(k)}$ to the MV portfolio	134
2.11	Lorenz curve of risk contributions	140
3.1	Lorenz curve of several equity indices (June 29, 2012)	158
3.2	Performance of the RAFI index since January 2000	162
$3.3 \\ 3.4$	Illustration of the diversification effect of AW indices Location of the minimum variance portfolio in the efficient fron-	163
	tier	165
3.5	Weight of the first two assets in AW portfolios (Example 31)	180
3.6	Weight with respect to the asset beta β_i (Example 32)	180
3.7	Concentration statistics of AW portfolios	183
3.8	Concentration statistics of constrained MV and MDP indexa-	
	tions	185
4.1	Term structure of spot and forward interest rates (in %)	196
4.2	PCA factors of the US yield curve (Jan. 2003 – Jun. 2012)	197
4.3	Cash flows of a bond with a fixed coupon rate	198
4.4	Movements of the yield curve	199
4.5	Cash flows of a bond with default risk	201
4.6	Evolution of the zero-coupon interest rates and the intensity	
	(June 2010 – June 2012)	206
4.7	Loss distribution of the bond portfolio with and without default	010
4.0		210
4.8	Risk factor contributions of the law short $Portfolio \#1$	218
4.9	Risk factor contributions of the long-short Portfolio $\#2$	218
4.10	Risk factor contributions of the long-short Portfolio $\#3$	219
4.11	Risk factor contributions of the long-short Portfolio $#4$	219
4.12	P&L of the barbell portfolios due to a YTM variation	221
4.13	Risk factor contributions of the barben portionos $\dots \dots$	221
4.14	Average correlation of credit spreads $(m_{1/0})$	220
4.10	Dynamics of the risk contributions (DEBT-WB indexation)	230
4.10	Dynamics of the risk contributions (DDD1-WD indexation)	202
4.17	Evolution of the weights (DEBT-BB indexation)	236
4 19	Evolution of the weights (GDP-RB indexation)	237
4 20	Dynamics of the credit risk measure (in %)	239
4 21	Evolution of the GIIPS risk contribution (in $\%$)	239
4 22	Simulated performance of the bond indexations	200
4.23	Comparing the dynamic allocation for four countries	241
4.24	Comparison with active management	241
51	Town structure of omide oil futures	945
0.1 E 0	Contorne and hadrondation reconverts	245
0.2 5-2	Simulated performance of FW and FDC commodity perfolice	240 252
0.0	Simulated performance of EW and ERC commodity portionos	- 203

xiv

 5.4 Weights (in %) of ERC HF portfolios	260 261 262 263 263 264 264
 6.1 Asset allocation puzzle of diversification funds	272 273 274 276 276 278 280 283 283 283 286 288
 6.12 Strategic asset allocation in Markowitz framework 6.13 Volatility decomposition of the risk-based S&P 100 indices 6.14 Volatility decomposition of long-short portfolios 6.15 Simulated performance of the S/B risk parity strategies 6.16 Simulated performance of the S/B/C risk parity strategies 	289 292 293 296 296
 A.1 Example of building a bivariate probability distribution with a copula function	309 311 311 313 318 318 329 332 335
A.10 Optimal exposure $\alpha^{(t)}$ (in %) in the LDI portfolio	335

