Handbook of Financial Risk Management - Companion Book

Introduction

This companion book contains the solutions of the tutorial exercises which are found at the end of each chapter. Additional materials (datasets, codes, figures and slides) concerning the Handbook of Risk Management are available at the following internet web page:
http://www.thierry-roncalli.com/RiskManagementBook.html

Contents

I Risk Management in the Financial Sector 1
2 Market Risk 3
2.4.1 Calculating regulatory capital with the Basel I standardized mea- surement method 3
2.4.2 Covariance matrix 8
2.4.3 Risk measure 10
2.4.4 Value-at-risk of a long/short portfolio 16
2.4.5 Value-at-risk of an equity portfolio hedged with put options 19
2.4.6 Risk management of exotic derivatives 23
2.4.7 P\&L approximation with Greek sensitivities 25
2.4.8 Calculating the non-linear quadratic value-at-risk 27
2.4.9 Risk decomposition of the expected shortfall 35
2.4.10 Expected shortfall of an equity portfolio 38
2.4.11 Risk measure of a long/short portfolio 39
2.4.12 Kernel estimation of the expected shortfall 41
3 Credit Risk 43
3.4.1 Single and multi-name credit default swaps 43
3.4.2 Risk contribution in the Basel II model 45
3.4.3 Calibration of the piecewise exponential model 50
3.4.4 Modeling loss given default 53
3.4.5 Modeling default times with a Markov chain 55
3.4.6 Continuous-time modeling of default risk 57
3.4.7 Derivation of the original Basel granularity adjustment 60
3.4.8 Variance of the conditional portfolio loss 67
4 Counterparty Credit Risk and Collateral Risk 71
4.4.1 Impact of netting agreements in counterparty credit risk 71
4.4.2 Calculation of the effective expected positive exposure 73
4.4.3 Calculation of the required capital for counterparty credit risk 77
4.4.4 Calculation of CVA and DVA measures 79
4.4.5 Approximation of the CVA for an interest rate swap 82
4.4.6 Risk contribution of CVA with collateral 85
5 Operational Risk 97
5.4.1 Estimation of the severity distribution 97
5.4.2 Estimation of the frequency distribution 102
5.4.3 Using the method of moments in operational risk models 104
5.4.4 Calculation of the Basel II required capital 106
5.4.5 Parametric estimation of the loss severity distribution 110
5.4.6 Mixed Poisson processes 113
6 Liquidity Risk 117
7 Asset/Liability Management Risk 119
7.4.1 Constant amortization of a loan 119
7.4.2 Computation of the amortization functions $\mathbf{S}(t, u)$ and $\mathbf{S}^{\star}(t, u)$ 121
7.4.3 Continuous-time analysis of the constant amortization mortgage (CAM) 126
7.4.4 Valuation of non-maturity deposits 128
7.4.5 Impact of prepayment on the amortization scheme of the CAM 135
8 Systemic Risk and Shadow Banking System 137
II Mathematical and Statistical Tools 139
9 Model Risk of Exotic Derivatives 141
9.4.1 Option pricing and martingale measure 141
9.4.2 The Vasicek model 143
9.4.3 The Black model 144
9.4.4 Change of numéraire and the Girsanov theorem 147
9.4.5 The HJM model and the forward probability measure 151
9.4.6 Equivalent martingale measure in the Libor market model 154
9.4.7 Displaced diffusion option pricing 156
9.4.8 Dupire local volatility model 158
9.4.9 The stochastic normal model 163
9.4.10 The quadratic Gaussian model 172
9.4.11 Pricing two-asset basket options 177
10 Statistical Inference and Model Estimation 181
10.3.1 Probability distribution of the t-statistic in the case of the linear regression model 181
10.3.2 Linear regression without a constant 183
10.3.3 Linear regression with linear constraints 185
10.3.4 Maximum likelihood estimation of the Poisson distribution 190
10.3.5 Maximum likelihood estimation of the Exponential distribution 191
10.3.6 Relationship between the linear regression, the maximum likelihood method and the method of moments 191
10.3.7 The Gaussian mixture model 193
10.3.8 Parameter estimation of diffusion processes 194
10.3.9 The Tobit model 197
10.3.10 Derivation of Kalman filter equations 206
10.3.11 Steady state of time-invariant state space model 209
10.3.12 Kalman information filter versus Kalman covariance filter 212
10.3.13 Granger representation theorem 216
10.3.14 Probability distribution of the periodogram 217
10.3.15 Spectral density function of structural time series models 219
10.3.16 Spectral density function of some processes 223
11 Copulas and Dependence 227
11.4.1 Gumbel logistic copula 227
11.4.2 Farlie-Gumbel-Morgenstern copula 228
11.4.3 Survival copula 229
11.4.4 Method of moments 229
11.4.5 Correlated loss given default rates 230
11.4.6 Calculation of correlation bounds 233
11.4.7 The bivariate Pareto copula 237
12 Extreme Value Theory 243
12.4.1 Uniform order statistics 243
12.4.2 Order statistics and return period 244
12.4.3 Extreme order statistics of exponential random variables 245
12.4.4 Extreme value theory in the bivariate case 247
12.4.5 Max-domain of attraction in the bivariate case 249
13 Monte Carlo Simulation Methods 251
13.4.1 Simulating random numbers using the inversion method 251
13.4.2 Simulating random numbers using the transformation method 253
13.4.3 Simulating random numbers using rejection sampling 259
13.4.4 Simulation of Archimedean copulas 265
13.4.5 Simulation of conditional random variables 268
13.4.6 Simulation of the bivariate Normal copula 269
13.4.7 Computing the capital charge for operational risk 271
13.4.8 Simulating a Brownian bridge 274
13.4.9 Optimal importance sampling 275
14 Stress Testing and Scenario Analysis 279
14.3.1 Construction of a stress scenario with the GEV distribution 279
14.3.2 Conditional expectation and linearity 281
14.3.3 Conditional quantile and linearity 282
15 Credit Scoring Models 285
15.4.1 Elastic net regression 285
15.4.2 Cross-validation of the ridge linear regression 288
15.4.3 K-means and the Lloyd's algorithm 292
15.4.4 Derivation of the principal component analysis ${ }^{1}$ 295
15.4.5 Two-class separation maximization 297
15.4.6 Maximum likelihood estimation of the probit model 301
15.4.7 Computation of feed-forward neural networks 303
15.4.8 Primal and dual problems of support vector machines 308
15.4.9 Derivation of the AdaBoost algorithm as the solution of the additive logit model 320
15.4.10 Weighted estimation 323
A Technical Appendix 325
A.4.1 Discrete-time random process 325
A.4.2 Properties of Brownian motion 327
A.4.3 Stochastic integral for random step functions 330
A.4.4 Power of Brownian motion 332
A.4.5 Exponential of Brownian motion 337
A.4.6 Exponential martingales 339
A.4.7 Existence of solutions to stochastic differential equations 341
A.4.8 Itô calculus and stochastic integration 342
A.4.9 Solving a PDE with the Feynman-Kac formula 344

[^0]A.4.10 Fokker-Planck equation 346
A.4.11 Dynamic strategy based on the current asset price 348
A.4.12 Strong Markov property and maximum of Brownian motion 351
A.4.13 Moments of the Cox-Ingersoll-Ross process 354
A.4.14 Probability density function of Heston and SABR models 355
A.4.15 Discrete dynamic programming 356
A.4.16 Matrix computation 359

Part I

Risk Management in the Financial Sector

Chapter 2

Market Risk

2.4.1 Calculating regulatory capital with the Basel I standardized measurement method

1. (a) In the maturity approach, long and short positions are slotted into a maturitybased ladder comprising fifteen time-bands. The time bands are defined by disjoint intervals $\left.] M^{-}, M^{+}\right]$. The risk weights depend on the time band t and the value of the coupon ${ }^{1}$:

$K(t)$	0.00%	0.20%	0.40%	0.70%	1.25%	1.75%	2.25%
M_{BC}^{+}	1 M	3 M	6 M	1 Y	2 Y	3 Y	4 Y
M_{SC}^{+}	1 M	3 M	6 M	1 Y	1.9 Y	2.8 Y	3.6 Y
$K(t)$	2.75%	3.25%	3.75%	4.50%	5.25%	6.00%	8.00%
M_{BC}^{+}	5 Y	7 Y	10 Y	15 Y	20 Y	$+\infty$	
M_{SC}^{+}	4.3 Y	5.7 Y	7.3 Y	9.3 Y	10.6 Y	12 Y	20 Y

These risk weights apply to the net exposure on each time band. For reflecting basis and gap risks, the bank must also include a 10% capital charge to the smallest exposure of the matched positions. This adjustment is called the 'vertical disallowance'. The Basel Committee considers a second adjustment for horizontal offsetting (the 'horizontal disallowance'). For that, it defines 3 zones (less than 1 year, one year to four years and more than four years). The offsetting can be done within and between the zones. The adjustment coefficients are 30% within the zones 2 and $3,40 \%$ within the zone 1 , between the zones 1 and 2 , and between the zones 2 and 3 , and 100% between the zones 1 and 3 . To compute mathematically the required capital, we note $\mathcal{L}^{\star}(t)$ and $\mathcal{S}^{\star}(t)$ the long and short nominal positions for the time band $t . t=1$ corresponds to the first time band $[0,1 \mathrm{M}], t=2$ corresponds to the second time band $] 1 \mathrm{M}, 3 \mathrm{M}[$, etc. The risk weighted positions for the time band t are defined as $\mathcal{L}(t)=K(t) \times \mathcal{L}^{\star}(t)$ and $\mathcal{S}(t)=K(t) \times \mathcal{S}^{\star}(t)$. The required capital for the overall net open position is then equal to:

$$
\mathcal{K}^{\mathrm{OP}}=\left|\sum_{t=1}^{15} \mathcal{L}(t)-\sum_{t=1}^{15} \mathcal{S}(t)\right|
$$

The matched position $\mathcal{M}(t)$ for the time band t is equal to $\min (\mathcal{L}(t), \mathcal{S}(t))$. We deduce that the additional capital for the vertical disallowance is:

$$
\mathcal{K}^{\mathrm{VD}}=10 \% \times \sum_{t=1}^{13} \mathcal{M}(t)
$$

[^1]$\mathcal{N}(t)=\mathcal{L}(t)-\mathcal{S}(t)$ is the net exposure for the time band t. We then define the net long and net short exposures for the three zones as follows:
\[

$$
\begin{aligned}
\mathcal{L}_{i} & =\sum_{t \in \Delta_{i}} \max (\mathcal{N}(t), 0) \\
\mathcal{S}_{i} & =-\sum_{t \in \Delta_{i}} \min (\mathcal{N}(t), 0)
\end{aligned}
$$
\]

where $\left.\left.\Delta_{1}=[0,1 \mathrm{Y}], \Delta_{2}=\right] 1 \mathrm{Y}, 4 \mathrm{Y}\right]$ and $\left.\left.\Delta_{3}=\right] 4 \mathrm{Y},+\infty\right]$. We define $\mathcal{C} \mathcal{F}_{i, j}$ as the exposure of the zone i that can be carried forward to the zone j. We then compute the additional capital for the horizontal disallowance:

$$
\begin{aligned}
\mathcal{K}^{\mathrm{HD}}= & 0.4 \times \min \left(\mathcal{L}_{1}, \mathcal{S}_{1}\right)+0.3 \times \min \left(\mathcal{L}_{2}, \mathcal{S}_{2}\right)+0.3 \times \min \left(\mathcal{L}_{3}, \mathcal{S}_{3}\right)+ \\
& 0.4 \times \mathcal{C} \mathcal{F}_{1,2}+0.4 \times \mathcal{C} \mathcal{F}_{2,3}+\mathcal{C} \mathcal{F}_{1,3}
\end{aligned}
$$

The regulatory capital for the general market risk is the sum of the three components:

$$
\mathcal{K}=\mathcal{K}^{\mathrm{OP}}+\mathcal{K}^{\mathrm{VD}}+\mathcal{K}^{\mathrm{HD}}
$$

(b) For each time band, we report the long, short, matched and net exposures:

Time band	$\mathcal{L}^{\star}(t)$	$\mathcal{S}^{\star}(t)$	$K(t)$	$\mathcal{L}(t)$	$\mathcal{S}(t)$	$\mathcal{M}(t)$	$\mathcal{N}(t)$
$3 \mathrm{M}-6 \mathrm{M}$	100	50	0.40%	0.40	0.20	0.20	0.20
$7 \mathrm{Y}-10 \mathrm{Y}$	10	50	3.75%	0.45	2.25	0.45	-1.80

The capital charge for the overall open position is:

$$
\begin{aligned}
\mathcal{K}^{\mathrm{OP}} & =|0.40+0.45-0.20-2.25| \\
& =1.6
\end{aligned}
$$

whereas the capital for the vertical disallowance is:

$$
\begin{aligned}
\mathcal{K}^{\mathrm{VD}} & =10 \% \times(0.20+0.45) \\
& =0.065
\end{aligned}
$$

We now compute the net long and net short exposures for the three zones:

zone	1	2	3
\mathcal{L}_{i}	0.20	0.00	0.00
\mathcal{S}_{i}	0.00	0.00	1.80

It follows that there is no horizontal offsetting within the zones. Moreover, we notice that we can only carry forward the long exposure \mathcal{L}_{1} to the zone 3 meaning that:

$$
\begin{aligned}
\mathcal{K}^{\mathrm{HD}}= & 40 \% \times 0.00+30 \% \times 0.00+30 \% \times 0.00+ \\
& 40 \% \times 0.00+40 \% \times 0.00+100 \% \times 0.20 \\
= & 0.20
\end{aligned}
$$

We finally deduce that the required capital is:

$$
\begin{aligned}
\mathcal{K} & =1.6+0.065+0.20 \\
& =\$ 1.865 \mathrm{mn}
\end{aligned}
$$

2. (a) We have:

Stock	3 M	Exxon	IBM	Pfizer	AT\&T	Cisco	Oracle
\mathcal{L}_{i}	100	100	10	50	60	90	
\mathcal{S}_{i}		50					80
\mathcal{N}_{i}	100	50	10	50	60	90	-80

We deduce that the capital charge for the specific risk is equal to $\$ 35.20 \mathrm{mn}$:

$$
\mathcal{K}^{\text {Specific }}=8 \% \times \sum_{i=1}^{7}\left|\mathcal{N}_{i}\right|=8 \% \times 440=35.20
$$

(b) The total net exposure $\sum_{i=1}^{7} \mathcal{N}_{i}$ is equal to $\$ 280 \mathrm{mn}$, meaning that the capital charge for the general market risk is equal to $\$ 22.40 \mathrm{mn}$:

$$
\mathcal{K}^{\text {General }}=8 \% \times 280=22.40
$$

(c) To hedge the market risk of the portfolio, the investor can sell $\$ 280 \mathrm{mn}$ of $\mathrm{S} \& \mathrm{P}$ 500 futures contracts ${ }^{2}$. In this case, the capital charge for the general market risk is equal to zero. However, this new exposure implies an additional capital charge for the specific risk:

$$
\mathcal{K}^{\text {Specific }}=35.20+4 \% \times 280=35.20+11.20=46.40
$$

Let \mathcal{S} be the short exposure on S\&P 500 futures contracts. We have:

$$
\begin{aligned}
\mathcal{K} & =\mathcal{K}^{\text {Specific }}+\mathcal{K}^{\text {General }} \\
& =(35.20+4 \% \times \mathcal{S})+8 \% \times|280-\mathcal{S}|
\end{aligned}
$$

We notice that there is a trade-off between the capital charge for the specific risk which is an increasing function of \mathcal{S} and the capital charge for the general market risk which is a decreasing function of \mathcal{S} for $\mathcal{S} \leq 280$. Another expression of $K^{(\text {total })}$ is:

$$
\mathcal{K}= \begin{cases}57.60-4 \% \times \mathcal{S} & \text { if } \mathcal{S} \leq 280 \\ 12.80+12 \% \times \mathcal{S} & \text { otherwise }\end{cases}
$$

We verify that the minimum is reached when \mathcal{S} is exactly equal to 280 (see Figure 2.1).
3. (a) Under SMM, we have:

$$
\mathcal{K}^{\mathrm{SMM}}=8 \% \times \mathcal{N}_{w}
$$

(b) The 10-day Gaussian value-at-risk is equal to:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { ten days }) & =2.33 \times \frac{\mathcal{N}_{w} \times \sigma(w)}{\sqrt{260}} \times \sqrt{10} \\
& =0.457 \times \mathcal{N}_{w} \times \sigma(w)
\end{aligned}
$$

We deduce that the required capital is approximately equal to:

$$
\begin{aligned}
\mathcal{K}^{\text {IMA }} & \approx(3+\xi) \times \operatorname{VaR}_{99 \%}(w ; \text { ten days }) \\
& =(3+\xi) \times 0.457 \times \mathcal{N}_{w} \times \sigma(w)
\end{aligned}
$$

Because $\xi \leq 1$, it follows that:

$$
\mathcal{K}^{\mathrm{IMM}} \leq 1.828 \times \mathcal{N}_{w} \times \sigma(w)
$$

[^2]

FIGURE 2.1: Capital charge \mathcal{K} with respect to \mathcal{S}
(c) A sufficient condition for $\mathcal{K}^{\mathrm{IMM}} \leq \mathcal{K}^{\mathrm{SMM}}$ is:

$$
\begin{aligned}
& 1.828 \times \mathcal{N}_{w} \times \sigma(w) \leq 8 \% \times \mathcal{N}_{w} \\
\Leftrightarrow & \sigma(w) \\
\Leftrightarrow & \leq \frac{8 \%}{1.828} \\
\Leftrightarrow & \sigma(w) \leq 4.37 \%
\end{aligned}
$$

(d) The annualized volatility of the portfolio must be lower than 4.37%. This implies that long equity exposures induce more required capital under IMM than under SMM. Indeed, the volatility of directional equity portfolios is generally higher than 12%. In order to obtain equity portfolios with such lower volatility, the portfolio must be long/short, meaning that the directional risk must be (partially) hedged.
4. (a) The bank is exposed to foreign exchange and commodity risks with spot and forward positions. Contrary to stocks or many equity products, these exposures include a maturity pattern. For instance, the $\$ 100 \mathrm{mn}$ EUR long position has not the same maturity than the $\$ 100 \mathrm{mn}$ EUR short position, implying that the bank cannot match the two positions.
(b) We first consider the FX risk. We have $\mathcal{N}_{\text {EUR }}=100-100=0, \mathcal{N}_{\text {JPY }}=50-100=$ $-50, \mathcal{N}_{\mathrm{CAD}}=0-50=-50$ and $\mathcal{N}_{\text {Gold }}=50-0=50$. We deduce that the aggregated long and short positions are $\mathcal{L}_{\mathrm{FX}}=0$ and $\mathcal{S}_{\mathrm{FX}}=100$. It follows that the required capital is:

$$
\begin{aligned}
\mathcal{K}^{\mathrm{FX}} & =8 \% \times\left(\max \left(\mathcal{L}_{\mathrm{FX}}, \mathcal{S}_{\mathrm{FX}}\right)+\left|\mathcal{N}_{\mathrm{Gold}}\right|\right) \\
& =8 \% \times(100+50) \\
& =\$ 12 \mathrm{mn}
\end{aligned}
$$

For the commodity risk, we exclude the Gold position, because it is treated as a foreign exchange risk. We have:

$$
\begin{aligned}
\mathcal{K}^{\text {Commodity }} & =15 \% \times \sum_{i=5}^{7}\left|\mathcal{L}_{i}-\mathcal{S}_{i}\right|+3 \% \times \sum_{i=5}^{7}\left(\mathcal{L}_{i}+\mathcal{S}_{i}\right) \\
& =15 \% \times(50+20+20)+3 \% \times 390 \\
& =13.50+11.70 \\
& =\$ 25.20 \mathrm{mn}
\end{aligned}
$$

We finally obtain:

$$
\begin{aligned}
\mathcal{K} & =\mathcal{K}^{\mathrm{FX}}+\mathcal{K}^{\text {Commodity }} \\
& =\$ 33.20 \mathrm{mn}
\end{aligned}
$$

5. (a) Under the maturity ladder approach, the bank should spread long and short exposures of each currency to seven time bands: $0-1 \mathrm{M}, 1 \mathrm{M}-3 \mathrm{M}, 3 \mathrm{M}-6 \mathrm{M}, 6 \mathrm{M}-1 \mathrm{Y}$, $1 \mathrm{Y}-2 \mathrm{Y}, 2 \mathrm{Y}-3 \mathrm{Y}, 3 \mathrm{Y}+$. For each time band, the capital charge for the basis risk is equal to 1.5% of the matched positions (long and short). Nevertheless, the residual net position of previous time bands may be carried forward to offset exposures in next time bands. In this case, a surcharge of 0.6% of the residual net position is added at each time band to cover the time spread risk. Finally, a capital charge of 15% is applied to the global net exposure (or the residual unmatched position) for directional risk. To compute mathematically the required capital, we note $\mathcal{L}_{i}(t)$ and $\mathcal{S}_{i}(t)$ the long and short positions of the commodity i for the time band $t . t=1$ corresponds to the first time band $[0,1 \mathrm{M}]$ and $t=7$ corresponds to the last time band $] 3 \mathrm{Y},+\infty[$. The cumulative long and short exposures are $\mathcal{L}_{i}^{+}(t)=\mathcal{L}_{i}^{+}(t-1)+\mathcal{L}_{i}(t)$ with $\mathcal{L}_{i}^{+}(0)=0$ and $\mathcal{S}_{i}^{+}(t)=\mathcal{S}_{i}^{+}(t-1)+\mathcal{S}_{i}(t)$ with $\mathcal{S}_{i}^{+}(0)=0$. The cumulative matched position is $\mathcal{M}_{i}^{+}(t)=\min \left(\mathcal{L}_{i}^{+}(t), \mathcal{S}_{i}^{+}(t)\right)$. We deduce that the matched exposition for the time band t is equal to $\mathcal{M}_{i}(t)=\mathcal{M}_{i}^{+}(t)-\mathcal{M}_{i}^{+}(t-1)$ with $\mathcal{M}_{i}^{+}(0)=0$. The value of the carried forward $\mathcal{C} \mathcal{F}_{i}(t)$ can be obtained recursively by reporting the unmatched positions at time t which can be offset in the times bands τ with $\tau>t$. The residual unmatched position is $\mathcal{N}_{i}=\max \left(\mathcal{L}_{i}^{+}(7), \mathcal{S}_{i}^{+}(7)\right)-\mathcal{M}_{i}^{+}(t)$. We finally deduce that the required capital is the sum of the individual capital charges:

$$
\mathcal{K}_{i}=1.5 \% \times\left(\sum_{t=1}^{7} 2 \times \mathcal{M}_{i}(t)\right)+0.6 \% \times\left(\sum_{t=1}^{6} \mathcal{C} \mathcal{F}_{i}(t)\right)+15 \% \times \mathcal{N}_{i}
$$

We notice that the matched position $\mathcal{M}_{i}(t)$ is multiplied by 2 , because we apply the capital charge 1.5% to the long and short matched positions.
(b) We compute the cumulative positions $\mathcal{L}_{i}^{+}(t)$ and $\mathcal{S}_{i}^{+}(t)$ and deduce the matched expositions $\mathcal{M}_{i}(t)$:

Time band	t	$\mathcal{L}_{i}(t)$	$\mathcal{S}_{i}(t)$	$\mathcal{L}_{i}^{+}(t)$	$S_{i}^{+}(t)$	$\mathcal{M}_{i}(t) \quad \mathcal{C} \mathcal{F}_{i}(t)$	
$\overline{0} \overline{-1} \bar{M}$	$\overline{1}$	$\overline{50}$	${ }^{-} 300$	500	${ }^{-} \overline{30}$	$\overline{3} 00$	$\overline{2} 0 \overline{0}$
$1 \mathrm{M}-3 \mathrm{M}$	2	0	900	500	1200	200	700
$3 \mathrm{M}-6 \mathrm{M}$	3	0	0	500	1200	0	700
$6 \mathrm{M}-1 \mathrm{Y}$	4	1800	100	2300	1300	800	600
$1 \mathrm{Y}-2 \mathrm{Y}$	5	300	600	2600	1900	600	300
$2 \mathrm{Y}-3 \mathrm{Y}$	6	0	100	2600	2000	100	200
$3 \mathrm{Y}+$	7	0	200	2600	2200	200	0

The sum of matched positions is equal to 2200 . This means that the residual unmatched position is $400(2600-2200)$. At time band $t=1$, we can carry forward 200 of long position in the next time band. At time band $t=2$, we can carry forward 700 of short position in the times band $t=4$. This implies that $\mathcal{C} \mathcal{F}_{i}(3)=700$ and $\mathcal{C} \mathcal{F}_{i}(4)=700$. At time band $t=4$, the residual unmatched position is equal to $1000(1800-100-700)$. However, we can only carry 600 of this long position in the next time bands (300 for $t=5,100$ for $t=6$ and 200 for $t=1$). At the end, we verify that the residual position is 400 , that is the part of the long position at time band $t=4$ which can not be carried forward $(1000-600)$. We also deduce that the sum of carried forward positions is 2700 . It follows that the required capital is ${ }^{3}$:

$$
\begin{aligned}
\mathcal{K}_{i} & =1.5 \% \times 4400+0.6 \% \times 2700+15 \% \times 400 \\
& =\$ 142.20
\end{aligned}
$$

2.4.2 Covariance matrix

1. (a) We have:

$$
\sigma_{A}=\sqrt{\Sigma_{1,1}}=\sqrt{4 \%}=20 \%
$$

For the other stocks, we obtain $\sigma_{B}=22.36 \%$ and $\sigma_{C}=24.49 \%$.
(b) The correlation is the covariance divided by the product of volatilities:

$$
\rho\left(R_{A}, R_{B}\right)=\frac{\Sigma_{1,2}}{\sqrt{\Sigma_{1,1} \times \Sigma_{2,2}}}=\frac{3 \%}{20 \% \times 22.36 \%}=67.08 \%
$$

We obtain:

$$
\rho=\left(\begin{array}{rrr}
100.00 \% & & \\
67.08 \% & 100.00 \% & \\
40.82 \% & -18.26 \% & 100.00 \%
\end{array}\right)
$$

2. (a) Using the formula $\Sigma_{i, j}=\rho_{i, j} \sigma_{i} \sigma_{j}$, it follows that:

$$
\Sigma=\left(\begin{array}{lll}
1.00 \% & & \\
1.00 \% & 4.00 \% & \\
0.75 \% & 0.00 \% & 9.00 \%
\end{array}\right)
$$

(b) We deduce that:

$$
\begin{aligned}
\sigma^{2}(w) & =0.5^{2} \times 1 \%+0.5^{2} \times 4 \%+2 \times 0.5 \times 0.5 \times 1 \% \\
& =1.75 \%
\end{aligned}
$$

and $\sigma(w)=13.23 \%$.
(c) It follows that:

$$
\begin{aligned}
\sigma^{2}(w) & =0.6^{2} \times 1 \%+(-0.4)^{2} \times 4 \%+2 \times 0.6 \times(-0.4) \times 1 \% \\
& =0.52 \%
\end{aligned}
$$

and $\sigma(w)=7.21 \%$. This long/short portfolio has a lower volatility than the previous long-only portfolio, because part of the risk is hedged by the positive correlation between stocks A and B.

[^3](d) We have:
\[

$$
\begin{aligned}
\sigma^{2}(w)= & 150^{2} \times 1 \%+500^{2} \times 4 \%+(-200)^{2} \times 9 \%+ \\
& 2 \times 150 \times 500 \times 1 \%+ \\
& 2 \times 150 \times(-200) \times 0.75 \%+ \\
& 2 \times 500 \times(-200) \times 0 \% \\
= & 14875
\end{aligned}
$$
\]

The volatility is equal to $\$ 121.96$ and is measured in USD contrary to the two previous results which were expressed in $\%$.
3. (a) We have:

$$
\mathbb{E}[R]=\beta \mathbb{E}[\mathcal{F}]+\mathbb{E}[\varepsilon]
$$

and:

$$
R-\mathbb{E}[R]=\beta(\mathcal{F}-\mathbb{E}[\mathcal{F}])+\varepsilon-\mathbb{E}[\varepsilon]
$$

It follows that:

$$
\begin{aligned}
\operatorname{cov}(R)= & \mathbb{E}\left[(R-\mathbb{E}[R])(R-\mathbb{E}[R])^{\top}\right] \\
= & \mathbb{E}\left[\beta(\mathcal{F}-\mathbb{E}[\mathcal{F}])(\mathcal{F}-\mathbb{E}[\mathcal{F}]) \beta^{\top}\right]+ \\
& 2 \times \mathbb{E}\left[\beta(\mathcal{F}-\mathbb{E}[\mathcal{F}])(\varepsilon-\mathbb{E}[\varepsilon])^{\top}\right]+ \\
& \mathbb{E}\left[(\varepsilon-\mathbb{E}[\varepsilon])(\varepsilon-\mathbb{E}[\varepsilon])^{\top}\right] \\
= & \sigma_{\mathcal{F}}^{2} \beta \beta^{\top}+D
\end{aligned}
$$

We deduce that:

$$
\sigma\left(R_{i}\right)=\sqrt{\sigma_{\mathcal{F}}^{2} \beta_{i}^{2}+\tilde{\sigma}_{i}^{2}}
$$

We obtain $\sigma\left(R_{A}\right)=18.68 \%, \sigma\left(R_{B}\right)=26.48 \%$ and $\sigma\left(R_{C}\right)=15.13 \%$.
(b) The correlation between stocks i and j is defined as follows:

$$
\rho\left(R_{i}, R_{j}\right)=\frac{\sigma_{\mathcal{F}}^{2} \beta_{i} \beta_{j}}{\sigma\left(R_{i}\right) \sigma\left(R_{j}\right)}
$$

We obtain:

$$
\rho=\left(\begin{array}{rrr}
100.00 \% & & \\
94.62 \% & 100.00 \% & \\
12.73 \% & 12.98 \% & 100.00 \%
\end{array}\right)
$$

4. (a) We have:

$$
\begin{aligned}
\mu\left(Z_{i}\right) & =\mathbb{E}\left[X_{i} Y_{i}\right] \\
& =\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[Y_{i}\right] \\
& =\mu_{i}(X) \mu_{i}(Y)
\end{aligned}
$$

because X_{i} and Y_{i} are independent. For the covariance, we obtain:

$$
\begin{aligned}
\operatorname{cov}\left(Z_{i}, Z_{j}\right)= & \mathbb{E}\left[\left(X_{i} Y_{i}\right)\left(X_{j} Y_{j}\right)\right]-\mathbb{E}\left[X_{i} Y_{i}\right] \mathbb{E}\left[X_{j} Y_{j}\right] \\
= & \mathbb{E}\left[X_{i} X_{j}\right] \mathbb{E}\left[Y_{i} Y_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right] \\
= & \left(\operatorname{cov}\left(X_{i}, X_{j}\right)+\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]\right) \times \\
& \left(\operatorname{cov}\left(Y_{i}, Y_{j}\right)+\mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right]\right)- \\
& \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right] \\
= & \operatorname{cov}\left(X_{i}, X_{j}\right) \operatorname{cov}\left(Y_{i}, Y_{j}\right)+ \\
& \operatorname{cov}\left(X_{i}, X_{j}\right) \mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right]+ \\
& \operatorname{cov}\left(Y_{i}, Y_{j}\right) \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \\
= & \Sigma_{i, j}(X) \Sigma_{i, j}(Y)+\Sigma_{i, j}(X) \mu_{i}(Y) \mu_{j}(Y)+ \\
& \Sigma_{i, j}(Y) \mu_{i}(X) \mu_{j}(X)
\end{aligned}
$$

To obtain this formula, we use the fact that $X_{i} X_{j}$ and $Y_{i} Y_{j}$ are independent. In a matrix form, we find that:

$$
\begin{aligned}
\mu(Z)= & \mu(X) \circ \mu(Y) \\
\Sigma(Z)= & \Sigma(X) \circ \Sigma(Y)+ \\
& \Sigma(X) \circ \mu(Y) \circ \mu(Y)^{\top}+ \\
& \Sigma(Y) \circ \mu(X) \circ \mu(X)^{\top}
\end{aligned}
$$

(b) Using the numerical values, we obtain ${ }^{4} \mu(Z)=\mathbf{0}$ and:

$$
\Sigma(Z)=\left(\begin{array}{lll}
0.333 \% & & \\
0.250 \% & 1.333 \% & \\
0.188 \% & 0.000 \% & 3.000 \%
\end{array}\right)
$$

The expression of the $\mathrm{P} \& \mathrm{~L}$ is:

$$
\Pi(w)=150 Z_{1}+500 Z_{2}-200 Z_{3}
$$

We find that $\mu(\Pi)=0$ and $\sigma(\Pi)=69.79$. We deduce that the Gaussian VaR with a 99% confidence level is equal to $\$ 162.36$. For the Monte Carlo method, we use the following steps: (i) we first simulate the random variate X with the Cholesky algorithm; (ii) we then simulate Y with a uniform random generator; (iii) we calculate the components $Z_{i}=X_{i} Y_{i}$; (iv) we finally deduce the $\mathrm{P} \& \mathrm{~L}$. With one million of simulations, we find that the Monte Carlo VaR is equal to $\$ 182.34$. We explain this result because the distribution of $\Pi(w)$ is far to be normal as illustrated in Figure 2.2.

2.4.3 Risk measure

1. (a) We have:

$$
\operatorname{VaR}_{\alpha}(L)=\inf \{\ell: \operatorname{Pr}\{L \geq \ell\} \geq \alpha\}
$$

and:

$$
\operatorname{ES}_{\alpha}(L)=\mathbb{E}\left[L \mid L \geq \operatorname{VaR}_{\alpha}(L)\right]
$$

[^4]

FIGURE 2.2: Probability distribution of the $P \& L$
(b) We assume that \mathbf{F} is continuous. It follows that $\operatorname{VaR}_{\alpha}(L)=\mathbf{F}^{-1}(\alpha)$. We deduce that:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(L) & =\mathbb{E}\left[L \mid L \geq \mathbf{F}^{-1}(\alpha)\right] \\
& =\int_{\mathbf{F}^{-1}(\alpha)}^{\infty} x \frac{f(x)}{1-\mathbf{F}\left(\mathbf{F}^{-1}(\alpha)\right)} \mathrm{d} x \\
& =\frac{1}{1-\alpha} \int_{\mathbf{F}^{-1}(\alpha)}^{\infty} x f(x) \mathrm{d} x
\end{aligned}
$$

We consider the change of variable $t=\mathbf{F}(x)$. Because $\mathrm{d} t=f(x) \mathrm{d} x$ and $\mathbf{F}(\infty)=$ 1, we obtain:

$$
\mathrm{ES}_{\alpha}(L)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \mathbf{F}^{-1}(t) \mathrm{d} t
$$

(c) We have:

$$
f(x)=\theta \frac{x^{-(\theta+1)}}{x_{-}^{-\theta}}
$$

The non-centered moment of order n is ${ }^{5}$:

$$
\begin{aligned}
\mathbb{E}\left[L^{n}\right] & =\int_{x_{-}}^{\infty} x^{n} \theta \frac{x^{-(\theta+1)}}{x_{-}^{-\theta}} \mathrm{d} x \\
& =\frac{\theta}{x_{-}^{-\theta}} \int_{x_{-}}^{\infty} x^{n-\theta-1} \mathrm{~d} x \\
& =\frac{\theta}{x_{-}^{-\theta}}\left[\frac{x^{n-\theta}}{n-\theta}\right]_{x_{-}}^{\infty} \\
& =\frac{\theta}{\theta-n} x_{-}^{n}
\end{aligned}
$$

We deduce that:

$$
\mathbb{E}[L]=\frac{\theta}{\theta-1} x_{-}
$$

and:

$$
\mathbb{E}\left[L^{2}\right]=\frac{\theta}{\theta-2} x_{-}^{2}
$$

The variance of the loss is then:

$$
\operatorname{var}(L)=\mathbb{E}\left[L^{2}\right]-\mathbb{E}^{2}[L]=\frac{\theta}{(\theta-1)^{2}(\theta-2)} x_{-}^{2}
$$

x_{-}is a scale parameter whereas θ is a parameter to control the distribution tail. We have:

$$
1-\left(\frac{\mathbf{F}^{-1}(\alpha)}{x_{-}}\right)^{-\theta}=\alpha
$$

We deduce that:

$$
\operatorname{VaR}_{\alpha}(L)=\mathbf{F}^{-1}(\alpha)=x_{-}(1-\alpha)^{-\theta^{-1}}
$$

We also obtain:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(L) & =\frac{1}{1-\alpha} \int_{\alpha}^{1} x_{-}(1-t)^{-\theta^{-1}} \mathrm{~d} t \\
& =\frac{x_{-}}{1-\alpha}\left[-\frac{1}{1-\theta^{-1}}(1-t)^{1-\theta^{-1}}\right]_{\alpha}^{1} \\
& =\frac{\theta}{\theta-1} x_{-}(1-\alpha)^{-\theta^{-1}} \\
& =\frac{\theta}{\theta-1} \mathrm{VaR}_{\alpha}
\end{aligned}
$$

Because $\theta>1$, we have $\frac{\theta}{\theta-1}>1$ and:

$$
\operatorname{ES}_{\alpha}(L)>\operatorname{VaR}_{\alpha}(L)
$$

(d) We have:

$$
\mathrm{ES}_{\alpha}(L)=\frac{1}{1-\alpha} \int_{\mu+\sigma \Phi^{-1}(\alpha)}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \mathrm{d} x
$$

[^5]By considering the change of variable $t=\sigma^{-1}(x-\mu)$, we obtain:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(L)= & \frac{1}{1-\alpha} \int_{\Phi^{-1}(\alpha)}^{\infty}(\mu+\sigma t) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right) \mathrm{d} t \\
= & \frac{\mu}{1-\alpha}[\Phi(t)]_{\Phi^{-1}(\alpha)}^{\infty}+ \\
& \frac{\sigma}{(1-\alpha) \sqrt{2 \pi}} \int_{\Phi^{-1}(\alpha)}^{\infty} t \exp \left(-\frac{1}{2} t^{2}\right) \mathrm{d} t \\
= & \mu+\frac{\sigma}{(1-\alpha) \sqrt{2 \pi}}\left[-\exp \left(-\frac{1}{2} t^{2}\right)\right]_{\Phi^{-1}(\alpha)}^{\infty} \\
= & \mu+\frac{\sigma}{(1-\alpha) \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left[\Phi^{-1}(\alpha)\right]^{2}\right) \\
= & \mu+\frac{\sigma}{(1-\alpha)} \phi\left(\Phi^{-1}(\alpha)\right)
\end{aligned}
$$

Because $\phi^{\prime}(x)=-x \phi(x)$, we have:

$$
\begin{aligned}
1-\Phi(x) & =\int_{x}^{\infty} \phi(t) \mathrm{d} t \\
& =\int_{x}^{\infty}\left(-\frac{1}{t}\right)(-t \phi(t)) \mathrm{d} t \\
& =\int_{x}^{\infty}\left(-\frac{1}{t}\right) \phi^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

We consider the integration by parts with $u(t)=-t^{-1}$ and $v^{\prime}(t)=\phi^{\prime}(t)$:

$$
\begin{aligned}
1-\Phi(x) & =\left[-\frac{\phi(t)}{t}\right]_{x}^{\infty}-\int_{x}^{\infty} \frac{1}{t^{2}} \phi(t) \mathrm{d} t \\
& =\frac{\phi(x)}{x}+\int_{x}^{\infty} \frac{1}{t^{3}}(-t \phi(t)) \mathrm{d} t \\
& =\frac{\phi(x)}{x}+\int_{x}^{\infty} \frac{1}{t^{3}} \phi^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

We consider another integration by parts with $u(t)=t^{-3}$ and $v^{\prime}(t)=\phi^{\prime}(t)$:

$$
\begin{aligned}
1-\Phi(x) & =\frac{\phi(x)}{x}+\left[\frac{\phi(t)}{t^{3}}\right]_{x}^{\infty}-\int_{x}^{\infty}-\frac{3}{t^{4}} \phi(t) \mathrm{d} t \\
& =\frac{\phi(x)}{x}-\frac{\phi(x)}{x^{3}}-\int_{x}^{\infty} \frac{3}{t^{5}} \phi^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

We continue to use the integration by parts with $v^{\prime}(t)=\phi(t)$. At the end, we obtain:

$$
\begin{aligned}
1-\Phi(x)= & \frac{\phi(x)}{x}-\frac{\phi(x)}{x^{3}}+3 \frac{\phi(x)}{x^{5}}-3 \cdot 5 \frac{\phi(x)}{x^{7}}+ \\
& 3 \cdot 5 \cdot 7 \frac{\phi(x)}{x^{9}}-\ldots \\
= & \frac{\phi(x)}{x}+\frac{1}{x^{2}} \sum_{n=1}^{\infty}(-1)^{n}\left(\prod_{i=1}^{n}(2 i-1)\right) \frac{\phi(x)}{x^{2 n-1}} \\
= & \frac{\phi(x)}{x}+\frac{\Psi(x)}{x^{2}}
\end{aligned}
$$

FIGURE 2.3: Approximation of $1-\Phi(x)$

We have represented the approximation in Figure 2.3. We finally deduce that:

$$
\phi(x)=x(1-\Phi(x))-\frac{\Psi(x)}{x}
$$

By using the previous expression of $\mathrm{ES}_{\alpha}(L)$, we obtain with $x=\Phi^{-1}(\alpha)$:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(L) & =\mu+\frac{\sigma}{(1-\alpha)} \phi\left(\Phi^{-1}(\alpha)\right) \\
& =\mu+\frac{\sigma}{(1-\alpha)} \phi(x) \\
& =\mu+\frac{\sigma}{(1-\alpha)}\left(\Phi^{-1}(\alpha)(1-\alpha)-\frac{\Psi\left(\Phi^{-1}(\alpha)\right)}{\Phi^{-1}(\alpha)}\right) \\
& =\mu+\sigma \Phi^{-1}(\alpha)-\sigma \frac{\Psi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha) \Phi^{-1}(\alpha)} \\
& =\operatorname{VaR}_{\alpha}(L)-\sigma \frac{\Psi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha) \Phi^{-1}(\alpha)}
\end{aligned}
$$

We deduce that $\mathrm{ES}_{\alpha}(L) \rightarrow \operatorname{VaR}_{\alpha}(L)$ because:

$$
\lim _{\alpha \rightarrow 1} \frac{\Psi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha) \Phi^{-1}(\alpha)}=0
$$

(e) For the Gaussian distribution, the expected shortfall and the value-at-risk coincide for high confidence level α. It is not the case with the Pareto distribution, which has a fat tail. The use of the Pareto distribution can then produce risk measures which may be much higher than those based on the Gaussian distribution.
2. (a) We have:

$$
\begin{aligned}
\mathcal{R}\left(L_{1}+L_{2}\right) & =\mathbb{E}\left[L_{1}+L_{2}\right]=\mathbb{E}\left[L_{1}\right]+\mathbb{E}\left[L_{2}\right]=\mathcal{R}\left(L_{1}\right)+\mathcal{R}\left(L_{2}\right) \\
\mathcal{R}(\lambda L) & =\mathbb{E}[\lambda L]=\lambda \mathbb{E}[L]=\lambda \mathcal{R}(L) \\
\mathcal{R}(L+m) & =\mathbb{E}[L-m]=\mathbb{E}[L]-m=\mathcal{R}(L)-m
\end{aligned}
$$

We notice that:

$$
\mathbb{E}[L]=\int_{-\infty}^{\infty} x \mathrm{~d} \mathbf{F}(x)=\int_{0}^{1} \mathbf{F}^{-1}(t) \mathrm{d} t
$$