XV

List of Tables

1.1	Solving the ϕ -problem	7
1.2	Solving the unconstrained μ -problem	8
1.3	Solving the unconstrained σ -problem	8
1.4	Solving the σ -problem with weight constraints	10
1.5	Computation of the beta	17
1.6	Computation of the beta with a constrained tangency portfolio	18
1.7	Black-Litterman portfolios	26
1.8	Sensitivity of the MVO portfolio to input parameters	45
1.9	Solutions of penalized mean-variance optimization	53
1.10	Principal component analysis of the covariance matrix Σ	55
1.11	Principal component analysis of the information matrix ${\mathcal I}$	55
1.12	Effect of deleting a PCA factor	57
1.13	Limiting the turnover of MVO portfolios	60
1.14	Sampling the SX5E index with the heuristic algorithm	63
1.15	Sampling the SX5E index with the backward elimination algo-	
	rithm	63
1.16	Sampling the SX5E index with the forward selection algorithm	64
1.17	Minimum variance portfolio when $x_i \ge 10\%$	68
1.18	Minimum variance portfolio when $10\% \le x_i \le 40\%$	69
1.19	Mean-variance portfolio when $10\% \le x_i \le 40\%$ and $\mu^* = 6\%$	69
1.20	MSR portfolio when $10\% \le x_i \le 40\%$	70
2.1	Computation of risk measures $VaR_{\alpha}(x)$ and $ES_{\alpha}(x)$	76
2.2	Risk decomposition of the volatility (a) and $25a$ (b) (b) (b)	81
2.3	Risk decomposition of the value-at-risk	82
2.4	Risk decomposition of the expected shortfall	82
2.5	Sensitivity analysis of the volatility with respect to the factor h	84
2.6	Marginal analysis of the volatility with respect to the factor h	84
2.7	Value-at-risk (in %) when the P&L is skew normal distributed	96
2.8	Statistics (in %) to compute the Cornish-Fisher risk contribu-	
	tions	98
2.9	Risk budgeting portfolio when the risk measure is the expected	
<u>,</u>	shortfall $(\alpha = 95\%)$	99
2.10	Risk budgeting portfolio when the risk measure is the expected	
	shortfall $(\alpha = 99\%)$	100

xvii

xviii

2.11	Weights w^{\star} in the RB portfolio with respect to some values of	
	$b \text{ and } \rho$	103
2.12	RB solutions when the risk budget b_3 is equal to $0 \ldots \ldots$	112
2.13	RB solutions when the risk budgets b_3 and b_4 are equal to 0 .	113
2.14	Implied risk premia when $b = (20\%, 25\%, 40\%, 15\%)$	116
2.15	Implied risk premia when $b = (10\%, 10\%, 10\%, 70\%)$	116
2.16	Sensitivity of the MVO portfolio to input parameters	117
2.17	Sensitivity of the RB portfolio to input parameters	117
2.18	Shrinkage covariance matrix $\tilde{\Sigma}^{(1)}$ associated to the RB portfolio	118
2.19	Shrinkage covariance matrix $\tilde{\Sigma}^{(3)}$ associated to the RB portfolio	119
2.20	Risk contributions of EW, ERC and MV portfolios	121
2.21	Composition of the ERC portfolio	123
2.22	Diversification measures of MV, ERC, MDP and EW portfolios	129
2.23	Risk decomposition of WB, RB and MR portfolios	132
2.24	Weights and risk contributions of the iterative RB portfolio $x^{(k)}$	134
2.25	Risk decomposition of Portfolio #1 with respect to the syn-	
	thetic assets	139
2.26	Risk decomposition of Portfolio #1 with respect to the primary	
	assets	139
2.27	Risk decomposition of Portfolio $#2$ with respect to the syn-	
	thetic assets	139
2.28	Risk decomposition of Portfolio $#2$ with respect to the primary	
	assets	140
2.29	Risk decomposition of the EW portfolio with respect to the	
	assets	143
2.30	Risk decomposition of the EW portfolio with respect to the risk	
	factors	143
2.31	Risk decomposition of the RFP portfolio with respect to the	
	risk factors	144
2.32	Risk decomposition of the RFP portfolio with respect to the	
	assets	145
2.33	Risk decomposition of the balanced RFP portfolio with respect	
	to the risk factors	145
2.34	Risk decomposition of the balanced RFP portfolio with respect	
	to the assets	146
2.35	Balanced RFP portfolios with $x_i \ge 10\%$	146
3.1	Weight and risk concentration of several equity indices (June	
	$29, 2012) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	158
3.2	Unconstrained minimum variance portfolios	166
3.3	Long-only minimum variance portfolios	166
3.4	Composition of the MV portfolio	168
3.5	Composition of the MDP	171
3.6	Weights and risk contributions (Example 26)	175
3.7	Weights and risk contributions (Example 27)	176

3.8	Weights and risk contributions (Example 28)	177
3.9	Weights and risk contributions (Example 29)	178
3 10	Weights and risk contributions (Example 30)	170
0.10	Weights and fisk contributions (Example 50)	100
3.11	Main statistics of AW indexations (Jan. 1993 – Sep. 2012)	182
3.12	Simulated performance of AW portfolios by year (in $\%$)	182
3.13	Annualized monthly turnover of AW portfolios (in $\%$)	184
3.14	Main statistics of constrained MV and MDP indexations (Jan.	
	1993 – Sep. 2012)	185
3 15	Influence of the covariance estimator	187
0.10		101
4.1	Price, yield to maturity and sensitivity of bonds	199
1.2	Impact of a parallel shift of the yield curve on the bond with	100
4.2	finpact of a paramet sint of the yield curve on the bond with	200
4.0	nve-year maturity	200
4.3	Computation of the credit spread \mathfrak{s}	202
4.4	Pricing of the bond	206
4.5	Risk measure and decomposition of the bond exposure	206
4.6	Risk allocation of the bond portfolio	208
4.7	Risk decomposition of the bond portfolio with respect to the	
	PCA factors	208
4.8	Characteristics of the bond portfolio	215
4.0	Normalized risk contributions $\mathcal{P}\ell^*$ of the bond portfolio (in \mathbb{Q})	210
4.9	Normalized fisk contributions \mathcal{K}_i of the bolid portiono (iii 70)	210
4.10	Composition of the barbell portionos	220
4.11	Some measures of country risk (October 2011)	223
4.12	ML estimate of the parameter β_i (Jan. 2008 – Jun. 2012)	224
4.13	Spread $\mathfrak{s}_i(t)$ (in bps)	225
4.14	Estimated values of the volatility $\sigma_i^{\mathfrak{s}}$ (in %)	226
4.15	Market-based parameters (March 1, 2012)	228
4.16	Computing the credit risk measure $\sigma^{\mathfrak{c}}$ for one bond	228
4 17	Credit risk measure of the portfolio with three bonds	228
1.11	Credit risk measure of the portfolio with four bonds	220
4.10	Credit risk measure of the portfolio with four bonds	223
4.19	Vient fisk measure of the portiono with the Italian meta-bond	229
4.20	Weights and risk contribution of the EGBI portfolio $(\ln \%)$.	230
4.21	Weights and risk contribution of the DEBT-WB indexation (in	
	%)	232
4.22	Weights and risk contribution of the GDP-WB indexation (in	
	%)	233
4.23	Risk budgets and weights of the DEBT-RB indexation (in %)	236
4 24	Risk budgets and weights of the GDP-RB indexation (in %)	237
1.21	Main statistics of hand indevations (Ian $2008 - Jun 2012$)	238
4.20	Main statistics of bolid indexations (Jan. 2000 – Jun. 2012) \cdot	200
5.1	Annualized excess return (in %) of commodity futures strate-	
	gies	252
59	Annualized valatility (in %) of commodity futures strategies	252
0.4 E 9	Main statistics of EW and EDC commodity neutrolity is a	202
0.3	Main statistics of EW and EKC commodity portiolios	203
5.4	Calibration of the EMN portfolio	257