We deduce that if $\mathbf{F}_{1}(x) \geq \mathbf{F}_{2}(x)$, then $\mathbf{F}_{1}^{-1}(t) \leq \mathbf{F}_{2}^{-1}(t)$ and $\mathbb{E}\left[L_{1}\right] \leq \mathbb{E}\left[L_{2}\right]$.
We conclude that \mathcal{R} is a coherent risk measure.
(b) We have:

$$
\begin{aligned}
\mathcal{R}\left(L_{1}+L_{2}\right)= & \mathbb{E}\left[L_{1}+L_{2}\right]+\sigma\left(L_{1}+L_{2}\right) \\
= & \mathbb{E}\left[L_{1}\right]+\mathbb{E}\left[L_{2}\right]+ \\
& \sqrt{\sigma^{2}\left(L_{1}\right)+\sigma^{2}\left(L_{2}\right)+2 \rho\left(L_{1}, L_{2}\right) \sigma\left(L_{1}\right) \sigma\left(L_{2}\right)}
\end{aligned}
$$

Because $\rho\left(L_{1}, L_{2}\right) \leq 1$, we deduce that:

$$
\begin{aligned}
\mathcal{R}\left(L_{1}+L_{2}\right) & \leq \mathbb{E}\left[L_{1}\right]+\mathbb{E}\left[L_{2}\right]+ \\
& \sqrt{\sigma^{2}\left(L_{1}\right)+\sigma^{2}\left(L_{2}\right)+2 \sigma\left(L_{1}\right) \sigma\left(L_{2}\right)} \\
& \leq \mathbb{E}\left[L_{1}\right]+\mathbb{E}\left[L_{2}\right]+\sigma\left(L_{1}\right)+\sigma\left(L_{2}\right) \\
& \leq \mathcal{R}\left(L_{1}\right)+\mathcal{R}\left(L_{2}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\mathcal{R}(\lambda L) & =\mathbb{E}[\lambda L]+\sigma(\lambda L) \\
& =\lambda \mathbb{E}[L]+\lambda \sigma(L) \\
& =\lambda \mathcal{R}(L)
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathcal{R}(L+m) & =\mathbb{E}[L-m]+\sigma(L-m) \\
& =\mathbb{E}[L]-m+\sigma(L) \\
& =\mathcal{R}(L)-m
\end{aligned}
$$

If we consider the convexity property, we notice that:

$$
\begin{aligned}
\mathcal{R}\left(\lambda L_{1}+(1-\lambda) L_{2}\right) & \leq \mathcal{R}\left(\lambda L_{1}\right)+\mathcal{R}\left((1-\lambda) L_{2}\right) \\
& \leq \lambda \mathcal{R}\left(L_{1}\right)+(1-\lambda) \mathcal{R}\left(L_{2}\right)
\end{aligned}
$$

We conclude that \mathcal{R} is a convex risk measure.
3. We have:

ℓ_{i}	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}\left\{L=\ell_{i}\right\}$	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\operatorname{Pr}\left\{L \leq \ell_{i}\right\}$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

(a) We have $\operatorname{VaR}_{50 \%}(L)=3, \operatorname{VaR}_{75 \%}(L)=6, \operatorname{VaR}_{90 \%}(L)=7$ and:

$$
\begin{aligned}
\mathrm{ES}_{50 \%}(L) & =\frac{3 \times 10 \%+\ldots+8 \times 10 \%}{60 \%}=5.5 \\
\mathrm{ES}_{75 \%}(L) & =\frac{6 \times 10 \%+\ldots+8 \times 10 \%}{30 \%}=7.0 \\
\mathrm{ES}_{90 \%}(L) & =\frac{7 \times 10 \%+8 \times 10 \%}{20 \%}=7.5
\end{aligned}
$$

(b) We have to build a bivariate distribution such that:

$$
\mathbf{F}_{1}^{-1}(\alpha)+\mathbf{F}_{2}^{-1}(\alpha)<\mathbf{F}_{1+2}^{-1}(\alpha)
$$

To this end, we may use the Makarov inequalities. For instance, we may consider an ordinal sum of the copula \mathbf{C}^{+}for $\left(u_{1}, u_{2}\right) \leq(\alpha, \alpha)$ and another copula \mathbf{C}_{α} for $\left(u_{1}, u_{2}\right)>(\alpha, \alpha)$ to produce a bivariate distribution which does not satisfy the subadditivity property. By taking for example $\alpha=70 \%$ and $\mathbf{C}_{\alpha}=\mathbf{C}^{-}$, we obtain the following bivariate distribution ${ }^{6}$:

| ℓ_{i} | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $p_{2, i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.2 | | | | | | | | | 0.2 |
| 1 | | 0.1 | | | | | | | | 0.1 |
| 2 | | | 0.1 | | | | | | | 0.1 |
| 3 | | | | 0.1 | | | | | | 0.1 |
| 4 | | | | | 0.1 | | | | | 0.1 |
| 5 | | | | | | 0.1 | | | | 0.1 |
| 6 | | | | | | | | | $\mathbf{0 . 1}$ | 0.1 |
| 7 | | | | | | | | $\mathbf{0 . 1}$ | | 0.1 |
| 8 | | | | | | | $\mathbf{0 . 1}$ | | | 0.1 |
| $p_{1, i}$ | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |

We then have:

ℓ_{i}	0	2	4	6	8	10	14
$\operatorname{Pr}\left\{L_{1}+L_{2}=\ell_{i}\right\}$	0.2	0.1	0.1	0.1	0.1	0.1	0.3
$\operatorname{Pr}\left\{L_{1}+L_{2} \leq \ell_{i}\right\}$	0.2	0.3	0.4	0.5	0.6	0.7	1.0

Because $\mathbf{F}_{1}^{-1}(80 \%)=\mathbf{F}_{2}^{-1}(80 \%)=6$ and $\mathbf{F}_{1+2}^{-1}(80 \%)=14$, we obtain:

$$
\mathbf{F}_{1}^{-1}(80 \%)+\mathbf{F}_{2}^{-1}(80 \%)<\mathbf{F}_{1+2}^{-1}(80 \%)
$$

2.4.4 Value-at-risk of a long/short portfolio

We note $S_{A, t}\left(\right.$ resp. $\left.S_{B, t}\right)$ the price of stock A (resp. B) at time t. The portfolio value is:

$$
P_{t}(w)=w_{A} S_{A, t}+w_{B} S_{B, t}
$$

where w_{A} and w_{B} are the number of stocks A and B. We deduce that the $\mathrm{P} \& \mathrm{~L}$ between t and $t+1$ is:

$$
\begin{aligned}
\Pi(w) & =P_{t+1}-P_{t} \\
& =w_{A}\left(S_{A, t+1}-S_{A, t}\right)+w_{B}\left(S_{B, t+1}-S_{B, t}\right) \\
& =w_{A} S_{A, t} R_{A, t+1}+w_{B} S_{B, t} R_{B, t+1} \\
& =W_{A, t} R_{A, t+1}+W_{B, t} R_{B, t+1}
\end{aligned}
$$

[^6]where $R_{A, t+1}$ and $R_{B, t+1}$ are the asset returns of A and B between t and $t+1$, and $W_{A, t}$ and $W_{B, t}$ are the nominal wealth invested in stocks A and B at time t.

1. We have $W_{A, t}=+2$ and $W_{B, t}=-1$. The $\mathrm{P} \& \mathrm{~L}$ (expressed in USD million) has the following expression:

$$
\Pi(w)=2 R_{A, t+1}-R_{B, t+1}
$$

We have $\Pi(w) \sim \mathcal{N}\left(0, \sigma^{2}(\Pi)\right)$ with:

$$
\begin{aligned}
\sigma(\Pi) & =\sqrt{\left(2 \sigma_{A}\right)^{2}+\left(-\sigma_{B}\right)^{2}+2 \rho_{A, B} \times\left(2 \sigma_{A}\right) \times\left(-\sigma_{B}\right)} \\
& =\sqrt{4 \times 0.20^{2}+(-0.20)^{2}-4 \times 0.5 \times 0.20^{2}} \\
& =\sqrt{3} \times 20 \% \\
& \simeq 34.64 \%
\end{aligned}
$$

The annual volatility of the long/short portfolio is then equal to $\$ 346400$. We consider the square-root-of-time rule to calculate the daily value-at-risk:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { one day }) & =\frac{1}{\sqrt{260}} \times \Phi^{-1}(0.99) \times \sqrt{3} \times 20 \% \\
& =5.01 \%
\end{aligned}
$$

The 99% value-at-risk is then equal to $\$ 50056$.
2. We use the historical data to calculate the scenarios of asset returns $\left(R_{A, t+1}, R_{B, t+1}\right)$. We then deduce the empirical distribution of the $\mathrm{P} \& \mathrm{~L}$ with the formula $\Pi(w)=$ $2 R_{A, t+1}-R_{B, t+1}$. Finally, we calculate the empirical quantile. With 250 scenarios, the 1% decile is between the second and third worst cases:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { one day }) & =-\left[-56850+\frac{1}{2}(-54270-(-56850))\right] \\
& =55560
\end{aligned}
$$

The probability to lose $\$ 55560$ per day is equal to 1%. We notice that the difference between the historical VaR and the Gaussian VaR is equal to 11%.
3. If we assume that the average of the last 60 VaRs is equal to the current VaR, we obtain:

$$
\mathcal{K}^{\mathrm{IMA}}=m_{c} \times \sqrt{10} \times \operatorname{VaR}_{99 \%}(w ; \text { one day })
$$

$\mathcal{K}^{\text {IMA }}$ is respectively equal to $\$ 474877$ and $\$ 527088$ for the Gaussian and historical VaRs. In the case of the standardized measurement method, we have:

$$
\begin{aligned}
\mathcal{K}^{\text {Specific }} & =2 \times 8 \%+1 \times 8 \% \\
& =\$ 240000
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathcal{K}^{\text {General }} & =|2-1| \times 8 \% \\
& =\$ 80000
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathcal{K}^{\text {SMM }} & =\mathcal{K}^{\text {Specific }}+\mathcal{K}^{\text {General }} \\
& =\$ 320000
\end{aligned}
$$

The internal model-based approach does not achieve a reduction of the required capital with respect to the standardized measurement method. Moreover, we have to add the stressed VaR under Basel 2.5 and the IMA regulatory capital is at least multiplied by a factor of 2 .
4. If $\rho_{A, B}=-0.50$, the volatility of the P\&L becomes:

$$
\begin{aligned}
\sigma(\Pi) & =\sqrt{4 \times 0.20^{2}+(-0.20)^{2}-4 \times(-0.5) \times 0.20^{2}} \\
& =\sqrt{7} \times 20 \%
\end{aligned}
$$

We deduce that:

$$
\frac{\operatorname{VaR}_{\alpha}\left(\rho_{A, B}=-50 \%\right)}{\operatorname{VaR}_{\alpha}\left(\rho_{A, B}=+50 \%\right)}=\frac{\sigma\left(\Pi ; \rho_{A, B}=-50 \%\right)}{\sigma\left(\Pi ; \rho_{A, B}=+50 \%\right)}=\sqrt{\frac{7}{3}}=1.53
$$

The value-at-risk increases because the hedging effect of the positive correlation vanishes. With a negative correlation, a long/short portfolio becomes more risky than a long-only portfolio.
5. The P\&L formula becomes:

$$
\Pi(w)=W_{A, t} R_{A, t+1}+W_{B, t} R_{B, t+1}-\left(\mathcal{C}_{A, t+1}-\mathcal{C}_{A, t}\right)
$$

where $\mathcal{C}_{A, t}$ is the call option price. We have:

$$
\mathcal{C}_{A, t+1}-\mathcal{C}_{A, t} \simeq \Delta_{t}\left(S_{A, t+1}-S_{A, t}\right)
$$

where $\boldsymbol{\Delta}_{t}$ is the delta of the option. If the nominal of the option is USD 2 million, we obtain:

$$
\begin{align*}
\Pi(w) & =2 R_{A}-R_{B}-2 \times 0.5 \times R_{A} \\
& =R_{A}-R_{B} \tag{2.1}
\end{align*}
$$

and:

$$
\begin{aligned}
\sigma(\Pi) & =\sqrt{0.20^{2}+(-0.20)^{2}-2 \times 0.5 \times 0.20^{2}} \\
& =20 \%
\end{aligned}
$$

If the nominal of the option is USD 4 million, we obtain:

$$
\begin{align*}
\Pi(w) & =2 R_{A}-R_{B}-4 \times 0.5 \times R_{A} \\
& =-R_{B} \tag{2.2}
\end{align*}
$$

and $\sigma(\Pi)=20 \%$. In both cases, we have:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { one day }) & =\frac{1}{\sqrt{260}} \times \Phi^{-1}(0.99) \times 20 \% \\
& =\$ 28900
\end{aligned}
$$

The value-at-risk of the long/short portfolio (2.1) is then equal to the value-at-risk of the short portfolio (2.2) because of two effects: the absolute exposure of the long/short portfolio is higher than the absolute exposure of the short portfolio, but a part of the risk of the long/short portfolio is hedged by the positive correlation between the two stocks.
6. We have:

$$
\Pi(w)=W_{A, t} R_{A, t+1}-\left(\mathcal{C}_{B, t+1}-\mathcal{C}_{B, t}\right)
$$

and:

$$
\mathcal{C}_{B, t+1}-\mathcal{C}_{B, t} \simeq \boldsymbol{\Delta}_{t}\left(S_{B, t+1}-S_{B, t}\right)
$$

where $\boldsymbol{\Delta}_{t}$ is the delta of the option. We note x the nominal of the option expressed in USD million. We obtain:

$$
\begin{aligned}
\Pi(w) & =2 R_{A}-x \times \Delta_{t} \times R_{B} \\
& =2 R_{A}-\frac{x}{2} R_{B}
\end{aligned}
$$

We have ${ }^{7}$:

$$
\begin{aligned}
\sigma^{2}(\Pi) & =4 \sigma_{A}^{2}+\frac{x^{2} \sigma_{B}^{2}}{4}+2 \rho_{A, B} \times\left(2 \sigma_{A}\right) \times\left(-\frac{x}{2} \sigma_{B}\right) \\
& =\frac{\sigma_{A}^{2}}{4}\left(x^{2}-8 \rho_{A, B} x+16\right)
\end{aligned}
$$

Minimizing the Gaussian value-at-risk is equivalent to minimizing the variance of the P\&L. We deduce that the first-order condition is:

$$
\frac{\partial \sigma^{2}(\Pi)}{\partial x}=\frac{\sigma_{A}^{2}}{4}\left(2 x-8 \rho_{A, B}\right)=0
$$

We deduce that the minimum VaR is reached when the nominal of the option is $x=4 \rho_{A, B}$. We finally obtain:

$$
\begin{aligned}
\sigma(\Pi) & =\frac{\sigma_{A}}{2} \sqrt{16 \rho_{A, B}^{2}-32 \rho_{A, B}^{2}+16} \\
& =2 \sigma_{A} \sqrt{1-\rho_{A, B}^{2}}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { one day }) & =\frac{1}{\sqrt{260}} \times 2.33 \times 2 \times 20 \% \times \sqrt{1-\rho_{A, B}^{2}} \\
& \simeq 5.78 \% \times \sqrt{1-\rho_{A, B}^{2}}
\end{aligned}
$$

If $\rho_{A, B}$ is negative (resp. positive), the exposure x is negative meaning that we have to buy (resp. to sell) a call option on stock B in order to hedge a part of the risk related to stock A. If $\rho_{A, B}$ is equal to zero, the exposure x is equal to zero because a position on stock B adds systematically a supplementary risk to the portfolio.

2.4.5 Value-at-risk of an equity portfolio hedged with put options

1. Let $R=\left(R_{A}, R_{B}\right)$ be the random vector of stock returns. We remind that ${ }^{8}$:

$$
\operatorname{cov}(R)=\sigma^{2}\left(R_{I}\right) \beta \beta^{\top}+D
$$

where $\beta=\left(\beta_{A}, \beta_{B}\right)$ and D is the covariance matrix of idiosyncratic risks.

[^7](a) We deduce that $\sigma\left(R_{j}\right)=\sqrt{\beta_{j}^{2} \sigma^{2}\left(R_{I}\right)+\tilde{\sigma}_{j}^{2}}$. We obtain
$$
\sigma\left(R_{A}\right)=\sqrt{0.5^{2} \times 4 \%+3 \%}=20 \%
$$
and:
$$
\sigma\left(R_{B}\right)=\sqrt{1.5^{2} \times 4 \%+7 \%}=40 \%
$$

The cross-correlation is:

$$
\rho\left(R_{A}, R_{B}\right)=\frac{\sigma^{2}\left(R_{I}\right) \beta_{A} \beta_{B}}{\sigma\left(R_{A}\right) \sigma\left(R_{B}\right)}=\frac{4 \% \times 0.5 \times 1.5}{20 \% \times 40 \%}=37.5 \%
$$

(b) To find the correlation between the stocks and the index, we can proceed in two different ways.
i. We consider the random vector $R=\left(R_{A}, R_{B}, R_{I}\right)$. The formula $\operatorname{cov}(R)=$ $\sigma^{2}\left(R_{I}\right) \beta \beta^{\top}+D$ is still valid with $\beta_{3}=\beta_{I}=1$ and $D_{3,3}=\tilde{\sigma}_{I}^{2}=0 \%$. We obtain:

$$
\rho\left(R_{A}, R_{I}\right)=\frac{\sigma^{2}\left(R_{I}\right) \beta_{A} \beta_{I}}{\sigma\left(R_{A}\right) \sigma\left(R_{I}\right)}=\frac{4 \% \times 0.5 \times 1}{20 \% \times 20 \%}=50 \%
$$

and:

$$
\rho\left(R_{B}, R_{I}\right)=\frac{\sigma^{2}\left(R_{I}\right) \beta_{B} \beta_{I}}{\sigma\left(R_{B}\right) \sigma\left(R_{I}\right)}=\frac{4 \% \times 1.5 \times 1}{40 \% \times 20 \%}=75 \%
$$

ii. The definition of beta β_{j} is:

$$
\beta_{j}=\frac{\operatorname{cov}\left(R_{j}, R_{I}\right)}{\sigma^{2}\left(R_{I}\right)}=\frac{\rho\left(R_{j}, R_{I}\right) \sigma\left(R_{j}\right) \sigma\left(R_{I}\right)}{\sigma^{2}\left(R_{I}\right)}
$$

It follows that:

$$
\rho\left(R_{j}, R_{I}\right)=\frac{\sigma\left(R_{I}\right)}{\sigma\left(R_{j}\right)} \beta_{j}
$$

We retrieve the previous formula.
(c) The correlation matrix is then equal to:

$$
\rho=\left(\begin{array}{rrr}
100.0 \% & & \\
37.5 \% & 100.0 \% & \\
50.0 \% & 75.0 \% & 100.0 \%
\end{array}\right)
$$

We deduce that the covariance matrix Σ is:

$$
\Sigma=\left(\begin{array}{rrr}
4 \% & & \\
3 \% & 16 \% & \\
2 \% & 6 \% & 4 \%
\end{array}\right)
$$

2. Let $w=\left(w_{A}, w_{B}, w_{I}\right)$ be the composition of the portfolio. The expression of the $\mathrm{P} \& \mathrm{~L}$ between t and $t+h$ is:

$$
\begin{aligned}
\Pi(w) & =w_{A}\left(S_{A, t+h}-S_{A, t}\right)+w_{B}\left(S_{B, t+h}-S_{B, t}\right)+w_{A}\left(S_{I, t+h}-S_{I, t}\right) \\
& =w_{A} S_{A, t} R_{A, t+h}+w_{B} S_{B, t} R_{B, t+h}+w_{I} S_{I, t} R_{I, t+h} \\
& =W_{A} R_{A, t+h}+W_{B} R_{B, t+h}+W_{I} R_{I, t+h} \\
& =W^{\top} R_{t+h}
\end{aligned}
$$

where W_{j} is the current wealth invested in asset $j, W=\left(W_{A}, W_{B}, W_{I}\right)$ is the vector of dollar notionals and $R_{t+h}=\left(R_{A, t+h}, R_{B, t+h}, R_{I, t+h}\right)$ is the random vector of asset returns.
(a) We have $W_{A}=400, W_{B}=500$ and $W_{I}=250$. We deduce that:

$$
\begin{aligned}
\sigma^{2}(\Pi)= & W^{\top} \Sigma W \\
= & 400^{2} \times 4 \%+500^{2} \times 16 \%+250^{2} \times 4 \%+ \\
& 2 \times 400 \times 500 \times 3 \%+2 \times 400 \times 250 \times 2 \%+ \\
& 2 \times 500 \times 250 \times 6 \%
\end{aligned}
$$

We find that $\sigma(\Pi)$ is equal to $\$ 28267$. Using the square-root-of-time rule ${ }^{9}$, it follows that:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { ten days }) & =\Phi^{-1}(99 \%) \times 282.67 \times \sqrt{\frac{2}{52}} \\
& =\$ 128.96
\end{aligned}
$$

(b) The 99% quantile corresponds to the $2.6^{\text {th }}$ order statistic of the sample. The historical value-at-risk is then the interpolated value between the second and third largest losses:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { one day }) & =55.23-(2.6-2) \times(55.23-52.06) \\
& =\$ 53.33
\end{aligned}
$$

We deduce that the 10 -day VaR is:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { ten days }) & =\sqrt{10} \times \operatorname{VaR}_{99 \%}(w ; \text { one day }) \\
& =\$ 168.64
\end{aligned}
$$

(c) If we assume that the average of the last 60 VaRs is equal to the current VaR , we obtain:

$$
\mathcal{K}^{\mathrm{IMA}}=m_{c} \times \operatorname{VaR}_{99 \%}(w ; \text { ten days })
$$

$\mathcal{K}^{\text {IMA }}$ is respectively equal to $\$ 387$ and $\$ 506$ for the Gaussian and historical VaRs. In the case of the standardized measurement method, we have ${ }^{10}$:

$$
\begin{aligned}
\mathcal{K}^{\text {Specific }} & =\left(W_{A}+W_{B}\right) \times 8 \%+W_{I} \times 4 \% \\
& =900 \times 8 \%+250 \times 4 \% \\
& =\$ 82
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathcal{K}^{\text {General }} & =\left|W_{A}+W_{B}+W_{I}\right| \times 8 \% \\
& =\$ 92
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathcal{K}^{\text {SMM }} & =\mathcal{K}^{\text {Specific }}+\mathcal{K}^{\text {General }} \\
& =\$ 174
\end{aligned}
$$

[^8]3. Let x be the number of put options. The expression of the $\mathrm{P} \& \mathrm{~L}$ becomes:
$$
\Pi(w)=W_{A} R_{A, t+h}+W_{B} R_{B, t+h}+W_{I} R_{I, t+h}+x\left(\mathcal{P}_{t+h}-\mathcal{P}_{t}\right)
$$
where \mathcal{P}_{t} is the value of the put option at time t. Under the delta approach, we have:
\[

$$
\begin{aligned}
\mathcal{P}_{t+h}-\mathcal{P}_{t} & \simeq \boldsymbol{\Delta}_{t}\left(S_{I, t+h}-S_{I, t}\right) \\
& =\boldsymbol{\Delta}_{t} S_{I, t} R_{I, t+h}
\end{aligned}
$$
\]

We deduce that:

$$
\Pi(w)=W_{A} R_{A, t+h}+W_{B} R_{B, t+h}+\left(W_{I}+x \boldsymbol{\Delta}_{t} S_{I, t}\right) R_{I, t+h}
$$

Using the numerical values, we obtain:

$$
\Pi(w)=400 R_{A, t+h}+500 R_{B, t+h}+(250-12.5 x) \times R_{I, t+h}
$$

(a) To hedge 50% of the index exposure, the number of put options must satisfy the following equation:

$$
250-12.5 x=125
$$

The portfolio manager must purchase 10 put options. In this case, the expression of the P\&L becomes:

$$
\Pi(w)=400 R_{A, t+h}+500 R_{B, t+h}+125 R_{I, t+h}
$$

and the 10 -day Gaussian VaR is equal to $\$ 119.43$.
(b) We have:

$$
\begin{aligned}
\Pi(w)= & 400 R_{A, t+h}+500 R_{B, t+h}+(250-12.5 x) \times R_{I, t+h} \\
= & 400\left(\beta_{A} R_{I, t+h}+\varepsilon_{A, t+h}\right)+500\left(\beta_{B} R_{I, t+h}+\varepsilon_{B, t+h}\right)+ \\
& (250-12.5 x) \times R_{I, t+h} \\
= & (1200-12.5 x) \times R_{I, t+h}+400 \times \varepsilon_{A, t+h}+500 \times \varepsilon_{B, t+h}
\end{aligned}
$$

As the index return is not correlated with the idiosyncratic risks, minimizing the VaR is equivalent to minimizing the beta exposure in the index:

$$
x=\frac{1200}{12.5}=96
$$

The purchase of 96 put options is required to remove the directional risk. In this case, the $\mathrm{P} \& \mathrm{~L}$ reduces to:

$$
\Pi(w)=400 \times \varepsilon_{A, t+h}+500 \times \varepsilon_{B, t+h}
$$

and its volatility becomes:

$$
\sigma(\Pi)=\sqrt{400^{2} \times 3 \%+500^{2} \times 7 \%}=\$ 149.33
$$

We deduce that the minimum 10-day VaR is equal to $\$ 68.13$. In Figure 2.4, we show the evolution of the VaR with the number of purchased options. We verify that the minimum is reached for $x=96$.

FIGURE 2.4: Value of the 10-day VaR with respect to the number of purchased options

2.4.6 Risk management of exotic derivatives

Let \mathcal{C}_{t} be the option price at time t. The $\mathrm{P} \& \mathrm{~L}$ of the trader between t and $t+1$ is:

$$
\Pi=-\left(\mathcal{C}_{t+1}-\mathcal{C}_{t}\right)
$$

The formulation of the exercise suggests that there are two main risk factors: the price of the underlying asset S_{t} and the implied volatility Σ_{t}. We then obtain:

$$
\Pi=C_{t}\left(S_{t}, \Sigma_{t}\right)-C_{t+1}\left(S_{t+1}, \Sigma_{t+1}\right)
$$

1. We have:

$$
\begin{aligned}
\Pi & =C_{t}\left(S_{t}, \Sigma_{t}\right)-C_{t+1}\left(S_{t+1}, \Sigma_{t+1}\right) \\
& \approx-\boldsymbol{\Delta}_{t}\left(S_{t+1}-S_{t}\right)-\frac{1}{2} \boldsymbol{\Gamma}_{t}\left(S_{t+1}-S_{t}\right)^{2}-\boldsymbol{v}_{t}\left(\Sigma_{t+1}-\Sigma_{t}\right)
\end{aligned}
$$

Using the numerical values of $\boldsymbol{\Delta}_{t}, \boldsymbol{\Gamma}_{t}$ and \boldsymbol{v}_{t}, we obtain:

$$
\begin{aligned}
\Pi & \approx-0.49 \times(97-100)-\frac{1}{2} \times 0.02 \times(97-100)^{2} \\
& =1.47-0.09 \\
& =1.38
\end{aligned}
$$

We explain the $\mathrm{P} \& \mathrm{~L}$ by the sensitivities very well.
2. We have:

$$
\begin{aligned}
\Pi= & C_{t+1}\left(S_{t+1}, \Sigma_{t+1}\right)-C_{t+2}\left(S_{t+2}, \Sigma_{t+2}\right) \\
\approx & -\boldsymbol{\Delta}_{t+1}\left(S_{t+2}-S_{t+1}\right)-\frac{1}{2} \boldsymbol{\Gamma}_{t+1}\left(S_{t+2}-S_{t+1}\right)^{2}- \\
& \boldsymbol{v}_{t+1}\left(\Sigma_{t+2}-\Sigma_{t+1}\right)
\end{aligned}
$$

Using the numerical values of $\boldsymbol{\Delta}_{t+1}, \boldsymbol{\Gamma}_{t+1}$ and \boldsymbol{v}_{t+1}, we obtain:

$$
\begin{aligned}
\Pi & \approx-0.49 \times 0-\frac{1}{2} \times 0.02 \times 0^{2}-0.38 \times(22-20) \\
& =-0.76
\end{aligned}
$$

To compare this value with the true $\mathrm{P} \& \mathrm{~L}$, we have to calculate \mathcal{C}_{t+1} :

$$
\begin{aligned}
\mathcal{C}_{t+1} & =\mathcal{C}_{t}-\left(\mathcal{C}_{t}-\mathcal{C}_{t+1}\right) \\
& =6.78-1.37 \\
& =5.41
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\Pi & =\mathcal{C}_{t+1}-\mathcal{C}_{t+2} \\
& =5.41-6.17 \\
& =-0.76
\end{aligned}
$$

Again, the sensitivities explain the P\&L very well.
3. We have:

$$
\begin{aligned}
\Pi= & C_{t+2}\left(S_{t+2}, \Sigma_{t+2}\right)-C_{t+3}\left(S_{t+3}, \Sigma_{t+3}\right) \\
\approx & -\boldsymbol{\Delta}_{t+2}\left(S_{t+3}-S_{t+2}\right)-\frac{1}{2} \boldsymbol{\Gamma}_{t+2}\left(S_{t+3}-S_{t+2}\right)^{2}- \\
& \boldsymbol{v}_{t+2}\left(\Sigma_{t+3}-\Sigma_{t+2}\right)
\end{aligned}
$$

Using the numerical values of $\boldsymbol{\Delta}_{t+2}, \boldsymbol{\Gamma}_{t+2}$ and \boldsymbol{v}_{t+2}, we obtain:

$$
\begin{aligned}
\Pi \approx & -0.44 \times(95-97)-\frac{1}{2} \times 0.018 \times(95-97)^{2}- \\
& 0.38 \times(19-22) \\
= & 0.88-0.036+1.14 \\
= & 1.984
\end{aligned}
$$

The P\&L approximated by the Greek coefficients largely overestimate the true value of the P\&L.
4. We notice that the approximation using the Greek coefficients works very well when one risk factor remains constant:
(a) Between t and $t+1$, the price of the underlying asset changes, but not the implied volatility;
(b) Between $t+1$ and $t+2$, this is the implied volatility that changes whereas the price of the underlying asset is constant.

Therefore, we can assume that the bad approximation between $t+2$ and $t+3$ is due to the cross effect between S_{t} and Σ_{t}. In terms of model risk, the P\&L is then exposed to the vanna risk, meaning that the Black-Scholes model is not appropriate to price and hedge this exotic option.

2.4.7 P\&L approximation with Greek sensitivities

1. We note $\mathcal{C}_{t}=C_{t}\left(S_{t}, \Sigma_{t}, T\right)$ meaning that the option price depends on the current price S_{t}, the implied volatility Σ_{t} and the maturity date T. The delta of the option is the first derivative of \mathcal{C}_{t} with respect to S_{t}.

$$
\boldsymbol{\Delta}_{t}=\frac{\partial C_{t}\left(S_{t}, \Sigma_{t}, T\right)}{\partial S_{t}}
$$

whereas the gamma is the second derivative:

$$
\boldsymbol{\Gamma}_{t}=\frac{\partial^{2} C_{t}\left(S_{t}, \Sigma_{t}, T\right)}{\partial S_{t}^{2}}
$$

The theta of the option is the first derivative of \mathcal{C}_{t} with respect to the time t. We have:

$$
\boldsymbol{\Theta}_{t}=\partial_{t} C_{t}\left(S_{t}, \Sigma_{t}, T\right)
$$

For the vega coefficient, we have:

$$
\boldsymbol{v}_{t}=\frac{\partial C_{t}\left(S_{t}, \Sigma_{t}, T\right)}{\partial \Sigma_{t}}
$$

2. Let r_{t} and b_{t} be the interest rate and the cost-of-carry parameter. We note $\tau=T-t$ the residual maturity. The Black-Scholes formula is:

$$
\mathcal{C}_{t}=S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)-K e^{-r_{t} \tau} \Phi\left(d_{2}\right)
$$

with:

$$
\begin{aligned}
d_{1} & =\frac{1}{\Sigma_{t} \sqrt{\tau}}\left(\ln \frac{S_{t}}{K}+b_{t} \tau\right)+\frac{1}{2} \Sigma_{t} \sqrt{\tau} \\
d_{2} & =d_{1}-\Sigma_{t} \sqrt{\tau}
\end{aligned}
$$

To calculate the Greek coefficients, we need the following preliminary result:

$$
\begin{equation*}
K e^{-r_{t} \tau} \phi\left(d_{2}\right)=S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right) \tag{2.3}
\end{equation*}
$$

Indeed, we have:

$$
\begin{aligned}
\phi\left(d_{2}\right) & =\phi\left(d_{1}-\Sigma_{t} \sqrt{\tau}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(d_{1}-\Sigma_{t} \sqrt{\tau}\right)^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(d_{1}^{2}-2 d_{1} \Sigma_{t} \sqrt{\tau}+\Sigma_{t}^{2} \tau\right)\right) \\
& =\phi\left(d_{1}\right) \exp \left(d_{1} \Sigma_{t} \sqrt{\tau}-\frac{1}{2} \Sigma_{t}^{2} \tau\right) \\
& =\phi\left(d_{1}\right) \exp \left(\ln \frac{S_{t}}{K}+b_{t} \tau\right) \\
& =\frac{S_{t}}{K} e^{b_{t} \tau} \phi\left(d_{1}\right)
\end{aligned}
$$

The derivation of Equation (2.3) is then straightforward. We deduce that:

$$
\begin{aligned}
\boldsymbol{\Delta}_{t} & =e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial S_{t}}-K e^{-r_{t} \tau} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial S_{t}} \\
& =e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial S_{t}}-K e^{-r_{t} \tau} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial S_{t}}
\end{aligned}
$$

We have:

$$
\frac{\partial d_{1}}{\partial S_{t}}=\frac{\partial d_{2}}{\partial S_{t}}=\frac{1}{S_{t} \Sigma_{t} \sqrt{\tau}}
$$

We finally obtain:

$$
\begin{aligned}
\boldsymbol{\Delta}_{t} & =e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+\frac{S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)-K e^{-r_{t} \tau} \phi\left(d_{2}\right)}{S_{t} \Sigma_{t} \sqrt{\tau}} \\
& =e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)
\end{aligned}
$$

The expression of the gamma is therefore:

$$
\boldsymbol{\Gamma}_{t}=\frac{e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)}{S_{t} \Sigma_{t} \sqrt{\tau}}
$$

To calculate the theta, we first calculate the derivative of d_{1} and d_{2} with respect to τ :

$$
\begin{aligned}
\frac{\partial d_{1}}{\partial \tau} & =-\frac{1}{2 \Sigma_{t} \tau \sqrt{\tau}} \ln \frac{S_{t}}{K}+\frac{b_{t}}{2 \Sigma_{t} \sqrt{\tau}}+\frac{\Sigma_{t}}{4 \sqrt{\tau}} \\
\frac{\partial d_{2}}{\partial \tau} & =-\frac{1}{2 \Sigma_{t} \tau \sqrt{\tau}} \ln \frac{S_{t}}{K}+\frac{b_{t}}{2 \Sigma_{t} \sqrt{\tau}}-\frac{\Sigma_{t}}{4 \sqrt{\tau}}
\end{aligned}
$$

We deduce then:

$$
\begin{aligned}
\partial_{\tau} C_{t}\left(S_{t}, \Sigma_{t}, T\right)= & \left(b_{t}-r_{t}\right) S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+r_{t} K e^{-r_{t} \tau} \Phi\left(d_{2}\right)+ \\
& S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial \tau}-K e^{-r_{t} \tau} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial \tau} \\
= & \left(b_{t}-r_{t}\right) S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+r_{t} K e^{-r_{t} \tau} \Phi\left(d_{2}\right)+ \\
& S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)\left(\frac{\partial d_{1}}{\partial \tau}-\frac{\partial d_{2}}{\partial \tau}\right) \\
= & \left(b_{t}-r_{t}\right) S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+r_{t} K e^{-r_{t} \tau} \Phi\left(d_{2}\right)+ \\
& S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)\left(\frac{\Sigma_{t}}{4 \sqrt{\tau}}+\frac{\Sigma_{t}}{4 \sqrt{\tau}}\right) \\
= & \left(b_{t}-r_{t}\right) S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \Phi\left(d_{1}\right)+r_{t} K e^{-r_{t} \tau} \Phi\left(d_{2}\right)+ \\
& \frac{1}{2 \sqrt{\tau}} S_{t} \Sigma_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)
\end{aligned}
$$

The expression of the theta coefficient is then the opposite of $\partial_{\tau} C_{t}\left(S_{t}, \Sigma_{t}, T\right)$. For the vega coefficient, we obtain:

$$
\begin{aligned}
\boldsymbol{v}_{t} & =S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial \Sigma_{t}}-K e^{-r_{t} \tau} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial \Sigma_{t}} \\
& =S_{t} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)\left(\frac{\partial d_{1}}{\partial \Sigma_{t}}-\frac{\partial d_{2}}{\partial \Sigma_{t}}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\frac{\partial d_{1}}{\partial \Sigma_{t}} & =-\frac{1}{\Sigma_{t}^{2} \sqrt{\tau}}\left(\ln \frac{S_{t}}{K}+b_{t} \tau\right)+\frac{1}{2} \sqrt{\tau} \\
\frac{\partial d_{2}}{\partial \Sigma_{t}} & =-\frac{1}{\Sigma_{t}^{2} \sqrt{\tau}}\left(\ln \frac{S_{t}}{K}+b_{t} \tau\right)-\frac{1}{2} \sqrt{\tau}
\end{aligned}
$$

It follows that:

$$
\boldsymbol{v}_{t}=S_{t} \sqrt{\tau} e^{\left(b_{t}-r_{t}\right) \tau} \phi\left(d_{1}\right)
$$

3. (a) To calculate $\boldsymbol{\mathcal { C }}_{0}, \boldsymbol{\Delta}_{0}, \boldsymbol{\Gamma}_{0}$ and $\boldsymbol{\Theta}_{0}$, we consider the Back-Scholes formulas with $b_{t}=$ r_{t}. We have $\mathcal{C}_{t}=S_{t} \Phi\left(d_{1}\right)-K e^{-r_{t} \tau} \Phi\left(d_{2}\right), \boldsymbol{\Delta}_{t}=\Phi\left(d_{1}\right), \boldsymbol{\Gamma}_{t}=\phi\left(d_{1}\right) /\left(S_{t} \Sigma_{t} \sqrt{\tau}\right)$, $\boldsymbol{\Theta}_{t}=-r_{t} K e^{-r_{t} \tau} \Phi\left(d_{2}\right)-S_{t} \Sigma_{t} \phi\left(d_{1}\right) /(2 \sqrt{\tau})$ with the following numerical values: $S_{t}=100, \Sigma_{t}=20 \%, \tau=1$ and $r_{t}=5 \%$. We notice that the option price is a decreasing function of the strike, because it is a convex function of the strike. The delta and gamma coefficients are positive. The delta is a decreasing function with respect to K. This is not the case of the gamma. The theta of the call option is negative, because the time value decreases with the residual maturity.
(b) We apply the Black-Scholes formula $\mathcal{C}_{t}=S_{t} \Phi\left(d_{1}\right)-K e^{-r_{t} \tau} \Phi\left(d_{2}\right)$ with $S_{t}=102$, $\Sigma_{t}=20 \%, r_{t}=5 \%$ and $\tau=1-1 / 252$ because the residual maturity is one year minus one trading day. We deduce that the $\mathrm{P} \& \mathrm{~L}$ of a long position on this option is $\Pi=\mathcal{C}_{1}-\mathcal{C}_{0}$:

K	80	95	100	105	120
Π	1.852	1.464	1.285	1.099	0.589

(c) We obtain the following results:

K	80	95	100	105	120
Π^{Δ}	1.857	1.456	1.274	1.084	0.574
$\Pi^{\Delta+\Gamma}$	1.871	1.489	1.311	1.124	0.608
$\Pi^{\Delta+\boldsymbol{\Theta}}$	1.839	1.432	1.249	1.060	0.556
$\Pi^{\Delta+\Gamma+\boldsymbol{\Theta}}$	1.853	1.465	1.287	1.100	0.590

The approximation of the $\mathrm{P} \& \mathrm{~L}$ by the Greek sensitivities is very accurate.
(d) We obtain the following results:

K	80	95	100	105	120
Π	45.386	42.001	40.026	37.596	28.090
$\bar{\Pi}{ }^{\boxed{ }}$	$\overline{4} 4.5 \overline{7} 5$	34.939	$\overline{3} 0.5 \overline{56}$	26.027	$\overline{1} \overline{3} . \overline{7} 8 \overline{5}$
$\Pi^{\Delta+\Gamma}$	52.424	54.058	52.182	48.877	33.412
$\Pi^{\Delta+\Theta}$	42.186	31.793	27.361	22.888	11.445
$\Pi^{\Delta+\Gamma+\Theta}$	50.036	50.912	48.975	45.739	31.071

In this case, the approximation of the P\&L by the Greek sensitivities is not very good. Indeed, the remaining maturity is now six months meaning that (1) the theta effect is not well measured and (2) the price of the underlying asset has changed significantly. In this situation, the delta $\mathrm{P} \& \mathrm{~L}$ is overestimated.

2.4.8 Calculating the non-linear quadratic value-at-risk

1. We have:

$$
\begin{aligned}
\mathbb{E}\left[X^{2 n}\right] & =\int_{-\infty}^{+\infty} x^{2 n} \phi(x) \mathrm{d} x \\
& =\int_{-\infty}^{+\infty} x^{2 n-1} x \phi(x) \mathrm{d} x
\end{aligned}
$$

Using the integration by parts formula, we obtain ${ }^{11}$:

$$
\begin{aligned}
\mathbb{E}\left[X^{2 n}\right] & =\left[-x^{2 n-1} \phi(x)\right]_{-\infty}^{+\infty}+(2 n-1) \int_{-\infty}^{+\infty} x^{2 n-2} \phi(x) \mathrm{d} x \\
& =(2 n-1) \int_{-\infty}^{+\infty} x^{2 n-2} \phi(x) \mathrm{d} x \\
& =(2 n-1) \mathbb{E}\left[X^{2 n-2}\right]
\end{aligned}
$$

We deduce that $\mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{4}\right]=(2 \times 2-1) \mathbb{E}\left[X^{2}\right]=3, \mathbb{E}\left[X^{6}\right]=$ $(2 \times 3-1) \mathbb{E}\left[X^{4}\right]=15$ and $\mathbb{E}\left[X^{8}\right]=(2 \times 4-1) \mathbb{E}\left[X^{4}\right]=105$. For the odd moments, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[X^{2 n+1}\right] & =\int_{-\infty}^{+\infty} x^{2 n+1} \phi(x) \mathrm{d} x \\
& =0
\end{aligned}
$$

because $x^{2 n+1} \phi(x)$ is an odd function.
2. Let \mathcal{C}_{t} be the value of the call option at time t. The $\mathrm{P} \& \mathrm{~L}$ is equal to:

$$
\Pi(w)=\mathcal{C}_{t+h}-\mathcal{C}_{t}
$$

where h is the holding period ${ }^{12}$. We also have $S_{t+h}=\left(1+R_{t+h}\right) S_{t}$ where R_{t+h} is the asset return. We notice that the daily volatility is equal to:

$$
\sigma=\frac{32.25 \%}{\sqrt{260}}=2 \%
$$

We deduce that $R_{t+h} \sim \mathcal{N}(0,4 \mathrm{bps})$.
(a) We have:

$$
\begin{aligned}
\Pi(w) & \approx \boldsymbol{\Delta}_{t}\left(S_{t+h}-S_{t}\right) \\
& =\boldsymbol{\Delta}_{t} S_{t} R_{t+h}
\end{aligned}
$$

It follows that $\Pi(w) \sim \mathcal{N}\left(0, \Delta_{t}^{2} \sigma^{2} S_{t}^{2}\right)$ where σ is the volatility of R_{t+h} and:

$$
\operatorname{VaR}_{\alpha}(w ; h)=\Phi^{-1}(\alpha)\left|\boldsymbol{\Delta}_{t}\right| \sigma S_{t}
$$

The numerical application gives $\operatorname{VaR}_{\alpha}(w ; h)=2.33$ dollars.
(b) In the case of the delta-gamma approximation, we obtain:

$$
\begin{aligned}
\Pi(w) & \approx \boldsymbol{\Delta}_{t}\left(S_{t+h}-S_{t}\right)+\frac{1}{2} \boldsymbol{\Gamma}_{t}\left(S_{t+h}-S_{t}\right)^{2} \\
& =\boldsymbol{\Delta}_{t} R_{t+h} S_{t}+\frac{1}{2} \boldsymbol{\Gamma}_{t} R_{t+h}^{2} S_{t}^{2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}[\Pi] & =\mathbb{E}\left[\boldsymbol{\Delta}_{t} R_{t+h} S_{t}+\frac{1}{2} \boldsymbol{\Gamma}_{t} R_{t+h}^{2} S_{t}^{2}\right] \\
& =\frac{1}{2} \boldsymbol{\Gamma}_{t} \mathbb{E}\left[R_{t+h}^{2}\right] S_{t}^{2} \\
& =\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2}
\end{aligned}
$$

[^9]and:
\[

$$
\begin{aligned}
\mathbb{E}\left[\Pi^{2}\right] & =\mathbb{E}\left[\left(\boldsymbol{\Delta}_{t} R_{t+h} S_{t}+\frac{1}{2} \boldsymbol{\Gamma}_{t} R_{t+h}^{2} S_{t}^{2}\right)^{2}\right] \\
& =\mathbb{E}\left[\boldsymbol{\Delta}_{t}^{2} R_{t+h}^{2} S_{t}^{2}+\boldsymbol{\Delta}_{t} \boldsymbol{\Gamma}_{t} R_{t+h}^{3} S_{t}^{3}+\frac{1}{4} \boldsymbol{\Gamma}_{t}^{2} R_{t+h}^{4} S_{t}^{4}\right]
\end{aligned}
$$
\]

We have $R_{t+h}=\sigma X$ with $X \sim \mathcal{N}(0,1)$. It follows that:

$$
\mathbb{E}\left[\Pi^{2}\right]=\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{3}{4} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}
$$

because $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{3}\right]=0$ and $\mathbb{E}\left[X^{4}\right]=3$. The standard deviation of the $\mathrm{P} \& \mathrm{~L}$ is then:

$$
\begin{aligned}
\sigma(\Pi) & =\sqrt{\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{3}{4} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}-\left(\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2}\right)^{2}} \\
& =\sqrt{\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}}
\end{aligned}
$$

Therefore, the Gaussian approximation of the P\&L is:

$$
\Pi(w) \sim \mathcal{N}\left(\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2}, \Delta_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}\right)
$$

We deduce that the Gaussian value-at-risk is:

$$
\operatorname{VaR}_{\alpha}(w ; h)=-\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2}+\Phi^{-1}(\alpha) \sqrt{\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}}
$$

The numerical application gives $\operatorname{VaR}_{\alpha}(w ; h)=2.29$ dollars.
(c) Let $L=-\Pi$ be the loss. We recall that the Cornish-Fisher value-at-risk is equal to (FRM, page 88):

$$
\operatorname{VaR}_{\alpha}(w ; h)=\mu(L)+\mathfrak{z}\left(\alpha ; \gamma_{1}(L), \gamma_{2}(L)\right) \cdot \sigma(L)
$$

with:

$$
\begin{aligned}
\mathfrak{z}\left(\alpha ; \gamma_{1}, \gamma_{2}\right)= & z_{\alpha}+\frac{1}{6}\left(z_{\alpha}^{2}-1\right) \gamma_{1}+\frac{1}{24}\left(z_{\alpha}^{3}-3 z_{\alpha}\right) \gamma_{2}- \\
& \frac{1}{36}\left(2 z_{\alpha}^{3}-5 z_{\alpha}\right) \gamma_{1}^{2}+\cdots
\end{aligned}
$$

and $z_{\alpha}=\Phi^{-1}(\alpha) . \gamma_{1}$ et γ_{2} are the skewness and excess kurtosis of the loss L. We have seen that:

$$
\Pi(w)=\boldsymbol{\Delta}_{t} \sigma S_{t} X+\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2} X^{2}
$$

with $X \sim \mathcal{N}(0,1)$. Using the results in Question 1, we have $\mathbb{E}[X]=\mathbb{E}\left[X^{3}\right]=$ $\mathbb{E}\left[X^{5}\right]=\mathbb{E}\left[X^{7}\right]=0, \mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{4}\right]=3, \mathbb{E}\left[X^{6}\right]=15$ and $\mathbb{E}\left[X^{8}\right]=105$. We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[\Pi^{3}\right]= & \mathbb{E}\left[\boldsymbol{\Delta}_{t}^{3} \sigma^{3} S_{t}^{3} X^{3}+\frac{3}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4} X^{4}\right]+ \\
& \mathbb{E}\left[\frac{3}{4} \boldsymbol{\Delta}_{t} \boldsymbol{\Gamma}_{t}^{2} \sigma^{5} S_{t}^{5} X^{5}+\frac{1}{8} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6} X^{6}\right] \\
= & \frac{9}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}+\frac{15}{8} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[\Pi^{4}\right] & =\mathbb{E}\left[\left(\boldsymbol{\Delta}_{t} \sigma S_{t} X+\frac{1}{2} \boldsymbol{\Gamma}_{t} \sigma^{2} S_{t}^{2} X^{2}\right)^{4}\right] \\
& =3 \boldsymbol{\Delta}_{t}^{4} \sigma^{4} S_{t}^{4}+\frac{45}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+\frac{105}{16} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}
\end{aligned}
$$

The centered moments are then:

$$
\begin{aligned}
\mathbb{E}\left[(\Pi-\mathbb{E}[\Pi])^{3}\right]= & \mathbb{E}\left[\Pi^{3}\right]-3 \mathbb{E}[\Pi] \mathbb{E}\left[\Pi^{2}\right]+2 \mathbb{E}^{3}[\Pi] \\
= & \frac{9}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}+\frac{15}{8} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}-\frac{3}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}- \\
& \frac{9}{8} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}+\frac{2}{8} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6} \\
= & 3 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}+\boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[(\Pi-\mathbb{E}[\Pi])^{4}\right]= & \mathbb{E}\left[\Pi^{4}\right]-4 \mathbb{E}[\Pi] \mathbb{E}\left[\Pi^{3}\right]+6 \mathbb{E}^{2}[\Pi] \mathbb{E}\left[\Pi^{2}\right]- \\
& 3 \mathbb{E}^{4}[\Pi] \\
= & 3 \boldsymbol{\Delta}_{t}^{4} \sigma^{4} S_{t}^{4}+\frac{45}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+\frac{105}{16} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}- \\
& 9 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}-\frac{15}{4} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}+ \\
& \frac{3}{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+\frac{9}{8} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}-\frac{3}{16} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8} \\
= & 3 \boldsymbol{\Delta}_{t}^{4} \sigma^{4} S_{t}^{4}+15 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+\frac{15}{4} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}
\end{aligned}
$$

It follows that the skewness is:

$$
\begin{aligned}
\gamma_{1}(L) & =-\gamma_{1}(\Pi) \\
& =-\frac{\mathbb{E}\left[(\Pi-\mathbb{E}[\Pi])^{3}\right]}{\sigma^{3}(\Pi)} \\
& =-\frac{3 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}+\boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}}{\left(\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}\right)^{3 / 2}} \\
& =-\frac{6 \sqrt{2} \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t} \sigma^{4} S_{t}^{4}+2 \sqrt{2} \boldsymbol{\Gamma}_{t}^{3} \sigma^{6} S_{t}^{6}}{\left(2 \boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}\right)^{3 / 2}}
\end{aligned}
$$

whereas the excess kurtosis is:

$$
\begin{aligned}
\gamma_{2}(L) & =\gamma_{2}(\Pi) \\
& =\frac{\mathbb{E}\left[(\Pi-\mathbb{E}[\Pi])^{4}\right]}{\sigma^{4}(\Pi)}-3 \\
& =\frac{3 \boldsymbol{\Delta}_{t}^{4} \sigma^{4} S_{t}^{4}+15 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+\frac{15}{4} \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}}{\left(\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}\right)^{2}}-3 \\
& =\frac{12 \boldsymbol{\Delta}_{t}^{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{6} S_{t}^{6}+3 \boldsymbol{\Gamma}_{t}^{4} \sigma^{8} S_{t}^{8}}{\left(\boldsymbol{\Delta}_{t}^{2} \sigma^{2} S_{t}^{2}+\frac{1}{2} \boldsymbol{\Gamma}_{t}^{2} \sigma^{4} S_{t}^{4}\right)^{2}}
\end{aligned}
$$

Using the numerical values, we obtain $\mu(L)=-0.0400, \sigma(L)=1.0016, \gamma_{1}(L)=$ $-0.2394, \gamma_{2}(L)=0.0764, \mathfrak{z}\left(\alpha ; \gamma_{1}, \gamma_{2}\right)=2.1466$ and $\operatorname{VaR}_{\alpha}(w ; h)=2.11$ dollars. The value-at-risk is reduced with the Cornish-Fisher approximation because the skewness is negative whereas the excess kurtosis is very small.
3. (a) We have:

$$
\begin{aligned}
Y & =X^{\top} A X \\
& =\left(\Sigma^{-1 / 2} X\right)^{\top} \Sigma^{1 / 2} A \Sigma^{1 / 2}\left(\Sigma^{-1 / 2} X\right) \\
& =\tilde{X}^{\top} \tilde{A} \tilde{X}
\end{aligned}
$$

with $\tilde{A}=\Sigma^{1 / 2} A \Sigma^{1 / 2}, \tilde{X} \sim \mathcal{N}(\tilde{\mu}, \tilde{\Sigma}), \tilde{\mu}=\Sigma^{-1 / 2} \mu$ and $\tilde{\Sigma}=I$. We deduce that:

$$
\begin{aligned}
\mathbb{E}[Y] & =\tilde{\mu}^{\top} \tilde{A} \tilde{\mu}+\operatorname{tr}(\tilde{A}) \\
& =\mu^{\top} A \mu+\operatorname{tr}\left(\Sigma^{1 / 2} A \Sigma^{1 / 2}\right) \\
& =\mu^{\top} A \mu+\operatorname{tr}(A \Sigma)
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}(Y) & =\mathbb{E}\left[Y^{2}\right]-\mathbb{E}^{2}[Y] \\
& =4 \tilde{\mu}^{\top} \tilde{A}^{2} \tilde{\mu}+2 \operatorname{tr}\left(\tilde{A}^{2}\right) \\
& =4 \mu^{\top} A \Sigma A \mu+2 \operatorname{tr}\left(\Sigma^{1 / 2} A \Sigma A \Sigma^{1 / 2}\right) \\
& =4 \mu^{\top} A \Sigma A \mu+2 \operatorname{tr}\left((A \Sigma)^{2}\right)
\end{aligned}
$$

(b) For the moments, we obtain:

$$
\begin{aligned}
\mathbb{E}[Y]= & \operatorname{tr}(A \Sigma) \\
\mathbb{E}\left[Y^{2}\right]= & (\operatorname{tr}(A \Sigma))^{2}+2 \operatorname{tr}\left((A \Sigma)^{2}\right) \\
\mathbb{E}\left[Y^{3}\right]= & (\operatorname{tr}(A \Sigma))^{3}+6 \operatorname{tr}(A \Sigma) \operatorname{tr}\left((A \Sigma)^{2}\right)+8 \operatorname{tr}\left((A \Sigma)^{3}\right) \\
\mathbb{E}\left[Y^{4}\right]= & (\operatorname{tr}(A \Sigma))^{4}+32 \operatorname{tr}(A \Sigma) \operatorname{tr}\left((A \Sigma)^{3}\right)+ \\
& 12\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}+12(\operatorname{tr}(A \Sigma))^{2} \operatorname{tr}\left((A \Sigma)^{2}\right)+ \\
& 48 \operatorname{tr}\left((A \Sigma)^{4}\right)
\end{aligned}
$$

It follows that the first and second centered moments are $\mu(Y)=\operatorname{tr}(A \Sigma)$ and $\operatorname{var}(Y)=2 \operatorname{tr}\left((A \Sigma)^{2}\right)$. For the third centered moment, we have:

$$
\begin{aligned}
\mathbb{E}\left[(Y-\mathbb{E}[Y])^{3}\right]= & \mathbb{E}\left[Y^{3}\right]-3 \mathbb{E}\left[Y^{2}\right] \mathbb{E}[Y]+2 \mathbb{E}^{3}[Y] \\
= & (\operatorname{tr}(A \Sigma))^{3}+6 \operatorname{tr}(A \Sigma) \operatorname{tr}\left((A \Sigma)^{2}\right)+ \\
& 8 \operatorname{tr}\left((A \Sigma)^{3}\right)-3(\operatorname{tr}(A \Sigma))^{3}- \\
& 6 \operatorname{tr}\left((A \Sigma)^{2}\right) \operatorname{tr}(A \Sigma)+2(\operatorname{tr}(A \Sigma))^{3} \\
= & 8 \operatorname{tr}\left((A \Sigma)^{3}\right)
\end{aligned}
$$

The skewness is then equal to:

$$
\begin{aligned}
\gamma_{1}(Y) & =\frac{8 \operatorname{tr}\left((A \Sigma)^{3}\right)}{\left(2 \operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{3 / 2}} \\
& =\frac{2 \sqrt{2} \operatorname{tr}\left((A \Sigma)^{3}\right)}{\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{3 / 2}}
\end{aligned}
$$

We obtain for the fourth centered moment:

$$
\begin{aligned}
\mathbb{E}\left[(Y-\mathbb{E}[Y])^{4}\right]= & \mathbb{E}\left[Y^{4}\right]-4 \mathbb{E}\left[Y^{3}\right] \mathbb{E}[Y]+6 \mathbb{E}\left[Y^{2}\right] \mathbb{E}^{2}[Y]- \\
& 3 \mathbb{E}^{4}[Y] \\
= & (\operatorname{tr}(A \Sigma))^{4}+32 \operatorname{tr}(A \Sigma) \operatorname{tr}\left((A \Sigma)^{3}\right)+ \\
& 12\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}+48 \operatorname{tr}\left((A \Sigma)^{4}\right) \\
& 12(\operatorname{tr}(A \Sigma))^{2} \operatorname{tr}\left((A \Sigma)^{2}\right)-4(\operatorname{tr}(A \Sigma))^{4}- \\
& 24(\operatorname{tr}(A \Sigma))^{2} \operatorname{tr}\left((A \Sigma)^{2}\right)- \\
& 32 \operatorname{tr}\left((A \Sigma)^{3}\right) \operatorname{tr}(A \Sigma)+6(\operatorname{tr}(A \Sigma))^{4}+ \\
& 12 \operatorname{tr}\left((A \Sigma)^{2}\right)(\operatorname{tr}(A \Sigma))^{2}-3(\operatorname{tr}(A \Sigma))^{4} \\
= & 12\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}+48 \operatorname{tr}\left((A \Sigma)^{4}\right)
\end{aligned}
$$

It follows that the excess kurtosis is:

$$
\begin{aligned}
\gamma_{2}(Y) & =\frac{12\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}+48 \operatorname{tr}\left((A \Sigma)^{4}\right)}{\left(2 \operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}}-3 \\
& =\frac{12 \operatorname{tr}\left((A \Sigma)^{4}\right)}{\left(\operatorname{tr}\left((A \Sigma)^{2}\right)\right)^{2}}
\end{aligned}
$$

4. We have:

$$
\Pi(w)=w^{\top}\left(\mathcal{C}_{t+h}-\mathcal{C}_{t}\right)
$$

where \mathcal{C}_{t} is the vector of option prices.
(a) The expression of the $\mathrm{P} \& \mathrm{~L}$ is:

$$
\begin{aligned}
\Pi(w) & \approx w^{\top}\left(\boldsymbol{\Delta}_{t} \circ\left(S_{t+h}-S_{t}\right)\right) \\
& =w^{\top}\left(\left(\boldsymbol{\Delta}_{t} \circ S_{t}\right) \circ R_{t+h}\right) \\
& =\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}
\end{aligned}
$$

where $\tilde{\boldsymbol{\Delta}}_{t}$ is the vector of delta exposures in dollars:

$$
\tilde{\boldsymbol{\Delta}}_{i, t}=w_{i} \boldsymbol{\Delta}_{i, t} S_{i, t}
$$

Because $R_{t+h} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, it follows that $\Pi \sim \mathcal{N}\left(0, \tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}\right)$. We deduce that the Gaussian value-at-risk is:

$$
\operatorname{VaR}_{\alpha}(w ; h)=\Phi^{-1}(\alpha) \sqrt{\tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}}
$$

The risk contribution of option i is then equal to:

$$
\begin{aligned}
\mathcal{R \mathcal { C } _ { i }} & =w_{i} \frac{\Phi^{-1}(\alpha)\left(\Sigma \tilde{\boldsymbol{\Delta}}_{t}\right)_{i} \boldsymbol{\Delta}_{i, t} S_{i, t}}{\sqrt{\tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}}} \\
& =\Phi^{-1}(\alpha) \frac{\tilde{\boldsymbol{\Delta}}_{i, t} \cdot\left(\Sigma \tilde{\boldsymbol{\Delta}}_{t}\right)_{i}}{\sqrt{\tilde{\Delta}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}}}
\end{aligned}
$$

(b) In the case of the delta-gamma approximation, we obtain:

$$
\begin{aligned}
\Pi(w) \approx & w^{\top}\left(\boldsymbol{\Delta}_{t} \circ\left(S_{t+h}-S_{t}\right)\right)+ \\
& \frac{1}{2} w^{\top}\left(\boldsymbol{\Gamma}_{t} \circ\left(S_{t+h}-S_{t}\right) \circ\left(S_{t+h}-S_{t}\right)^{\top}\right) w \\
= & \tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}+\frac{1}{2} R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}
\end{aligned}
$$

where $\tilde{\boldsymbol{\Gamma}}_{t}$ is the matrix of gamma exposures in dollars:

$$
\tilde{\boldsymbol{\Gamma}}_{i, j, t}=w_{i} w_{j} \boldsymbol{\Gamma}_{i, j, t} S_{i, t} S_{j, t}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}[\Pi] & =\mathbb{E}\left[\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}+\frac{1}{2} R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}\right] \\
& =\frac{1}{2} \mathbb{E}\left[R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}\right] \\
& =\frac{1}{2} \operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}(\Pi)= & \mathbb{E}\left[(\Pi-\mathbb{E}[\Pi])^{2}\right] \\
= & \mathbb{E}\left[\left(\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}+\frac{1}{2} R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}-\frac{1}{2} \operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)\right)^{2}\right] \\
= & \mathbb{E}\left[\left(\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}\right)^{2}\right]+\frac{1}{4} \mathbb{E}\left[\left(R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}-\operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)\right)^{2}\right]+ \\
& \mathbb{E}\left[\left(\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}\right)\left(R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}-\operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)\right)\right] \\
= & \mathbb{E}\left[\left(\tilde{\boldsymbol{\Delta}}_{t}^{\top} R_{t+h}\right)^{2}\right]+\frac{1}{4} \operatorname{var}\left(R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}\right) \\
= & \tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}+\frac{1}{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)
\end{aligned}
$$

Therefore, the Gaussian approximation of the $\mathrm{P} \& \mathrm{~L}$ is:

$$
\Pi(w) \sim \mathcal{N}\left(\frac{1}{2} \operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right), \tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}+\frac{1}{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)\right)
$$

We deduce that the Gaussian value-at-risk is:

$$
\operatorname{VaR}_{\alpha}(w ; h)=-\frac{1}{2} \operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)+\Phi^{-1}(\alpha) \sqrt{\tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}+\frac{1}{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)}
$$

(c) If the portfolio is delta neutral, $\boldsymbol{\Delta}_{t}$ is equal to zero and we have:

$$
\Pi \simeq \frac{1}{2} R_{t+h}^{\top} \tilde{\boldsymbol{\Gamma}}_{t} R_{t+h}
$$

Let $L=-\Pi$ be the loss. Using the formulas of Question 3(b), we obtain:

$$
\begin{gathered}
\mu(L)=-\frac{1}{2} \operatorname{tr}\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right) \\
\sigma(L)=\sqrt{\frac{1}{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)} \\
\gamma_{1}(L)=-\frac{2 \sqrt{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{3}\right)}{\left(\operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)\right)^{3 / 2}} \\
\gamma_{2}(L)=\frac{12 \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{4}\right)}{\left(\operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)\right)^{2}}
\end{gathered}
$$

We have all the statistics to compute the Cornish-Fisher value-at-risk.
(d) We notice that the previous formulas obtained in the multivariate case are perfectly coherent with those obtained in the univariate case. When the portfolio is not delta neutral, we could then postulate that the skewness is ${ }^{13}$:

$$
\gamma_{1}(L)=-\frac{6 \sqrt{2} \tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \boldsymbol{\Gamma}_{t} \Sigma \tilde{\boldsymbol{\Delta}}_{t}+2 \sqrt{2} \operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{3}\right)}{\left(2 \tilde{\boldsymbol{\Delta}}_{t}^{\top} \Sigma \tilde{\boldsymbol{\Delta}}_{t}+\operatorname{tr}\left(\left(\tilde{\boldsymbol{\Gamma}}_{t} \Sigma\right)^{2}\right)\right)^{3 / 2}}
$$

In fact, it is the formula obtained by Britten-Jones and Schaeffer (1999).
5. (a) Using the numerical values, we obtain $\mu(L)=-78.65, \sigma(L)=88.04, \gamma_{1}(L)=$ -2.5583 and $\gamma_{2}(L)=10.2255$. The value-at-risk is then equal to 0 for the delta approximation, 126.16 for the delta-gamma approximation and -45.85 for the Cornish-Fisher approximation. We notice that we obtain an absurd result in the last case, because the distribution is far from the Gaussian distribution (high skewness and kurtosis). If we consider a smaller order expansion:

$$
\mathfrak{z}\left(\alpha ; \gamma_{1}, \gamma_{2}\right)=z_{\alpha}+\frac{1}{6}\left(z_{\alpha}^{2}-1\right) \gamma_{1}+\frac{1}{24}\left(z_{\alpha}^{3}-3 z_{\alpha}\right) \gamma_{2}
$$

the value-at-risk is equal to 171.01 .
(b) In this case, we obtain 126.24 for the delta approximation, 161.94 for the deltagamma approximation and -207.84 for the Cornish-Fisher approximation. For the delta approximation, the risk decomposition is:

Option	w_{i}	$\mathcal{M R}_{i}$	$\mathcal{R C}_{i}$	$\mathcal{R C}_{i}^{\star}$
1	50.00	0.86	42.87	33.96%
2	20.00	0.77	15.38	12.19%
3	30.00	2.27	67.98	53.85%
$\overline{\mathcal{R}(\bar{w})}$	-	-	$-\overline{12} \overline{6} . \overline{2} 4$	-

[^10]For the delta-gamma approximation, we have:

Option	w_{i}	$\mathcal{M R}_{i}$	$\mathcal{R C}_{i}$	$\mathcal{R C}_{i}^{\star}$
1	50.00	4.06	202.92	125.31%
2	20.00	1.18	23.62	14.59%
3	30.00	1.04	31.10	19.21%
$-\overline{\mathcal{R}(\bar{w})}$	-	-	$-\overline{16} \overline{1} . \overline{9} \overline{4}$	-

We notice that the delta-gamma approximation does not satisfy the Euler decomposition.

2.4.9 Risk decomposition of the expected shortfall

1. We have:

$$
L(w)=-R(w)=-w^{\top} R
$$

It follows that:

$$
L(w) \sim \mathcal{N}\left(-\mu(w), \sigma^{2}(w)\right)
$$

with $\mu(w)=w^{\top} \mu$ and $\sigma(w)=\sqrt{w^{\top} \Sigma w}$.
2. The expected shortfall $\mathrm{ES}_{\alpha}(w ; h)$ is the average of value-at-risks at level α and higher:

$$
\operatorname{ES}_{\alpha}(w ; h)=\mathbb{E}\left[L \mid L \geq \operatorname{VaR}_{\alpha}(w ; h)\right]
$$

We know that the value-at-risk is:

$$
\operatorname{VaR}_{\alpha}(w ; h)=-w^{\top} \mu+\Phi^{-1}(\alpha) \sqrt{w^{\top} \Sigma w}
$$

We deduce that:

$$
\operatorname{ES}_{\alpha}(w ; h)=\frac{1}{1-\alpha} \int_{x^{-}}^{\infty} \frac{x}{\sigma(w) \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x+\mu(w)}{\sigma(w)}\right)^{2}\right) \mathrm{d} x
$$

where $x^{-}=-\mu(w)+\Phi^{-1}(\alpha) \sigma(w)$. With the change of variable $t=$ $\sigma(w)^{-1}(x+\mu(w))$, we obtain:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w ; h)= & \frac{1}{1-\alpha} \int_{\Phi^{-1}(\alpha)}^{\infty}(-\mu(w)+\sigma(w) t) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right) \mathrm{d} t \\
= & -\frac{\mu(w)}{1-\alpha}[\Phi(t)]_{\Phi^{-1}(\alpha)}^{\infty}+ \\
& \frac{\sigma(w)}{(1-\alpha) \sqrt{2 \pi}} \int_{\Phi^{-1}(\alpha)}^{\infty} t \exp \left(-\frac{1}{2} t^{2}\right) \mathrm{d} t \\
= & -\mu(w)+\frac{\sigma(w)}{(1-\alpha) \sqrt{2 \pi}}\left[-\exp \left(-\frac{1}{2} t^{2}\right)\right]_{\Phi^{-1}(\alpha)}^{\infty} \\
= & -\mu(w)+\frac{\sigma(w)}{(1-\alpha) \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left[\Phi^{-1}(\alpha)\right]^{2}\right)
\end{aligned}
$$

The expected shortfall of portfolio w is then:

$$
\mathrm{ES}_{\alpha}(w ; h)=-w^{\top} \mu+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \sqrt{w^{\top} \Sigma w}
$$

3. The vector of marginal risk is defined as follows:

$$
\begin{aligned}
\mathcal{M \mathcal { R }} & =\frac{\partial \mathrm{ES}_{\alpha}(w ; h)}{\partial w} \\
& =-\mu+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \frac{\Sigma w}{\sqrt{w^{\top} \Sigma w}}
\end{aligned}
$$

We deduce that the risk contribution $\mathcal{R} \mathcal{C}_{i}$ of the asset i is:

$$
\begin{aligned}
\mathcal{R C}_{i} & =w_{i} \times \mathcal{M} \mathcal{R}_{i} \\
& =-w_{i} \mu_{i}+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \frac{w_{i} \times(\Sigma w)_{i}}{\sqrt{w^{\top} \Sigma w}}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\sum_{i=1}^{n} \mathcal{R C}_{i} & =\sum_{i=1}^{n}-w_{i} \mu_{i}+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \frac{w_{i} \times(\Sigma w)_{i}}{\sqrt{x^{\top} \Sigma x}} \\
& =-w^{\top} \mu+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \frac{w^{\top}(\Sigma w)}{\sqrt{w^{\top} \Sigma w}} \\
& =\operatorname{ES}_{\alpha}(w ; h)
\end{aligned}
$$

The expected shortfall then verifies the Euler allocation principle.
4. We have:

$$
L(w)=-\sum_{i=1}^{n} w_{i} R_{i}=\sum_{i=1}^{n} L_{i}
$$

with $L_{i}=-w_{i} R_{i}$. We know that:

$$
\begin{aligned}
\mathcal{R \mathcal { C } _ { i }} & =\mathbb{E}\left[L_{i} \mid L \geq \operatorname{VaR}_{\alpha}(w ; h)\right] \\
& =\frac{\mathbb{E}\left[L_{i} \cdot \mathbb{1}\left\{L \geq \operatorname{VaR}_{\alpha}(w ; h)\right\}\right]}{\mathbb{E}\left[\mathbb{1}\left\{L \geq \operatorname{VaR}_{\alpha}(w ; h)\right\}\right]} \\
& =\frac{\mathbb{E}\left[L_{i} \cdot \mathbb{1}\left\{L \geq \operatorname{VaR}_{\alpha}(w ; h)\right\}\right]}{1-\alpha}
\end{aligned}
$$

We deduce that:

$$
\mathcal{R C} \mathcal{C}_{i}=-\frac{w_{i}}{1-\alpha} \mathbb{E}\left[R_{i} \cdot \mathbb{1}\left\{R(w) \leq-\operatorname{VaR}_{\alpha}(w ; h)\right\}\right]
$$

We know that the random vector $(R, R(w))$ has a multivariate normal distribution:

$$
\binom{R}{R(w)} \sim \mathcal{N}\left(\binom{\mu}{w^{\top} \mu},\left(\begin{array}{ll}
\Sigma & \Sigma w \\
w^{\top} \Sigma & w^{\top} \Sigma w
\end{array}\right)\right)
$$

We deduce that:

$$
\binom{R_{i}}{R(w)} \sim \mathcal{N}\left(\binom{\mu_{i}}{w^{\top} \mu},\left(\begin{array}{cc}
\Sigma_{i, i} & (\Sigma w)_{i} \\
(\Sigma w)_{i} & w^{\top} \Sigma w
\end{array}\right)\right)
$$

Let $I=\mathbb{E}\left[R_{i} \cdot \mathbb{1}\left\{R(w) \leq-\operatorname{VaR}_{\alpha}(w ; h)\right\}\right]$. We note f the density function of the random vector $\left(R_{i}, R(w)\right)$ and $\rho=\Sigma_{i, i}^{-1 / 2}\left(w^{\top} \Sigma w\right)^{-1 / 2}(\Sigma w)_{i}$ the correlation between R_{i} and $R(w)$. It follows that:

$$
\begin{aligned}
I & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbb{1}\left\{s \leq-\operatorname{VaR}_{\alpha}(w ; h)\right\} \cdot r f(r, s) \mathrm{d} r \mathrm{~d} s \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{-\operatorname{VaR}_{\alpha}(w)} r f(r, s) \mathrm{d} r \mathrm{~d} s
\end{aligned}
$$

Let $t=\left(r-\mu_{i}\right) / \sqrt{\Sigma_{i, i}}$ and $u=\left(s-w^{\top} \mu\right) / \sqrt{w^{\top} \Sigma w}$. We deduce that ${ }^{14}$:

$$
I=\int_{-\infty}^{+\infty} \int_{-\infty}^{\Phi^{-1}(1-\alpha)} \frac{\mu_{i}+\sqrt{\Sigma_{i, i}} t}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{t^{2}+u^{2}-2 \rho t u}{2\left(1-\rho^{2}\right)}\right) \mathrm{d} t \mathrm{~d} u
$$

By considering the change of variables $(t, u)=\varphi(t, v)$ such that $u=\rho t+\sqrt{1-\rho^{2}} v$, we obtain ${ }^{15}$:

$$
\begin{aligned}
I= & \int_{-\infty}^{+\infty} \int_{-\infty}^{g(t)} \frac{\mu_{i}+\sqrt{\Sigma_{i, i}} t}{2 \pi} \exp \left(-\frac{t^{2}+v^{2}}{2}\right) \mathrm{d} t \mathrm{~d} v \\
= & \mu_{i} \int_{-\infty}^{+\infty} \int_{-\infty}^{g(t)} \frac{1}{2 \pi} \exp \left(-\frac{t^{2}+v^{2}}{2}\right) \mathrm{d} t \mathrm{~d} v+ \\
& \sqrt{\Sigma_{i, i}} \int_{-\infty}^{+\infty} \int_{-\infty}^{g(t)} \frac{t}{2 \pi} \exp \left(-\frac{t^{2}+v^{2}}{2}\right) \mathrm{d} t \mathrm{~d} v+ \\
= & \mu_{i} I_{1}+\sqrt{\Sigma_{i, i}} I_{2}
\end{aligned}
$$

where the bound $g(t)$ is defined as follows:

$$
g(t)=\frac{\Phi^{-1}(1-\alpha)-\rho t}{\sqrt{1-\rho^{2}}}
$$

For the first integral, we have ${ }^{16}$:

$$
\begin{aligned}
I_{1} & =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)\left(\int_{-\infty}^{g(t)} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{v^{2}}{2}\right) \mathrm{d} v\right) \mathrm{d} t \\
& =\int_{-\infty}^{+\infty} \Phi\left(\frac{\Phi^{-1}(1-\alpha)-\rho t}{\sqrt{1-\rho^{2}}}\right) \phi(t) \mathrm{d} t \\
& =1-\alpha
\end{aligned}
$$

The computation of the second integral I_{2} is a little bit more tedious. Integration by parts with the derivative function $t \phi(t)$ gives:

$$
\begin{aligned}
I_{2} & =\int_{-\infty}^{+\infty} \Phi\left(\frac{\Phi^{-1}(1-\alpha)-\rho t}{\sqrt{1-\rho^{2}}}\right) t \phi(t) \mathrm{d} t \\
& =-\frac{\rho}{\sqrt{1-\rho^{2}}} \int_{-\infty}^{+\infty} \phi\left(\frac{\Phi^{-1}(1-\alpha)-\rho t}{\sqrt{1-\rho^{2}}}\right) \phi(t) \mathrm{d} t \\
& =-\frac{\rho}{\sqrt{1-\rho^{2}}} \phi\left(\Phi^{-1}(1-\alpha)\right) \int_{-\infty}^{+\infty} \phi\left(\frac{t-\rho \Phi^{-1}(1-\alpha)}{\sqrt{1-\rho^{2}}}\right) \mathrm{d} t \\
& =-\rho \phi\left(\Phi^{-1}(1-\alpha)\right)
\end{aligned}
$$

[^11]${ }^{15}$ We use the fact that $\mathrm{d} t \mathrm{~d} v=\sqrt{1-\rho^{2}} \mathrm{~d} t \mathrm{~d} u$ because the determinant of the Jacobian matrix containing
where $T \sim \mathcal{N}(0,1)$.

We could then deduce the value of I :

$$
\begin{aligned}
I & =\mu_{i}(1-\alpha)-\rho \sqrt{\Sigma_{i, i}} \phi\left(\Phi^{-1}(1-\alpha)\right) \\
& =\mu_{i}(1-\alpha)-\frac{(\Sigma w)_{i}}{\sqrt{w^{\top} \Sigma w}} \phi\left(\Phi^{-1}(\alpha)\right)
\end{aligned}
$$

We finally obtain that:

$$
\mathcal{R C}_{i}=-w_{i} \mu_{i}+\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{(1-\alpha)} \frac{w_{i} \times(\Sigma w)_{i}}{\sqrt{w^{\top} \Sigma w}}
$$

We obtain the same expression as found in Question 3. Nevertheless, the conditional representation is more general than the Gaussian formula, because it is valid for any probability distribution.

2.4.10 Expected shortfall of an equity portfolio

1. We have:

$$
\begin{aligned}
\Pi & =4\left(P_{A, t+h}-P_{A, t}\right)+3\left(P_{B, t+h}-P_{B, t}\right) \\
& =4 P_{A, t} R_{A, t+h}+3 P_{B, t} R_{B, t+h} \\
& =400 \times R_{A, t+h}+600 \times R_{B, t+h}
\end{aligned}
$$

where $R_{A, t+h}$ and $R_{B, t+h}$ are the stock returns for the period $[t, t+h]$. We deduce that the variance of the $\mathrm{P} \& \mathrm{~L}$ is:

$$
\begin{aligned}
\sigma^{2}(\Pi)= & 400 \times(25 \%)^{2}+600 \times(20 \%)^{2}+ \\
& 2 \times 400 \times 600 \times(-20 \%) \times 25 \% \times 20 \% \\
= & 19600
\end{aligned}
$$

We deduce that $\sigma(\Pi)=\$ 140$. We know that the one-year expected shortfall is a linear function of the volatility:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w ; \text { one year }) & =\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha} \times \sigma(\Pi) \\
& =2.34 \times 140 \\
& =\$ 327.60
\end{aligned}
$$

The 10-day expected shortfall is then equal to $\$ 64.25$:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w ; \text { ten days }) & =\sqrt{\frac{10}{260}} \times 327.60 \\
& =\$ 64.25
\end{aligned}
$$

2. We have:

$$
\Pi_{s}=400 \times R_{A, s}+600 \times R_{B, s}
$$

We deduce that the value Π_{s} of the daily $\mathrm{P} \& \mathrm{~L}$ for each scenario s is:

s	1	2	3	4	5	6	7	8
Π_{s}	-36	-10	-24	-26	-12	-30	-14	-16
$\Pi_{s: 250}$	-36	-30	-26	-24	-16	-14	-12	-10

The value-at-risk at the 97.5% confidence level correspond to the $6.25^{\text {th }}$ order statistic ${ }^{17}$. We deduce that the historical expected shortfall for a one-day time horizon is equal to:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w ; \text { one day }) & =-\mathbb{E}\left[\Pi \mid \Pi \leq-\operatorname{VaR}_{\alpha}(\Pi)\right] \\
& =-\frac{1}{6} \sum_{s=1}^{6} \Pi_{s: 250} \\
& =\frac{1}{6}(36+30+26+24+16+14) \\
& =24.33
\end{aligned}
$$

By considering the square-root-of-time rule, it follows that the 10-day expected shortfall is equal to $\$ 76.95$.

2.4.11 Risk measure of a long/short portfolio

We have:

$$
\begin{aligned}
\Pi_{t, t+h} & =2\left(P_{A, t+h}-P_{A, t}\right)-5\left(P_{B, t+h}-P_{B, t}\right) \\
& =2 P_{A, t} R_{A, t+h}-5 P_{B, t} R_{B, t+h} \\
& =100 \times\left(R_{A, t+h}-R_{B, t+h}\right)
\end{aligned}
$$

where $R_{A, t+h}$ and $R_{B, t+h}$ are the stock returns for the period $[t, t+h]$.

1. We deduce that the (annualized) variance of the $\mathrm{P} \& \mathrm{~L}$ is:

$$
\begin{aligned}
\sigma^{2}\left(\Pi_{t, t+260}\right)= & 100^{2} \times(25 \%)^{2}+100^{2} \times(20 \%)^{2}- \\
& 2 \times 100^{2} \times 12.5 \% \times 25 \% \times 20 \% \\
= & 900
\end{aligned}
$$

We have $\sigma\left(\Pi_{t, t+260}\right)=\$ 30$. It follows that the 10-day standard deviation is equal to:

$$
\begin{aligned}
\sigma\left(\Pi_{t, t+10}\right) & =\sqrt{\frac{10}{260}} \times \sigma\left(\Pi_{t, t+260}\right) \\
& =\$ 5.883
\end{aligned}
$$

(a) We obtain:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w ; \text { ten days }) & =\Phi^{-1}(99 \%) \times \sigma\left(\Pi_{t, t+10}\right) \\
& =\$ 13.69
\end{aligned}
$$

(b) We have:

$$
\mathrm{ES}_{\alpha}(w ; \text { ten days })=\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha} \times \sigma\left(\Pi_{t, t+10}\right)
$$

and:

$$
\begin{aligned}
\frac{\phi\left(\Phi^{-1}(97.5 \%)\right)}{1-97.5 \%} & =2.3378 \\
& \approx 2.34
\end{aligned}
$$

The 10-day expected shortfall is then equal to $\$ 13.75$.

TABLE 2.1: Order statistic $\Pi_{s: 250}$ of the daily P\&L

s	1	2	3	4	5	6	7	8	9	10
$\Pi_{s: 250}$	-6.3	-6.0	-5.1	-4.8	-4.6	-4.5	-4.3	-4.3	-4.0	-3.9

2. Given the historical scenario s, the one-day simulated $\mathrm{P} \& \mathrm{~L}$ is equal to:

$$
\begin{aligned}
\Pi_{s} & =100 \times\left(R_{A, s}-R_{B, s}\right) \\
& =100 \times D_{s}
\end{aligned}
$$

The order statistic $\Pi_{s: 250}$ of the daily $\mathrm{P} \& \mathrm{~L}$ is given in Table 2.1.
(a) We deduce that the one-day value-at-risk at the 99% confidence level corresponds to the $2.5^{\text {nd }}$ order statistic:

$$
\operatorname{VaR}_{99 \%}(w ; \text { one day })=-\left(\frac{-6.0-5.1}{2}\right)=\$ 5.55
$$

It follows that:

$$
\operatorname{VaR}_{99 \%}(w ; \text { ten days })=\sqrt{10} \times \operatorname{VaR}_{99 \%}(w, \text { one day })=\$ 17.55
$$

(b) The value-at-risk at the 97.5% confidence level correspond to the $6.25^{\text {th }}$ order statistic. We deduce that the historical expected shortfall for a one-day time horizon is equal to:

$$
\begin{aligned}
\mathrm{ES}_{97.5 \%}(w ; \text { one day }) & =-\frac{1}{6} \sum_{s=1}^{6} \Pi_{s: 250} \\
& =\frac{1}{6}(6.3+6.0+5.1+4.8+4.6+4.5) \\
& =\$ 5.22
\end{aligned}
$$

By considering the square-root-of-time rule, it follows that the 10-day expected shortfall is equal to $\$ 16.50$.
(c) In Basel II, the capital charge is equal to:

$$
\begin{aligned}
\mathcal{K} & =3 \times \operatorname{VaR}_{99 \%}(w ; \text { ten days }) \\
& =\$ 52.65
\end{aligned}
$$

In Basel 2.5, the capital charge becomes:

$$
\begin{aligned}
\mathcal{K} & =3 \times \operatorname{VaR}_{99 \%}(w ; \text { ten days })+3 \times \operatorname{SVaR}_{99 \%}(w ; \text { ten days }) \\
& =\$ 157.96
\end{aligned}
$$

where SVaR is the stressed value-at-risk. In Basel III, we obtain:

$$
\begin{aligned}
\mathcal{K} & =2 \times \mathrm{SES}_{99 \%}(w ; \text { ten days }) \\
& =\$ 65.99
\end{aligned}
$$

where SES is the stressed expected shortfall.

[^12]
2.4.12 Kernel estimation of the expected shortfall

1. We have:

$$
\begin{aligned}
\mathbb{E}[X \cdot \mathbb{1}\{X \leq x\}] & =\int_{-\infty}^{\infty} t \cdot \mathbb{1}\{t \leq x\} \cdot \frac{1}{n h} \sum_{i=1}^{n} \mathcal{K}\left(\frac{t-x_{i}}{h}\right) \mathrm{d} t \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{x} \frac{t}{h} \mathcal{K}\left(\frac{t-x_{i}}{h}\right) \mathrm{d} t
\end{aligned}
$$

We consider the change of variable $u=\boldsymbol{h}^{-1}\left(t-x_{i}\right)$:

$$
\begin{aligned}
\int_{-\infty}^{x} \frac{t}{h} \mathcal{K}\left(\frac{t-x_{i}}{h}\right) \mathrm{d} t & =\int_{-\infty}^{\frac{x-x_{i}}{\boldsymbol{h}}}\left(x_{i}+\boldsymbol{h} u\right) \mathcal{K}(u) \mathrm{d} u \\
& =\int_{-\infty}^{\frac{x-x_{i}}{\boldsymbol{h}}} x_{i} \mathcal{K}(u) \mathrm{d} u+\int_{-\infty}^{\frac{x-x_{i}}{\boldsymbol{h}}} \boldsymbol{h} u \mathcal{K}(u) \mathrm{d} u
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}[X \cdot \mathbb{1}\{X \leq x\}]= & \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\frac{x-x_{i}}{h}} x_{i} \mathcal{K}(u) \mathrm{d} u+ \\
& \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\frac{x-x_{i}}{h}} h u \mathcal{K}(u) \mathrm{d} u
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\frac{x-x_{i}}{h}} x_{i} \mathcal{K}(u) \mathrm{d} u & =\frac{1}{n} \sum_{i=1}^{n} x_{i}\left(\int_{-\infty}^{\frac{x-x_{i}}{h}} \mathcal{K}(u) \mathrm{d} u\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathcal{I}\left(\frac{x-x_{i}}{h}\right)
\end{aligned}
$$

3. Since we have:

$$
\int_{-\infty}^{\frac{x-x_{i}}{h}} u \mathcal{K}(u) \mathrm{d} u=[u \mathcal{I}(u)]_{-\infty}^{\frac{x-x_{i}}{h}}-\int_{-\infty}^{\frac{x-x_{i}}{h}} \mathcal{I}(u) \mathrm{d} u
$$

we deduce that:

$$
\left|\int_{-\infty}^{\frac{x-x_{i}}{h}} u \mathcal{K}(u) \mathrm{d} u\right| \leq\left(\frac{x-x_{i}}{\boldsymbol{h}}\right) \cdot \mathcal{I}\left(\frac{x-x_{i}}{\boldsymbol{h}}\right)
$$

It follows that:

$$
\begin{aligned}
\int_{-\infty}^{\frac{x-x_{i}}{\boldsymbol{h}}} \boldsymbol{h} u \mathcal{K}(u) \mathrm{d} u & =\boldsymbol{h} \int_{-\infty}^{\frac{x-x_{i}}{\boldsymbol{h}}} u \mathcal{K}(u) \mathrm{d} u \\
& \rightarrow 0 \text { when } \boldsymbol{h} \rightarrow 0
\end{aligned}
$$

4. Finally, we obtain the result:

$$
\mathbb{E}[X \cdot \mathbb{1}\{X \leq x\}] \approx \frac{1}{n} \sum_{i=1}^{n} x_{i} \mathcal{I}\left(\frac{x-x_{i}}{h}\right)
$$

We conclude that:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w ; h) & =\frac{1}{(1-\alpha)} \mathbb{E}\left[L(w) \cdot \mathbb{1}\left\{L(w) \geq \operatorname{VaR}_{\alpha}(w ; h)\right\}\right] \\
& =-\frac{1}{(1-\alpha)} \mathbb{E}\left[\Pi(w) \cdot \mathbb{1}\left\{\Pi(w) \leq-\operatorname{VaR}_{\alpha}(w ; h)\right\}\right] \\
& \approx-\frac{1}{(1-\alpha)}\left(\frac{1}{n_{S}} \sum_{s=1}^{n_{S}} \Pi_{s} \mathcal{I}\left(\frac{-\operatorname{VaR}_{\alpha}(w ; h)-\Pi_{s}}{h}\right)\right)
\end{aligned}
$$

because we have $\Pi(w)=-L(w)$.