 $_{\rm xix}$

E E	Statistics of monthly noturns of hodro fund stratonics	950
0.0	Statistics of monthly returns of nedge fund strategies	209
5.6	Statistics of ERC HF portfolios (Sep. 2006 – Aug. 2012)	259
5.7	Statistics of RFP HF portfolios (Sep. 2006 – Aug. 2012)	265
5.8	Risk decomposition of the current allocation x^0	267
5.9	Risk decomposition of the RB portfolio x^*	267
5.10	Risk decomposition of the constrained RB portfolio $x^{\star}(\delta)$ when	
	$\tau^+ = 5\% \dots $	267
5.11	Risk decomposition of the constrained RB portfolio $x^{\star}(\alpha)$ when	
	$\tau^+ = 5\%$	267
5.12	Bisk decomposition of the constrained BB portfolio $r^*(\delta)$ when	-0.
0.12	$\tau^{\pm} = 20\%$	268
5 19	T = 20/0	200
0.15	$-\pm$ 2007	900
	$\tau^{+} = 20\% \dots \dots \dots \dots \dots \dots \dots \dots \dots $	208
61	Mean and standard deviation of the ar anto risk promium for	
0.1	Weah and standard deviation of the ex-anternsk premium for $\frac{1}{2}$	075
0.0	diversified funds $(\text{in }\%)$	275
6.2	Statistics of diversified and risk parity portfolios	279
6.3	Expected returns and risks for the SAA approach (in %)	287
6.4	Correlation matrix of asset returns for the SAA approach (in $\%$)	288
6.5	Long-term strategic portfolios	290
6.6	Weights of the SAA portfolios	290
6.7	Risk contributions of SAA portfolios with respect to economic	
	factors	291
6.8	Estimate of the loading matrix A (Jan. 1992 – Jun. 2012)	292
6.9	Bisk contributions of risk-based $S\&P$ 100 indices with respect	
0.0	to economic factors $(01\ 1992 - 02\ 2012)$	202
6 10	Statistics of active risk parity strategies	202
0.10	Statistics of active fisk painty strategies	291
A 1	Examples of Archimedean copula functions	312
A 2	Calibration of the lifestyle fund profiles $(T = 10 \text{ years } a_{CD} -$	912
11.4	20%	398
1 9	$C_{\text{olibustion of the lifestule fund puefles}} (T = 10$	540
А.Э	Canoration of the messyle fund promes ($I = 10$ years, $\rho_{S,B} =$	200
	-20%)	328

XX

List of Symbols and Notations

Symbol Description

•	Scalar multiplication	$C\left(t_{m}\right)$	Coupon paid at time t_m
0	Hadamard product:	$\operatorname{cov}\left(X\right)$	Covariance of the random
	$(x \circ y)_i = x_i y_i$		vector X
\otimes	Kronecker product $A \otimes B$	$C_{n}\left(\rho\right)$	Constant correlation ma-
$ \mathcal{E} $	Cardinality of the set \mathcal{E}		trix $(n \times n)$ with $\rho_{i,j} = \rho$
1	Vector of ones	D	Covariance matrix of id-
$\mathbb{1}\left\{\mathcal{A} ight\}$	The indicator function is		iosyncratic risks
	equal to 1 if \mathcal{A} is true, 0	$\det\left(A\right)$	Determinant of the matrix
	otherwise		A
$\mathbb{1}_{\mathcal{A}}\left\{x\right\}$	The characteristic function	$\mathcal{DR}\left(x ight)$	Diversification ratio of
	is equal to 1 if $x \in \mathcal{A}, 0$		portfolio x
	otherwise	\mathbf{e}_i	The value of the vector is
0	Vector of zeros		1 for the row i and 0 else-
$(A_{i,j})$	Matrix A with entry $A_{i,j}$ in		where
	row i and column j	$\mathbb{E}\left[X\right]$	Mathematical expectation
A^{-1}	Inverse of the matrix A		of the random variable X
A^{\top}	Transpose of the matrix A	$\mathcal{E}\left(\lambda ight)$	Exponential probability
A^+	Moore-Penrose pseudo-		distribution with param-
	inverse of the matrix A		eter λ
b	Vector of weights	$\mathrm{ES}_{\alpha}\left(x\right)$	Expected shortfall of port-
	(b_1,\ldots,b_n) for the bench-		folio x at the confidence
	mark b		level α
$B_t\left(T\right)$	Price of the zero-coupon	$f\left(x\right)$	Probability density func-
	bond at time t for the ma-		tion (pdf)
	turity T	$\mathbf{F}\left(x ight)$	Cumulative distribution
β_i	Beta of asset i with respect		function (cdf)
	to portfolio x	${\cal F}$	Vector of risk factors
$\beta_{i}\left(x\right)$	Another notation for the		$(\mathcal{F}_1,\ldots,\mathcal{F}_m)$
	symbol β_i	\mathcal{F}_{j}	Risk factor j
$\beta \left(x \mid b \right)$	Beta of portfolio x when	$F_t(T)$	Instantaneous forward rate
	the benchmark is b		at time t for the maturity
$C \text{ (or } \rho)$	Correlation matrix		T
\mathbf{C}	Copula function	$F_t(T,m)$	Forward interest rate at