Chapter 3

Credit Risk

3.4.1 Single and multi-name credit default swaps

1. We have $\mathbf{F}(t)=1-e^{-\lambda t}, \mathbf{S}(t)=e^{-\lambda t}$ and $f(t)=\lambda e^{-\lambda t}$. We know that $\mathbf{S}(\boldsymbol{\tau}) \sim \mathcal{U}_{[0,1]}$. Indeed, we have:

$$
\begin{aligned}
\operatorname{Pr}\{U \leq u\} & =\operatorname{Pr}\{\mathbf{S}(\boldsymbol{\tau}) \leq u\} \\
& =\operatorname{Pr}\left\{\boldsymbol{\tau} \geq \mathbf{S}^{-1}(u)\right\} \\
& =\mathbf{S}\left(\mathbf{S}^{-1}(u)\right) \\
& =u
\end{aligned}
$$

It follows that $\boldsymbol{\tau}=\mathbf{S}^{-1}(U)$ with $U \sim \mathcal{U}_{[0,1]}$. Let u be a uniform random variate. Simulating τ is then equivalent to transform u into t :

$$
t=-\frac{1}{\lambda} \ln u
$$

2. (a) The premium leg is paid quarterly. The coupon payment is then equal to:

$$
\begin{aligned}
\mathcal{P} \mathcal{L}\left(t_{m}\right) & =\Delta t_{m} \times s \times N \\
& =\frac{1}{4} \times 150 \times 10^{-4} \times 10^{6} \\
& =\$ 3750
\end{aligned}
$$

In case of default, the default leg paid by protection seller is equal to:

$$
\begin{aligned}
\mathcal{D L} & =(1-\boldsymbol{R}) \times N \\
& =(1-40 \%) \times 10^{6} \\
& =\$ 600000
\end{aligned}
$$

The corresponding cash flow chart is given in Figure 3.1. If the reference entity does not default, the $\mathrm{P} \& \mathrm{~L}$ of the protection seller is the sum of premium interests:

$$
\Pi^{\text {seller }}=8 \times 3750=\$ 30000
$$

If the reference entity defaults in one year and two months, the $P \& L$ of the protection buyer is ${ }^{1}$:

$$
\begin{aligned}
\Pi^{\text {buyer }} & =(1-\mathcal{R}) \times N-\sum_{t_{m}<\tau} \Delta t_{m} \times \mathcal{s} \times N \\
& =(1-40 \%) \times 10^{6}-\left(4+\frac{2}{3}\right) \times 3750 \\
& =\$ 582500
\end{aligned}
$$

[^13]

FIGURE 3.1: Cash flow chart of the CDS contract
(b) Using the credit triangle relationship, we have:

$$
s \simeq(1-\mathcal{R}) \times \lambda
$$

We deduce that ${ }^{2}$:

$$
\begin{aligned}
\mathrm{PD} & \simeq \lambda \\
& \simeq \frac{\mathcal{S}}{1-\mathcal{R}} \\
& =\frac{150 \times 10^{-4}}{1-40 \%} \\
& =2.50 \%
\end{aligned}
$$

(c) We denote by \boldsymbol{s}^{\prime} the new CDS spread. The default probability becomes:

$$
\begin{aligned}
\mathrm{PD} & =\frac{s^{\prime}}{1-\mathcal{R}} \\
& =\frac{450 \times 10^{-4}}{1-40 \%} \\
& =7.50 \%
\end{aligned}
$$

The protection buyer is short credit and benefits from the increase of the default probability. His mark-to-market is therefore equal to:

$$
\begin{aligned}
\Pi^{\text {buyer }} & =N \times\left(s^{\prime}-s\right) \times \mathrm{RPV}_{01} \\
& =10^{6} \times(450-150) \times 10^{-4} \times 1.189 \\
& =\$ 35671
\end{aligned}
$$

[^14]The offsetting mechanism is then the following: the protection buyer B transfers the agreement to C, who becomes the new protection buyer; C continues to pay a premium of 150 bps to the protection seller A; in return, C pays a cash adjustment of $\$ 35671$ to B.
3. (a) For a given date t, the credit curve is the relationship between the maturity T and the spread $s_{t}(T)$. The credit curve of the reference entity $\# 1$ is almost flat. For the entity $\# 2$, the spread is very high in the short-term, meaning that there is a significative probability that the entity defaults. However, if the entity survive, the market anticipates that it will improve its financial position in the long-run. This explains that the credit curve $\# 2$ is decreasing. For reference entity $\# 3$, we obtain opposite conclusions. The company is actually very strong, but there are some uncertainties in the future ${ }^{3}$. The credit curve is then increasing.
(b) If we consider a standard recovery rate (40\%), the implied default probability is 2.50% for $\# 1,10 \%$ for $\# 2$ and 1.33% for $\# 3$. We can consider a short credit position in $\# 2$. In this case, we sell the 5 Y protection on $\# 2$ because the model tells us that the market default probability is over-estimated. In place of this directional bet, we could consider a relative value strategy: selling the 5 Y protection on $\# 2$ and buying the 5 Y protection on $\# 3$.
4. (a) Let $\tau_{k: n}$ be the $k^{\text {th }}$ default among the basket. $\mathrm{FtD}, \mathrm{StD}$ and LtD are three CDS products, whose credit event is related to the default times $\boldsymbol{\tau}_{1: n}, \boldsymbol{\tau}_{2: n}$ and $\boldsymbol{\tau}_{n: n}$.
(b) The default correlation ρ measures the dependence between two default times $\boldsymbol{\tau}_{i}$ and $\boldsymbol{\tau}_{j}$. The spread of the FtD (resp. LtD) is a decreasing (resp. increasing) function with respect to ρ.
(c) To fully hedge the credit portfolio of the 3 entities, we can buy the 3 CDS. Another solution is to buy the FtD plus the StD and the LtD (or the third-todefault). Because these two hedging strategies are equivalent, we deduce that:

$$
s_{1}^{\mathrm{CDS}}+s_{2}^{\mathrm{CDS}}+s_{3}^{\mathrm{CDS}}=s^{\mathrm{FtD}}+s^{\mathrm{StD}}+s^{\mathrm{LtD}}
$$

(d) We notice that the default correlation does not affect the value of the CDS basket, but only the price distribution between FtD, StD and LtD. We obtain a similar result for CDO^{4}. In the case of the subprime crisis, all the CDO tranches have suffered, meaning that the price of the underlying basket has dropped. The reasons were the underestimation of default probabilities.

3.4.2 Risk contribution in the Basel II model

1. (a) The portfolio loss L follows a Gaussian probability distribution:

$$
L(w) \sim \mathcal{N}\left(0, \sqrt{w^{\top} \Sigma w}\right)
$$

We deduce that:

$$
\operatorname{VaR}_{\alpha}(w)=\Phi^{-1}(\alpha) \sqrt{w^{\top} \Sigma w}
$$

[^15](b) We have:
\[

$$
\begin{aligned}
\frac{\partial \operatorname{VaR}_{\alpha}(w)}{\partial w} & =\frac{\partial}{\partial w}\left(\Phi^{-1}(\alpha)\left(w^{\top} \Sigma w\right)^{\frac{1}{2}}\right) \\
& =\Phi^{-1}(\alpha) \frac{1}{2}\left(w^{\top} \Sigma w\right)^{-\frac{1}{2}}(2 \Sigma w) \\
& =\Phi^{-1}(\alpha) \frac{\Sigma w}{\sqrt{w^{\top} \Sigma w}}
\end{aligned}
$$
\]

The marginal value-at-risk of the $i^{\text {th }}$ credit is then:

$$
\mathcal{M R}_{i}=\frac{\partial \operatorname{VaR}_{\alpha}(w)}{\partial w_{i}}=\Phi^{-1}(\alpha) \frac{(\Sigma w)_{i}}{\sqrt{w^{\top} \Sigma w}}
$$

The risk contribution of the $i^{\text {th }}$ credit is the product of the exposure by the marginal risk:

$$
\begin{aligned}
\mathcal{R C}_{i} & =w_{i} \times \mathcal{M} \mathcal{R}_{i} \\
& =\Phi^{-1}(\alpha) \frac{w_{i} \times(\Sigma w)_{i}}{\sqrt{x^{\top} \Sigma x}}
\end{aligned}
$$

(c) By construction, the random vector $(\varepsilon, L(w))$ is Gaussian with:

$$
\binom{\varepsilon}{L(w)} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma & \Sigma w \\
w^{\top} \Sigma & w^{\top} \Sigma w
\end{array}\right)\right)
$$

We deduce that the conditional distribution function of ε given that $L(w)=\ell$ is Gaussian and we have:

$$
\mathbb{E}[\varepsilon \mid L(w)=\ell]=0+\Sigma w\left(w^{\top} \Sigma w\right)^{-1}(\ell-0)
$$

We finally obtain:

$$
\begin{aligned}
\mathbb{E}\left[\varepsilon \mid L(w)=\mathbf{F}^{-1}(\alpha)\right] & =\Sigma w\left(w^{\top} \Sigma w\right)^{-1} \Phi^{-1}(\alpha) \sqrt{w^{\top} \Sigma w} \\
& =\Phi^{-1}(\alpha) \frac{\Sigma w}{\sqrt{w^{\top} \Sigma w}} \\
& =\frac{\partial \operatorname{VaR}_{\alpha}(w)}{\partial w}
\end{aligned}
$$

The marginal VaR of the $i^{\text {th }}$ credit is then equal to the conditional mean of the individual loss ε_{i} given that the portfolio loss is exactly equal to the value-at-risk.
2. (a) EAD_{i} is the exposure at default, LGD_{i} is the loss given default, $\boldsymbol{\tau}_{i}$ is the default time and T_{i} is the maturity of the credit i. We have:

$$
\left\{\begin{array}{l}
w_{i}=\mathrm{EAD}_{i} \\
\varepsilon_{i}=\mathrm{LGD}_{i} \times \mathbb{1}\left\{\boldsymbol{\tau}_{i}<T_{i}\right\}
\end{array}\right.
$$

The exposure at default is not random, which is not the case of the loss given default.
(b) We have to make the following assumptions:
i. the loss given default LGD_{i} is independent from the default time $\boldsymbol{\tau}_{i}$;
ii. the portfolio is infinitely fine-grained meaning that there is no exposure concentration:

$$
\frac{\mathrm{EAD}_{i}}{\sum_{i=1}^{n} \mathrm{EAD}_{i}} \simeq 0
$$

iii. the default times depend on a common risk factor X and the relationship is monotonic (increasing or decreasing).

In this case, we have:

$$
\mathbb{E}\left[\varepsilon_{i} \mid L=\mathbf{F}^{-1}(\alpha)\right]=\mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \mathbb{E}\left[D_{i} \mid L=\mathbf{F}^{-1}(\alpha)\right]
$$

with $D_{i}=\mathbb{1}\left\{\boldsymbol{\tau}_{i}<T_{i}\right\}$.
(c) It follows that:

$$
\begin{aligned}
\mathcal{R C}_{i} & =w_{i} \times \mathcal{M} \mathcal{R}_{i} \\
& =\operatorname{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \mathbb{E}\left[D_{i} \mid L=\mathbf{F}^{-1}(\alpha)\right]
\end{aligned}
$$

The expression of the value-at-risk is then:

$$
\begin{aligned}
\operatorname{VaR}_{\alpha}(w) & =\sum_{i=1}^{n} \mathcal{R C}_{i} \\
& =\sum_{i=1}^{n} \operatorname{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \mathbb{E}\left[D_{i} \mid L=\mathbf{F}^{-1}(\alpha)\right]
\end{aligned}
$$

(d) i. We have

$$
\begin{aligned}
\mathbb{E}\left[Z_{i} Z_{j}\right] & =\mathbb{E}\left[\left(\sqrt{\rho} X+\sqrt{1-\rho} \varepsilon_{i}\right)\left(\sqrt{\rho} X+\sqrt{1-\rho} \varepsilon_{j}\right)\right] \\
& =\rho
\end{aligned}
$$

ρ is the constant correlation between assets Z_{i} and Z_{j}.
ii. We have:

$$
\begin{aligned}
p_{i} & =\operatorname{Pr}\left\{\tau_{i} \leq T_{i}\right\} \\
& =\operatorname{Pr}\left\{Z_{i} \leq B_{i}\right\} \\
& =\Phi\left(B_{i}\right)
\end{aligned}
$$

iii. It follows that:

$$
\begin{aligned}
p_{i}(x) & =\operatorname{Pr}\left\{Z_{i} \leq B_{i} \mid X=x\right\} \\
& =\operatorname{Pr}\left\{\sqrt{\rho} X+\sqrt{1-\rho} \varepsilon_{i} \leq B_{i} \mid X=x\right\} \\
& =\operatorname{Pr}\left\{\left.\varepsilon_{i} \leq \frac{B_{i}-\sqrt{\rho} X}{\sqrt{1-\rho}} \right\rvert\, X=x\right\} \\
& =\Phi\left(\frac{B_{i}-\sqrt{\rho} x}{\sqrt{1-\rho}}\right) \\
& =\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)-\sqrt{\rho} x}{\sqrt{1-\rho}}\right)
\end{aligned}
$$

(e) Under the assumptions (\mathcal{H}), we know that:

$$
\begin{aligned}
L & =\sum_{i=1}^{n} \mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times p_{i}(X) \\
& =\sum_{i=1}^{n} \mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)-\sqrt{\rho} X}{\sqrt{1-\rho}}\right) \\
& =g(X)
\end{aligned}
$$

with $g^{\prime}(x)<0$. We deduce that:

$$
\begin{aligned}
\operatorname{VaR}_{\alpha}(w)=\mathbf{F}^{-1}(\alpha) & \Leftrightarrow \operatorname{Pr}\left\{g(X) \leq \operatorname{VaR}_{\alpha}(w)\right\}=\alpha \\
& \Leftrightarrow \operatorname{Pr}\left\{X \geq g^{-1}\left(\operatorname{VaR}_{\alpha}(w)\right)\right\}=\alpha \\
& \Leftrightarrow \operatorname{Pr}\left\{X \leq g^{-1}\left(\operatorname{VaR}_{\alpha}(w)\right)\right\}=1-\alpha \\
& \Leftrightarrow g^{-1}\left(\operatorname{VaR}_{\alpha}(w)\right)=\Phi^{-1}(1-\alpha) \\
& \Leftrightarrow \operatorname{VaR}_{\alpha}(w)=g\left(\Phi^{-1}(1-\alpha)\right)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\operatorname{VaR}_{\alpha}(w) & =g\left(\Phi^{-1}(1-\alpha)\right) \\
& =\sum_{i=1}^{n} \operatorname{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times p_{i}\left(\Phi^{-1}(1-\alpha)\right)
\end{aligned}
$$

The risk contribution $\mathcal{R \mathcal { C } _ { i }}$ of the ith credit is then:

$$
\begin{aligned}
\mathcal{R C}_{i} & =\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times p_{i}\left(\Phi^{-1}(1-\alpha)\right) \\
& =\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)-\sqrt{\rho} \Phi^{-1}(1-\alpha)}{\sqrt{1-\rho}}\right) \\
& =\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right)
\end{aligned}
$$

3. (a) We note Ω the event $X \leq g^{-1}\left(\operatorname{VaR}_{\alpha}(w)\right)$ or equivalently $X \leq \Phi^{-1}(1-\alpha)$. We have:

$$
\begin{aligned}
\mathrm{ES}_{\alpha}(w) & =\mathbb{E}\left[L \mid L \geq \operatorname{VaR}_{\alpha}(w)\right] \\
& =\mathbb{E}\left[L \mid g(X) \geq \operatorname{VaR}_{\alpha}(w)\right] \\
& =\mathbb{E}\left[L \mid X \leq g^{-1}\left(\operatorname{VaR}_{\alpha}(w)\right)\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{n} \operatorname{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times p_{i}(X) \mid \Omega\right] \\
& =\sum_{i=1}^{n} \operatorname{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \mathbb{E}\left[p_{i}(X) \mid \Omega\right]
\end{aligned}
$$

(b) It follows that:

$$
\begin{aligned}
\mathbb{E}\left[p_{i}(X) \mid \Omega\right] & =\mathbb{E}\left[\left.\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)-\sqrt{\rho} X}{\sqrt{1-\rho}}\right) \right\rvert\, \Omega\right] \\
& =\int_{-\infty}^{\Phi^{-1}(1-\alpha)} \Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)}{\sqrt{1-\rho}}+\frac{-\sqrt{\rho}}{\sqrt{1-\rho}} x\right) \times \\
& =\frac{\phi(x)}{\Phi\left(\Phi^{-1}(1-\alpha)\right)} \mathrm{d} x \\
& =\frac{\Phi_{2}\left(\Phi^{-1}(1-\alpha), \Phi^{-1}\left(p_{i}\right) ; \sqrt{\rho}\right)}{1-\alpha} \\
1-\alpha & \mathbf{C}\left(1-\alpha, p_{i} ; \sqrt{\rho}\right)
\end{aligned}
$$

where \mathbf{C} is the Gaussian copula. We deduce that:

$$
\mathcal{R} \mathcal{C}_{i}=\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \frac{\mathbf{C}\left(1-\alpha, p_{i} ; \sqrt{\rho}\right)}{1-\alpha}
$$

(c) If $\rho=0$, we have:

$$
\begin{aligned}
\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right) & =\Phi\left(\Phi^{-1}\left(p_{i}\right)\right) \\
& =p_{i}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\mathbf{C}\left(1-\alpha, p_{i} ; \sqrt{\rho}\right)}{1-\alpha} & =\frac{(1-\alpha) p_{i}}{1-\alpha} \\
& =p_{i}
\end{aligned}
$$

The risk contribution is the same for the value-at-risk and the expected shortfall:

$$
\begin{aligned}
\mathcal{R C}_{i} & =\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times p_{i} \\
& =\mathbb{E}\left[L_{i}\right]
\end{aligned}
$$

It corresponds to the expected loss of the credit. If $\rho=1$ and $\alpha>50 \%$, we have:

$$
\begin{aligned}
\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right) & =\lim _{\rho \rightarrow 1} \Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right) \\
& =1
\end{aligned}
$$

If $\rho=1$ and α is high $\left(\alpha>1-\sup _{i} p_{i}\right)$, we have:

$$
\begin{aligned}
\frac{\mathbf{C}\left(1-\alpha, p_{i} ; \sqrt{\rho}\right)}{1-\alpha} & =\frac{\min \left(1-\alpha ; p_{i}\right)}{1-\alpha} \\
& =1
\end{aligned}
$$

In this case, the risk contribution is the same for the value-at-risk and the expected shortfall:

$$
\mathcal{R \mathcal { C } _ { i }}=\mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right]
$$

However, it does not depend on the unconditional probability of default p_{i}.
4. Pillar 2 concerns the non-compliance of assumptions (\mathcal{H}). In particular, we have to understand the impact on the credit risk measure if the portfolio is not infinitely fine-grained or if asset correlations are not constant.

3.4.3 Calibration of the piecewise exponential model

1. We have:

$$
\mathbf{S}(t)=\operatorname{Pr}\{\boldsymbol{\tau} \geq t\}=1-\mathbf{F}(t)
$$

and:

$$
f(t)=\partial_{t} \mathbf{F}(t)=-\partial_{t} \mathbf{S}(t)
$$

2. The function $\lambda(t)$ is the instantaneous default rate:

$$
\begin{aligned}
\lambda(t) & =\lim _{\Delta \rightarrow 0^{+}} \frac{1}{\Delta} \operatorname{Pr}\{t \leq \boldsymbol{\tau} \leq t+\Delta \mid \tau \geq t\} \\
& =\lim _{\Delta \rightarrow 0^{+}} \frac{1}{\Delta} \frac{\operatorname{Pr}\{t \leq \boldsymbol{\tau} \leq t+\Delta\}}{\operatorname{Pr}\{\boldsymbol{\tau} \geq t\}} \\
& =\frac{1}{\operatorname{Pr}\{\boldsymbol{\tau} \geq t\}} \lim _{\Delta \rightarrow 0^{+}} \frac{\operatorname{Pr}\{t \leq \boldsymbol{\tau} \leq t+\Delta\}}{\Delta} \\
& =\frac{f(t)}{\mathbf{S}(t)}
\end{aligned}
$$

In the case of the exponential model, we obtain:

$$
\lambda(t)=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda
$$

3. Since $\boldsymbol{\tau} \sim \mathcal{E}(\lambda)$, it follows that:

$$
\begin{aligned}
s(T) & =\frac{(1-\boldsymbol{\mathcal { R }}) \times \int_{0}^{T} e^{-r t} f(t) \mathrm{d} t}{\int_{0}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t} \\
& =\frac{(1-\boldsymbol{\mathcal { R }}) \times \int_{0}^{T} e^{-r t} \lambda e^{-\lambda t} \mathrm{~d} t}{\int_{0}^{T} e^{-r t} e^{-\lambda t} \mathrm{~d} t} \\
& =\lambda \times(1-\boldsymbol{\mathcal { R }})
\end{aligned}
$$

4. (a) We define the survival function as follows:

$$
\mathbf{S}(t)= \begin{cases}e^{-\lambda_{1} t} & \text { if } t \leq 3 \\ e^{-3 \lambda_{1}-\lambda_{2}(t-3)} & \text { if } 3<t \leq 5 \\ e^{-3 \lambda_{1}-2 \lambda_{2}-\lambda_{3}(t-5)} & \text { if } t>5\end{cases}
$$

We deduce that:

$$
f(t)= \begin{cases}\lambda_{1} e^{-\lambda_{1} t} & \text { if } t \leq 3 \\ \lambda_{2} e^{-3 \lambda_{1}-\lambda_{2}(t-3)} & \text { if } 3<t \leq 5 \\ \lambda_{3} e^{-3 \lambda_{1}-2 \lambda_{2}-\lambda_{3}(t-5)} & \text { if } t>5\end{cases}
$$

We verify that the hazard rate is a piecewise constant function:

$$
\lambda(t)=\frac{f(t)}{\mathbf{S}(t)}= \begin{cases}\lambda_{1} & \text { if } t \leq 3 \\ \lambda_{2} & \text { if } 3<t \leq 5 \\ \lambda_{3} & \text { if } t>5\end{cases}
$$

(b) Let $\left(t_{1}^{\star}, t_{2}^{\star}, t_{3}^{\star}\right)$ be the knots of the piecewise exponential model ${ }^{5}$. We note that $\mathbf{S}(t)=\mathbf{S}\left(t_{m-1}^{\star}\right) e^{-\lambda_{m}\left(t-t_{m-1}^{\star}\right)}$ and $f(t)=\lambda_{m} \mathbf{S}\left(t_{m-1}^{\star}\right) e^{-\lambda_{m}\left(t-t_{m-1}^{\star}\right)}$. When $T \in$ $\left[t_{m-1}^{\star}, t_{m}^{\star}[\right.$, it follows that:

$$
\begin{aligned}
s(T) & =\frac{(1-\mathcal{R}) \times \int_{0}^{T} e^{-r t} f(t) \mathrm{d} t}{\int_{0}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t} \\
& =\frac{(1-\boldsymbol{\mathcal { R }}) \times\left(\int_{0}^{t_{m-1}^{\star}} e^{-r t} f(t) \mathrm{d} t+\int_{t_{m-1}^{\star}}^{T} e^{-r t} f(t) \mathrm{d} t\right)}{\left(\int_{0}^{t_{m-1}^{\star}} e^{-r t} \mathbf{S}(t) \mathrm{d} t+\int_{t_{m-1}^{\star}}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t\right)}
\end{aligned}
$$

We introduce the following notation with $T \leq t_{m}^{\star}$:

$$
\begin{aligned}
\mathcal{I}\left(t_{m-1}^{\star}, T\right) & =\int_{t_{m-1}^{\star}}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t \\
& =\mathbf{S}\left(t_{m-1}^{\star}\right) \int_{t_{m-1}^{\star}}^{T} e^{-r t} e^{-\lambda_{m}\left(t-t_{m-1}^{\star}\right)} \mathrm{d} t \\
& =\mathbf{S}\left(t_{m-1}^{\star}\right) e^{\lambda_{m} t_{m-1}^{\star}} \int_{t_{m-1}^{\star}}^{T} e^{-\left(r+\lambda_{m}\right) t} \mathrm{~d} t \\
& =\mathbf{S}\left(t_{m-1}^{\star}\right) e^{\lambda_{m} t_{m-1}^{\star}}\left[\frac{e^{-\left(r+\lambda_{m}\right) t}}{-\left(r+\lambda_{m}\right)}\right]_{t_{m-1}^{\star}}^{T} \\
& =\mathbf{S}\left(t_{m-1}^{\star}\right) e^{\lambda_{m} t_{m-1}^{\star}} \frac{e^{-\left(r+\lambda_{m}\right) t_{m-1}^{\star}}-e^{-\left(r+\lambda_{m}\right) T}}{\left(r+\lambda_{m}\right)} \\
& =\mathbf{S}\left(t_{m-1}^{\star}\right) \frac{e^{-r t_{m-1}^{\star}}-e^{-r T} e^{-\lambda_{m}\left(T-t_{m-1}^{\star}\right)}}{\left(r+\lambda_{m}\right)}
\end{aligned}
$$

We obtain the following cases:
i. If $T \leq 3$, we have:

$$
\begin{aligned}
s(T) & =\frac{(1-\mathcal{R}) \times \int_{0}^{T} e^{-r t} f(t) \mathrm{d} t}{\int_{0}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t} \\
& =\frac{(1-\mathcal{R}) \times \lambda_{1} \times \mathcal{I}(0, T)}{\mathcal{I}(0, T)} \\
& =(1-\mathcal{R}) \times \lambda_{1}
\end{aligned}
$$

ii. If $3<T \leq 5$, we have:

$$
\begin{aligned}
\boldsymbol{s}(T) & =\frac{(1-\mathcal{R}) \times\left(\int_{0}^{3} e^{-r t} f(t) \mathrm{d} t+\int_{3}^{T} e^{-r t} f(t) \mathrm{d} t\right)}{\left(\int_{0}^{3} e^{-r t} \mathbf{S}(t) \mathrm{d} t+\int_{3}^{T} e^{-r t} \mathbf{S}(t) \mathrm{d} t\right)} \\
& =(1-\boldsymbol{\mathcal { R }}) \times \frac{\lambda_{1} \mathcal{I}(0,3)+\lambda_{2} \mathcal{I}(3, T)}{\mathcal{I}(0,3)+\mathcal{I}(3, T)}
\end{aligned}
$$

iii. If $T>5$, we have:

$$
\mathcal{s}(T)=(1-\mathcal{R}) \times \frac{\lambda_{1} \mathcal{I}(0,3)+\lambda_{2} \mathcal{I}(3,5)+\lambda_{3} \mathcal{I}(5, T)}{\mathcal{I}(0,3)+\mathcal{I}(3,5)+\mathcal{I}(5, T)}
$$

[^16](c) The parameters $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ satisfy the following set of equations:
\[

\left\{$$
\begin{array}{c}
\mathcal{S}(3)=(1-\mathcal{R}) \times \lambda_{1} \tag{3.1}\\
\mathcal{S}(5)=(1-\mathcal{R}) \times \frac{\lambda_{1} \mathcal{I}(0,3)+\lambda_{2} \mathcal{I}(3,5)}{\mathcal{I}(0,3)+\mathcal{I}(3,5)} \\
\mathcal{S}(7)=(1-\mathcal{R}) \times \frac{\lambda_{1} \mathcal{I}(0,3)+\lambda_{2} \mathcal{I}(3,5)+\lambda_{3} \mathcal{I}(5,7)}{\mathcal{I}(0,3)+\mathcal{I}(3,5)+\mathcal{I}(5,7)}
\end{array}
$$\right.
\]

From the first equation, we estimate $\hat{\lambda}_{1}$:

$$
\hat{\lambda}_{1}=\frac{s(3)}{(1-\mathcal{R})}
$$

We can now solve numerically the second equation and we obtain $\hat{\lambda}_{2}$. Finally, we solve the nonlinear third equation to obtain $\hat{\lambda}_{3}$. This iterative approach of calibration is known as the bootstrapping method.
(d) When r is equal to zero and λ_{m} is small, the function $\mathcal{I}\left(t_{m-1}^{\star}, T\right)$ becomes:

$$
\begin{aligned}
\mathcal{I}\left(t_{m-1}^{\star}, T\right) & =\mathbf{S}\left(t_{m-1}^{\star}\right) \frac{1-e^{-\lambda_{m}\left(T-t_{m-1}^{\star}\right)}}{\lambda_{m}} \\
& \approx \mathbf{S}\left(t_{m-1}^{\star}\right)\left(T-t_{m-1}^{\star}\right) \\
& \approx T-t_{m-1}^{\star}
\end{aligned}
$$

We introduce the following notation:

$$
\lambda(T)=\frac{s(T)}{(1-\mathcal{R})}
$$

Using Equation (3.1), we deduce that:

$$
\begin{aligned}
\hat{\lambda}_{1} & =\lambda(3) \\
\hat{\lambda}_{2} & =\left(\frac{\mathcal{I}(0,3)+\mathcal{I}(3,5)}{\mathcal{I}(3,5)}\right) \lambda(5)-\frac{\mathcal{I}(0,3)}{\mathcal{I}(3,5)} \hat{\lambda}_{1} \\
& \approx \frac{5 \lambda(5)-3 \lambda(3)}{2} \\
\hat{\lambda}_{3} & =\left(\frac{\mathcal{I}(0,3)+\mathcal{I}(3,5)+\mathcal{I}(5,7)}{\mathcal{I}(5,7)}\right) \lambda(7)-\frac{\hat{\lambda}_{1} \mathcal{I}(0,3)+\hat{\lambda}_{2} \mathcal{I}(3,5)}{\mathcal{I}(5,7)} \\
& \approx \frac{7 \lambda(7)-5 \lambda(5)}{2}
\end{aligned}
$$

We notice that:

$$
\begin{aligned}
& s(3)=(1-\boldsymbol{\mathcal { R }}) \times \hat{\lambda}_{1} \\
& s(5)=(1-\mathcal{R}) \times\left(\frac{3 \hat{\lambda}_{1}+2 \hat{\lambda}_{2}}{5}\right) \\
& \boldsymbol{s}(7)=(1-\boldsymbol{\mathcal { R }}) \times\left(\frac{3 \hat{\lambda}_{1}+2 \hat{\lambda}_{2}+2 \hat{\lambda}_{3}}{7}\right)
\end{aligned}
$$

The spread is then a weighted average of the different hazard rates, whose weights are proportional to the interval time between two knots.
(e) Using a numerical solver, we obtain $\hat{\lambda}_{1}=166.7 \mathrm{bps}, \hat{\lambda}_{2}=401.2 \mathrm{bps}$ and $\hat{\lambda}_{3}=$ $322.4 \mathrm{bps}^{6}$.
(f) Since $\mathbf{S}(\boldsymbol{\tau}) \sim \mathcal{U}_{[0,1]}$, the simulated default time t is $\mathbf{S}^{-1}(u)$ where u is a uniform random number. If $u>\mathbf{S}(3)$, we have $e^{-\lambda_{1} t}=u$ or $t=-\lambda_{1}^{-1} \ln u$. If $\mathbf{S}(5)<u \leq$ $\mathbf{S}(3)$, it follows that $\mathbf{S}(3) e^{-\lambda_{2}(t-3)}=u$ or $t=3+\lambda_{2}^{-1}(\ln \mathbf{S}(3)-\ln u)$. Finally, we obtain $t=5+\lambda_{3}^{-1}(\ln \mathbf{S}(5)-\ln u)$ if $u<\mathbf{S}(5)$. Using the previous numerical values, we find that $\mathbf{S}(3)=0.951$ and $\mathbf{S}(5)=0.878$. The simulated default times are then:

$$
t=\left\{\begin{array}{l}
2.449 \text { for } u=0.96 \\
46.54 \text { for } u=0.23 \\
4.380 \text { for } u=0.90 \\
7.881 \text { for } u=0.80
\end{array}\right.
$$

3.4.4 Modeling loss given default

1. The loss given default is equal to:

$$
\mathrm{LGD}=1-\boldsymbol{\mathcal { R }}+c
$$

where c is the recovery (or litigation) cost. Consider for example a $\$ 200$ credit and suppose that the borrower defaults. If we recover $\$ 140$ and the litigation cost is $\$ 20$, we obtain $\mathcal{R}=70 \%$ and LGD $=40 \%$, but not $\mathrm{LGD}=30 \%$.
2. The amounts outstanding of credit is:

$$
\begin{aligned}
\mathrm{EAD} & =250000 \times 50000 \\
& =\$ 12.5 \mathrm{bn}
\end{aligned}
$$

The annual loss after recovery is equal to:

$$
\begin{aligned}
L & =\mathrm{EAD} \times(1-\boldsymbol{\mathcal { R }}) \times \mathrm{PD}+C \\
& =43.75+12.5 \\
& =\$ 56.25 \mathrm{mn}
\end{aligned}
$$

where C is the litigation cost. We deduce that:

$$
\begin{aligned}
\mathrm{LGD} & =\frac{L}{\mathrm{EAD} \times \mathrm{PD}} \\
& =\frac{54}{12.5 \times 10^{3} \times 1 \%} \\
& =45 \%
\end{aligned}
$$

This figure is larger than 35%, which is the loss given default without taking into account the recovery cost.
3. (a) The Beta distribution allows to obtain all the forms of LGD (bell curve, invertedU shaped curve, etc.). The uniform distribution corresponds to the case $\alpha=1$ and $\beta=1$. Indeed, we have:

$$
\begin{aligned}
f(x) & =\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_{0}^{1} u^{\alpha-1}(1-u)^{\beta-1} \mathrm{~d} u} \\
& =1
\end{aligned}
$$

[^17](b) We have:
\[

$$
\begin{aligned}
\ell(\alpha, \beta) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =-n \ln \mathbf{B}(\alpha, \beta)+(\alpha-1) \sum_{i=1}^{n} \ln x_{i}+(\beta-1) \sum_{i=1}^{n} \ln \left(1-x_{i}\right)
\end{aligned}
$$
\]

The first-order conditions are:

$$
\frac{\partial \ell(\alpha, \beta)}{\partial \alpha}=-n \frac{\partial_{\alpha} \mathbf{B}(\alpha, \beta)}{\mathbf{B}(\alpha, \beta)}+\sum_{i=1}^{n} \ln x_{i}=0
$$

and:

$$
\frac{\partial \ell(\alpha, \beta)}{\partial \beta}=-n \frac{\partial_{\beta} \mathbf{B}(\alpha, \beta)}{\mathbf{B}(\alpha, \beta)}+\sum_{i=1}^{n} \ln \left(1-x_{i}\right)=0
$$

(c) Let μ_{LGD} and σ_{LGD} be the mean and standard deviation of the LGD parameter. The method of moments consists in estimating α and β such that:

$$
\frac{\alpha}{\alpha+\beta}=\mu_{\mathrm{LGD}}
$$

and:

$$
\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\sigma_{\mathrm{LGD}}^{2}
$$

We have:

$$
\beta=\alpha \frac{\left(1-\mu_{\mathrm{LGD}}\right)}{\mu_{\mathrm{LGD}}}
$$

and:

$$
(\alpha+\beta)^{2}(\alpha+\beta+1) \sigma_{\mathrm{LGD}}^{2}=\alpha \beta
$$

It follows that:

$$
\begin{aligned}
(\alpha+\beta)^{2} & =\left(\alpha+\alpha \frac{\left(1-\mu_{\mathrm{LGD}}\right)}{\mu_{\mathrm{LGD}}}\right)^{2} \\
& =\frac{\alpha^{2}}{\mu_{\mathrm{LGD}}^{2}}
\end{aligned}
$$

and:

$$
\alpha \beta=\frac{\alpha^{2}}{\mu_{\mathrm{LGD}}^{2}}\left(\alpha+\alpha \frac{\left(1-\mu_{\mathrm{LGD}}\right)}{\mu_{\mathrm{LGD}}}+1\right) \sigma_{\mathrm{LGD}}^{2}=\alpha^{2} \frac{\left(1-\mu_{\mathrm{LGD}}\right)}{\mu_{\mathrm{LGD}}}
$$

We deduce that:

$$
\alpha\left(1+\frac{\left(1-\mu_{\mathrm{LGD}}\right)}{\mu_{\mathrm{LGD}}}\right)=\frac{\left(1-\mu_{\mathrm{LGD}}\right) \mu_{\mathrm{LGD}}}{\sigma_{\mathrm{LGD}}^{2}}-1
$$

We finally obtain:

$$
\begin{align*}
& \hat{\alpha}_{\mathrm{MM}}=\frac{\mu_{\mathrm{LGD}}^{2}\left(1-\mu_{\mathrm{LGD}}\right)}{\sigma_{\mathrm{LGD}}^{2}}-\mu_{\mathrm{LGD}} \tag{3.2}\\
& \hat{\beta}_{\mathrm{MM}}=\frac{\mu_{\mathrm{LGD}}\left(1-\mu_{\mathrm{LGD}}\right)^{2}}{\sigma_{\mathrm{LGD}}^{2}}-\left(1-\mu_{\mathrm{LGD}}\right) \tag{3.3}
\end{align*}
$$

4. (a) The mean of the loss given default is equal to:

$$
\begin{aligned}
\mu_{\mathrm{LGD}} & =\frac{100 \times 0 \%+100 \times 25 \%+600 \times 50 \%+\ldots}{1000} \\
& =50 \%
\end{aligned}
$$

The expression of the expected loss is:

$$
\mathrm{EL}=\sum_{i=1}^{100} \mathrm{EAD}_{i} \times \mathbb{E}\left[\mathrm{LGD}_{i}\right] \times \mathrm{PD}_{i}
$$

where PD_{i} is the default probability of credit i. We finally obtain:

$$
\begin{aligned}
\mathrm{EL} & =\sum_{i=1}^{100} 10000 \times 50 \% \times 1 \% \\
& =\$ 5000
\end{aligned}
$$

(b) We have $\mu_{\text {LGD }}=50 \%$ and:

$$
\begin{aligned}
\sigma_{\mathrm{LGD}} & =\sqrt{\frac{100 \times(0-0.5)^{2}+100 \times(0.25-0.5)^{2}+\ldots}{1000}} \\
& =\sqrt{\frac{2 \times 0.5^{2}+2 \times 0.25^{2}}{10}} \\
& =\sqrt{\frac{0.625}{10}} \\
& =25 \%
\end{aligned}
$$

Using Equations (3.2) and (3.3), we deduce that:

$$
\begin{aligned}
\hat{\alpha}_{\mathrm{MM}} & =\frac{0.5^{2} \times(1-0.5)}{0.25^{2}}-0.5=1.5 \\
\hat{\beta}_{\mathrm{MM}} & =\frac{0.5 \times(1-0.5)^{2}}{0.25^{2}}-(1-0.5)=1.5
\end{aligned}
$$

(c) The previous portfolio is homogeneous and infinitely fine-grained. In this case, we know that the unexpected loss depends on the mean of the loss given default and not on the entire probability distribution. Because the expected value of the calibrated Beta distribution is 50%, there is no difference with the uniform distribution, which has also a mean equal to 50%. This result holds for the Basel model with one factor, and remains true when they are more factors.

3.4.5 Modeling default times with a Markov chain

1. We have $P(4)=P(2) P(2)$ and $P(6)=P(4) P(2)$.
2. In a piecewise exponential model, the survival function has the following expression:

$$
\left.\left.\mathbf{S}(t)=\mathbf{S}\left(t_{m-1}^{\star}\right) e^{-\lambda_{m}\left(t-t_{m-1}^{\star}\right)} \quad \text { if } t \in\right] t_{m-1}^{\star}, t_{m}^{\star}\right]
$$

We deduce that:

$$
\lambda_{m}=\frac{\ln \mathbf{S}\left(t_{m-1}^{\star}\right)-\ln \mathbf{S}\left(t_{m}^{\star}\right)}{t_{m}^{\star}-t_{m-1}^{\star}}
$$

with $\mathbf{S}\left(t_{0}^{\star}\right)=\mathbf{S}(0)=1$. Here, the knots of the piecewise function are $t_{1}^{\star}=2, t_{2}^{\star}=4$ and $t_{3}^{\star}=6$. If we consider the risk class A, we deduce that:

$$
\begin{aligned}
& \lambda_{1}=\frac{\ln 1-\ln (1-1 \%)}{2-0}=50.3 \mathrm{bps} \\
& \lambda_{2}=\frac{\ln (1-1 \%)-\ln (1-2.49 \%)}{4-2}=75.8 \mathrm{bps} \\
& \lambda_{3}=\frac{\ln (1-2.49 \%)-\ln (1-4.296 \%)}{6-4}=93.5 \mathrm{bps}
\end{aligned}
$$

We finally obtain the following results:

Rating	A	B	C
λ_{1}	50.3	256.5	1115.7
λ_{2}	75.8	275.9	856.9
λ_{3}	93.5	277.8	650.2

3. Let $P(t)$ be the transition matrix between 0 and t. The Markov generator of $P(t)$ is the matrix $\Lambda=\left(\lambda_{i, j}\right)$ defined by:

$$
P(t)=\exp (t \Lambda)
$$

where e^{M} is the matrix exponential of the matrix M. We deduce that:

$$
\Lambda=\frac{\ln P(t)}{t}
$$

In this example, the direct estimator is given by:

$$
\hat{\Lambda}=\frac{\ln P(2)}{2}
$$

We verify that $\hat{\Lambda}$ is a Markov generator because $\sum_{j=1}^{4} \lambda_{i, j}=0$ and $\lambda_{i, j} \geq 0$ when $i \neq j$.
4. For the piecewise exponential model, we proceed as in Question 2 by adding the knots $t_{m}^{\star}=2 m$ with $m \geq 4$. In this case, we have:

$$
\left.\left.\lambda_{i}(t)=\lambda_{m} \quad \text { if } t \in\right] 2 m-2,2 m\right]
$$

with:

$$
\lambda_{m}=\frac{\ln \mathbf{S}_{i}(2 m-2)-\ln \mathbf{S}_{i}(2 m)}{2}
$$

and $\mathbf{S}_{i}(2 m)=1-P_{i, 4}(2 m)$. For the Markov generator, we have:

$$
\begin{aligned}
\mathbf{S}_{i}(t) & =1-\mathbf{e}_{i}^{\top} P(t) \mathbf{e}_{4} \\
& =1-\mathbf{e}_{i}^{\top} e^{t \hat{\Lambda}} \mathbf{e}_{4}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\lambda_{i}(t) & =\frac{-\partial_{t} \mathbf{S}_{i}(t)}{\mathbf{S}_{i}(t)} \\
& =\frac{\mathbf{e}_{i}^{\top} \hat{\Lambda} e^{t \hat{\Lambda}} \mathbf{e}_{4}}{1-\mathbf{e}_{i}^{\top} e^{t \hat{\Lambda}} \mathbf{e}_{4}}
\end{aligned}
$$

In the long-run, the markov chain is stationary. This means that the default probability of the different risk classes is the same when t tends to ∞ and we have:

$$
\lambda_{A}(\infty)=\lambda_{B}(\infty)=\lambda_{C}(\infty)=147.6 \mathrm{bps}
$$

In the short-run, the hazard rate are ranked with respect to the risk class:

$$
\lambda_{A}(0)<\lambda_{B}(0)<\lambda_{C}(0)
$$

We deduce that the function $\lambda_{A}(t)$ is increasing whereas the function $\lambda_{C}(t)$ is decreasing. For the rating B, the behavior of the hazard function is more complex. It first increases like $\lambda_{A}(t)$ and reaches a maximum at $t=4.2$, because the transition probability to risk classes C and D is very high. Then, it decreases because of the stationarity property.

3.4.6 Continuous-time modeling of default risk

1. The Chapman-Kolmogorov equation is:

$$
P(n)=P(n-1) P
$$

We deduce that:

$$
\begin{aligned}
P(n) & =P(0) \prod_{t=1}^{n} P \\
& =P^{n}
\end{aligned}
$$

because $P(0)=I_{4}$. We have:

$$
P(10)=\left(\begin{array}{rrrr}
62.60 \% & 13.14 \% & 5.53 \% & 18.73 \% \\
38.42 \% & 20.74 \% & 6.81 \% & 34.03 \% \\
21.90 \% & 12.29 \% & 4.35 \% & 61.46 \% \\
0.00 \% & 0.00 \% & 0.00 \% & 100.00 \%
\end{array}\right)
$$

2. (a) The eigendecomposition of P is equal to $P=V D V^{-1}$, meaning that:

$$
P V=V D
$$

We deduce that:

$$
\begin{aligned}
P(2) V & =P V D \\
& =V D D \\
& =V D^{2}
\end{aligned}
$$

By recursion, we obtain:

$$
P(n) V=V D^{n}
$$

We can then calculate $P(n)$ as follows:

$$
P(n)=V D^{n} V^{-1}
$$

The eigendecomposition of $P(n)$ is similar to the eigendecomposition of P : the eigenvectors are the same, only the eigenvalues are different.
(b) We have:

$$
V=\left(\begin{array}{rrrr}
0.4670 & -0.2808 & -0.0264 & 1.0000 \\
0.3561 & 0.8486 & -0.2373 & 1.0000 \\
0.2065 & 0.5363 & 0.8609 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{llll}
0.9717 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.8111 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.5571 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right)
$$

We deduce that:

$$
D^{10}=\left(\begin{array}{cccc}
0.7506 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.1233 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0029 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right)
$$

We verify that:

$$
\begin{aligned}
V D^{10} V^{-1} & =\left(\begin{array}{rrrr}
62.60 \% & 13.14 \% & 5.53 \% & 18.73 \% \\
38.42 \% & 20.74 \% & 6.81 \% & 34.03 \% \\
21.90 \% & 12.29 \% & 4.35 \% & 61.46 \% \\
0.00 \% & 0.00 \% & 0.00 \% & 100.00 \%
\end{array}\right) \\
& =P(10)
\end{aligned}
$$

3. Let $\Re_{i}(n)$ be the rating of a firm at time n whose initial rating is the state i. We have:

$$
\begin{aligned}
\mathbf{S}_{i}(n) & =1-\operatorname{Pr}\left\{\Re_{i}(n)=D\right\} \\
& =1-\mathbf{e}_{i}^{\top} P(n) \mathbf{e}_{4} \\
& =1-\mathbf{e}_{i}^{\top} P^{n} \mathbf{e}_{4} \\
& =1-\left(P^{n}\right)_{i, 4}
\end{aligned}
$$

In the piecewise exponential model, we recall that the survival function has the following expression:

$$
\mathbf{S}_{i}(n)=\mathbf{S}_{i}(n-1) e^{-\lambda_{i}(n)}
$$

We deduce that:

$$
\begin{aligned}
\lambda_{i}(n) & =\ln \mathbf{S}_{i}(n-1)-\ln \mathbf{S}_{i}(n) \\
& =\ln \left(\frac{1-\mathbf{e}_{i}^{\top} P^{n-1} \mathbf{e}_{4}}{1-\mathbf{e}_{i}^{\top} P^{n} \mathbf{e}_{4}}\right)
\end{aligned}
$$

We verify that:

$$
\begin{aligned}
\lambda_{i}(1) & =\ln \left(\frac{1}{1-\mathbf{e}_{i}^{\top} P^{n} \mathbf{e}_{4}}\right) \\
& =-\ln \left(1-\mathbf{e}_{i}^{\top} P^{n} \mathbf{e}_{4}\right)
\end{aligned}
$$

because $\mathbf{S}_{i}(0)=1$. Numerical values of $\mathbf{S}_{i}(n)$ and $\lambda_{i}(n)$ are given in Table 3.1.

TABLE 3.1: Numerical values of $\mathbf{S}_{i}(n)$ and $\lambda_{i}(n)$

n	$\mathbf{S}_{A}(n)$	$\mathbf{S}_{B}(n)$	$\mathbf{S}_{C}(n)$	$\lambda_{A}(n)$	$\lambda_{B}(n)$	$\lambda_{C}(n)$
0	1.0000	1.0000	1.0000			
1	0.7914	0.6360	0.3708	0.2339	0.4526	0.9921
2	0.7704	0.6139	0.3575	0.0269	0.0354	0.0367
3	0.7498	0.5932	0.3451	0.0272	0.0343	0.0352
4	0.7295	0.5737	0.3335	0.0274	0.0334	0.0341
5	0.7096	0.5552	0.3226	0.0276	0.0327	0.0332
6	0.6901	0.5377	0.3123	0.0278	0.0320	0.0324
7	0.6711	0.5211	0.3026	0.0280	0.0315	0.0318
8	0.6525	0.5051	0.2933	0.0281	0.0310	0.0313
9	0.6344	0.4899	0.2843	0.0282	0.0307	0.0308
10	0.6167	0.4752	0.2758	0.0283	0.0303	0.0305
50	0.1962	0.1496	0.0868	0.0287	0.0287	0.0287
100	0.0468	0.0357	0.0207	0.0287	0.0287	0.0287

4. Let $P(t)$ be the transition matrix between 0 and t. The Markov generator of $P(t)$ is the matrix $\Lambda=\left(\lambda_{i, j}\right)$ defined by:

$$
P(t)=\exp (t \Lambda)
$$

where e^{M} is the matrix exponential of the matrix M. We deduce that:

$$
\Lambda=t^{-1} \ln P(t)
$$

In particular, we have:

$$
\begin{aligned}
\hat{\Lambda} & =\frac{\ln P(n)}{n} \\
& =\frac{\ln P^{n}}{n} \\
& =\ln P
\end{aligned}
$$

We obtain:

$$
\hat{\Lambda}=\left(\begin{array}{rrrr}
-6.4293 & 3.2282 & 2.4851 & 0.7160 \\
11.3156 & -23.5006 & 9.9915 & 2.1936 \\
5.3803 & 21.6482 & -52.3649 & 25.3364 \\
0.0000 & 0.0000 & 0.0000 & 0.0000
\end{array}\right) \times 10^{-2}
$$

We verify that $\hat{\Lambda}$ is a Markov generator because $\sum_{j=1}^{4} \lambda_{i, j}=0$ and $\lambda_{i, j} \geq 0$ when $i \neq j$.
5. We have:

$$
P(t)=\exp (t \Lambda)
$$

We remind that:

$$
e^{M}=I+M+\frac{M^{2}}{2!}+\frac{M^{3}}{3!}+\ldots
$$

We deduce that:

$$
P(t)=I_{4}+t \Lambda+\frac{t^{2}}{2} \Lambda^{2}+\frac{t^{3}}{6} \Lambda^{3}+\frac{t^{4}}{24} \Lambda^{4}+\ldots
$$

The 6-month transition probability matrix is equal to:

$$
\begin{aligned}
P\left(\frac{1}{2}\right) & =\exp \left(\frac{\Lambda}{2}\right) \\
& =\left(\begin{array}{rrrr}
96.90 \% & 1.56 \% & 1.11 \% & 0.43 \% \\
5.32 \% & 89.19 \% & 4.17 \% & 1.33 \% \\
2.60 \% & 8.99 \% & 77.20 \% & 11.21 \% \\
0.00 \% & 0.00 \% & 0.00 \% & 100.00 \%
\end{array}\right)
\end{aligned}
$$

6. We have:

$$
\begin{aligned}
\mathbf{S}_{i}(t) & =1-\operatorname{Pr}\left\{\mathfrak{R}_{i}(t)=D\right\} \\
& =1-\mathbf{e}_{i}^{\top} P(t) \mathbf{e}_{4} \\
& =1-\mathbf{e}_{i}^{\top} e^{t \Lambda} \mathbf{e}_{4}
\end{aligned}
$$

We know that:

$$
\lambda_{i}(t)=\frac{f_{i}(t)}{\mathbf{S}_{i}(t)}=-\frac{\partial_{t} \mathbf{S}_{i}(t)}{\mathbf{S}_{i}(t)}
$$

We deduce that:

$$
\lambda_{i}(t)=\frac{\mathbf{e}_{i}^{\top} \Lambda e^{t \Lambda} \mathbf{e}_{4}}{1-\mathbf{e}_{i}^{\top} e^{t \Lambda} \mathbf{e}_{4}}
$$

3.4.7 Derivation of the original Basel granularity adjustment

1. We deduce that:

$$
\begin{aligned}
\mu(x) & =\mathbb{E}\left[L_{i} \mid X=x\right] \\
& =\mathbb{E}\left[\mathrm{LGD}_{i}\right] p_{i}(x) \\
& =E_{i} p_{i}\left(1+\varpi_{i}(x-1)\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
v(x) & =\sigma^{2}\left(L_{i} \mid X=x\right) \\
& =A_{i} \\
& =\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}(x)\left(1-p_{i}(x)\right)+\sigma^{2}\left(\mathrm{LGD}_{i}\right) p_{i}(x) \\
& =\left(\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right]+\sigma^{2}\left(\mathrm{LGD}_{i}\right)\right) p_{i}(x)-\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(x)
\end{aligned}
$$

If we assume that $p_{i}^{2}(x) \approx 0$, it follows that:

$$
\begin{aligned}
v(x) & \approx\left(\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right]+\sigma^{2}\left(\mathrm{LGD}_{i}\right)\right) p_{i}(x) \\
& =\left(E_{i}^{2}+\sigma^{2}\left(\mathrm{LGD}_{i}\right)\right) p_{i}\left(1+\varpi_{i}(x-1)\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
E_{i}^{2}+\sigma^{2}\left(\mathrm{LGD}_{i}\right) & =E_{i}^{2}+\frac{1}{4} E_{i}\left(1-E_{i}\right) \\
& =E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right)
\end{aligned}
$$

We conclude that:

$$
v(x)=E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i}\left(1+\varpi_{i}(x-1)\right)
$$

2. The computation of the derivatives of $\mu(x)$ gives:

$$
\frac{\partial \mu(x)}{\partial x}=E_{i} p_{i} \varpi_{i}
$$

and:

$$
\frac{\partial^{2} \mu(x)}{\partial x^{2}}=0
$$

For the variance, we obtain:

$$
\frac{\partial v(x)}{\partial x}=E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i} \varpi_{i}
$$

Since we have:

$$
h(x)=\frac{\beta_{g}^{\alpha_{g}} x^{\alpha_{g}-1} e^{-\beta_{g} x}}{\Gamma\left(\alpha_{g}\right)}
$$

and:

$$
\ln h(x)=-\ln \Gamma\left(\alpha_{g}\right)+\alpha_{g} \ln \beta_{g}+\left(\alpha_{g}-1\right) \ln x-\beta_{g} x
$$

We deduce that:

$$
\partial_{x} \ln h(x)=\frac{\left(\alpha_{g}-1\right)}{x}-\frac{1}{\beta_{g}}
$$

The granularity adjustment function is:

$$
\begin{aligned}
\beta(x)= & \frac{1}{2} v(x) \frac{\partial_{x}^{2} \mu(x)}{\left(\partial_{x} \mu(x)\right)^{2}}-\frac{1}{2} \frac{\partial_{x} v(x)}{\partial_{x} \mu(x)}-\frac{1}{2} v(x) \frac{\partial_{x} \ln h(x)}{\partial_{x} \mu(x)} \\
= & -\frac{1}{2} E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i} \varpi_{i} \times \frac{1}{E_{i} p_{i} \varpi_{i}}- \\
& \frac{1}{2} E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i}\left(1+\varpi_{i}(x-1)\right)\left(\frac{\left(\alpha_{g}-1\right)}{x}-\frac{1}{\beta_{g}}\right) \times \frac{1}{E_{i} p_{i} \varpi_{i}} \\
= & -\frac{1}{2}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right)\left(\left(\frac{\alpha_{g}-1}{x}-\frac{1}{\beta_{g}}\right)\left(\frac{1}{\varpi_{i}}+(x-1)\right)+1\right)
\end{aligned}
$$

3. In order to maintain the coherency with the IRB formula, we must have:

$$
\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right)=p_{i}\left(1+\varpi_{i}(x-1)\right)
$$

This implies that the factor weight ϖ_{i} is equal to:

$$
\varpi_{i}=\frac{1}{(x-1)} \frac{F_{i}}{p_{i}}
$$

where:

$$
F_{i}=\Phi\left(\frac{\Phi^{-1}\left(p_{i}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right)-p_{i}
$$

Finally, we obtain the following expression for $\beta(x)$:

$$
\begin{aligned}
\beta(x) & =\frac{1}{2}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right)\left(-\left(\frac{\alpha_{g}-1}{x}-\frac{1}{\beta_{g}}\right)\left(\frac{p_{i}}{F_{i}}(x-1)+(x-1)\right)-1\right) \\
& =\frac{1}{2}\left(0.25+0.75 E_{i}\right)\left(A-1+A \frac{p_{i}}{F_{i}}\right)
\end{aligned}
$$

where:

$$
A=-\left(\frac{\alpha_{g}-1}{x}-\frac{1}{\beta_{g}}\right)(x-1)
$$

4. Since we have $\mathbb{E}[X]=\alpha_{g} \beta_{g}$ and $\sigma(X)=\sqrt{\alpha_{g}} \beta_{g}$, the parameters of the Gamma distribution are $\alpha=0.25$ and $\beta=4$. Since the confidence level α of the value at risk is equal to 99.5%, the quantile of the Gamma distribution $\mathcal{G}(0.25 ; 4)$ is equal to ${ }^{7}$ $x_{\alpha}=12.007243$ and the value of A is 3.4393485 . We deduce that:

$$
\begin{aligned}
\beta\left(x_{\alpha}\right) & =\frac{1}{2}\left(0.25+0.75 E_{i}\right)\left(2.4393485+3.4393485 \frac{p_{i}}{F_{i}}\right) \\
& =\left(0.4+1.2 E_{i}\right)\left(0.76229640+1.0747964 \frac{p_{i}}{F_{i}}\right)
\end{aligned}
$$

We retrieve almost the Basel formula given in BCBS (2001a, §456):

$$
\beta\left(x_{\alpha}\right)=(0.4+1.2 \times \mathrm{LGD})\left(0.76+1.10 \frac{p_{i}}{F_{i}}\right)
$$

In order to find exactly the Basel formula, we do not use the approximation $p_{1}^{2}(x) \approx 0$ for calculating $v(x)$. In this case, we have:

$$
v(x)=E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i}\left(1+\varpi_{i}(x-1)\right)-E_{i}^{2} p_{i}^{2}\left(1+\varpi_{i}(x-1)\right)^{2}
$$

and:

$$
\frac{\partial v(x)}{\partial x}=E_{i}\left(\frac{1}{4}+\frac{3}{4} E_{i}\right) p_{i} \varpi_{i}-2 E_{i}^{2} p_{i}^{2} \varpi_{i}\left(1+\varpi_{i}(x-1)\right)
$$

We deduce that:

$$
\begin{aligned}
\beta(x)= & \frac{1}{2}\left(0.25+0.75 E_{i}\right)\left(-\left(\frac{\alpha_{g}-1}{x}-\frac{1}{\beta_{g}}\right)\left(\varpi_{1}^{-1}+(x-1)\right)-1\right)+ \\
& \underbrace{E_{i} p_{i}\left(1+\varpi_{i}(x-1)\right)\left(1+\frac{1}{2} \varpi_{i}^{-1}\left(\frac{\alpha_{g}-1}{x}-\frac{1}{\beta_{g}}\right)\right)}_{\text {Correction term }}
\end{aligned}
$$

When the expected LGD E_{i} varies from 5% to 95%, the probability of default p_{i} varies from 10 bps to 15% and the asset correlation ρ varies from 10% to 30%, the relative error between the exact formula and the approximation is lower than 1%.
5. We deduce that:

$$
\begin{aligned}
\mathrm{GA} & =\frac{1}{8 \%}\left(1.5 \times \frac{\mathrm{EAD}^{\star} \times \beta\left(x_{\alpha}\right)}{n^{\star}}\right)-0.04 \times \mathrm{RWA}_{\mathrm{NR}} \\
& =\frac{\mathrm{EAD}^{\star}}{n^{\star}}\left(0.6+1.8 \times E^{\star}\right)\left(9.5+13.75 \times \frac{p^{\star}}{F^{\star}}\right)-0.04 \times \mathrm{RWA}_{\mathrm{NR}} \\
& =\frac{\mathrm{EAD}^{\star}}{n^{\star}} \times \mathrm{GSF}-0.04 \times \mathrm{RWA}_{\mathrm{NR}}
\end{aligned}
$$

where:

$$
\mathrm{GSF}=\left(0.6+1.8 \times E^{\star}\right)\left(9.5+13.75 \times \frac{p^{\star}}{F^{\star}}\right)
$$

[^18]6. Following Wilde (2001b) and Gordy (2003), the portfolio loss is equal to:
$$
L=\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times \mathrm{LGD}_{i} \times D_{i}
$$
where \mathcal{C}_{j} is the $j^{\text {th }}$ class of risk. The goal is to build an equivalent homogeneous portfolio w^{\star} such that:
$$
L^{\star}=\mathrm{EAD}^{*} \times \mathrm{LGD}^{*} \times D^{*}
$$

First, it is obvious to impose that:

$$
\mathrm{EAD}^{\star}=\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}
$$

Wilde and Gordy also propose to equalize the default rates weighted by exposures:

$$
\mathbb{E}\left[\mathrm{EAD}^{\star} \times D^{\star}\right]=\mathbb{E}\left[\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times D_{i}\right]
$$

This implies that:

$$
\begin{aligned}
p^{\star} & =\frac{\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times p_{\mathcal{C}_{j}}}{\mathrm{EAD}^{*}} \\
& =\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} \times p_{\mathcal{C}_{j}}
\end{aligned}
$$

where $p_{\mathcal{C}_{j}}$ is the default probability associated to Class \mathcal{C}_{j} and $s_{\mathcal{C}_{j}}$ is the corresponding relative exposure:

$$
s_{\mathcal{C}_{j}}=\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}{\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i^{\prime} \in \mathcal{C}_{j}} \mathrm{EAD}_{i^{\prime}}}
$$

We also have:

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{EAD}^{*} \times \mathrm{LGD}^{*} \times D^{*}\right] & =\mathbb{E}\left[\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times \mathrm{LGD}_{i} \times D_{i}\right] \\
\left(\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}\right) \times E^{\star} \times p^{\star} & =\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times E_{i} \times p_{\mathcal{C}_{j}} \\
& =\sum_{j=1}^{n_{\mathcal{C}}} p_{\mathcal{C}_{j}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times E_{i}
\end{aligned}
$$

Let $E_{\mathcal{C}_{j}}$ be the average loss given default for Class \mathcal{C}_{j} :

$$
E_{\mathcal{C}_{j}}=\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times E_{i}}{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}
$$

We deduce that:

$$
\left(\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}\right) \times E^{\star} \times p^{\star}=\sum_{j=1}^{n_{\mathcal{C}}} p_{\mathcal{C}_{j}} \times E_{\mathcal{C}_{j}} \times \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}
$$

or:

$$
\begin{aligned}
E^{\star} & =\sum_{j=1}^{n_{\mathcal{C}}} \frac{p_{\mathcal{C}_{j}}}{p^{\star}} \times E_{\mathcal{C}_{j}} \times \frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}{\sum_{j^{\prime}=1}^{n_{C}} \sum_{i^{\prime} \in \mathcal{C}_{j^{\prime}}} \mathrm{EAD}_{i^{\prime}}} \\
& =\sum_{j=1}^{n_{\mathcal{C}}} \frac{s_{\mathcal{C}_{j}} \times p_{\mathcal{C}_{j}}}{\sum_{j^{\prime}=1}^{n} s_{\mathcal{C}_{j^{\prime}}} \times p_{\mathcal{C}_{j^{\prime}}}} \times E_{\mathcal{C}_{j}}
\end{aligned}
$$

We remind that the conditional variance of the portfolio loss is equal to:

$$
\sigma^{2}(L \mid X)=\sum_{j=1}^{n_{C}} \sum_{i \in \mathcal{C}_{j}} \operatorname{EAD}_{i}^{2} \times\left(E_{i}^{2} p_{i}(X)\left(1-p_{i}(X)\right)+\sigma^{2}\left(\operatorname{LGD}_{i}\right) p_{i}(X)\right)
$$

It follows that the expression of the unconditional variance is:

$$
\begin{aligned}
\sigma^{2}(L)= & \sigma^{2}(\mathbb{E}[L \mid X])+\mathbb{E}\left[\sigma^{2}(L \mid X)\right] \\
= & \underbrace{\sigma^{2}\left(\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} E_{i} p_{i}(X)\right)}_{\text {Contribution of the systematic risk }}+ \\
& \underbrace{\mathbb{E}\left[\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \operatorname{EAD}_{i}^{2}\left(E_{i}^{2} p_{i}(X)\left(1-p_{i}(X)\right)+\sigma^{2}\left(\mathrm{LGD}_{i}\right) p_{i}(X)\right)\right]}_{\text {Contribution of the idiosyncratic risk }}
\end{aligned}
$$

and:

$$
\begin{aligned}
\sigma^{2}(L)= & \underbrace{\sigma^{2}\left(\sum_{j=1}^{n_{\mathcal{C}}} \mathrm{EAD}^{\star} s_{\mathcal{C}_{j}} E_{\mathcal{C}_{j}} p_{\mathcal{C}_{j}}(X)\right)}_{\text {Contribution of the systematic risk }}+ \\
& \underbrace{\text { Contribution of the idiosyncratic default risk }_{n_{\mathcal{C}}}^{\sum_{j=1} p_{\mathcal{C}_{j}}\left(\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}^{2} \sigma^{2}\left(\mathrm{LGD}_{i}\right)\right)}}_{\sum_{j=1}^{\sum_{\mathcal{C}}}\left(p_{\mathcal{C}_{j}}(X)\left(1-p_{\mathcal{C}_{j}}(X)\right)-\sigma^{2}\left(p_{\mathcal{C}_{j}}(X)\right)\right)\left(\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}^{2} E_{i}^{2}\right)}+
\end{aligned}
$$

For the homogenous portfolio w^{\star}, we have:

$$
\begin{aligned}
\sigma^{2}\left(L^{\star}\right)= & \sigma^{2}\left(\mathrm{EAD}^{\star} E^{\star} p^{\star}(X)\right)+\frac{\left(\mathrm{EAD}^{\star}\right)^{2}}{n^{\star}} \times \\
& \left(\left(E^{\star}\right)^{2}\left(p^{\star}\left(1-p^{\star}\right)-\sigma^{2}\left(p^{\star}(X)\right)\right)+\sigma^{2}\left(\mathrm{LGD}^{\star}\right) p^{\star}\right)
\end{aligned}
$$

In the CreditRisk+ model, we have:

$$
p_{i}(X)=p_{i}\left(1+\varpi_{i}(X-1)\right)
$$

We have already used the property that $\mathbb{E}\left[p_{i}(X)\right]=p_{i}$, which implies that $\mathbb{E}[X]=1$. For the variance, we have:

$$
\sigma^{2}\left(p_{i}(X)\right)=p_{i}^{2} \varpi_{i}^{2} \sigma^{2}(X)
$$

The calibration of the systematic risk implies that the factor weight ϖ^{\star} is equal to:

$$
\begin{aligned}
\varpi^{\star} & =\frac{\sum_{j=1}^{n_{\mathcal{C}}} p_{\mathcal{C}_{j}} \varpi_{\mathcal{C}_{j}} E_{\mathcal{C}_{j}} s_{\mathcal{C}_{j}}}{p^{\star} E^{\star}} \\
& =\frac{\sum_{j=1}^{n_{\mathcal{C}}} p_{\mathcal{C}_{j}} \varpi_{\mathcal{C}_{j}} E_{\mathcal{C}_{j}} s_{\mathcal{C}_{j}}}{\sum_{j=1}^{n_{\mathcal{C}}} p_{\mathcal{C}_{j}} E_{\mathcal{C}_{j}} s_{\mathcal{C}_{j}}}
\end{aligned}
$$

For the idiosyncratic default risk, we have:

$$
n^{\star}=\frac{E^{\star} p^{\star}\left(1-p^{\star}\right)-\left(p^{\star} \varpi^{\star} \sigma(X)\right)^{2}}{\sum_{j=1}^{n_{\mathcal{C}}} E_{\mathcal{C}_{j}}^{2}\left(p_{\mathcal{C}_{j}}\left(1-p_{\mathcal{C}_{j}}\right)-\left(p_{\mathcal{C}_{j}} \varpi_{\mathcal{C}_{j}} \sigma(X)\right)^{2}\right) \frac{\sum_{i \in \mathcal{C}_{j}}\left(\mathrm{EAD}_{i} E_{i}\right)^{2}}{\left(\mathrm{EAD}^{\star} E_{\mathcal{C}_{j}}\right)^{2}}}
$$

We use the following equalities:

$$
\begin{aligned}
\frac{\sum_{i \in \mathcal{C}_{j}}\left(\mathrm{EAD}_{i} E_{i}\right)^{2}}{\left(\mathrm{EAD}^{\star} E_{\mathcal{C}_{j}}\right)^{2}} & =\frac{\sum_{i \in \mathcal{C}_{j}}\left(\operatorname{EAD}_{i} E_{i}\right)^{2}}{\left(\mathrm{EAD}^{\star} \frac{\sum_{i \in \mathcal{C}_{j}} E_{i} \mathrm{EAD}_{i}}{\sum_{i \in \mathcal{C}_{j}} \operatorname{EAD}_{i}}\right)^{2}} \\
& =\frac{\sum_{i \in \mathcal{C}_{j}}\left(\mathrm{EAD}_{i} E_{i}\right)^{2}}{\left(\sum_{i \in \mathcal{C}_{j}} E_{i} \times \mathrm{EAD}_{i}\right)^{2}}\left(\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}{\sum_{j^{\prime}=1}^{n \mathcal{C}} \sum_{i \in \mathcal{C}_{j^{\prime}}} \mathrm{EAD}_{i}}\right)^{2} \\
& =H_{\mathcal{C}} s_{\mathcal{C}}^{2}
\end{aligned}
$$

where $H_{\mathcal{C}}$ is the Herfindahl defined by the following expression ${ }^{8}$:

$$
H_{\mathcal{C}}=\frac{\sum_{i \in \mathcal{C}}\left(\mathrm{EAD}_{i} \times E_{i}\right)^{2}}{\left(\sum_{i \in \mathcal{C}} \mathrm{EAD}_{i} \times E_{i}\right)^{2}}
$$

Finally, the expression of n^{\star} is equal to:

$$
n^{\star}=\frac{1}{\sum_{j=1}^{n_{\mathcal{C}}} \Lambda_{\mathcal{C}_{j}} H_{\mathcal{C}_{j}} s_{\mathcal{C}_{j}}^{2}}
$$

where:

$$
\Lambda_{\mathcal{C}_{j}}=\frac{E_{\mathcal{C}_{j}}^{2}\left(p_{\mathcal{C}_{j}}\left(1-p_{\mathcal{C}_{j}}\right)-\left(p_{\mathcal{C}_{j}} \varpi_{\mathcal{C}_{j}} \sigma(X)\right)^{2}\right)}{\left(E^{\star}\right)^{2}\left(p^{\star}\left(1-p^{\star}\right)-\left(p^{\star} \varpi^{\star} \sigma(X)\right)^{2}\right)}
$$

We retrieve the expression of n^{\star} given by the Basel Committee (BCBS, 2001a, §445).

[^19]However, there is a difference between the analysis of Gordy (2003) and the formula $\Lambda_{\mathcal{C}_{j}}$ proposed by the Basel Committee. In BCBS (2001a), the calibration of n^{\star} uses both the idiosyncratic default risk and the idiosyncratic loss given default. In this case, we have:

$$
\Lambda_{\mathcal{C}_{j}}=\frac{E_{\mathcal{C}_{j}}^{2}\left(p_{\mathcal{C}_{j}}\left(1-p_{\mathcal{C}_{j}}\right)-\left(p_{\mathcal{C}_{j}} \varpi_{\mathcal{C}_{j}} \sigma(X)\right)^{2}\right)+p_{\mathcal{C}_{j}} \sigma^{2}\left(\mathrm{LGD}_{\mathcal{C}_{j}}\right)}{\left(E^{\star}\right)^{2}\left(p^{\star}\left(1-p^{\star}\right)-\left(p^{\star} \varpi^{\star} \sigma(X)\right)^{2}\right)+p^{\star} \sigma^{2}\left(\mathrm{LGD}^{\star}\right)}
$$

Using the hypothesis of the Basel Committee $-\sigma(X)=2$, we have:

$$
\left(p_{i} \varpi_{i} \sigma(X)\right)^{2}=\left(\frac{\sigma(X)}{\left(x_{\alpha}-1\right)} F_{i}\right)^{2}=\frac{4 F_{i}^{2}}{\left(x_{\alpha}-1\right)^{2}}
$$

For $X \sim \mathcal{G}(0.25 ; 4)$, we have already shown that $x_{\alpha}=12.007243$. We obtain:

$$
\left(p_{i} \varpi_{i} \sigma(X)\right)^{2}=0.033014360 \times F_{i}^{2}
$$

We remind that:

$$
\sigma\left(\mathrm{LGD}_{i}\right)=\frac{1}{2} \sqrt{E_{i}\left(1-E_{i}\right)}
$$

Finally, we obtain the expression of the Basel Committee:

$$
\Lambda_{\mathcal{C}_{j}}=\frac{E_{\mathcal{C}_{j}}^{2}\left(p_{\mathcal{C}_{j}}\left(1-p_{\mathcal{C}_{j}}\right)-0.033 \times F_{\mathcal{C}_{j}}^{2}\right)+0.25 \times p_{\mathcal{C}_{j}} E_{\mathcal{C}_{j}}\left(1-E_{\mathcal{C}_{j}}\right)}{\left(E^{\star}\right)^{2}\left(p^{\star}\left(1-p^{\star}\right)-0.033 \times\left(F^{\star}\right)^{2}\right)+0.25 \times p^{\star} E^{\star}\left(1-E^{\star}\right)}
$$

where:

$$
F_{\mathcal{C}_{j}}=\Phi\left(\frac{\Phi^{-1}\left(p_{\mathcal{C}_{j}}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right)-p_{\mathcal{C}_{j}}
$$

and $F^{\star}=\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} F_{\mathcal{C}_{j}}$.
7. For calculating the granularity adjustment, we proceed in two steps:

- In the first step, we transform the current portfolio into an equivalent homogenous portfolio:

$$
\begin{aligned}
s_{\mathcal{C}_{j}} & =\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}{\sum_{j=1}^{n_{\mathcal{C}}} \sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}} \\
\mathrm{PD}_{\mathrm{AG}} & =\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} \times \mathrm{PD}_{\mathcal{C}_{j}} \\
\mathrm{LGD}_{\mathrm{AG}} & =\frac{\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} \times \mathrm{PD}_{\mathcal{C}_{j}} \times \mathrm{LGD}_{\mathcal{C}_{j}}}{\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} \times \mathrm{PD}_{\mathcal{C}_{j}}}
\end{aligned}
$$

where $\mathrm{PD}_{\mathcal{C}_{j}}$ is the default probability of Class \mathcal{C}_{j} and $\mathrm{LGD}_{\mathcal{C}_{j}}$ is the average loss given default of Class \mathcal{C}_{j} :

$$
\mathrm{LGD}_{\mathcal{C}_{j}}=\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i} \times \mathrm{LGD}_{i}}{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}}
$$

Then, we calculate

$$
F_{\mathrm{AG}}=\sum_{j=1}^{n_{\mathcal{C}}} s_{\mathcal{C}_{j}} \times F_{\mathcal{C}_{j}}
$$

where $F_{\mathcal{C}_{j}}$ is the unit unexpected loss of Class \mathcal{C}_{j} :

$$
F_{\mathcal{C}_{j}}=\Phi\left(\frac{\Phi^{-1}\left(\mathrm{PD}_{\mathcal{C}_{j}}\right)+\sqrt{\rho} \Phi^{-1}(\alpha)}{\sqrt{1-\rho}}\right)-\mathrm{PD}_{\mathcal{C}_{j}}
$$

The equivalent number of loans n^{\star} is the inverse of the Herfindahl H^{\star} index:

$$
n^{\star}=\frac{1}{H^{\star}}=\frac{1}{\sum_{j=1}^{n_{\mathcal{C}}} A_{\mathcal{C}_{j}} \times H_{\mathcal{C}_{j}} \times s_{\mathcal{C}_{j}}^{2}}
$$

where:

$$
H_{\mathcal{C}_{j}}=\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}^{2}}{\left(\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}\right)^{2}}
$$

$A_{\mathcal{C}_{j}}$ is calculated as follows:

$$
A_{\mathcal{C}_{j}}=\frac{\mathrm{LGD}_{\mathcal{C}_{j}}^{2}\left(B_{\mathcal{C}_{j}}-0.033 F_{\mathcal{C}_{j}}^{2}\right)+\frac{1}{4} B_{\mathcal{C}_{j}} \mathrm{LGD}_{\mathcal{C}_{j}}}{\mathrm{LGD}_{\mathrm{AG}}^{2}\left(B_{\mathrm{AG}}-0.033 F_{\mathrm{AG}}^{2}\right)+\frac{1}{4} B_{\mathrm{AG}}}
$$

where:

$$
B_{i}=\mathrm{PD}_{i}\left(1-\mathrm{PD}_{i}\right)
$$

- In the second step, we calculate the granularity scale factor:

$$
\mathrm{GSF}=\left(0.6+1.8 \times \mathrm{LGD}_{\mathrm{AG}}\right) \times\left(9.5+13.75 \times \frac{\mathrm{PD}_{\mathrm{AG}}}{F_{\mathrm{AG}}}\right)
$$

Finally, the granularity adjustment is equal to:

$$
\mathrm{GA}=\frac{\mathrm{TNRE} \times \mathrm{GSF}}{n^{\star}}-0.04 \times \mathrm{RWA}_{\mathrm{NR}}
$$

where TNRE is the total non-retail exposure and RWA $_{N R}$ is the total non-retail risk-weighted assets.

3.4.8 Variance of the conditional portfolio loss

1. $D_{i}(X)$ is a Bernoulli random variable with parameter $p_{i}(X)$. We have $\mathbb{E}\left[D_{i}(X)\right]=$ $p_{i}(X)$. By definition, the probability distribution of $D_{i}^{2}(X)$ is the same than the probability distribution of $D_{i}(X)$. It follows that $D_{i}^{2}(X)$ is a Bernoulli random variable with parameter $p_{i}(X)$. Since $D_{i}(X)$ and $D_{j}(X)$ are independent because the default times are conditionally independent in the Basel II model, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[D_{i}(X) D_{j}(X)\right] & =\mathbb{E}\left[D_{i}(X)\right] \mathbb{E}\left[D_{j}(X)\right] \\
& =p_{i}(X) p_{j}(X)
\end{aligned}
$$

2. We have:

$$
L(X)=\sum_{i=1}^{n} w_{i} \operatorname{LGD}_{i} D_{i}(X)
$$

3. We have:

$$
\begin{aligned}
\mathbb{E}[L(X)] & =\mathbb{E}\left[\sum_{i=1}^{n} w_{i} \mathrm{LGD}_{i} D_{i}(X)\right] \\
& =\sum_{i=1}^{n} w_{i} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[D_{i}(X)\right] \\
& =\sum_{i=1}^{n} w_{i} \mathbb{E}\left[\mathrm{LGD}_{i}\right] p_{i}(X)
\end{aligned}
$$

4. We have:

$$
\left(\sum_{i=1}^{n} w_{i} \operatorname{LGD}_{i} D_{i}(X)\right)^{2}=\sum_{i=1}^{n} w_{i}^{2} \operatorname{LGD}_{i}^{2} D_{i}^{2}(X)+\sum_{i \neq j} w_{i} w_{i} \operatorname{LGD}_{i} \operatorname{LGD}_{j} D_{i}(X) D_{j}(X)
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[L^{2}(X)\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} w_{i} \mathrm{LGD}_{i} D_{i}(X)\right)^{2}\right] \\
& =\sum_{i=1}^{n} w_{i}^{2} \mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] \mathbb{E}\left[D_{i}^{2}(X)\right]+\sum_{i \neq j} w_{i} w_{i} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[\mathrm{LGD}_{j}\right] \mathbb{E}\left[D_{i}(X)\right] \mathbb{E}\left[D_{j}(X)\right]
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\mathbb{E}^{2}[L(X)] & =\left(\sum_{i=1}^{n} w_{i} \mathbb{E}\left[\mathrm{LGD}_{i}\right] p_{i}(X)\right)^{2} \\
& =\sum_{i=1}^{n} w_{i}^{2} \mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(X)+\sum_{i \neq j} w_{i} w_{j} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[\mathrm{LGD}_{j}\right] p_{i}(X) p_{j}(X)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\sigma^{2}(L(X))= & \mathbb{E}\left[L^{2}(X)\right]-\mathbb{E}^{2}[L(X)] \\
= & \sum_{i=1}^{n} w_{i}^{2} \mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] \mathbb{E}\left[D_{i}^{2}(X)\right]-\sum_{i=1}^{n} w_{i}^{2} \mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(X)+ \\
& \sum_{i \neq j} w_{i} w_{i} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[\mathrm{LGD}_{j}\right] \mathbb{E}\left[D_{i}(X)\right] \mathbb{E}\left[D_{j}(X)\right]- \\
& \sum_{i \neq j} w_{i} w_{j} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[\mathrm{LGD}_{j}\right] p_{i}(X) p_{j}(X) \\
= & \sum_{i=1}^{n} w_{i}^{2} \mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] \mathbb{E}\left[D_{i}^{2}(X)\right]-\sum_{i=1}^{n} w_{i}^{2} \mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(X)+ \\
& \sum_{i \neq j} w_{i} w_{j} \mathbb{E}\left[\mathrm{LGD}_{i}\right] \mathbb{E}\left[\mathrm{LGD}_{j}\right] \operatorname{cov}\left(D_{i}(X), D_{j}(X)\right) \\
= & \sum_{i=1}^{n} w_{i}^{2}\left(\mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] \mathbb{E}\left[D_{i}^{2}(X)\right]-\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(X)\right)
\end{aligned}
$$

because $\operatorname{cov}\left(D_{i}(X), D_{j}(X)\right)=0$. It follows that:

$$
\sigma^{2}(L(X))=\sum_{i=1}^{n} w_{i}^{2}\left(\mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] p_{i}(X)-\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}^{2}(X)\right)
$$

If we note $\mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right]=\sigma^{2}\left(\mathrm{LGD}_{i}\right)+\mathbb{E} 2\left[\mathrm{LGD}_{i}\right]$, we obtain:

$$
\mathbb{E}\left[\mathrm{LGD}_{i}^{2}\right] p_{i}(X)=\sigma^{2}\left(\mathrm{LGD}_{i}\right) p_{i}(X)+\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}(X)
$$

and:

$$
\sigma^{2}(L(X))=\sum_{i=1}^{n} w_{i}^{2}\left(\sigma^{2}\left(\mathrm{LGD}_{i}\right) p_{i}(X)+\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] p_{i}(X)\left(1-p_{i}(X)\right)\right)
$$

Another expression is:

$$
\sigma^{2}(L(X))=\sum_{i=1}^{n} w_{i}^{2}\left(\mathbb{E}\left[D_{i}(X)\right] \sigma^{2}\left(\mathrm{LGD}_{i}\right)+\mathbb{E}^{2}\left[\mathrm{LGD}_{i}\right] \sigma^{2}\left(D_{i}(X)\right)\right)
$$

because $\mathbb{E}\left[D_{i}(X)\right]=p_{i}(X)$ and $\sigma^{2}\left(D_{i}(X)\right)=p_{i}(X)\left(1-p_{i}(X)\right)$.