xxi

	time t for the period	Ω	Covariance
0	$\begin{bmatrix} I, I + m \end{bmatrix}$		lactors
<i>y</i>	Gini coefficient $(-1, 0, 1)$	π	Vector of
γ	Parameter $\gamma = \phi^{-1}$ of the	~	(π_1,\ldots,π_n)
	Markowitz γ -problem	π	Vector of in
γ_1	Skewness		mia $(\tilde{\pi}_1,\ldots)$
γ_2	Excess kurtosis	π_i	Risk premi
Н	Herfindahl index		$\pi_i = \mu_i - r$
i	Asset i	$\tilde{\pi}_i$	Implied risk
I_n	Identity matrix of dimen-		set i
	sion n	$\pi(y \mid x)$	Risk prem
$\operatorname{IR}\left(x\mid b\right)$	Information ratio of portfo-	(01)	lio y if the
	lio x when the benchmark		folio is x
	is b		$\beta(y \mid x)(\mu)$
$\ell\left(heta ight)$	Log-likelihood function	П	P&L of the
	with θ the vector of pa-	ф	Risk aversie
	rameters to estimate	φ	the quadra
ℓ_t	Log-likelihood function for		tion
	the observation t	$\phi(x)$	Probability
L(x)	Loss of portfolio x	$\varphi(x)$	tion of th
$\mathcal{L}(x)$	Leverage measure of port-		normal dist
	folio x	$\Phi(x)$	Cumulativo
$\mathbb{L}(x)$	Lorenz function	$\Psi(x)$	function of
λ	Parameter of exponential		ized normal
	survival times	$\Phi^{-1}(a)$	Izeu norma.
MDD	Maximum drawdown	$\Psi^{-1}(\alpha)$	Inverse of
\mathcal{MR}_i	Marginal risk of asset i		standardize
u	Vector of expected returns		bution
r -	(μ_1,\ldots,μ_n)	r	Return of th
l la	Expected return of asset i	r^{\star}	Yield to ma
r~ı û	Empirical mean	R	Vector of
μ Û132	Annualized return		(R_1,\ldots,R_n)
$\mu(r)$	Expected return of portfo-	R_i	Return of a
μ (ω)	lio $r: \mu(r) = r^{\top}\mu$	$R_{i,t}$	Return of a
$\mu(x \mid b)$	Expected return of the	$R\left(x ight)$	Return of
μ (ω 0)	tracking error of portfolio r		$R\left(x\right) = x^{\top}$
	when the benchmark is b	$\mathcal{R}\left(x ight)$	Risk measu
$\mathcal{N}(\mu,\sigma^2)$	Probability distribution of	$R_t(T)$	Zero-coupo
(μ, σ)	a Gaussian random vari-		for the mat
	able with mean μ and stan-	\mathcal{RC}_i	Risk contril
	dard deviation σ	\mathcal{RC}^{\star}_{i}	Relative ri
$\mathcal{N}(\mu, \Sigma)$	Probability distribution of	1	of asset i
(μ, Δ)	a Gaussian random vector	R	Recovery rs
	with mean μ and coveri	α (or C)	Correlation
	and metric Σ	p (or C)	roturne
	ance matrix $ au$		returns