Chapter 4

Counterparty Credit Risk and Collateral Risk

4.4.1 Impact of netting agreements in counterparty credit risk

1. (a) Let $\mathrm{MtM}_{A}(\mathcal{C})$ and $\mathrm{MTM}_{B}(\mathcal{C})$ be the MtM values of Bank A and Bank B for the contract \mathcal{C}. We must theoretically verify that:

$$
\begin{align*}
\operatorname{MtM}_{A+B}(\mathcal{C}) & =\operatorname{MTM}_{A}(\mathcal{C})+\operatorname{MTM}_{B}(\mathcal{C}) \\
& =0 \tag{4.1}
\end{align*}
$$

In the case of listed products, the previous relationship is verified. In the case of OTC products, there are no market prices, forcing the bank to use pricing models for the valuation. The MTM value is then a mark-to-model price. Because the two banks do not use the same model with the same parameters, we note a discrepancy between the two mark-to-market prices:

$$
\operatorname{MTM}_{A}(\mathcal{C})+\operatorname{MTM}_{B}(\mathcal{C}) \neq 0
$$

For instance, we obtain:

$$
\begin{aligned}
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{1}\right)=10-11=-1 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{2}\right)=-5+6=1 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{3}\right)=6-3=3 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{4}\right)=17-12=5 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{5}\right)=-5+9=4 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{6}\right)=-5+5=0 \\
& \operatorname{MTM}_{A+B}\left(\mathcal{C}_{7}\right)=1+1=2
\end{aligned}
$$

Only the contract \mathcal{C}_{6} satisfies the relationship (4.1).
(b) We have:

$$
\operatorname{EAD}=\sum_{i=1}^{7} \max \left(\operatorname{MTM}\left(\mathcal{C}_{i}\right), 0\right)
$$

We deduce that:

$$
\begin{aligned}
& \mathrm{EAD}_{A}=10+6+17+1=34 \\
& \mathrm{EAD}_{B}=6+9+5+1=21
\end{aligned}
$$

(c) If there is a global netting agreement, the exposure at default becomes:

$$
\operatorname{EAD}=\max \left(\sum_{i=1}^{7} \operatorname{MTM}\left(\mathcal{C}_{i}\right), 0\right)
$$

Using the numerical values, we obtain:

$$
\begin{aligned}
\mathrm{EAD}_{A} & =\max (10-5+6+17-5-5+1,0) \\
& =\max (19,0) \\
& =19
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathrm{EAD}_{B} & =\max (-11+6-3-12+9+5+1,0) \\
& =\max (-5,0) \\
& =0
\end{aligned}
$$

(d) If the netting agreement only concerns equity contracts, we have:

$$
\mathrm{EAD}=\max \left(\sum_{i=1}^{3} \operatorname{MTM}\left(\mathcal{C}_{i}\right), 0\right)+\sum_{i=4}^{7} \max \left(\operatorname{MTM}\left(\mathcal{C}_{i}\right), 0\right)
$$

It follows that:

$$
\begin{aligned}
& \mathrm{EAD}_{A}=\max (10-5+6,0)+17+1=29 \\
& \mathrm{EAD}_{B}=\max (-11+6-3,0)+9+5+1=15
\end{aligned}
$$

2. (a) The potential future exposure $e_{1}(t)$ is defined as follows:

$$
e_{1}(t)=\max \left(x_{1}+\sigma_{1} W_{1}(t), 0\right)
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[e_{1}(t)\right] & =\int_{-\infty}^{\infty} \max (x, 0) f(x) \mathrm{d} x \\
& =\int_{0}^{\infty} x f(x) \mathrm{d} x
\end{aligned}
$$

where $f(x)$ is the density function of $\operatorname{MtM}_{1}(t)$. As we have $\operatorname{MtM}_{1}(t) \sim$ $\mathcal{N}\left(x_{1}, \sigma_{1}^{2} t\right)$, we deduce that:

$$
\mathbb{E}\left[e_{1}(t)\right]=\int_{0}^{\infty} \frac{x}{\sigma_{1} \sqrt{2 \pi t}} \exp \left(-\frac{1}{2}\left(\frac{x-x_{1}}{\sigma_{1} \sqrt{t}}\right)^{2}\right) \mathrm{d} x
$$

With the change of variable $y=\sigma_{1}^{-1} t^{-1 / 2}\left(x-x_{1}\right)$, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[e_{1}(t)\right] & =\int_{\frac{-x_{1}}{\sigma_{1} \sqrt{t}}}^{\infty} \frac{x_{1}+\sigma_{1} \sqrt{t} y}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y \\
& =x_{1} \int_{\frac{-x_{1}}{\sigma_{1} \sqrt{t}}}^{\infty} \phi(y) \mathrm{d} y+\sigma_{1} \sqrt{t} \int_{\frac{-x_{1}}{\sigma_{1} \sqrt{t}}}^{\infty} y \phi(y) \mathrm{d} y \\
& =x_{1} \Phi\left(\frac{x_{1}}{\sigma_{1} \sqrt{t}}\right)+\sigma_{1} \sqrt{t}[-\phi(y)]_{\frac{-x_{1}}{\sigma_{1} \sqrt{t}}}^{\infty} \\
& =x_{1} \Phi\left(\frac{x_{1}}{\sigma_{1} \sqrt{t}}\right)+\sigma_{1} \sqrt{t} \phi\left(\frac{x_{1}}{\sigma_{1} \sqrt{t}}\right)
\end{aligned}
$$

because $\phi(-x)=\phi(x)$ and $\Phi(-x)=1-\Phi(x)$.
(b) When there is no netting agreement, we have:

$$
e(t)=e_{1}(t)+e_{2}(t)
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}[e(t)]= & \mathbb{E}\left[e_{1}(t)\right]+\mathbb{E}\left[e_{2}(t)\right] \\
= & x_{1} \Phi\left(\frac{x_{1}}{\sigma_{1} \sqrt{t}}\right)+\sigma_{1} \sqrt{t} \phi\left(\frac{x_{1}}{\sigma_{1} \sqrt{t}}\right)+ \\
& x_{2} \Phi\left(\frac{x_{2}}{\sigma_{2} \sqrt{t}}\right)+\sigma_{2} \sqrt{t} \phi\left(\frac{x_{2}}{\sigma_{2} \sqrt{t}}\right)
\end{aligned}
$$

(c) In the case of a netting agreement, the potential future exposure becomes:

$$
\begin{aligned}
e(t) & =\max \left(\operatorname{MtM}_{1}(t)+\operatorname{MtM}_{2}(t), 0\right) \\
& =\max \left(\operatorname{MtM}_{1+2}(t), 0\right) \\
& =\max \left(x_{1}+x_{2}+\sigma_{1} W_{1}(t)+\sigma_{2} W_{2}(t), 0\right)
\end{aligned}
$$

We deduce that:

$$
\operatorname{MtM}_{1+2}(t) \sim \mathcal{N}\left(x_{1}+x_{2},\left(\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}\right) t\right)
$$

Using results of Question 2(a), we finally obtain:

$$
\begin{aligned}
\mathbb{E}[e(t)]= & \left(x_{1}+x_{2}\right) \Phi\left(\frac{x_{1}+x_{2}}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}\right) t}}\right)+ \\
& \sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}\right) t} \phi\left(\frac{x_{1}+x_{2}}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}\right) t}}\right)
\end{aligned}
$$

(d) We have represented the expected exposure $\mathbb{E}[e(t)]$ in Figure 4.1 when $x_{1}=$ $x_{2}=0$ and $\sigma_{1}=\sigma_{2}$. We note that it is an increasing function of the time t and the volatility σ. We also observe that the netting agreement may have a big impact, especially when the correlation is low or negative.

4.4.2 Calculation of the effective expected positive exposure

1. We have $e(t)=\max (\operatorname{MTM}(t), 0)$ where $\operatorname{MTM}(t)$ is the mark-to-market price of the OTC contract at the future date t. We note $\mathbf{F}_{[0, t]}$ the cumulative distribution function of the random variable $e(t)$. The peak exposure is the quantile α of $\mathbf{F}_{[0, t]}$:

$$
\mathrm{PE}_{\alpha}(t)=\mathbf{F}_{[0, t]}^{-1}(\alpha)
$$

The maximum peak exposure is the maximum value of $\mathrm{PE}_{\alpha}(t)$:

$$
\operatorname{MPE}_{\alpha}(0 ; t)=\sup _{s} \operatorname{PE}_{\alpha}(s)
$$

The expected exposure is the average of the potential future exposure:

$$
\mathrm{EE}(t)=\mathbb{E}[e(t)]=\int x \mathrm{~d} \mathbf{F}_{[0, t]}(x)
$$

FIGURE 4.1: Expected exposure $\mathbb{E}[e(t)]$ when there is a netting agreement

We define the expected positive exposure as the weighted average over time of the expected exposure for a given holding period $[0, t]$:

$$
\operatorname{EPE}(0 ; t)=\frac{1}{t} \int_{0}^{t} \operatorname{EE}(s) \mathrm{d} s
$$

The effective expected exposure is the maximum expected exposure which occurs before the date t :

$$
\begin{aligned}
\operatorname{EEE}(t) & =\sup _{s \leq t} \operatorname{EE}(s) \\
& =\max \left(\operatorname{EEE}\left(t^{-}\right), \operatorname{EE}(t)\right)
\end{aligned}
$$

The effective expected positive exposure is the weighted average of effective expected exposure for a given time period $[0, t]$:

$$
\operatorname{EEPE}(0 ; t)=\frac{1}{t} \int_{0}^{t} \operatorname{EEE}(s) \mathrm{d} s
$$

2. We have:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\{e(t) \leq x\} \\
& =\operatorname{Pr}\{\sigma \sqrt{t} X \leq x\} \\
& =\operatorname{Pr}\left\{X \leq \frac{x}{\sigma \sqrt{t}}\right\} \\
& =\frac{x}{\sigma \sqrt{t}}
\end{aligned}
$$

with $x \in[0, \sigma \sqrt{t}]$. We deduce that:

$$
\begin{aligned}
\operatorname{PE}_{\alpha}(0 ; t) & =\alpha \sigma \sqrt{t} \\
\operatorname{MPE}_{\alpha}(0 ; T) & =\alpha \sigma \sqrt{T} \\
\operatorname{EE}(t) & =\int_{0}^{\sigma \sqrt{t}} x \frac{1}{\sigma \sqrt{t}} \mathrm{~d} x=\frac{\sigma \sqrt{t}}{2} \\
\operatorname{EPE}(0 ; t) & =\frac{1}{t} \int_{0}^{t} \frac{\sigma \sqrt{s}}{2} \mathrm{~d} s=\frac{\sigma \sqrt{t}}{3} \\
\operatorname{EEE}(t) & =\frac{\sigma \sqrt{t}}{2} \\
\operatorname{EEPE}(0 ; t) & =\frac{1}{t} \int_{0}^{t} \frac{\sigma \sqrt{s}}{2} \mathrm{~d} s=\frac{\sigma \sqrt{t}}{3}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\left\{e^{\sigma \sqrt{t} X} \leq x\right\} \\
& =\Phi\left(\frac{\ln x}{\sigma \sqrt{t}}\right)
\end{aligned}
$$

with $x \in[0, \infty]$. We deduce that:

$$
\begin{aligned}
\mathrm{PE}_{\alpha}(t) & =\exp \left(\sigma \Phi^{-1}(\alpha) \sqrt{t}\right) \\
\mathrm{MPE}_{\alpha}(0 ; T) & =\exp \left(\sigma \Phi^{-1}(\alpha) \sqrt{T}\right) \\
\mathrm{EE}(t) & =\exp \left(\frac{1}{2} \sigma^{2} t\right) \\
\mathrm{EPE}(0 ; t) & =\left(\exp \left(\frac{1}{2} \sigma^{2} t\right)-1\right) /\left(\frac{1}{2} \sigma^{2} t\right) \\
\mathrm{EEE}(t) & =\exp \left(\frac{1}{2} \sigma^{2} t\right) \\
\operatorname{EEPE}(0 ; t) & =\left(\exp \left(\frac{1}{2} \sigma^{2} t\right)-1\right) /\left(\frac{1}{2} \sigma^{2} t\right)
\end{aligned}
$$

4. We have:

$$
\mathbf{F}_{[0, t]}(x)=\frac{x}{\sigma\left(t^{3}-\frac{7}{3} T t^{2}+\frac{4}{3} T^{2} t\right)}
$$

with $x \in\left[0, \sigma\left(t^{3}-\frac{7}{3} T t^{2}+\frac{4}{3} T^{2} t\right)\right]$. We deduce that:

$$
\begin{aligned}
\mathrm{PE}_{\alpha}(0) & =\alpha \sigma\left(t^{3}-\frac{7}{3} T t^{2}+\frac{4}{3} T^{2} t\right) \\
\operatorname{MPE}_{\alpha}(0 ; t) & =\mathbb{1}\left\{t<t^{\star}\right\} \times \operatorname{PFE}_{\alpha}(0 ; t)+\mathbb{1}\left\{t \geq t^{\star}\right\} \times \operatorname{PFE}_{\alpha}\left(0 ; t^{\star}\right) \\
\mathrm{EE}(t) & =\frac{1}{2} \sigma\left(t^{3}-\frac{7}{3} T t^{2}+\frac{4}{3} T^{2} t\right) \\
\operatorname{EPE}(0 ; t) & =\sigma\left(\frac{9 t^{3}-28 T t^{2}+24 T^{2} t}{72}\right) \\
\mathrm{EEE}(t) & =\mathbb{1}\left\{t<t^{\star}\right\} \times \mathrm{EE}(t)+\mathbb{1}\left\{t \geq t^{\star}\right\} \times \mathrm{EE}\left(t^{\star}\right)
\end{aligned}
$$

$$
\operatorname{EEPE}(0 ; t)=\frac{1}{t} \int_{0}^{t} \operatorname{EEE}(s) \mathrm{d} s
$$

with:

$$
t^{\star}=\left(\frac{7-\sqrt{13}}{9}\right) T
$$

This question is more difficult than the previous ones, because $e(t)$ is not a monotonically increasing function. It is increasing when $t<t_{1}^{\star}$ and then decreasing ${ }^{1}$. This explains that $\operatorname{MPE}_{\alpha}(0 ; t)$ and $\operatorname{EEE}(t)$ depends on the parameter t^{\star}.
5. The cumulative distribution function of X is:

$$
\begin{aligned}
\mathbf{F}(x) & =\operatorname{Pr}\{X \leq x\} \\
& =\int_{0}^{x} \frac{u^{a}}{a+1} \mathrm{~d} u \\
& =x^{a+1}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\{e(t) \leq x\} \\
& =\operatorname{Pr}\{\sigma \sqrt{t} X \leq x\} \\
& =\operatorname{Pr}\left\{X \leq \frac{x}{\sigma \sqrt{t}}\right\} \\
& =\left(\frac{x}{\sigma \sqrt{t}}\right)^{a+1}
\end{aligned}
$$

and:

$$
f_{[0, t]}(x)=\frac{(a+1) x^{a}}{(\sigma \sqrt{t})^{a+1}}
$$

It follows that:

$$
\operatorname{PE}_{\alpha}(t)=\alpha^{1 /(a+1)} \sigma \sqrt{t}
$$

and:

$$
\operatorname{MPE}_{\alpha}(0 ; T)=\alpha^{1 /(a+1)} \sigma \sqrt{T}
$$

The expected exposure is:

$$
\operatorname{EE}(t)=\int_{0}^{\sigma \sqrt{t}} x \frac{(a+1) x^{a}}{(\sigma \sqrt{t})^{a+1}} \mathrm{~d} e=\frac{(a+1) \sigma \sqrt{t}}{a+2}
$$

We deduce that:

$$
\operatorname{EEE}(t)=\frac{(a+1) \sigma \sqrt{t}}{a+2}
$$

and:

$$
\operatorname{EEPE}(0 ; t)=\frac{1}{t} \int_{0}^{t} \frac{(a+1) \sigma \sqrt{s}}{a+2} \mathrm{~d} s=\frac{2(a+1) \sigma \sqrt{t}}{3(a+2)}
$$

${ }^{1}$ In fact, there is a second root:

$$
t_{2}^{\star}=\left(\frac{7+\sqrt{13}}{9}\right) T
$$

We observe that $e(t)$ can take a negative value when t is in the neighborhood of this solution. We ignore this problem to calculate the different measures.
6. In Figures 4.2 and 4.3, we have reported the functions $\operatorname{EE}(t), \operatorname{EPE}(0 ; t), \operatorname{EEE}(t)$ and $\operatorname{EEPE}(0 ; t)$ for the two exposures given in Questions 3 and 5 . We notice that the second exposure has the profile of an amortizing swap where the first exposure is more like an option profile.

FIGURE 4.2: Credit exposure when $e(t)=\exp (\sigma \sqrt{t} \mathcal{N}(0,1))$

4.4.3 Calculation of the required capital for counterparty credit risk

1. We have:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\{e(t) \leq x\} \\
& =\operatorname{Pr}\{N \sigma \sqrt{t} U \leq x\} \\
& =\operatorname{Pr}\left\{U \leq \frac{x}{N \sigma \sqrt{t}}\right\} \\
& =\left(\frac{x}{N \sigma \sqrt{t}}\right)^{\gamma}
\end{aligned}
$$

with $x \in[0, N \sigma \sqrt{t}]$. We deduce that:

$$
\begin{aligned}
\operatorname{PE}_{\alpha}(t) & =\mathbf{F}_{[0, t]}^{-1}(\alpha) \\
& =N \sigma \sqrt{t} \alpha^{1 / \gamma}
\end{aligned}
$$

FIGURE 4.3: Credit exposure when $e(t)=\sigma\left(t^{3}-\frac{7}{3} T t^{2}+\frac{4}{3} T^{2} t\right) \mathcal{U}_{[0,1]}$

For the expected exposure, we obtain:

$$
\begin{aligned}
\operatorname{EE}(t) & =\mathbb{E}[e(t)] \\
& =\int_{0}^{N \sigma \sqrt{t}} x \frac{\gamma}{(N \sigma \sqrt{t})^{\gamma}} x^{\gamma-1} \mathrm{~d} x \\
& =\frac{\gamma}{(N \sigma \sqrt{t})^{\gamma}}\left[\frac{x^{\gamma+1}}{\gamma+1}\right]_{0}^{N \sigma \sqrt{t}} \\
& =\frac{\gamma}{\gamma+1} N \sigma \sqrt{t}
\end{aligned}
$$

We deduce that:

$$
\operatorname{EEE}(t)=\frac{\gamma}{\gamma+1} N \sigma \sqrt{t}
$$

and:

$$
\begin{aligned}
\operatorname{EEPE}(0 ; t) & =\frac{1}{t} \int_{0}^{t} \operatorname{EEE}(s) \mathrm{d} s \\
& =\frac{1}{t} \int_{0}^{t} \frac{\gamma}{\gamma+1} N \sigma \sqrt{s} \mathrm{~d} s \\
& =\frac{\gamma}{\gamma+1} N \sigma \frac{1}{t}\left[\frac{2}{3} s^{3 / 2}\right]_{0}^{t} \\
& =\frac{2 \gamma}{3(\gamma+1)} N \sigma \sqrt{t}
\end{aligned}
$$

2. (a) When the bank uses an internal model, the regulatory exposure at default is:

$$
\operatorname{EAD}=\alpha \times \operatorname{EEPE}(0 ; 1)
$$

Using the standard value $\alpha=1.4$, we obtain:

$$
\begin{aligned}
\mathrm{EAD} & =1.4 \times \frac{4}{9} \times 3 \times 10^{6} \times 0.20 \\
& =\$ 373333
\end{aligned}
$$

(b) While the bank uses the FIRB approach, the required capital is:

$$
\mathcal{K}=\mathrm{EAD} \times \mathbb{E}[\mathrm{LGD}] \times\left(\Phi\left(\frac{\Phi^{-1}(\mathrm{PD})+\sqrt{\rho} \Phi^{-1}(99.9 \%)}{\sqrt{1-\rho}}\right)-\mathrm{PD}\right)
$$

When ρ is equal to 20%, we have:

$$
\begin{aligned}
\frac{\Phi^{-1}(\mathrm{PD})+\sqrt{\rho} \Phi^{-1}(99.9 \%)}{\sqrt{1-\rho}} & =\frac{-2.33+\sqrt{0.20} \times 3.09}{\sqrt{1-0.20}} \\
& =-1.06
\end{aligned}
$$

By using the approximations $-1.06 \simeq 1$ and $\Phi(-1) \simeq 0.16$, we obtain:

$$
\begin{aligned}
\mathcal{K} & =373333 \times 0.70 \times(0.16-0.01) \\
& =\$ 39200
\end{aligned}
$$

The required capital of this OTC product for counterparty credit risk is then equal to $\$ 39200$.

4.4.4 Calculation of CVA and DVA measures

1. The positive exposure $e^{+}(t)$ is the maximum between zero and the mark-to-market value:

$$
\begin{aligned}
e^{+}(t) & =\max (0, \operatorname{MtM}(t)) \\
& =\max (0, N \sigma \sqrt{t} X)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\left\{e^{+}(t) \leq x\right\} \\
& =\operatorname{Pr}\{\max (0, N \sigma \sqrt{t} X) \leq x\}
\end{aligned}
$$

We notice that:

$$
\max (0, N \sigma \sqrt{t} X)= \begin{cases}0 & \text { if } X \leq 0 \\ N \sigma \sqrt{t} X & \text { otherwise }\end{cases}
$$

By assuming that $x \in[0, N \sigma \sqrt{t}]$, we deduce that:

$$
\begin{aligned}
\mathbf{F}_{[0, t]}(x) & =\operatorname{Pr}\left\{e^{+}(t) \leq x, X \leq 0\right\}+\operatorname{Pr}\left\{e^{+}(t) \leq x, X>0\right\} \\
& =\operatorname{Pr}\{0 \leq x, X \leq 0\}+\operatorname{Pr}\{N \sigma \sqrt{t} X \leq x, X>0\} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Pr}\{N \sigma \sqrt{t} U \leq x\} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Pr}\left\{U \leq \frac{x}{N \sigma \sqrt{t}}\right\}
\end{aligned}
$$

where U is the standard uniform random variable. We finally obtain the following expression:

$$
\mathbf{F}_{[0, t]}(x)=\frac{1}{2}+\frac{x}{2 N \sigma \sqrt{t}}
$$

If $x \leq 0$ or $x \geq N \sigma \sqrt{t}$, it is easy to show that $\mathbf{F}_{[0, t]}(x)=0$ and $\mathbf{F}_{[0, t]}(x)=1$.
2. The expected positive exposure $\operatorname{EpE}(t)$ is defined as follows:

$$
\operatorname{EpE}(t)=\mathbb{E}\left[e^{+}(t)\right]
$$

Using the expression of $\mathbf{F}_{[0, t]}(x)$, it follows that the density function of $e^{+}(t)$ is equal to:

$$
\begin{aligned}
f_{[0, t]}(x) & =\frac{\partial \mathbf{F}_{[0, t]}(x)}{\partial x} \\
& =\frac{1}{2 N \sigma \sqrt{t}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{EpE}(t) & =\int_{0}^{N \sigma \sqrt{t}} x f_{[0, t]}(x) \mathrm{d} x \\
& =\int_{0}^{N \sigma \sqrt{t}} \frac{x}{2 N \sigma \sqrt{t}} \mathrm{~d} x \\
& =\left[\frac{x^{2}}{4 N \sigma \sqrt{t}}\right]_{0}^{N \sigma \sqrt{t}} \\
& =\frac{N \sigma \sqrt{t}}{4}
\end{aligned}
$$

3. By definition, we have:

$$
\mathrm{CVA}=\left(1-\boldsymbol{\mathcal { R }}_{B}\right) \times \int_{0}^{T}-B_{0}(t) \operatorname{EpE}(t) \mathrm{d} \mathbf{S}_{B}(t)
$$

4. The interest rates are equal to zero meaning that $B_{0}(t)=1$. Moreover, we have $\mathbf{S}_{B}(t)=e^{-\lambda_{B} t}$. We deduce that:

$$
\begin{aligned}
\mathrm{CVA} & =\left(1-\boldsymbol{\mathcal { R }}_{B}\right) \times \int_{0}^{T} \frac{N \sigma \sqrt{t}}{4} \lambda_{B} e^{-\lambda_{B} t} \mathrm{~d} t \\
& =\frac{N \lambda_{B}\left(1-\boldsymbol{\mathcal { R }}_{B}\right) \sigma}{4} \int_{0}^{T} \sqrt{t} e^{-\lambda_{B} t} \mathrm{~d} t
\end{aligned}
$$

The definition of the incomplete gamma function is:

$$
\gamma(s, x)=\int_{0}^{x} t^{s-1} e^{-t} \mathrm{~d} t
$$

By considering the change of variable $y=\lambda_{B} t$, we obtain:

$$
\begin{aligned}
\int_{0}^{T} \sqrt{t} e^{-\lambda_{B} t} \mathrm{~d} t & =\int_{0}^{\lambda_{B} T} \sqrt{\frac{y}{\lambda_{B}}} e^{-y} \frac{\mathrm{~d} y}{\lambda_{B}} \\
& =\frac{1}{\lambda_{B}^{3 / 2}} \int_{0}^{\lambda_{B} T} y^{3 / 2-1} e^{-y} \mathrm{~d} y \\
& =\frac{\gamma\left(\frac{3}{2}, \lambda_{B} T\right)}{\lambda_{B}^{3 / 2}}
\end{aligned}
$$

It follows that:

$$
\mathrm{CVA}=\frac{N\left(1-\boldsymbol{\mathcal { R }}_{B}\right) \sigma \gamma\left(\frac{3}{2}, \lambda_{B} T\right)}{4 \sqrt{\lambda_{B}}}
$$

5. The CVA is proportional to the notional N of the OTC contract, the loss given default $\left(1-\boldsymbol{R}_{B}\right)$ of the counterparty and the volatility σ of the underlying asset. It is an increasing function of the maturity T because we have $\gamma\left(\frac{3}{2}, \lambda_{B} T_{2}\right)>\gamma\left(\frac{3}{2}, \lambda_{B} T_{1}\right)$ when $T_{2}>T_{1}$. If the maturity is not very large (less than 10 years), the CVA is an increasing function of the default intensity λ_{B}. The limit cases are ${ }^{2}$:

$$
\begin{aligned}
\lim _{\lambda_{B} \rightarrow \infty} \text { CVA } & =\lim _{\lambda_{B} \rightarrow \infty} \frac{N\left(1-\mathcal{R}_{B}\right) \sigma \gamma\left(\frac{3}{2}, \lambda_{B} T\right)}{4 \sqrt{\lambda_{B}}} \\
& =0
\end{aligned}
$$

and:

$$
\lim _{T \rightarrow \infty} \mathrm{CVA}=\frac{N\left(1-\boldsymbol{\mathcal { R }}_{B}\right) \sigma \Gamma\left(\frac{3}{2}\right)}{4 \sqrt{\lambda_{B}}}
$$

When the counterparty has a high default intensity, meaning that the default is imminent, the CVA is equal to zero because the mark-to-market value is close to zero. When the maturity is large, the CVA is a decreasing function of the intensity λ_{B}. Indeed, the probability to observe a large mark-to-market in the future increases when the default time is very far from the current date. We have illustrated these properties in Figure 4.4 with the following numerical values: $N=\$ 1 \mathrm{mn}, \boldsymbol{\mathcal { R }}_{B}=40 \%$ and $\sigma=30 \%$.

FIGURE 4.4: Evolution of the CVA with respect to maturity T and intensity λ_{B}
6. We notice that the mark-to-market is perfectly symmetric about 0 . We deduce that

[^20]the expected negative exposure $\operatorname{EnE}(t)$ is equal to the expected positive exposure $\operatorname{EpE}(t)$. It follows that the DVA is equal to:
$$
\mathrm{DVA}=\frac{N\left(1-\mathcal{R}_{A}\right) \sigma \gamma\left(\frac{3}{2}, \lambda_{A} T\right)}{4 \sqrt{\lambda_{A}}}
$$

4.4.5 Approximation of the CVA for an interest rate swap

1. We have:

$$
A e^{x}-B \geq 0 \Leftrightarrow x \geq x^{\star}=\ln B-\ln A
$$

It follows that:

$$
\begin{aligned}
\mathbb{E}\left[\max \left(A e^{X}-B, 0\right)\right]= & \int_{-\infty}^{\infty} \max \left(A e^{x}-B, 0\right) \frac{1}{\sigma_{X}} \phi\left(\frac{x-\mu_{X}}{\sigma_{X}}\right) \mathrm{d} x \\
= & A \int_{x^{\star}}^{\infty} e^{x} \frac{1}{\sigma_{X}} \phi\left(\frac{x-\mu_{X}}{\sigma_{X}}\right) \mathrm{d} x- \\
& B \int_{x^{\star}}^{\infty} \frac{1}{\sigma_{X}} \phi\left(\frac{x-\mu_{X}}{\sigma_{X}}\right) \mathrm{d} x
\end{aligned}
$$

By considering the change of variable $y=\sigma_{X}^{-1}\left(x-\mu_{X}\right)$, we deduce that:

$$
\operatorname{EpE}(t)=A \int_{y^{\star}}^{\infty} e^{\mu_{X}+\sigma_{X} y} \phi(y) \mathrm{d} y-B \int_{y^{\star}}^{\infty} \phi(y) \mathrm{d} y
$$

where $y^{\star}=\sigma_{X}^{-1}\left(x^{\star}-\mu_{X}\right)$. We have:

$$
\begin{aligned}
A \int_{y^{\star}}^{\infty} e^{\mu_{X}+\sigma_{X} y} \phi(y) \mathrm{d} y & =A e^{\mu_{X}} \int_{y^{\star}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}+\sigma_{X} y} \mathrm{~d} y \\
& =A e^{\mu_{X}+\frac{1}{2} \sigma_{X}^{2}} \int_{y^{\star}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(y-\sigma_{X}\right)^{2}} \mathrm{~d} y \\
& =A e^{\mu_{X}+\frac{1}{2} \sigma_{X}^{2}} \int_{y^{\star}-\sigma_{X}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathrm{~d} z \\
& =A e^{\mu_{X}+\frac{1}{2} \sigma_{X}^{2}}\left(1-\Phi\left(y^{\star}-\sigma_{X}\right)\right) \\
& =A e^{\mu_{X}+\frac{1}{2} \sigma_{X}^{2}} \Phi\left(\frac{\mu_{X}+\sigma_{X}^{2}+\ln A-\ln B}{\sigma_{X}}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
B \int_{y^{\star}}^{\infty} \phi(y) \mathrm{d} y & =B \Phi\left(-y^{\star}\right) \\
& =B \Phi\left(\frac{\mu_{X}+\ln A-\ln B}{\sigma_{X}}\right)
\end{aligned}
$$

Finally, we obtain:

$$
\begin{aligned}
\operatorname{EpE}(t)= & A e^{\mu_{X}+\frac{1}{2} \sigma_{X}^{2}} \Phi\left(\frac{\mu_{X}+\sigma_{X}^{2}+\ln A-\ln B}{\sigma_{X}}\right)- \\
& B \Phi\left(\frac{\mu_{X}+\ln A-\ln B}{\sigma_{X}}\right)
\end{aligned}
$$

2. The mark-to-market is an approximation of a fixed-float IRS in continuous time by assuming that the floating leg is constant, implying that the term structure of the float rate is flat (Syrkin and Shirazi, 2015). The first term of the mark-to-market is the floating leg, because the cash flows change with the time t, whereas the second term is the fixed leg ${ }^{3}$:

$$
\operatorname{MtM}(t)=\underbrace{N \int_{t}^{T} f(t, T) B_{t}(s) \mathrm{d} s}_{\text {Floating leg }}-\underbrace{N \int_{t}^{T} f(0, T) B_{t}(s) \mathrm{d} s}_{\text {Fixed leg }}
$$

Since the instantaneous forward rate follows a geometric Brownian motion, we deduce that:

$$
f(0, T)=f(0, T) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)}
$$

and:

$$
f(0, T) \sim \mathcal{L N}\left(\ln f(0, T)+\left(\mu-\frac{1}{2} \sigma^{2}\right) t, \sigma^{2} t\right)
$$

We also have:

$$
\begin{aligned}
\varphi(t, T) & =\int_{t}^{T} B_{t}(s) \mathrm{d} s \\
& =\int_{t}^{T} e^{-r(s-t)} \mathrm{d} s \\
& =\left[-\frac{e^{-r(s-t)}}{r}\right]_{t}^{T} \\
& =\frac{1-e^{-r(T-t)}}{r}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\operatorname{MtM}(t) & =N(f(t, T)-f(0, T)) \int_{t}^{T} B_{t}(s) \mathrm{d} s \\
& =N f(0, T) \varphi(t, T)\left(e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)}-1\right)
\end{aligned}
$$

The confidence interval of $\operatorname{MtM}(t)$ with confidence level α is defined by:

$$
\operatorname{MtM}(t) \in\left[q_{-}(t ; \alpha), q_{-}(t ; \alpha)\right]
$$

where:

$$
q_{ \pm}(t ; \alpha)=N f(0, T) \varphi(t, T)\left(e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t \pm \sigma \sqrt{t} \Phi^{-1}\left(\frac{1-\alpha}{2}\right)}-1\right)
$$

3. For the expected mark-to-market, we have:

$$
\begin{aligned}
\mathbb{E}[\operatorname{MtM}(t)] & =N f(0, T) \varphi(t, T)\left(e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} \mathbb{E}\left[e^{\sigma W(t)}\right]-1\right) \\
& =N f(0, T) \varphi(t, T)\left(e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} e^{\sigma^{2} t}-1\right) \\
& =N f(0, T) \varphi(t, T)\left(e^{\mu t}-1\right)
\end{aligned}
$$

[^21]For the expected counterparty exposure, we have:

$$
\begin{aligned}
\mathbb{E}[e(t)] & =\mathbb{E}\left[\max \left(f(0, T)\left(e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)}-1\right), 0\right)\right] \\
& =\mathbb{E}\left[\max \left(\left(f(0, T) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} e^{\sigma W(t)}-f(0, T)\right), 0\right)\right] \\
& =\mathbb{E}\left[\max \left(A e^{X}-B, 0\right)\right]
\end{aligned}
$$

where $A=N f(0, T) \varphi(t, T) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t}, B=N f(0, T) \varphi(t, T)$ and $X \sim \mathcal{N}\left(0, \sigma^{2} t\right)$. Since $\ln A-\ln B=\left(\mu-\frac{1}{2} \sigma^{2}\right) t$, we obtain:

$$
\begin{aligned}
\operatorname{EpE}(t) & =A e^{\frac{1}{2} \sigma^{2} t} \Phi\left(\frac{\sigma^{2} t+\ln A-\ln B}{\sigma \sqrt{t}}\right)-B \Phi\left(\frac{\ln A-\ln B}{\sigma \sqrt{t}}\right) \\
& =N f(0, T) \varphi(t, T)\left(e^{\mu t} \Phi(\delta(t))-\Phi(\delta(t)-\sigma \sqrt{t})\right)
\end{aligned}
$$

where:

$$
\delta(t)=\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}
$$

4. We have:

$$
\begin{aligned}
\operatorname{CVA}(t) & =(1-\boldsymbol{\mathcal { R }}) \times \int_{t}^{T}-B_{t}(u) \operatorname{EpE}(u) \mathrm{d} \mathbf{S}(u) \\
& =(1-\boldsymbol{\mathcal { R }}) \times \int_{t}^{T} \lambda e^{-(r+\lambda)(u-t)} \operatorname{EpE}(u) \mathrm{d} u \\
& =s \times \int_{t}^{T} e^{-(r+\lambda)(u-t)} \operatorname{EpE}(u) \mathrm{d} u
\end{aligned}
$$

where \mathcal{S} is the credit spread of the counterparty.
5. Syrkin and Shirazi (2015) propose the following approximations: $e^{\mu t}-1 \approx \mu t$,

$$
\Phi\left(\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}\right) \approx \Phi\left(\frac{\mu \sqrt{t}}{\sigma}\right)
$$

and:

$$
\Phi\left(\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}\right)-\Phi\left(\left(\frac{\mu}{\sigma}-\frac{1}{2} \sigma\right) \sqrt{t}\right) \approx \sigma \sqrt{t} \phi\left(\frac{\mu \sqrt{t}}{\sigma}\right)
$$

We have:

$$
\begin{aligned}
(*)= & e^{\mu t} \Phi\left(\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}\right)-\Phi\left(\left(\frac{\mu}{\sigma}-\frac{1}{2} \sigma\right) \sqrt{t}\right) \\
= & \left(e^{\mu t}-1\right) \Phi\left(\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}\right)+ \\
& \Phi\left(\left(\frac{\mu}{\sigma}+\frac{1}{2} \sigma\right) \sqrt{t}\right)-\Phi\left(\left(\frac{\mu}{\sigma}-\frac{1}{2} \sigma\right) \sqrt{t}\right) \\
\approx & \mu t \Phi\left(\frac{\mu \sqrt{t}}{\sigma}\right)+\sigma \sqrt{t} \phi\left(\frac{\mu \sqrt{t}}{\sigma}\right)
\end{aligned}
$$

Therefore, an approximation of the CVA is:

$$
\operatorname{CVA}(t) \approx s \times N \times f(0, T) \times \int_{t}^{T} g(u) \mathrm{d} u
$$

where:

$$
g(u)=e^{-(r+\lambda)(u-t)} \varphi(u, T)\left(\mu \Phi\left(\frac{\mu \sqrt{u}}{\sigma}\right) u+\sigma \phi\left(\frac{\mu \sqrt{u}}{\sigma}\right) \sqrt{u}\right)
$$

To calculate this approximation, we use a numerical integration method. Syrkin and Shirazi (2015) provide a second approximation that does not require any integration, but it seems to be less accurate.

FIGURE 4.5: Confidence interval of the mark-to-market
6. All the computations are done using a Gauss-Legendre quadrature of order 128.
(a) We have reported the 90% confidence interval of $\mathrm{MtM}(t)$ in Figure 4.5.
(b) The time profile of $\operatorname{EpE}(t)$ and $\mathbb{E}[\operatorname{MtM}(t)]$ is shown in Figure 4.6. We verify that $\operatorname{EpE}(t)>\mathbb{E}[\operatorname{MtM}(t)]$ and we retrieve the bell-shaped curve of IRS counterparty exposure.
(c) In Figure 4.7, we observe that the approximation of the CVA gives good results.
(d) When we calculate the CVA, we consider a risk-neutral probability distribution \mathbb{Q}. This implies that $\mu=0 \%$ is a more realistic value than $\mu=2 \%$.

4.4.6 Risk contribution of CVA with collateral

1. Since we have $\operatorname{MtM}_{i}(t)=\mu_{i}(t)+\sigma_{i}(t) X_{i}$, we deduce that:

$$
\begin{aligned}
\operatorname{MtM}(t) & =\sum_{i=1}^{n} w_{i}\left(\mu_{i}(t)+\sigma_{i}(t) X_{i}\right) \\
& =\sum_{i=1}^{n} w_{i} \mu_{i}(t)+\sum_{i=1}^{n} w_{i} \sigma_{i}(t) X_{i}
\end{aligned}
$$

FIGURE 4.6: Comparison of $\operatorname{EpE}(t)$ and $\mathbb{E}[\operatorname{MtM}(t)]$

FIGURE 4.7: Approximation of the CVA

Let $\mu(t)=\left(\mu_{1}(t), \ldots, \mu_{n}(t)\right)$ be the mean vector of $\left(\operatorname{MtM}_{1}(t), \ldots, \operatorname{MtM}_{n}(t)\right)$. It follows that the expected value $\mu_{w}(t)$ of the portfolio mark-to-market is equal to:

$$
\begin{aligned}
\mu_{w}(t) & =\mathbb{E}[\operatorname{MtM}(t)] \\
& =\sum_{i=1}^{n} w_{i} \mu_{i}(t) \\
& =w^{\top} \mu(t)
\end{aligned}
$$

We define the volatility $\sigma_{w}(t)$ of the portfolio mark-to-market:

$$
\begin{aligned}
\sigma_{w}^{2}(t) & =\operatorname{var}(\operatorname{MtM}(t)) \\
& =\operatorname{var}\left(\sum_{i=1}^{n} w_{i} \sigma_{i}(t) X_{i}\right) \\
& =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}(t) \mathbb{E}\left[X_{i}^{2}\right]+\sum_{j>i} w_{i} w_{j} \sigma_{i}(t) \sigma_{j}(t) \mathbb{E}\left[X_{i} X_{j}\right] \\
& =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}(t)+\sum_{j>i} w_{i} w_{j} \sigma_{i}(t) \sigma_{j}(t) \rho_{i, j} \\
& =w^{\top} \Sigma(t) w
\end{aligned}
$$

where $\Sigma(t)$ is the covariance matrix of $\left(\operatorname{MtM}_{1}(t), \ldots, \operatorname{MtM}_{n}(t)\right)$ such that:

$$
\Sigma_{i, j}(t)=\rho_{i, j} \sigma_{i}(t) \sigma_{j}(t)
$$

It follows that:

$$
\begin{aligned}
\operatorname{MtM}(t) & =\sum_{i=1}^{n} w_{i} \mu_{i}(t)+\sum_{i=1}^{n} w_{i} \sigma_{i}(t) X_{i} \\
& =\mu_{w}(t)+\sigma_{w}(t) X
\end{aligned}
$$

where $X \sim \mathcal{N}(0,1)$. We deduce that the portfolio mark-to-market is a Gaussian random variable:

$$
\operatorname{MtM}(t) \sim \mathcal{N}\left(\mu_{w}^{2}(t), \sigma_{w}^{2}(t)\right)
$$

2. We have:

$$
\begin{aligned}
\gamma_{i}(t) & =\frac{\operatorname{cov}\left(\mathrm{MtM}_{i}(t), \operatorname{MtM}(t)\right)}{\sqrt{\operatorname{var}\left(\mathrm{MtM}_{i}(t)\right) \operatorname{var}(\mathrm{MtM}(t))}} \\
& =\frac{\mathbb{E}\left[\sigma_{i}(t) X_{i} \sum_{j=1}^{n} w_{j} \sigma_{j}(t) X_{j}\right]}{\sigma_{i}(t) \sigma(t)} \\
& =\frac{\mathbb{E}\left[\sum_{j=1}^{n} w_{j} \sigma_{j}(t) X_{i} X_{j}\right]}{\sigma(t)} \\
& =\sum_{j=1}^{n} \frac{w_{j} \sigma_{j}(t)}{\sigma(t)} \rho_{i, j}
\end{aligned}
$$

It follows that:

$$
\begin{equation*}
X_{i}=\gamma_{i}(t) X+\sqrt{1-\gamma_{i}^{2}(t)} \varepsilon_{i} \tag{4.2}
\end{equation*}
$$

where the idiosyncratic risks $\varepsilon_{i} \sim \mathcal{N}(0,1)$ are independent and satisfy $\varepsilon_{i} \perp X$. We verify that $\mathbb{E}\left[X_{i}\right]=0$ and:

$$
\begin{aligned}
\sigma^{2}\left(X_{i}\right) & =\gamma_{i}^{2}(t) \sigma^{2}(X)+\left(1-\gamma_{i}^{2}(t)\right) \sigma^{2}\left(\varepsilon_{i}\right) \\
& =\gamma_{i}^{2}(t)+1-\gamma_{i}^{2}(t) \\
& =1
\end{aligned}
$$

3. If we note $e^{+}(t)=\max (\operatorname{MtM}(t)-C(t), 0)$ and $C(t)=\max (\operatorname{MtM}(t)-H, 0)$, the expression of the counterparty exposure is equal to:

$$
\begin{aligned}
e^{+}(t) & =\max (\operatorname{MtM}(t)-\max (\operatorname{MtM}(t)-H, 0), 0) \\
& =\operatorname{MtM}(t) \cdot \mathbb{1}\{0 \leq \operatorname{MtM}(t)<H\}+H \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}
\end{aligned}
$$

We have:

$$
\begin{aligned}
\operatorname{MtM}(t) \geq H & \Leftrightarrow \mu_{w}(t)+\sigma_{w}(t) x \geq H \\
& \Leftrightarrow x \geq x^{\star}(H)=\frac{H-\mu_{w}(t)}{\sigma_{w}(t)}
\end{aligned}
$$

and:

$$
\operatorname{MtM}(t) \geq 0 \Leftrightarrow x \geq x^{\star}(0)=-\frac{\mu_{w}(t)}{\sigma_{w}(t)}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{EpE}(t ; w)= & \int_{x^{\star}(0)}^{x^{\star}(H)}\left(\mu_{w}(t)+\sigma_{w}(t) x\right) \phi(x) \mathrm{d} x+ \\
& H \int_{x^{\star}(H)}^{\infty} \phi(x) \mathrm{d} x
\end{aligned}
$$

We have:

$$
\begin{aligned}
(*) & =\int_{x^{\star}(0)}^{x^{\star}(H)}\left(\mu_{w}(t)+\sigma_{w}(t) x\right) \phi(x) \mathrm{d} x \\
& =\mu_{w}(t) \int_{x^{\star}(0)}^{x^{\star}(H)} \phi(x) \mathrm{d} x+\sigma_{w}(t) \int_{x^{\star}(0)}^{x^{\star}(H)} x \phi(x) \mathrm{d} x \\
& =\mu_{w}(t)\left(\Phi\left(x^{\star}(H)\right)-\Phi\left(x^{\star}(0)\right)\right)+\sigma_{w}(t)\left[-\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\right]_{x^{\star}(0)}^{x^{\star}(H)} \\
& =\mu_{w}(t)\left(\Phi\left(x^{\star}(H)\right)-\Phi\left(x^{\star}(0)\right)\right)+\sigma_{w}(t)\left(\phi\left(x^{\star}(0)\right)-\phi\left(x^{\star}(H)\right)\right)
\end{aligned}
$$

and:

$$
\int_{x^{\star}(H)}^{\infty} \phi(x) \mathrm{d} x=1-\Phi\left(x^{\star}(H)\right)
$$

Using the fact that $\Phi(x)+\Phi(-x)=1$, we finally obtain the following expression:

$$
\begin{align*}
\operatorname{EpE}(t ; w)= & \mu_{w}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& \sigma_{w}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& H \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \tag{4.3}
\end{align*}
$$

4. $C(t)=0$ is equivalent to impose $H=+\infty$. Indeed, we verify that:

$$
\begin{aligned}
C(t) & =\max (\operatorname{MtM}(t)-H, 0) \\
& =\max (\operatorname{MtM}(t)-\infty, 0) \\
& =0
\end{aligned}
$$

It follows that:

$$
\begin{equation*}
\operatorname{EpE}(t ; w)=\mu_{w}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+\sigma_{w}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \tag{4.4}
\end{equation*}
$$

We have:

$$
\frac{\partial \mu_{w}(t)}{\partial w_{i}}=\mu_{i}(t)
$$

and:

$$
\begin{aligned}
\frac{\partial \sigma_{w}(t)}{\partial w_{i}} & =\frac{(\Sigma(t) w)_{i}}{\sigma(t)} \\
& =\gamma_{i}(t) \sigma_{i}(t)
\end{aligned}
$$

because we have the following relationship between $(\Sigma(t) w)_{i}$ and $\gamma_{i}(t)$:

$$
\begin{aligned}
(\Sigma(t) w)_{i} & =\sum_{j=1}^{n} \rho_{i, j} \sigma_{i}(t) \sigma_{j}(t) w_{j} \\
& =\sigma_{i}(t) \sigma(t) \sum_{j=1}^{n} w_{j} \frac{\sigma_{j}(t)}{\sigma(t)} \rho_{i, j} \\
& =\gamma_{i}(t) \sigma_{i}(t) \sigma(t)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) & =\frac{\mu_{i}(t)}{\sigma_{w}(t)}-\frac{\mu_{w}(t)}{\sigma_{w}^{3}(t)}(\Sigma(t) w)_{i} \\
& =\frac{\mu_{i}(t)}{\sigma_{w}(t)}-\gamma_{i}(t) \sigma_{i}(t) \frac{\mu_{w}(t)}{\sigma_{w}^{2}(t)}
\end{aligned}
$$

We deduce that:

$$
\frac{\partial}{\partial w_{i}} \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)=\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)
$$

and:

$$
\frac{\partial}{\partial w_{i}} \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)=-\frac{\mu_{w}(t)}{\sigma_{w}(t)} \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)
$$

because $\phi(x)^{\prime}=-x \phi(x)$. Therefore, the expression of the marginal risk is equal to:

$$
\begin{aligned}
\frac{\partial \operatorname{EpE}(t ; w)}{\partial w_{i}}= & \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+ \\
& \mu_{w}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+ \\
& \gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)- \\
& \sigma_{w}(t) \frac{\mu_{w}(t)}{\sigma_{w}(t)} \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)
\end{aligned}
$$

Finally, the expression of the risk contribution is given by:

$$
\begin{align*}
\mathcal{R C}_{i} & =w_{i} \cdot \frac{\partial \operatorname{EpE}(t ; w)}{\partial w_{i}} \\
& =w_{i}\left(\mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+\gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)\right) \tag{4.5}
\end{align*}
$$

We have:

$$
\begin{aligned}
\sum_{i=1}^{n} \mathcal{R C}_{i} & =\sum_{i=1}^{n} w_{i} \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+\sum_{i=1}^{n} w_{i} \gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \\
& =\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \sum_{i=1}^{n} w_{i} \mu_{i}(t)+\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \sum_{i=1}^{n} w_{i} \gamma_{i}(t) \sigma_{i}(t) \\
& =\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \mu_{w}(t)+\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \sigma_{w}(t) \\
& =\operatorname{EpE}(t ; w)
\end{aligned}
$$

because:

$$
\begin{aligned}
\sum_{i=1}^{n} w_{i} \gamma_{i}(t) \sigma_{i}(t) & =\sum_{i=1}^{n} w_{i}\left(\sum_{j=1}^{n} \frac{w_{j} \sigma_{j}(t)}{\sigma(t)} \rho_{i, j}\right) \sigma_{i}(t) \\
& =\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \rho_{i, j} \sigma_{j}(t) \sigma_{i}(t)}{\sigma(t)} \\
& =\frac{\sigma^{2}(t)}{\sigma(t)} \\
& =\sigma(t)
\end{aligned}
$$

We conclude that the risk measure $\operatorname{EpE}(t ; w)$ satisfies the Euler allocation principle.
5. We can write:

$$
\operatorname{EpE}(t ; w)=E_{1}(t ; w)-E_{2}(t ; w)+E_{3}(t ; w)
$$

where:

$$
\begin{aligned}
& E_{1}(t ; w)=\mu_{w}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+\sigma_{w}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right) \\
& E_{2}(t ; w)=\mu_{w}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+\sigma_{w}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \\
& E_{3}(t ; w)=H \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) & =\frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-H \frac{\partial}{\partial w_{i}}\left(\frac{1}{\sigma_{w}(t)}\right) \\
& =\frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+H\left(\frac{\gamma_{i}(t) \sigma_{i}(t)}{\sigma_{w}^{2}(t)}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}} \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)= & \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \\
= & \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+ \\
& H\left(\frac{\gamma_{i}(t) \sigma_{i}(t)}{\sigma_{w}^{2}(t)}\right) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}} \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)= & -\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) . \\
& \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\frac{\partial E_{2}(t ; w)}{\partial w_{i}}= & \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+ \\
& \mu_{w}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+ \\
& \gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)- \\
& \left(\mu_{w}(t)-H\right) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

or:

$$
\begin{aligned}
\frac{\partial E_{2}(t ; w)}{\partial w_{i}}= & \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+\gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+ \\
& H \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

We have:

$$
\frac{\partial E_{3}(t ; w)}{\partial w_{i}}=H \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\partial}{\partial w_{i}}\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
$$

It follows that the marginal is equal to:

$$
\begin{aligned}
\frac{\partial \operatorname{EpE}(t ; w)}{\partial w_{i}}= & \frac{\partial E_{1}(t ; w)}{\partial w_{i}}-\frac{\partial E_{2}(t ; w)}{\partial w_{i}}+\frac{\partial E_{3}(t ; w)}{\partial w_{i}} \\
= & \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)+\gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)- \\
& \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)-\gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \\
= & \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& \gamma_{i}(t) \sigma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)
\end{aligned}
$$

The expression of the risk contribution is given by:

$$
\begin{align*}
\mathcal{R C}_{i}= & w_{i} \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& w_{i} \gamma_{i}(t) \sigma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right) \tag{4.6}
\end{align*}
$$

We have:

$$
\begin{aligned}
\sum_{i=1}^{n} \mathcal{R C}_{i}= & \sum_{i=1}^{n} \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& \sum_{i=1}^{n} w_{i} \gamma_{i}(t) \sigma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
= & \mu_{w}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& \sigma_{w}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right) \\
= & \operatorname{EpE}(t ; w)-H \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

These risk contributions do not satisfy the Euler allocation principle, meaning that it is not possible to allocate the CVA capital according to Equation (4.6).
6. Type A Euler allocation is given by:

$$
\begin{aligned}
\mathcal{R C}_{i}= & \mathbb{E}\left[w_{i} \operatorname{MtM}_{i}(t) \cdot \mathbb{1}\{0 \leq \operatorname{MtM}(t)<H\}\right]+ \\
& H \cdot \frac{\mathbb{E}[\mathbb{1}\{\operatorname{MtM}(t) \geq H\}] \cdot \mathbb{E}\left[w_{i} \operatorname{MtM}_{i}(t) \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}\right]}{\mathbb{E}[\operatorname{MtM}(t) \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}]}
\end{aligned}
$$

Using Equation (4.2), we have:

$$
\begin{aligned}
w_{i} \operatorname{MtM}_{i}(t) & =w_{i} \mu_{i}(t)+w_{i} \sigma_{i}(t) X_{i} \\
& =w_{i} \mu_{i}(t)+w_{i} \sigma_{i}(t) \gamma_{i}(t) X+w_{i} \sigma_{i}(t) \sqrt{1-\gamma_{i}^{2}(t)} \varepsilon_{i}
\end{aligned}
$$

Since $\varepsilon_{i} \perp X$, it follows that:

$$
\begin{aligned}
(*)= & \mathbb{E}\left[w_{i} \operatorname{MtM}_{i}(t) \cdot \mathbb{1}\{0 \leq \operatorname{MtM}(t)<H\}\right] \\
= & \mathbb{E}\left[w_{i}\left(\mu_{i}(t)+\sigma_{i}(t) X_{i}\right) \cdot \mathbb{1}\left\{0 \leq \mu_{w}(t)+\sigma_{w}(t) X<H\right\}\right] \\
= & \int_{x^{\star}(0)}^{x^{\star}(H)} w_{i} \mu_{i}(t) \phi(x) \mathrm{d} x+\int_{x^{\star}(0)}^{x^{\star}(H)} w_{i} \sigma_{i}(t) \gamma_{i}(t) x \phi(x) \mathrm{d} x+ \\
& \int_{x^{\star}(0)}^{x^{\star}(H)} \underbrace{\mathbb{E}\left[w_{i} \sigma_{i}(t) \sqrt{1-\gamma_{i}^{2}(t)} \varepsilon_{i}\right]}_{=0} \phi(x) \mathrm{d} x \\
= & w_{i} \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& w_{i} \sigma_{i}(t) \gamma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
(*) & =\mathbb{E}[\mathbb{1}\{\operatorname{MtM}(t) \geq H\}] \\
& =\mathbb{E}\left[\mathbb{1}\left\{\mu_{w}(t)+\sigma_{w}(t) X \geq H\right\}\right] \\
& =\int_{x^{\star}(H)}^{\infty} \phi(x) \mathrm{d} x \\
& =\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

We also have:

$$
\begin{aligned}
(*) & =\mathbb{E}[\operatorname{MtM}(t) \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}] \\
& =\mathbb{E}\left[\left(\mu_{w}(t)+\sigma_{w}(t) X\right) \cdot \mathbb{1}\left\{\mu_{w}(t)+\sigma_{w}(t) X \geq H\right\}\right] \\
& =\int_{x^{\star}(H)}^{\infty}\left(\mu_{w}(t)+\sigma_{w}(t) x\right) \phi(x) \mathrm{d} x \\
& =\mu_{w}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+\sigma_{w}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
(*) & =\mathbb{E}\left[w_{i} \operatorname{MtM}_{i}(t) \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}\right] \\
& =\mathbb{E}\left[w_{i}\left(\mu_{i}(t)+\sigma_{i}(t) X_{i}\right) \cdot \mathbb{1}\left\{\mu_{w}(t)+\sigma_{w}(t) X \geq H\right\}\right] \\
& =\int_{x^{\star}(H)}^{\infty} w_{i} \mu_{i}(t) \phi(x) \mathrm{d} x+\int_{x^{\star}(H)}^{\infty} w_{i} \sigma_{i}(t) \gamma_{i}(t) x \phi(x) \mathrm{d} x \\
& =w_{i} \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+w_{i} \sigma_{i}(t) \gamma_{i}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
\end{aligned}
$$

Finally, we obtain:

$$
\begin{align*}
\mathcal{R C}_{i}= & w_{i} \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& w_{i} \gamma_{i}(t) \sigma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& H \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right) \frac{\psi_{i}}{\psi_{w}} \tag{4.7}
\end{align*}
$$

where:

$$
\psi_{i}=w_{i} \mu_{i}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+w_{i} \gamma_{i}(t) \sigma_{i}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
$$

and ${ }^{4}$:

$$
\psi_{w}=\mu_{w}(t) \Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)+\sigma_{w}(t) \phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)
$$

7. The type B Euler allocation is given by:

$$
\begin{aligned}
\mathcal{R \mathcal { C } _ { i } =} & \mathbb{E}\left[w_{i} \operatorname{MtM}_{i}(t) \cdot \mathbb{1}\{0 \leq \operatorname{MtM}(t)<H\}\right]+ \\
& H \cdot \mathbb{E}\left[\frac{w_{i} \operatorname{MtM}_{i}(t)}{\operatorname{MtM}(t)} \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}\right]
\end{aligned}
$$

[^22]We have:

$$
\frac{w_{i} \operatorname{MtM}_{i}(t)}{\operatorname{MtM}(t)}=\frac{w_{i} \mu_{i}(t)+w_{i} \sigma_{i}(t) \gamma_{i}(t) X}{\mu_{w}(t)+\sigma_{w}(t) X}+\frac{w_{i} \sigma_{i}(t) \sqrt{1-\gamma_{i}^{2}(t)}}{\mu_{w}(t)+\sigma_{w}(t) X} \varepsilon_{i}
$$

Since $\varepsilon_{i} \perp X$, it follows that:

$$
\begin{aligned}
(*)= & \mathbb{E}\left[\frac{w_{i} \operatorname{MtM}_{i}(t)}{\operatorname{MtM}(t)} \cdot \mathbb{1}\{\operatorname{MtM}(t) \geq H\}\right] \\
= & \mathbb{E}\left[\frac{w_{i}\left(\mu_{i}(t)+\gamma_{i}(t) \sigma_{i}(t) X\right)}{\mu_{w}(t)+\sigma_{w}(t) X} \cdot \mathbb{1}\left\{\mu_{w}(t)+\sigma_{w}(t) X \geq H\right\}\right]+ \\
& \mathbb{E}\left[\frac{w_{i} \sigma_{i}(t) \sqrt{1-\gamma_{i}^{2}(t)}}{\mu_{w}(t)+\sigma_{w}(t) X} \cdot \mathbb{1}\left\{\mu_{w}(t)+\sigma_{w}(t) X \geq H\right\}\right] \mathbb{E}\left[\varepsilon_{i}\right] \\
= & \int_{x^{\star}(H)}^{\infty} w_{i}\left(\frac{\mu_{i}(t)+\gamma_{i}(t) \sigma_{i}(t) x}{\mu_{w}(t)+\sigma_{w}(t) x}\right) \phi(x) \mathrm{d} x
\end{aligned}
$$

Finally, we obtain:

$$
\begin{align*}
\mathcal{R C}_{i}= & w_{i} \mu_{i}(t)\left(\Phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\Phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& w_{i} \gamma_{i}(t) \sigma_{i}(t)\left(\phi\left(\frac{\mu_{w}(t)}{\sigma_{w}(t)}\right)-\phi\left(\frac{\mu_{w}(t)-H}{\sigma_{w}(t)}\right)\right)+ \\
& H \int_{x^{\star}(H)}^{\infty} w_{i}\left(\frac{\mu_{i}(t)+\gamma_{i}(t) \sigma_{i}(t) x}{\mu_{w}(t)+\sigma_{w}(t) x}\right) \phi(x) \mathrm{d} x \tag{4.8}
\end{align*}
$$

8. It follows that:

$$
\begin{aligned}
\operatorname{MtM}(t) & =\sum_{i=1}^{n} w_{i} \operatorname{MtM}_{i}(t) \\
& =\sum_{i=1}^{n} w_{i} \mu_{i}(t)+\sum_{i=1}^{n} w_{i} \sigma_{i}(t) X_{i} \\
& =\mu_{w}(t)+\sigma_{w}(t) X
\end{aligned}
$$

where $X \sim \mathcal{N}(0,1)$. The correlation between X and X_{B} is given by:

$$
\begin{aligned}
\varrho_{w}(t) & =\frac{\operatorname{cov}\left(\operatorname{MtM}(t), X_{B}\right)}{\sqrt{\operatorname{var}(\operatorname{MtM}(t)) \operatorname{var}\left(X_{B}\right)}} \\
& =\frac{\mathbb{E}\left[\sum_{i=1}^{n} w_{i} \sigma_{i}(t) X_{i} X_{B}\right]}{\sigma(t)} \\
& =\frac{\mathbb{E}\left[\sum_{i=1}^{n} w_{i} \sigma_{i}(t) \varrho_{i} X_{B} X_{B}\right]}{\sigma(t)}+\frac{\mathbb{E}\left[\sum_{i=1}^{n} w_{i} \sigma_{i}(t) \sqrt{1-\varrho_{i}^{2}} \eta_{i} X_{B}\right]}{\sigma(t)} \\
& =\sum_{i=1}^{n} \frac{w_{i} \sigma_{i}(t)}{\sigma(t)} \varrho_{i}
\end{aligned}
$$

We deduce that:

$$
\begin{equation*}
X=\varrho_{w}(t) X_{B}+\sqrt{1-\varrho_{w}^{2}(t)} \eta \tag{4.9}
\end{equation*}
$$

where the idiosyncratic risk $\eta \sim \mathcal{N}(0,1)$ is independent from X_{B}.
9. Pykhtin and Rosen (2010) notice that all previous computations involve unconditional expectations, implying that we can derive easily the expected counterparty exposure $\mathbb{E}[e(t)]$ and the corresponding risk contributions $\mathcal{R} \mathcal{C}_{i}$ by replacing all unconditional expectations $\mathbb{E}[Y]$ where Y is a random variable $\left(\operatorname{MtM}_{i}(t), \operatorname{MtM}(t)\right.$ and $\left.e(t)\right)$ by conditional expectations $\mathbb{E}[Y \mid \boldsymbol{\tau}=t]$ where $\boldsymbol{\tau}$ is the default time of the counterparty. Following Redon (2006), this is equivalent to calculate the conditional expectation with respect to the random variable X_{B} :

$$
\mathbb{E}[Y \mid \boldsymbol{\tau}=t]=\mathbb{E}\left[Y \mid X_{B}=B(t)\right]
$$

where $B(t)=\Phi^{-1}(1-\mathbf{S}(t))$ is the default barrier and $\mathbf{S}(t)$ is the survival function of the counterparty. For conditional means, we have:

$$
\mu_{i}(t \mid \boldsymbol{\tau}=t)=\mu_{i}(t)+\varrho_{i} \sigma_{w}(t) B(t)
$$

and:

$$
\mu_{w}(t \mid \boldsymbol{\tau}=t)=\mu_{w}(t)+\varrho_{w}(t) \sigma_{w}(t) B(t)
$$

For conditional volatilities, it follows that:

$$
\sigma_{i}(t \mid \boldsymbol{\tau}=t)=\sqrt{1-\varrho_{i}^{2}} \sigma_{i}(t)
$$

and:

$$
\sigma_{w}(t \mid \boldsymbol{\tau}=t)=\sqrt{1-\varrho_{w}^{2}(t)} \sigma_{w}(t)
$$

Since the unconditional correlation $\gamma_{i}(t)$ is equal to $\operatorname{cov}\left(X_{i}, X\right)$, we have:

$$
\begin{aligned}
\gamma_{i}(t) & =\mathbb{E}\left[X_{i}, X\right] \\
& =\mathbb{E}\left[\left(\varrho_{i} X_{B}+\sqrt{1-\varrho_{i}^{2}} \eta_{i}\right)\left(\varrho_{w}(t) X_{B}+\sqrt{1-\varrho_{w}^{2}(t)} \eta\right)\right] \\
& =\varrho_{i} \varrho_{w}(t)+\sqrt{1-\varrho_{i}^{2}} \sqrt{1-\varrho_{w}^{2}(t)} \gamma_{i}(t \mid \boldsymbol{\tau}=t)
\end{aligned}
$$

where $\gamma_{i}(t \mid \boldsymbol{\tau}=t)$ is the correlation between η_{i} and η or the conditional correlation:

$$
\gamma_{i}(t \mid \boldsymbol{\tau}=t)=\frac{\gamma_{i}(t)-\varrho_{i} \varrho_{w}(t)}{\sqrt{1-\varrho_{i}^{2}} \sqrt{1-\varrho_{w}^{2}(t)}}
$$

To compute $\operatorname{EpE}(t ; w)=\mathbb{E}\left[e^{+}(t) \mid \boldsymbol{\tau}=t\right]$ and $\mathcal{R} \mathcal{C}_{i}$, we replace $\mu_{i}(t), \mu_{w}(t), \sigma_{i}(t)$, $\sigma_{w}(t)$ and $\gamma_{i}(t)$ by $\mu_{i}(t \mid \boldsymbol{\tau}=t), \mu_{w}(t \mid \boldsymbol{\tau}=t), \sigma_{i}(t \mid \boldsymbol{\tau}=t), \quad \sigma_{w}(t \mid \boldsymbol{\tau}=t)$ and $\gamma_{i}(t \mid \boldsymbol{\tau}=t)$ in Equations (4.3), (4.4) (4.5), (4.7) and (4.8).

Chapter 5

Operational Risk

5.4.1 Estimation of the severity distribution

1. (a) The density of the Gaussian distribution $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is:

$$
g(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}\right)
$$

Let $X \sim \mathcal{L N}\left(\mu, \sigma^{2}\right)$. We have $X=\exp Y$. It follows that:

$$
f(x)=g(y)\left|\frac{\mathrm{d} y}{\mathrm{~d} x}\right|
$$

with $y=\ln x$. We deduce that:

$$
\begin{aligned}
f(x) & =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}\right) \times \frac{1}{x} \\
& =\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right)
\end{aligned}
$$

(b) For $m \geq 1$, the non-centered moment is equal to:

$$
\mathbb{E}\left[X^{m}\right]=\int_{0}^{\infty} x^{m} \frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right) \mathrm{d} x
$$

By considering the change of variables $y=\sigma^{-1}(\ln x-\mu)$ and $z=y-m \sigma$, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[X^{m}\right] & =\int_{-\infty}^{\infty} e^{m \mu+m \sigma y} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} \mathrm{~d} y \\
& =e^{m \mu} \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}+m \sigma y} \mathrm{~d} y \\
& =e^{m \mu} \times e^{\frac{1}{2} m^{2} \sigma^{2}} \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y-m \sigma)^{2}} \mathrm{~d} y \\
& =e^{m \mu+\frac{1}{2} m^{2} \sigma^{2}} \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right) \mathrm{d} z \\
& =e^{m \mu+\frac{1}{2} m^{2} \sigma^{2}}
\end{aligned}
$$

We deduce that:

$$
\mathbb{E}[X]=e^{\mu+\frac{1}{2} \sigma^{2}}
$$

and:

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[X] \\
& =e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}} \\
& =e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
\end{aligned}
$$

We can estimate the parameters μ and σ with the generalized method of moments by using the following empirical moments:

$$
\left\{\begin{array}{l}
h_{i, 1}(\mu, \sigma)=x_{i}-e^{\mu+\frac{1}{2} \sigma^{2}} \\
h_{i, 2}(\mu, \sigma)=\left(x_{i}-e^{\mu+\frac{1}{2} \sigma^{2}}\right)^{2}-e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
\end{array}\right.
$$

(c) The log-likelihood function of the sample $\left\{x_{1}, \ldots, x_{n}\right\}$ is:

$$
\begin{aligned}
\ell(\mu, \sigma) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =-\frac{n}{2} \ln \sigma^{2}-\frac{n}{2} \ln 2 \pi-\sum_{i=1}^{n} \ln x_{i}-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\ln x_{i}-\mu}{\sigma}\right)^{2}
\end{aligned}
$$

To find the ML estimators $\hat{\mu}$ and $\hat{\sigma}$, we can proceed in two different ways:
$\# 1 \quad X \sim \mathcal{L N}\left(\mu, \sigma^{2}\right)$ implies that $Y=\ln X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. We know that the ML estimators $\hat{\mu}$ and $\hat{\sigma}$ associated to Y are:

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
\hat{\sigma} & =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)^{2}}
\end{aligned}
$$

We deduce that the ML estimators $\hat{\mu}$ and $\hat{\sigma}$ associated to the sample $\left\{x_{1}, \ldots, x_{n}\right\}$ are:

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} \ln x_{i} \\
\hat{\sigma} & =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\ln x_{i}-\hat{\mu}\right)^{2}}
\end{aligned}
$$

\#2 We maximize the log-likelihood function:

$$
\{\hat{\mu}, \hat{\sigma}\}=\arg \max \boldsymbol{\ell}(\mu, \sigma)
$$

The first-order conditions are $\partial_{\mu} \ell(\mu, \sigma)=0$ and $\partial_{\sigma} \ell(\mu, \sigma)=0$. We deduce that:

$$
\partial_{\mu} \ell(\mu, \sigma)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\ln x_{i}-\mu\right)=0
$$

and:

$$
\partial_{\sigma} \ell(\mu, \sigma)=-\frac{n}{\sigma}+\sum_{i=1}^{n} \frac{\left(\ln x_{i}-\mu\right)^{2}}{\sigma^{3}}=0
$$

We finally obtain:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} \ln x_{i}
$$

and:

$$
\hat{\sigma}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\ln x_{i}-\hat{\mu}\right)^{2}}
$$

2. (a) The probability density function is:

$$
\begin{aligned}
f(x) & =\frac{\partial \operatorname{Pr}\{X \leq x\}}{\partial x} \\
& =\alpha \frac{x^{-(\alpha+1)}}{x_{-}^{-\alpha}}
\end{aligned}
$$

For $m \geq 1$, we have:

$$
\begin{aligned}
\mathbb{E}\left[X^{m}\right] & =\int_{x_{-}}^{\infty} x^{m} \alpha \frac{x^{-(\alpha+1)}}{x_{-}^{-\alpha}} \mathrm{d} x \\
& =\frac{\alpha}{x_{-}^{-\alpha}} \int_{x_{-}}^{\infty} x^{m-\alpha-1} \mathrm{~d} x \\
& =\frac{\alpha}{x_{-}^{-\alpha}}\left[\frac{x^{m-\alpha}}{m-\alpha}\right]_{x_{-}}^{\infty} \\
& =\frac{\alpha}{\alpha-m} x_{-}^{m}
\end{aligned}
$$

We deduce that:

$$
\mathbb{E}[X]=\frac{\alpha}{\alpha-1} x_{-}
$$

and:

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[X] \\
& =\frac{\alpha}{\alpha-2} x_{-}^{2}-\left(\frac{\alpha}{\alpha-1} x_{-}\right)^{2} \\
& =\frac{\alpha}{(\alpha-1)^{2}(\alpha-2)} x_{-}^{2}
\end{aligned}
$$

We can then estimate the parameter α by considering the following empirical moments:

$$
\begin{aligned}
h_{i, 1}(\alpha) & =x_{i}-\frac{\alpha}{\alpha-1} x_{-} \\
h_{i, 2}(\alpha) & =\left(x_{i}-\frac{\alpha}{\alpha-1} x_{-}\right)^{2}-\frac{\alpha}{(\alpha-1)^{2}(\alpha-2)} x_{-}^{2}
\end{aligned}
$$

The generalized method of moments can consider either the first moment $h_{i, 1}(\alpha)$, the second moment $h_{i, 2}(\alpha)$ or the joint moments $\left(h_{i, 1}(\alpha), h_{i, 2}(\alpha)\right)$. In the first case, the estimator is:

$$
\hat{\alpha}=\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}-n x_{-}}
$$

(b) The log-likelihood function is:

$$
\begin{aligned}
\ell(\alpha) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =n \ln \alpha-(\alpha+1) \sum_{i=1}^{n} \ln x_{i}+n \alpha \ln x_{-}
\end{aligned}
$$

The first-order condition is:

$$
\partial_{\alpha} \ell(\alpha)=\frac{n}{\alpha}-\sum_{i=1}^{n} \ln x_{i}+\sum_{i=1}^{n} \ln x_{-}=0
$$

We deduce that:

$$
n=\alpha \sum_{i=1}^{n} \ln \frac{x_{i}}{x_{-}}
$$

The ML estimator is then:

$$
\hat{\alpha}=\frac{n}{\sum_{i=1}^{n}\left(\ln x_{i}-\ln x_{-}\right)}
$$

3. The probability density function of (iii) is:

$$
\begin{aligned}
f(x) & =\frac{\partial \operatorname{Pr}\{X \leq x\}}{\partial x} \\
& =\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
\end{aligned}
$$

It follows that the log-likelihood function is:

$$
\begin{aligned}
\ell(\alpha, \beta) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =-n \ln \Gamma(\alpha)+n \alpha \ln \beta+(\alpha-1) \sum_{i=1}^{n} \ln x_{i}-\beta \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

The first-order conditions $\partial_{\alpha} \ell(\alpha, \beta)=0$ and $\partial_{\beta} \ell(\alpha, \beta)=0$ imply that:

$$
n\left(\ln \beta-\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}\right)+\sum_{i=1}^{n} \ln x_{i}=0
$$

and:

$$
n \frac{\alpha}{\beta}-\sum_{i=1}^{n} x_{i}=0
$$

4. Let $Y \sim \Gamma(\alpha, \beta)$ and $X=\exp Y$. We have:

$$
f_{X}(x)|\mathrm{d} x|=f_{Y}(y)|\mathrm{d} y|
$$

where f_{X} and f_{Y} are the probability density functions of X and Y. We deduce that:

$$
\begin{aligned}
f_{X}(x) & =\frac{\beta^{\alpha} y^{\alpha-1} e^{-\beta y}}{\Gamma(\alpha)} \times \frac{1}{e^{y}} \\
& =\frac{\beta^{\alpha}(\ln x)^{\alpha-1} e^{-\beta \ln x}}{x \Gamma(\alpha)} \\
& =\frac{\beta^{\alpha}(\ln x)^{\alpha-1}}{\Gamma(\alpha) x^{\beta+1}}
\end{aligned}
$$

The support of this probability density function is $[0,+\infty)$. The log-likelihood function associated to the sample of individual losses $\left\{x_{1}, \ldots, x_{n}\right\}$ is:

$$
\begin{aligned}
\ell(\alpha, \beta) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =-n \ln \Gamma(\alpha)+n \alpha \ln \beta+(\alpha-1) \sum_{i=1}^{n} \ln \left(\ln x_{i}\right)-(\beta+1) \sum_{i=1}^{n} \ln x_{i}
\end{aligned}
$$

5. (a) Using Bayes' formula, we have:

$$
\begin{aligned}
\operatorname{Pr}\{X \leq x \mid X \geq H\} & =\frac{\operatorname{Pr}\{H \leq X \leq x\}}{\operatorname{Pr}\{X \geq H\}} \\
& =\frac{\mathbf{F}(x)-\mathbf{F}(H)}{1-\mathbf{F}(H)}
\end{aligned}
$$

where \mathbf{F} is the cdf of X. We deduce that the conditional probability density function is:

$$
\begin{aligned}
f(x \mid X \geq H) & =\partial_{x} \operatorname{Pr}\{X \leq x \mid X \geq H\} \\
& =\frac{f(x)}{1-\mathbf{F}(H)} \times \mathbb{1}\{x \geq H\}
\end{aligned}
$$

For the log-normal probability distribution, we obtain:

$$
\begin{aligned}
f(x \mid X \geq H) & =\frac{1}{1-\Phi\left(\frac{\ln H-\mu}{\sigma}\right)} \times \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}} \mathrm{~d} x \\
& =\varphi \times \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}} \mathrm{~d} x
\end{aligned}
$$

We note $\mathcal{M}_{m}(\mu, \sigma)$ the conditional moment $\mathbb{E}\left[X^{m} \mid X \geq H\right]$. We have:

$$
\begin{aligned}
\mathcal{M}_{m}(\mu, \sigma) & =\varphi \times \int_{H}^{\infty} \frac{x^{m-1}}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}} \mathrm{~d} x \\
& =\varphi \times \int_{\ln H}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}+m x} \mathrm{~d} x \\
& =\varphi \times e^{m \mu+\frac{1}{2} m^{2} \sigma^{2}} \times \int_{\ln H}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{\left(x-\left(\mu+m \sigma^{2}\right)\right)^{2}}{\sigma^{2}}} \mathrm{~d} x \\
& =\frac{1-\Phi\left(\frac{\ln H-\mu-m \sigma^{2}}{\sigma}\right)}{1-\Phi\left(\frac{\ln H-\mu}{\sigma}\right)} e^{m \mu+\frac{1}{2} m^{2} \sigma^{2}}
\end{aligned}
$$

The two first moments of $X \mid X \geq H$ are then:

$$
\mathcal{M}_{1}(\mu, \sigma)=\mathbb{E}[X \mid X \geq H]=\frac{1-\Phi\left(\frac{\ln H-\mu-\sigma^{2}}{\sigma}\right)}{1-\Phi\left(\frac{\ln H-\mu}{\sigma}\right)} e^{\mu+\frac{1}{2} \sigma^{2}}
$$

and:

$$
\mathcal{M}_{2}(\mu, \sigma)=\mathbb{E}\left[X^{2} \mid X \geq H\right]=\frac{1-\Phi\left(\frac{\ln H-\mu-2 \sigma^{2}}{\sigma}\right)}{1-\Phi\left(\frac{\ln H-\mu}{\sigma}\right)} e^{2 \mu+2 \sigma^{2}}
$$

We can therefore estimate μ and σ by considering the following empirical moments:

$$
\left\{\begin{array}{l}
h_{i, 1}(\mu, \sigma)=x_{i}-\mathcal{M}_{1}(\mu, \sigma) \\
h_{i, 2}(\mu, \sigma)=\left(x_{i}-\mathcal{M}_{1}(\mu, \sigma)\right)^{2}-\left(\mathcal{M}_{2}(\mu, \sigma)-\mathcal{M}_{1}^{2}(\mu, \sigma)\right)
\end{array}\right.
$$

(b) We have:

$$
\begin{aligned}
f(x \mid X \geq H) & =\frac{f(x)}{1-\mathbf{F}(H)} \times \mathbb{1}\{x \geq H\} \\
& =\left(\alpha \frac{x^{-(\alpha+1)}}{x_{-}^{-\alpha}}\right) /\left(\frac{H^{-\alpha}}{x_{-}^{-\alpha}}\right) \\
& =\alpha \frac{x^{-(\alpha+1)}}{H^{-\alpha}}
\end{aligned}
$$

The conditional probability function is then a Pareto distribution with the same parameter α but with a new threshold $x_{-}=H$. We can then deduce that the ML estimator $\hat{\alpha}$ is:

$$
\hat{\alpha}=\frac{n}{\left(\sum_{i=1}^{n} \ln x_{i}\right)-n \ln H}
$$

(c) The conditional probability density function is:

$$
\begin{aligned}
f(x \mid X \geq H) & =\frac{f(x)}{1-\mathbf{F}(H)} \times \mathbb{1}\{x \geq H\} \\
& =\left(\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}\right) / \int_{H}^{\infty} \frac{\beta^{\alpha} t^{\alpha-1} e^{-\beta t}}{\Gamma(\alpha)} \mathrm{d} t \\
& =\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\int_{H}^{\infty} \beta^{\alpha} t^{\alpha-1} e^{-\beta t} \mathrm{~d} t}
\end{aligned}
$$

We deduce that the log-likelihood function is:

$$
\begin{aligned}
\ell(\alpha, \beta)= & n \alpha \ln \beta-n \ln \left(\int_{H}^{\infty} \beta^{\alpha} t^{\alpha-1} e^{-\beta t} \mathrm{~d} t\right)+ \\
& (\alpha-1) \sum_{i=1}^{n} \ln x_{i}-\beta \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

5.4.2 Estimation of the frequency distribution

1. We have:

$$
\operatorname{Pr}\{N=n\}=e^{-\lambda_{Y}} \frac{\lambda_{Y}^{n}}{n!}
$$

We deduce that the expression of the log-likelihood function is:

$$
\begin{aligned}
\ell\left(\lambda_{Y}\right) & =\sum_{t=1}^{T} \ln \operatorname{Pr}\left\{N=N_{Y_{t}}\right\} \\
& =-\lambda_{Y} T+\left(\sum_{t=1}^{T} N_{Y_{t}}\right) \ln \lambda_{Y}-\sum_{t=1}^{T} \ln \left(N_{Y_{t}}!\right)
\end{aligned}
$$

The first-order condition is:

$$
\frac{\partial \ell\left(\lambda_{Y}\right)}{\partial \lambda_{Y}}=-T+\frac{1}{\lambda_{Y}}\left(\sum_{t=1}^{T} N_{Y_{t}}\right)=0
$$

We deduce that the ML estimator is:

$$
\hat{\lambda}_{Y}=\frac{1}{T} \sum_{t=1}^{T} N_{Y_{t}}=\frac{n}{T}
$$

2. Using the same arguments, we obtain:

$$
\hat{\lambda}_{Q}=\frac{1}{4 T} \sum_{t=1}^{4 T} N_{Q_{t}}=\frac{n}{4 T}=\frac{\hat{\lambda}_{Y}}{4}
$$

3. Considering a quarterly or annual basis has no impact on the capital charge. Indeed, the capital charge is computed with a one-year time horizon. If we use a quarterly basis, we have to find the distribution of the annual loss number. In this case, the annual loss number is the sum of the four quarterly loss numbers:

$$
N_{Y}=N_{Q_{1}}+N_{Q_{2}}+N_{Q_{3}}+N_{Q_{4}}
$$

We know that each quarterly loss number follows a Poisson distribution $\mathcal{P}\left(\hat{\lambda}_{Q}\right)$ and that they are independent. Because the Poisson distribution is infinitely divisible, we obtain:

$$
N_{Q_{1}}+N_{Q_{2}}+N_{Q_{3}}+N_{Q_{4}} \sim \mathcal{P}\left(4 \hat{\lambda}_{Q}\right)
$$

We deduce that the annual loss number follows a Poisson distribution $\mathcal{P}\left(\hat{\lambda}_{Y}\right)$ in both cases.
4. This result remains valid if we consider the first moment because the MM estimator is exactly the ML estimator.
5. Since we have $\operatorname{var}(\mathcal{P}(\lambda))=\lambda$, the MM estimator in the case of annual loss numbers is:

$$
\hat{\lambda}_{Y}=\frac{1}{T} \sum_{t=1}^{T} N_{Y_{t}}^{2}-\frac{n^{2}}{T^{2}}
$$

If we use a quarterly basis, we obtain:

$$
\begin{aligned}
\hat{\lambda}_{Q} & =\frac{1}{4}\left(\frac{1}{T} \sum_{t=1}^{4 T} N_{Q_{t}}^{2}-\frac{n^{2}}{4 T^{2}}\right) \\
& \neq \frac{\hat{\lambda}_{Y}}{4}
\end{aligned}
$$

There is no reason that $\hat{\lambda}_{Y}=4 \hat{\lambda}_{Q}$ meaning that the capital charge will not be the same.