matrix of risk risk premia) mplied risk pre- $(, \tilde{\pi}_n)$ ium of asset i: k premium of asium of portfotangency port $x: \quad \pi \left(y \mid x \right) \quad = \quad$ (x) - rportfolio on parameter of tic utility funcdensity funcne standardized tribution distribution e f the standardal distribution the cdf of the ed normal distrihe risk-free asset aturity asset returns n)asset iasset i at time tf portfolio x: Rure of portfolio xon rate at time tturity Tbution of asset iisk contribution ate

matrix of asset $\operatorname{returns}$

xxii

$\rho_{i,j}$	Correlation between asset returns i and j	$\operatorname{SR}\left(x\mid r\right)$	Sharpe ratio of portfolio x when the risk-free asset is r
$\rho\left(x,y\right)$	Correlation between port- folios r and u	$\mathbf{t}_{v}\left(x\right)$	Cumulative distribution
$ \begin{array}{l} \mathfrak{s} \\ \mathbf{S}_t \left(x \right) \\ \Sigma \\ \hat{\Sigma} \end{array} $	Credit spread Survival function at time t Covariance matrix Empirical covariance ma- trix	$\mathbf{t}_{v}^{-1}\left(\alpha\right)$	function of the Student's t distribution with ν the number of degrees of free- dom Inverse of the cdf of the Student's t distribution
$\sigma_i \ \sigma_m$	Volatility of asset i Volatility of the market		with ν the number of de- grees of freedom
$ ilde{\sigma}_i$	portfolio Idiosyncratic volatility of asset i	$\mathbf{t}_{\rho,v}\left(x\right)$	Cumulative distribution function of the multivari- ate Student's t distribution
$\hat{\sigma}$	Empirical volatility		with parameters ρ and ν
$\hat{\sigma}_{1Y}$	Annualized volatility	$\tau(x)$	Turnover of portfolio x
$\sigma(x)$	Volatility of portfolio x :	$\operatorname{tr}(A)$	Trace of the matrix A
$\sigma\left(x\mid b\right)$	$\sigma(x) = \sqrt{x} + 2x$ Standard deviation of the tracking error of portfolio x	$\mathrm{TR}\left(x\mid b\right)$	Treynor ratio of portfolio \boldsymbol{x} when the benchmark is \boldsymbol{b}
	when the benchmark is b	$\operatorname{VaR}_{\alpha}(x)$	Value-at-risk of portfolio \boldsymbol{x}
$\sigma\left(x,y\right)$	Covariance between portfo-		at the confidence level α
$-(\mathbf{V})$	lios x and y	x	vector of weights (x_1, x_n) for portfolio x
$O(\Lambda)$	random variable X	x_i	Weight of asset i in portfo-
SR_i	Sharpe ratio of asset i :	-	lio x
	$\mathrm{SR}_i = \mathrm{SR}\left(\mathbf{e}_i \mid r\right)$	x^{\star}	Optimized portfolio

Portfolio Notation

ERC	C Equally weighted risk contri-		Mean-variance optimized
	bution portfolio $x_{\rm erc}$		(or Markowitz) portfolio
EW	Equally weighted portfolio		$x_{ m mvo}$
	$\begin{array}{c} x_{\text{ew}} \\ \text{PP} & \text{Most diversified portfolio} \\ x_{\text{mdp}} \\ \text{R} & \text{Max Sharpe ratio portfolio} \\ x_{\text{mer}} \end{array}$	RB	Risk budgeting portfolio $x_{\rm rb}$
MDP		RFP	Risk factor parity portfolio
MSB			x_{rfp}
Mon		RP	Risk parity portfolio $x_{\rm rp}$
MV	Minimum variance portfolio	WB	Weight budgeting portfolio
	$x_{ m mv}$		$x_{ m wb}$

xxiii