5.4.3 Using the method of moments in operational risk models

1. (a) By definition, we have $\operatorname{Pr}\{N(t)=n\}=e^{-\lambda} \lambda^{n} / n$!. We deduce that:

$$
\begin{aligned}
\mathbb{E}[N(t)] & =\sum_{n=0}^{\infty} n \times \operatorname{Pr}\{N(t)=n\} \\
& =\sum_{n=0}^{\infty} n e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =\lambda e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \\
& =\lambda
\end{aligned}
$$

(b) We have:

$$
\begin{aligned}
\mathbb{E}\left[\prod_{i=0}^{m}(N(t)-i)\right] & =\sum_{n=0}^{\infty} \prod_{i=0}^{m}(n-i) e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =\sum_{n=0}^{\infty}(n(n-1) \cdots(n-m)) e^{-\lambda} \frac{\lambda^{n}}{n!}
\end{aligned}
$$

The term of the sum is equal to zero when $n=0,1, \ldots, m$. We obtain:

$$
\begin{aligned}
\mathbb{E}\left[\prod_{i=0}^{m}(N(t)-i)\right] & =\sum_{n=m+1}^{\infty}(n(n-1) \cdots(n-m)) e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =e^{-\lambda} \sum_{n=m+1}^{\infty} \frac{\lambda^{n}}{(n-m-1)!} \\
& =\lambda^{m+1} e^{-\lambda} \sum_{n=m+1}^{\infty} \frac{\lambda^{n-m-1}}{(n-m-1)!} \\
& =\lambda^{m+1} e^{-\lambda} \sum_{n^{\prime}=0}^{\infty} \frac{\lambda^{n \prime}}{n^{\prime}!}
\end{aligned}
$$

with $n^{\prime}=n-(m+1)$. It follows that:

$$
\begin{align*}
\mathbb{E}\left[\prod_{i=0}^{m}(N(t)-i)\right] & =\lambda^{m+1} e^{-\lambda} e^{\lambda} \\
& =\lambda^{m+1} \tag{5.1}
\end{align*}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{var}(N(t)) & =\mathbb{E}\left[N(t)^{2}\right]-\mathbb{E}^{2}[N(t)] \\
& =\mathbb{E}\left[N(t)^{2}-N(t)\right]+\mathbb{E}[N(t)]-\mathbb{E}^{2}[N(t)] \\
& =\mathbb{E}[N(t)(N(t)-1)]+\mathbb{E}[N(t)]-\mathbb{E}^{2}[N(t)]
\end{aligned}
$$

Using the formula (5.1) with $m=1$, we finally obtain:

$$
\begin{aligned}
\operatorname{var}(N(t)) & =\lambda^{1+1}+\lambda-\lambda^{2} \\
& =\lambda
\end{aligned}
$$

(c) The estimator based on the first moment is:

$$
\hat{\lambda}=\frac{1}{T} \sum_{t=1}^{T} N_{t}
$$

whereas the estimator based on the second moment is:

$$
\hat{\lambda}=\frac{1}{T} \sum_{t=1}^{T}\left(N_{t}-\frac{1}{T} \sum_{t=1}^{T} N_{t}\right)^{2}
$$

2. (a) We have:

$$
\begin{aligned}
\mathbb{E}[S] & =\mathbb{E}\left[\sum_{i=0}^{N(t)} X_{i}\right] \\
& =\mathbb{E}[N(t)] \mathbb{E}\left[X_{i}\right] \\
& =\lambda \exp \left(\mu+\frac{1}{2} \sigma^{2}\right)
\end{aligned}
$$

(b) Because $\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}+\sum_{i \neq j} x_{i} x_{j}$, it follows that:

$$
\begin{aligned}
\mathbb{E}\left[S^{2}\right] & =\mathbb{E}\left[\sum_{i=0}^{N(t)} X_{i}^{2}+\sum_{i \neq j}^{N(t)} \sum_{i}^{N(t)} X_{i} X_{j}\right] \\
& =\mathbb{E}[N(t)] \mathbb{E}\left[X_{i}^{2}\right]+\mathbb{E}[N(t)(N(t)-1)] \mathbb{E}\left[X_{i} X_{j}\right] \\
& =\mathbb{E}[N(t)] \mathbb{E}\left[X_{i}^{2}\right]+\left(\mathbb{E}\left[N(t)^{2}\right]-\mathbb{E}[N(t)]\right) \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
\end{aligned}
$$

We have:

$$
\begin{aligned}
\mathbb{E}[N(t)] & =\lambda \\
\mathbb{E}\left[N(t)^{2}\right] & =\operatorname{var}(N(t))+\mathbb{E}^{2}[N(t)]=\lambda+\lambda^{2}
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[X_{i}^{2}\right] & =\operatorname{var}\left(X_{i}\right)+\mathbb{E}^{2}\left[X_{i}\right] \\
& =e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)+\left(e^{\mu+\frac{1}{2} \sigma^{2}}\right)^{2} \\
& =e^{2 \mu+2 \sigma^{2}} \\
\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] & =e^{\mu+\frac{1}{2} \sigma^{2}} e^{\mu+\frac{1}{2} \sigma^{2}} \\
& =e^{2 \mu+\sigma^{2}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[S^{2}\right] & =\lambda \mathbb{E}\left[X_{i}^{2}\right]+\left(\lambda+\lambda^{2}-\lambda\right) \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \\
& =\lambda \mathbb{E}\left[X_{i}^{2}\right]+\lambda^{2} \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \\
& =\lambda e^{2 \mu+2 \sigma^{2}}+\lambda^{2} e^{2 \mu+\sigma^{2}}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}(S) & =\mathbb{E}\left[S^{2}\right]-\mathbb{E}^{2}[S] \\
& =\lambda e^{2 \mu+2 \sigma^{2}}+\lambda^{2} e^{2 \mu+\sigma^{2}}-\lambda^{2}\left(e^{\mu+\frac{1}{2} \sigma^{2}}\right)^{2} \\
& =\lambda e^{2 \mu+2 \sigma^{2}}
\end{aligned}
$$

(c) We have:

$$
\left\{\begin{array}{l}
\mathbb{E}[S]=\lambda e^{\mu+\frac{1}{2} \sigma^{2}} \\
\operatorname{var}(S)=\lambda e^{2 \mu+2 \sigma^{2}}
\end{array}\right.
$$

We deduce that:

$$
\frac{\operatorname{var}(S)}{\mathbb{E}^{2}[S]}=\frac{\lambda e^{2 \mu+2 \sigma^{2}}}{\lambda^{2} e^{2 \mu+\sigma^{2}}}=\frac{e^{\sigma^{2}}}{\lambda}
$$

It follows that:

$$
\sigma^{2}=\ln \lambda+\ln (\operatorname{var}(S))-\ln \left(\mathbb{E}^{2}[S]\right)
$$

and:

$$
\begin{aligned}
\mu & =\ln \mathbb{E}[S]-\ln \lambda-\frac{1}{2} \sigma^{2} \\
& =\ln \mathbb{E}[S]+\frac{1}{2} \ln \left(\mathbb{E}^{2}[S]\right)-\frac{3}{2} \ln \lambda-\frac{1}{2} \ln (\operatorname{var}(S))
\end{aligned}
$$

Let $\hat{\lambda}$ be an estimated value of λ. We finally obtain:

$$
\hat{\mu}=\ln m_{S}+\frac{1}{2} \ln m_{S}^{2}-\frac{3}{2} \ln \hat{\lambda}-\frac{1}{2} \ln v_{S}
$$

and

$$
\hat{\sigma}=\sqrt{\ln \hat{\lambda}+\ln v_{S}-\ln m_{S}^{2}}
$$

where m_{S} and v_{S} are the empirical mean and variance of aggregated losses.
3. (a) We know that the duration d between two consecutive losses that are larger than ℓ is exponentially distributed with parameter $\lambda(1-\mathbf{F}(\ell))$. We deduce that:

$$
d \sim \mathcal{E}\left(\lambda\left(\frac{\ell}{x_{-}}\right)^{-\alpha}\right)
$$

(b) We can ask experts to estimate the return time d_{j} for several scenarios ℓ_{j} and then calibrate the parameters λ and α using the method of moments and the following moment conditions:

$$
\mathbb{E}\left[d_{j}\right]-\frac{\ell_{j}^{\alpha}}{\lambda x_{-}^{\alpha}}=0
$$

5.4.4 Calculation of the Basel II required capital

1. In order to implement the historical value-at-risk, we first calculate the daily stock returns:

$$
R_{t}=\frac{P_{t}}{P_{t-1}}-1
$$

TABLE 5.1: Stock returns $R_{A, s}$ and $R_{B, s}$ (24 first historical scenarios)

$R_{A, s}$								
-2.01	-0.01	-0.73	-0.71	1.79	2.27	-0.15	-0.55	
-0.43	1.01	0.05	0.32	2.08	-2.37	-0.55	2.57	
0.29	-2.54	-0.03	0.00	-0.90	-0.03	1.96	-0.35	
$R_{B, s}$								
0.35	-0.84	0.85	1.40	1.35	1.36	-1.45	-1.95	
2.17	1.51	-0.69	1.87	-0.06	-1.61	-1.25	2.20	
-1.07	-2.85	-0.99	-0.06	-2.34	-1.31	3.79	-1.46	

where P_{t} is the stock price at time t. We report the return values for stocks A and B in Table 5.1. These data are used to simulate the future $\mathrm{P} \& \mathrm{~L}$ defined as follows:

$$
\begin{aligned}
\Pi_{s}= & 10000 \times 105.5 \times R_{A, s}+ \\
& 25000 \times 353.0 \times R_{B, s}
\end{aligned}
$$

where $R_{A, s}$ and $R_{B, s}$ are the stock returns of A and B for the $s^{\text {th }}$ historical scenario. Table 5.2 gives the values taken by Π_{s}. We then calculate the order statistics $\Pi_{s: 250}$ and deduce that the value-at-risk is equal to:

$$
\begin{aligned}
\operatorname{VaR}_{99 \%}(w) & =\frac{1}{2}(323072+314695) \\
& =\$ 318883
\end{aligned}
$$

It follows that the required capital is equal to:

$$
\begin{aligned}
\mathcal{K}_{\mathrm{MR}} & =(3+\xi) \times \sqrt{10} \times \operatorname{VaR}_{99 \%}(w) \\
& =\$ 3.53 \mathrm{mn}
\end{aligned}
$$

TABLE 5.2: Daily P\&L (24 first historical scenarios)

	-74339	67520	115824	137790	144032
9972	-178339	186837	143722	-60767	168780
-129857	-166679	-116117	221553	-91336	-278402
16234	-166	Paily $\& \mathrm{H} \Pi_{s}$			
-87357	-5671	-215517	-116172	354813	-132741
Order statistic $\Pi_{s: 250}$					
-340656	-323072	-314695	-278402	-277913	-275118
-268632	-259781	-255936	-252509	-250117	-249523
-243502	-218295	-217514	-217327	-215517	-211382
-211018	-208061	-192950	-192603	-190993	-189410

2. We apply the IRB formulas with the right asset class exposure. For the bank metacredit, we have:

$$
\begin{aligned}
\rho(\mathrm{PD}) & =12 \% \times \frac{1-e^{-50 \times 1 \%}}{1-e^{-50}}+24 \% \times \frac{1-\left(1-e^{-50 \times 1 \%}\right)}{1-e^{-50}} \\
& =19.28 \%
\end{aligned}
$$

Because the maturity of the meta-credit is one year, the maturity adjustment is equal to 1 . We deduce that:

$$
\begin{aligned}
\mathcal{K}^{\star} & =75 \% \times \Phi\left(\frac{\Phi^{-1}(1 \%)+\sqrt{0.1928} \Phi^{-1}(99.9 \%)}{\sqrt{1-0.1928}}\right)-75 \% \times 1 \% \\
& =9.77 \%
\end{aligned}
$$

It follows that:

$$
\mathrm{RW}=12.5 \times 9.77 \%=122.13 \%
$$

and:

$$
\mathrm{RWA}=80 \times 122.13 \%=\$ 97.70 \mathrm{mn}
$$

We finally obtain:

$$
\mathcal{K}=8 \% \times 97.70=\$ 7.82 \mathrm{mn}
$$

For the corporate meta-credit, we proceed in the same way, except that we have to incorporate the maturity adjustment. We have:

$$
b(\mathrm{PD})=(0.11852-0.05478 \times \ln (5 \%))^{2}=7.99 \%
$$

and:

$$
\varphi(M)=\frac{1+(2-2.5) \times 0.0799}{1-1.5 \times 0.0799}=1.0908
$$

Using the IRB formula, we obtain $\mathcal{K}^{\star}=15.35 \%$ and $\mathcal{K}=30.69 \%$. For the SME metacredit, we have to be careful when we calculate the correlation. Indeed, we have ${ }^{1}$:

$$
\begin{aligned}
\rho^{\mathrm{SME}}(\mathrm{PD})= & 12 \% \times \frac{1-e^{-50 \times 2 \%}}{1-e^{-50}}+24 \% \times \frac{1-\left(1-e^{-50 \times 2 \%}\right)}{1-e^{-50}}- \\
& 4 \% \times\left(1-\frac{(\max (30,5)-5)}{45}\right)
\end{aligned}
$$

For mortgage and retail exposures, we use a one-year maturity. The default correlation is set equal to 15% for the mortgage meta-credit whereas we consider the following formula for the retail meta-credit:

$$
\begin{aligned}
\rho(\mathrm{PD}) & =3 \% \times \frac{1-e^{-35 \times 4 \%}}{1-e^{-35}}+16 \% \times \frac{1-\left(1-e^{-35 \times 4 \%}\right)}{1-e^{-35}} \\
& =6.21 \%
\end{aligned}
$$

All the results are reported in Table 5.3. At the bank level, we then obtain:

$$
\begin{aligned}
\text { RWA } & =97.70+383.65+55.95+97.87+122.80 \\
& =\$ 757.98
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathcal{K}_{\mathrm{CR}} & =7.82+30.69+4.48+7.83+9.82 \\
& =\$ 60.64
\end{aligned}
$$

[^23]TABLE 5.3: Calculation of capital requirements for credit exposures

Exposure	$b(\mathrm{PD})$	$\varphi(\mathrm{M})$	$\rho(\mathrm{PD})$	\mathcal{K}^{\star}	RW	RWA	\mathcal{K}
Bank	0.14	1.00	19.28%	9.77%	122.13%	97.70	7.82
Corporate	0.08	1.09	12.99%	15.35%	191.83%	383.65	30.69
SME	0.11	1.46	14.64%	8.95%	111.91%	55.95	4.48
Mortgage			15.00%	15.66%	195.74%	97.87	7.83
Retail			6.21%	9.82%	122.80%	122.80	9.82

3. We calculate the capital charge for operational risk by Monte Carlo methods. The loss is equal to:

$$
L=\sum_{i=1}^{N} L_{i}
$$

where $L_{i} \sim \mathcal{L N}(8,4)$ and N can take two values $(N=5$ or $N=10)$ with:

$$
\begin{aligned}
\operatorname{Pr}\{N=5\} & =60 \% \\
\operatorname{Pr}\{N=10\} & =40 \%
\end{aligned}
$$

We first simulate the yearly number of operational losses N by inverting the cumulative density function:

$$
\begin{aligned}
\operatorname{Pr}\{N \leq 5\} & =60 \% \\
\operatorname{Pr}\{N \leq 10\} & =100 \%
\end{aligned}
$$

Let u_{s} be a uniform random variate for the $s^{\text {th }}$ simulation. The simulated variate N_{s} is defined as follows:

$$
N_{s}= \begin{cases}5 & \text { if } u_{s} \leq 0.6 \\ 10 & \text { otherwise }\end{cases}
$$

Then, we have to simulate the operational losses $L_{i}^{(s)}$ using the probability integral transform:

$$
\begin{aligned}
U & =\mathbf{F}\left(L_{i}\right) \\
& =\Phi\left(\frac{\ln L_{i}-8}{2}\right)
\end{aligned}
$$

It follows that:

$$
L_{i}=\exp \left(8+2 \times \Phi^{-1}(U)\right)
$$

Let $u_{i}^{(s)}$ be a uniform random variate. We have:

$$
L_{i}^{(s)}=\exp \left(8+2 \times \Phi^{-1}\left(u_{i}^{(s)}\right)\right)
$$

Another way to simulate $L_{i}^{(s)}$ is to notice that $\Phi^{-1}(U) \sim \mathcal{N}(0,1)$, meaning that:

$$
L_{i}^{(s)}=\exp \left(8+2 \times n_{i}^{(s)}\right)
$$

where $n_{i}^{(s)}$ is a normal random variate $\mathcal{N}(0,1)$. The simulated value of the aggregated loss is then:

$$
L_{s}=\sum_{i=1}^{N_{s}} L_{i}^{(s)}
$$

Let us consider an example. We assume that $u_{s}=0.2837$. It follows that $N_{s}=5$. This means that we have to simulate five operational losses in the year. We obtain the following figures:

i	1	2	3	4	5
$u_{i}^{(s)}$	0.4351	0.0387	0.2209	0.3594	0.5902
$\Phi^{-1}\left(u_{i}^{(s)}\right)$	-0.1633	-1.7666	-0.7692	-0.3600	0.2282
$L_{i}^{(s)}$	$2,150.26$	87.09	640.05	1451.02	4704.84

The first loss experienced by the bank is $\$ 2150.26$, the second loss is equal to $\$ 87.09$, etc. We deduce that the yearly total loss is equal to $\$ 9033.25$:

$$
\begin{aligned}
L_{s} & =2150.26+87.09+640.05+1451.02+4704.84 \\
& =\$ 9033.25
\end{aligned}
$$

By considering n_{S} simulated values of L_{s}, the capital charge for operational risk is given by the 99.9% quantile:

$$
\operatorname{VaR}_{99.9 \%}=L_{0.999 n_{S}: n_{S}}
$$

For instance, if we consider one-million simulation runs, the capital charge corresponds to the $999000^{\text {th }}$ order statistic. In our case, we estimate the capital charge with 250 millions of simulation runs and obtain:

$$
\mathcal{K}_{\mathrm{OR}}=\$ 4.39 \mathrm{mn}
$$

Because the required capital is estimated using Monte Carlo methods, there is an uncertainty on this number. For instance, we have reported the histogram of the VaR estimator with one-million simulation runs in Figure 5.1. In this case, we obtain:

$$
\operatorname{Pr}\left\{4.27 \leq \operatorname{VaR}_{99.9 \%} \leq 4.50\right\}=90 \%
$$

4. We deduce that the capital ratio of the bank is equal to:

$$
\begin{aligned}
\text { Cooke ratio } & =\frac{C_{\mathrm{Bank}}}{\mathrm{RWA}+12.5 \times \mathcal{K}_{\mathrm{MR}}+12.5 \times \mathcal{K}_{\mathrm{OR}}} \\
& =\frac{70}{757.98+12.5 \times 3.53+12.5 \times 4.39} \\
& =8.17 \%
\end{aligned}
$$

5.4.5 Parametric estimation of the loss severity distribution

1. We consider that the losses follow a log-logistic distribution.
(a) By definition, the probability density function is equal to:

$$
f(x ; \alpha, \beta)=\frac{\partial \mathbf{F}(x ; \alpha, \beta)}{\partial x}
$$

FIGURE 5.1: Histogram of the $\operatorname{VaR}_{99.9 \%}$ estimator with $n_{S}=10^{6}$

We deduce that:

$$
\begin{aligned}
& f(x ; \alpha, \beta)= \frac{(\beta / \alpha)(x / \alpha)^{\beta-1}\left(1+(x / \alpha)^{\beta}\right)}{\left(1+(x / \alpha)^{\beta}\right)^{2}}- \\
&= \frac{(x / \alpha)^{\beta}(\beta / \alpha)(x / \alpha)^{\beta-1}}{\left(1+(x / \alpha)^{\beta}\right)^{2}} \\
&\left(1+(x / \alpha)^{\beta}\right)^{2}
\end{aligned}
$$

(b) The definition of the log-likelihood function is:

$$
\ell(\alpha, \beta)=\sum_{i=1}^{n} \ln f\left(x_{i} ; \alpha, \beta\right)
$$

We deduce that:

$$
\begin{aligned}
\ell(\alpha, \beta)= & n \ln (\beta / \alpha)+(\beta-1) \sum_{i=1}^{n} \ln \left(x_{i} / \alpha\right)-2 \sum_{i=1}^{n} \ln \left(1+\left(x_{i} / \alpha\right)^{\beta}\right) \\
= & n \ln \beta-n \beta \ln \alpha+(\beta-1) \sum_{i=1}^{n} \ln x_{i}- \\
& 2 \sum_{i=1}^{n} \ln \left(1+\left(x_{i} / \alpha\right)^{\beta}\right)
\end{aligned}
$$

(c) Maximizing the log-likelihood function leads the first-order conditions:

$$
\frac{\partial \ell(\alpha, \beta)}{\partial \alpha}=-n \frac{\beta}{\alpha}+2 \frac{\beta}{\alpha} \sum_{i=1}^{n} \frac{\left(x_{i} / \alpha\right)^{\beta}}{1+\left(x_{i} / \alpha\right)^{\beta}}=0
$$

and:

$$
\frac{\partial \ell(\alpha, \beta)}{\partial \beta}=\frac{n}{\beta}-n \ln \alpha+\sum_{i=1}^{n} \ln x_{i}-2 \sum_{i=1}^{n} \frac{\left(x_{i} / \alpha\right)^{\beta} \ln \left(x_{i} / \alpha\right)}{1+\left(x_{i} / \alpha\right)^{\beta}}=0
$$

By assuming that $\beta \neq 0$, we deduce that:

$$
\sum_{i=1}^{n} \mathbf{F}\left(x_{i} ; \alpha, \beta\right)=\frac{n}{2}
$$

and:

$$
\frac{n}{\beta}-n \ln \alpha+\sum_{i=1}^{n} \ln x_{i}-2 \sum_{i=1}^{n} \frac{\left(x_{i} / \alpha\right)^{\beta} \ln x_{i}}{1+\left(x_{i} / \alpha\right)^{\beta}}+2 \ln \alpha \sum_{i=1}^{n} \frac{\left(x_{i} / \alpha\right)^{\beta}}{1+\left(x_{i} / \alpha\right)^{\beta}}=0
$$

We then obtain:

$$
\frac{n}{\beta}+\sum_{i=1}^{n} \ln x_{i}-2 \sum_{i=1}^{n} \mathbf{F}\left(x_{i} ; \alpha, \beta\right) \ln x_{i}=0
$$

or equivalently:

$$
\sum_{i=1}^{n}\left(2 \mathbf{F}\left(x_{i} ; \alpha, \beta\right)-1\right) \ln x_{i}=\frac{n}{\beta}
$$

It follows that the ML estimators $\hat{\alpha}$ and $\hat{\beta}$ satisfy the following conditions:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \mathbf{F}\left(x_{i} ; \hat{\alpha}, \hat{\beta}\right)=n / 2 \\
\sum_{i=1}^{n}\left(2 \mathbf{F}\left(x_{i} ; \hat{\alpha}, \hat{\beta}\right)-1\right) \ln x_{i}=n / \hat{\beta}
\end{array}\right.
$$

(d) Using the sample of loss data, we obtain:

$$
2 \sum_{i=1}^{10} \mathbf{F}\left(x_{i} ; \hat{\alpha}, \hat{\beta}\right)=10.000
$$

and:

$$
\hat{\beta} \sum_{i=1}^{10}\left(2 \mathbf{F}\left(x_{i} ; \hat{\alpha}, \hat{\beta}\right)-1\right) \ln x_{i}=9.999
$$

Because the two mathematical terms are equal to $n=10$, the first-order conditions of the ML optimization program are satisfied.
(e) We have:

$$
\begin{aligned}
\ell(\alpha, \beta)= & \sum_{i=1}^{n} \ln f\left(x_{i} ; \alpha, \beta\right)-\sum_{i=1}^{n} \ln (1-\mathbf{F}(H ; \alpha, \beta)) \\
= & n \ln \beta-n \beta \ln \alpha+(\beta-1) \sum_{i=1}^{n} \ln x_{i}- \\
& 2 \sum_{i=1}^{n} \ln \left(1+\left(x_{i} / \alpha\right)^{\beta}\right)+n \ln \left(1+(H / \alpha)^{\beta}\right)
\end{aligned}
$$

5.4.6 Mixed Poisson processes

1. We recall that $\mathbb{E}[\mathcal{P}(\lambda)]=\operatorname{var}(\mathcal{P}(\lambda))=\lambda$. We deduce that:

$$
\begin{align*}
\mathbb{E}[N(t)] & =\mathbb{E}[\mathbb{E}[N(t) \mid \Lambda]] \\
& =\mathbb{E}[\Lambda] \tag{5.2}
\end{align*}
$$

and:

$$
\begin{align*}
\operatorname{var}(N(t)) & =\mathbb{E}\left[N(t)^{2}\right]-\mathbb{E}^{2}[N(t)] \\
& =\mathbb{E}\left[\mathbb{E}\left[N(t)^{2} \mid \Lambda\right]\right]-\mathbb{E}^{2}[\mathbb{E}[N(t) \mid \Lambda]] \\
& =\mathbb{E}\left[\operatorname{var}(N(t) \mid \Lambda)+\mathbb{E}^{2}[N(t) \mid \Lambda]\right]-\mathbb{E}^{2}[\mathbb{E}[N(t) \mid \Lambda]] \\
& =\mathbb{E}[\operatorname{var}(N(t) \mid \Lambda)]+\mathbb{E}\left[\mathbb{E}^{2}[N(t) \mid \Lambda]\right]-\mathbb{E}^{2}[\mathbb{E}[N(t) \mid \Lambda]] \\
& =\mathbb{E}[\operatorname{var}(N(t) \mid \Lambda)]+\operatorname{var}(\mathbb{E}[N(t) \mid \Lambda]) \\
& =\mathbb{E}[\Lambda]+\operatorname{var}(\Lambda) \\
& =\mathbb{E}[N(t)]+\operatorname{var}(\Lambda) \tag{5.3}
\end{align*}
$$

2. By definition, we have $\operatorname{var}(\Lambda) \geq 0$, which implies that:

$$
\operatorname{var}(N(t)) \geq \mathbb{E}[N(t)]
$$

The equality holds if and only if $\operatorname{var}(\Lambda)=0$. We deduce that Λ must be constant and we obtain the Dirac distribution:

$$
\operatorname{Pr}\{\Lambda=\lambda\}=1
$$

Since we have $N(t) \sim \mathcal{P}(\lambda)$, we deduce that:

$$
\begin{aligned}
p(n) & =\operatorname{Pr}\{N(t)=n\} \\
& =\frac{e^{-\lambda} \lambda^{n}}{n!}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\varphi(n) & =\frac{(n+1) \cdot p(n+1)}{p(n)} \\
& =(n+1) \cdot \frac{e^{-\lambda} \lambda^{n+1}}{(n+1)!} \cdot \frac{n!}{e^{-\lambda} \lambda^{n}} \\
& =\lambda
\end{aligned}
$$

3. (a) We reiterate that:

$$
\mathbb{E}[\mathcal{G}(\alpha, \beta)]=\frac{\alpha}{\beta}
$$

and:

$$
\operatorname{var}(\mathcal{G}(\alpha, \beta))=\frac{\alpha}{\beta^{2}}
$$

Using Equations (5.2) and (5.3), we obtain:

$$
\begin{align*}
\mathbb{E}[N(t)] & =\mathbb{E}[\Lambda] \\
& =\mathbb{E}[\mathcal{G}(\alpha, \beta)] \\
& =\frac{\alpha}{\beta} \tag{5.4}
\end{align*}
$$

and:

$$
\begin{align*}
\operatorname{var}(N(t)) & =\mathbb{E}[\Lambda]+\operatorname{var}(\Lambda) \\
& =\mathbb{E}[\mathcal{G}(\alpha, \beta)]+\operatorname{var}(\mathcal{G}(\alpha, \beta)) \\
& =\frac{\alpha}{\beta}+\frac{\alpha}{\beta^{2}} \\
& =\frac{\alpha(\beta+1)}{\beta^{2}} \tag{5.5}
\end{align*}
$$

(b) By definition of the compound distribution, we have:

$$
\begin{align*}
p(n) & =\int_{0}^{\infty} p(n \mid \mathcal{P}(\lambda)) f(\lambda \mid \mathcal{G}(\alpha, \beta)) \mathrm{d} \lambda \\
& =\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{n}}{n!} \frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)} \mathrm{d} \lambda \\
& =\frac{\beta^{\alpha}}{n!\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda(\beta+1)} \lambda^{n+\alpha-1} \mathrm{~d} \lambda \tag{5.6}
\end{align*}
$$

We know that:

$$
\int_{0}^{\infty} t^{a-1} e^{-t} \mathrm{~d} t=\Gamma(a)
$$

We deduce that ${ }^{2}$:

$$
\begin{aligned}
\int_{0}^{\infty} t^{a-1} e^{-b t} \mathrm{~d} t & =\int_{0}^{\infty} t^{a-1} e^{-b t} \mathrm{~d} t \\
& =\int_{0}^{\infty}\left(\frac{x}{b}\right)^{a-1} e^{-x} \frac{\mathrm{~d} x}{b} \\
& =\int_{0}^{\infty} x^{a-1} e^{-x} \mathrm{~d} x \\
& =\frac{\Gamma(a)}{b^{a}}
\end{aligned}
$$

From Equation (5.6), we obtain:

$$
\begin{align*}
p(n) & =\frac{\beta^{\alpha}}{n!\Gamma(\alpha)} \frac{\Gamma(n+\alpha)}{(\beta+1)^{n+\alpha}} \\
& =\frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)} \cdot \frac{\beta^{\alpha}}{(\beta+1)^{n+\alpha}} \tag{5.7}
\end{align*}
$$

We notice that:

$$
\begin{aligned}
\frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)} & =\frac{(n+\alpha-1)!}{n!(\alpha-1)!} \\
& =\binom{n+\alpha-1}{n}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\beta^{\alpha}}{(\beta+1)^{n+\alpha}} & =\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{n} \\
& =\left(1-\frac{1}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{n}
\end{aligned}
$$

[^24]Therefore, Equation (5.7) becomes:

$$
\begin{aligned}
p(n) & =\binom{n+\alpha-1}{n}\left(1-\frac{1}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{n} \\
& =\binom{n+r-1}{n}(1-p)^{r} p^{n}
\end{aligned}
$$

This is the probability mass function of the negative binomial distribution $\mathcal{N B}(r, p)$ where $^{3} r=\alpha$ and $p=1 /(\beta+1)$.
(c) We have:

$$
\begin{aligned}
\varphi(n) & =\frac{(n+1) \cdot p(n+1)}{p(n)} \\
& =(n+1) \frac{\binom{n+r}{n+1}}{\binom{n+r-1}{n}} \frac{(1-p)^{r} p^{n+1}}{(1-p)^{r} p^{n}} \\
& =\frac{(n+r)!}{(n+r-1)!} p \\
& =p n+p r
\end{aligned}
$$

4. (a) Since we have $\mathbb{E}[\mathcal{E}(\lambda)]=\lambda^{-1}$ and $\operatorname{var}(\mathcal{E}(\lambda))=\lambda^{-2}$, we obtain:

$$
\mathbb{E}[N(t)]=\frac{1}{\lambda}
$$

and:

$$
\begin{aligned}
\operatorname{var}(N(t)) & =\frac{1}{\lambda}+\frac{1}{\lambda^{2}} \\
& =\frac{\lambda+1}{\lambda^{2}}
\end{aligned}
$$

[^25](b) We have $\mathcal{E}(\lambda)=\mathcal{G}(1, \lambda)$. We deduce that the compound Poisson distribution is the negative binomial distribution $\mathcal{N B}(r, p)$ where $r=1$ and $p=1 /(\lambda+1)$. In this case, the expression of the probability mass function becomes:
\[

$$
\begin{aligned}
p(n) & =\binom{n+r-1}{n}(1-p)^{r} p^{n} \\
& =(1-p) p^{n}
\end{aligned}
$$
\]

We conclude that $N(t)$ has a geometric distribution $\mathcal{G}(1 /(\lambda+1))$.

Chapter 6

Liquidity Risk

Chapter 7

Asset/Liability Management Risk

7.4.1 Constant amortization of a loan

1. We have:

$$
\begin{aligned}
C_{0} & =\sum_{t=1}^{n} \frac{A}{(1+i)^{t}} \\
& =\frac{A}{(1+i)} \sum_{t=0}^{n-1} \frac{1}{(1+i)^{t}} \\
& =\frac{A}{(1+i)} \times \frac{1-\frac{1}{(1+i)^{n}}}{1-\frac{1}{(1+i)}} \\
& =\left(1-\frac{1}{(1+i)^{n}}\right) \frac{A}{i} \\
& =c_{(n)} A
\end{aligned}
$$

where $c_{(n)}$ is the capitalization factor:

$$
c_{(n)}=\frac{1-(1+i)^{-n}}{i}
$$

2. Since $C_{0}=N_{0}$, we have:

$$
\left(1-\frac{1}{(1+i)^{n}}\right) \frac{A}{i}=N_{0}
$$

We deduce that the value of the constant annuity is equal to:

$$
\begin{aligned}
A & =\left(1-\frac{1}{(1+i)^{n}}\right)^{-1} i N_{0} \\
& =\frac{(1+i)^{n}}{(1+i)^{n}-1} i N_{0} \\
& =\frac{i}{1-(1+i)^{-n}} N_{0}
\end{aligned}
$$

It follows that the constant annuity rate $a_{(n)}$ is given by the following formula:

$$
a_{(n)}=\frac{i}{1-(1+i)^{-n}}=\frac{1}{c_{(n)}}
$$

3. At time $t=1$, we pay A. The interest payment is equal to $I(1)=i N_{0}$ while the principal payment is equal to the difference between the annuity and the interest
payment:

$$
\begin{aligned}
P(1) & =A-I(1) \\
& =\left(a_{(n)}-i\right) N_{0} \\
& =\left(\frac{i}{1-(1+i)^{-n}}-i\right) N_{0}
\end{aligned}
$$

We deduce that the amount outstanding (or remaining capital) is equal to:

$$
\begin{aligned}
N(1) & =N_{0}-P(1) \\
& =N_{0}-\left(a_{(n)}-i\right) N_{0} \\
& =\left(1+i-\frac{i}{1-(1+i)^{-n}}\right) N_{0} \\
& =\left(\frac{1-(1+i)^{-n+1}}{1-(1+i)^{-n}}\right)\left(1-\frac{1}{(1+i)^{n}}\right) \frac{A}{i} \\
& =\left(\frac{1-(1+i)^{-n+1}}{1-(1+i)^{-n}}\right)\left(\frac{(1+i)^{n}-1}{(1+i)^{n}}\right) \frac{A}{i} \\
& =\left(\frac{(1+i)^{n}-2-i+(1+i)^{-n+1}}{(1+i)^{n}-1}\right) \frac{A}{i} \\
& =\left(1-\frac{(1+i)-(1+i)^{-n+1}}{(1+i)^{n}-1}\right) \frac{A}{i}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
C(1) & =\sum_{t=1}^{n-1} \frac{A}{(1+i)^{t}} \\
& =\left(1-\frac{1}{(1+i)^{n-1}}\right) \frac{A}{i}
\end{aligned}
$$

Since we have:

$$
\begin{aligned}
\frac{(1+i)-(1+i)^{-n+1}}{(1+i)^{n}-1} & =\frac{(1+i)^{n-1}}{(1+i)^{n-1}}\left(\frac{(1+i)-(1+i)^{-n+1}}{(1+i)^{n}-1}\right) \\
& =\frac{1}{(1+i)^{n-1}}\left(\frac{(1+i)^{n}-(1+i)^{0}}{(1+i)^{n}-1}\right) \\
& =\frac{1}{(1+i)^{n-1}}
\end{aligned}
$$

we conclude that the amount outstanding $N(1)$ is equal to the present value of the annuity at time $t=1$:

$$
N(1)=C(1)
$$

4. More generally, we have:

$$
\begin{aligned}
N(t) & =C(t) \\
& =c_{(n-t)} A \\
& =\left(\frac{1-(1+i)^{-(n-t)}}{i}\right) A
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
I(t) & =i N(t-1) \\
& =\left(1-\frac{1}{(1+i)^{n-t+1}}\right) A
\end{aligned}
$$

and:

$$
\begin{aligned}
P(t) & =A-I(t) \\
& =\frac{1}{(1+i)^{n-t+1}} A
\end{aligned}
$$

7.4.2 Computation of the amortization functions $\mathbf{S}(t, u)$ and $\mathbf{S}^{\star}(t, u)$

1. By definition, we have:

$$
\begin{aligned}
\mathbf{S}(t, u) & =\mathbb{1}\{t \leq u<t+m\} \\
& = \begin{cases}1 & \text { if } u \in[t, t+m[\\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This means that the survival function is equal to one when u is between the current date t and the maturity date $T=t+m$. When u reaches T, the outstanding amount is repaid, implying that $\mathbf{S}(t, T)$ is equal to zero. It follows that:

$$
\begin{aligned}
\mathbf{S}^{\star}(t, u) & =\frac{\int_{-\infty}^{t} \mathrm{NP}(s) \mathbf{S}(s, u) \mathrm{d} s}{\int_{-\infty}^{t} \mathrm{NP}(s) \mathbf{S}(s, t) \mathrm{d} s} \\
& =\frac{\int_{-\infty}^{t} \mathrm{NP}(s) \cdot \mathbb{1}\{s \leq u<s+m\} \mathrm{d} s}{\int_{-\infty}^{t} \mathrm{NP}(s) \cdot \mathbb{1}\{s \leq t<s+m\} \mathrm{d} s}
\end{aligned}
$$

For the numerator, we have:

$$
\begin{aligned}
\mathbb{1}\{s \leq u<s+m\}=1 & \Rightarrow u<s+m \\
& \Leftrightarrow s>u-m
\end{aligned}
$$

and:

$$
\int_{-\infty}^{t} \mathrm{NP}(s) \cdot \mathbb{1}\{s \leq u<s+m\} \mathrm{d} s=\int_{u-m}^{t} \mathrm{NP}(s) \mathrm{d} s
$$

For the denominator, we have:

$$
\begin{aligned}
\mathbb{1}\{s \leq t<s+m\}=1 & \Rightarrow t<s+m \\
& \Leftrightarrow s>t-m
\end{aligned}
$$

and:

$$
\int_{-\infty}^{t} \mathrm{NP}(s) \cdot \mathbb{1}\{s \leq t<s+m\} \mathrm{d} s=\int_{t-m}^{t} \mathrm{NP}(s) \mathrm{d} s
$$

We deduce that:

$$
\mathbf{S}^{\star}(t, u)=\mathbb{1}\{t \leq u<t+m\} \cdot \frac{\int_{u-m}^{t} \mathrm{NP}(s) \mathrm{d} s}{\int_{t-m}^{t} \mathrm{NP}(s) \mathrm{d} s}
$$

In the case where the new production is a constant, we have $\mathrm{NP}(s)=c$ and:

$$
\begin{aligned}
\mathbf{S}^{\star}(t, u) & =\mathbb{1}\{t \leq u<t+m\} \cdot \frac{\int_{u-m}^{t} \mathrm{~d} s}{\int_{t-m}^{t} \mathrm{~d} s} \\
& =\mathbb{1}\{t \leq u<t+m\} \cdot \frac{[s]_{u-m}^{t}}{[s]_{t-m}^{t}} \\
& =\mathbb{1}\{t \leq u<t+m\} \cdot\left(\frac{t-u+m}{t-t+m}\right) \\
& =\mathbb{1}\{t \leq u<t+m\} \cdot\left(1-\frac{u-t}{m}\right)
\end{aligned}
$$

The survival function $\mathbf{S}^{\star}(t, u)$ corresponds to the case of a linear amortization.
2. If the amortization is linear, we have:

$$
\mathbf{S}(t, u)=\mathbb{1}\{t \leq u<t+m\} \cdot\left(1-\frac{u-t}{m}\right)
$$

We deduce that:

$$
\mathbf{S}^{\star}(t, u)=\mathbb{1}\{t \leq u<t+m\} \cdot \frac{\int_{u-m}^{t} \mathrm{NP}(s)\left(1-\frac{u-s}{m}\right) \mathrm{d} s}{\int_{t-m}^{t} \mathrm{NP}(s)\left(1-\frac{t-s}{m}\right) \mathrm{d} s}
$$

In the case where the new production is a constant, we obtain:

$$
\mathbf{S}^{\star}(t, u)=\mathbb{1}\{t \leq u<t+m\} \cdot \frac{\int_{u-m}^{t}\left(1-\frac{u-s}{m}\right) \mathrm{d} s}{\int_{t-m}^{t}\left(1-\frac{t-s}{m}\right) \mathrm{d} s}
$$

For the numerator, we have:

$$
\begin{aligned}
\int_{u-m}^{t}\left(1-\frac{u-s}{m}\right) \mathrm{d} s= & {\left[s-\frac{s u}{m}+\frac{s^{2}}{2 m}\right]_{u-m}^{t} } \\
= & \left(t-\frac{t u}{m}+\frac{t^{2}}{2 m}\right)- \\
& \left(u-m-\frac{u^{2}-m u}{m}+\frac{(u-m)^{2}}{2 m}\right) \\
= & \left(t-\frac{t u}{m}+\frac{t^{2}}{2 m}\right)-\left(u-\frac{m}{2}-\frac{u^{2}}{2 m}\right) \\
= & \frac{m^{2}+u^{2}+t^{2}+2 m t-2 m u-2 t u}{2 m} \\
= & \frac{(m-u+t)^{2}}{2 m}
\end{aligned}
$$

For the denominator, we use the previous result and we set $u=t$:

$$
\begin{aligned}
\int_{t-m}^{t}\left(1-\frac{t-s}{m}\right) \mathrm{d} s & =\frac{(m-t+t)^{2}}{2 m} \\
& =\frac{m}{2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbf{S}^{\star}(t, u) & =\mathbb{1}\{t \leq u<t+m\} \cdot \frac{\frac{(m-u+t)^{2}}{2 m}}{\frac{m}{2}} \\
& =\mathbb{1}\{t \leq u<t+m\} \cdot \frac{(m-u+t)^{2}}{m^{2}} \\
& =\mathbb{1}\{t \leq u<t+m\} \cdot\left(1-\frac{u-t}{m}\right)^{2}
\end{aligned}
$$

The survival function $\mathbf{S}^{\star}(t, u)$ corresponds to the case of a parabolic amortization.
3. If the amortization is exponential, we have:

$$
\mathbf{S}(t, u)=e^{-\int_{t}^{u} \lambda \mathrm{~d} s}=e^{-\lambda(u-t)}
$$

It follows that:

$$
\mathbf{S}^{\star}(t, u)=\frac{\int_{-\infty}^{t} \mathrm{NP}(s) e^{-\lambda(u-s)} \mathrm{d} s}{\int_{-\infty}^{t} \mathrm{NP}(s) e^{-\lambda(t-s)} \mathrm{d} s}
$$

In the case where the new production is a constant, we obtain:

$$
\begin{aligned}
\mathbf{S}^{\star}(t, u) & =\frac{\int_{-\infty}^{t} e^{-\lambda(u-s)} \mathrm{d} s}{\int_{-\infty}^{t} e^{-\lambda(t-s)} \mathrm{d} s} \\
& =\frac{\left[\lambda^{-1} e^{-\lambda(u-s)}\right]_{-\infty}^{t}}{\left[\lambda^{-1} e^{-\lambda(t-s)}\right]_{-\infty}^{t}} \\
& =e^{-\lambda(u-t)} \\
& =\mathbf{S}(t, u)
\end{aligned}
$$

The stock amortization function is equal to the flow amortization function.
4. We recall that the liquidity duration is equal to:

$$
\mathcal{D}(t)=\int_{t}^{\infty}(u-t) f(t, u) \mathrm{d} u
$$

where $f(t, u)$ is the density function associated to the survival function $\mathbf{S}(t, u)$. For the stock, we have:

$$
\mathcal{D}^{\star}(t)=\int_{t}^{\infty}(u-t) f^{\star}(t, u) \mathrm{d} u
$$

where $f^{\star}(t, u)$ is the density function associated to the survival function $\mathbf{S}^{\star}(t, u)$:

$$
f^{\star}(t, u)=\frac{\int_{-\infty}^{t} \mathrm{NP}(s) f(s, u) \mathrm{d} s}{\int_{-\infty}^{t} \operatorname{NP}(s) \mathbf{S}(s, t) \mathrm{d} s}
$$

In the case where the new production is constant, we obtain:

$$
\mathcal{D}^{\star}(t)=\frac{\int_{t}^{\infty}(u-t) \int_{-\infty}^{t} f(s, u) \mathrm{d} s \mathrm{~d} u}{\int_{-\infty}^{t} \mathbf{S}(s, t) \mathrm{d} s}
$$

Since we have $\int_{-\infty}^{t} f(s, u) \mathrm{d} s=\mathbf{S}(t, u)$, we deduce that:

$$
\mathcal{D}^{\star}(t)=\frac{\int_{t}^{\infty}(u-t) \mathbf{S}(t, u) \mathrm{d} u}{\int_{-\infty}^{t} \mathbf{S}(s, t) \mathrm{d} s}
$$

5. (a) In the case of the bullet repayment debt, we have:

$$
\mathcal{D}(t)=m
$$

and:

$$
\begin{aligned}
\mathcal{D}^{\star}(t) & =\frac{\int_{t}^{t+m}(u-t) \mathrm{d} u}{\int_{t-m}^{t} \mathrm{~d} s} \\
& =\frac{\left[\frac{1}{2}(u-t)^{2}\right]_{t}^{t+m}}{[s]_{t-m}^{t}} \\
& =\frac{m}{2}
\end{aligned}
$$

(b) In the case of the linear amortization, we have:

$$
f(t, u)=\mathbb{1}\{t \leq u<t+m\} \cdot \frac{1}{m}
$$

and:

$$
\begin{aligned}
\mathcal{D}(t) & =\int_{t}^{t+m} \frac{(u-t)}{m} \mathrm{~d} u \\
& =\frac{1}{m}\left[\frac{1}{2}(u-t)^{2}\right]_{t}^{t+m} \\
& =\frac{m}{2}
\end{aligned}
$$

For the stock duration, we deduce that

$$
\begin{aligned}
\mathcal{D}^{\star}(t) & =\frac{\int_{t}^{t+m}(u-t)\left(1-\frac{u-t}{m}\right) \mathrm{d} u}{\int_{t-m}^{t}\left(1-\frac{t-s}{m}\right) \mathrm{d} s} \\
& =\frac{\int_{t}^{t+m}\left(u-t-\frac{u^{2}}{m}+2 \frac{t u}{m}-\frac{t^{2}}{m}\right) \mathrm{d} u}{\int_{t-m}^{t}\left(1-\frac{t}{m}+\frac{s}{m}\right) \mathrm{d} s} \\
& =\frac{\left[\frac{u^{2}}{2}-t u-\frac{u^{3}}{3 m}+\frac{t u^{2}}{m}-\frac{t^{2} u}{m}\right]_{t}^{t+m}}{\left[s-\frac{s t}{m}+\frac{s^{2}}{2 m}\right]_{t-m}^{t}}
\end{aligned}
$$

The numerator and denominator are equal to:

$$
\begin{aligned}
(*) & =\left[\frac{u^{2}}{2}-t u-\frac{u^{3}}{3 m}+\frac{t u^{2}}{m}-\frac{t^{2} u}{m}\right]_{t}^{t+m} \\
& =\frac{1}{6 m}\left[3 m u^{2}-6 m t u-2 u^{3}+6 t u^{2}-6 t^{2} u\right]_{t}^{t+m} \\
& =\frac{1}{6 m}\left(m^{3}-3 m t^{2}-2 t^{3}\right)+\frac{1}{6 m}\left(3 m t^{2}+2 t^{3}\right) \\
& =\frac{m^{2}}{6}
\end{aligned}
$$

and:

$$
\begin{aligned}
(*) & =\left[s-\frac{s t}{m}+\frac{s^{2}}{2 m}\right]_{t-m}^{t} \\
& =\frac{1}{2 m}\left[s^{2}-2 s(t-m)\right]_{t-m}^{t} \\
& =\frac{1}{2 m}\left(t^{2}-2 t(t-m)-(t-m)^{2}+2(t-m)^{2}\right) \\
& =\frac{1}{2 m}\left(t^{2}-2 t^{2}+2 m t+t^{2}-2 m t+m^{2}\right) \\
& =\frac{m}{2}
\end{aligned}
$$

We deduce that:

$$
\mathcal{D}^{\star}(t)=\frac{m}{3}
$$

(c) For the exponential amortization, we have:

$$
f(t, u)=\lambda e^{-\lambda(u-t)}
$$

and ${ }^{1}$:

$$
\begin{aligned}
\mathcal{D}(t) & =\int_{t}^{\infty}(u-t) \lambda e^{-\lambda(u-t)} \mathrm{d} u \\
& =\int_{0}^{\infty} v \lambda e^{-\lambda v} \mathrm{~d} v \\
& =\frac{1}{\lambda}
\end{aligned}
$$

For the stock duration, we deduce that:

$$
\begin{aligned}
\mathcal{D}^{\star}(t) & =\frac{\int_{t}^{\infty}(u-t) e^{-\lambda(u-t)} \mathrm{d} u}{\int_{-\infty}^{t} e^{-\lambda(t-s)} \mathrm{d} s} \\
& =\frac{\int_{0}^{\infty} v e^{-\lambda v} \mathrm{~d} v}{\int_{0}^{\infty} e^{-\lambda v} \mathrm{~d} v} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

We verify that $\mathcal{D}(t)=\mathcal{D}^{\star}(t)$ since we have demonstrated that $\mathbf{S}^{\star}(t, u)=\mathbf{S}(t, u)$.

[^26]6. (a) By definition, we have:
$$
\mathrm{d} N(t)=(\mathrm{NP}(t)-\mathrm{NP}(t-m)) \mathrm{d} t
$$
(b) We have:
$$
f(s, t)=\frac{1\{s \leq t<s+m\}}{m}
$$

It follows that:

$$
\begin{aligned}
\int_{-\infty}^{t} \mathrm{NP}(s) f(s, t) \mathrm{d} s & =\frac{1}{m} \int_{-\infty}^{t} \mathbf{1}\{s \leq t<s+m\} \cdot \mathrm{NP}(s) \mathrm{d} s \\
& =\frac{1}{m} \int_{t-m}^{t} \mathrm{NP}(s) \mathrm{d} s
\end{aligned}
$$

We deduce that:

$$
\mathrm{d} N(t)=\left(\mathrm{NP}(t)-\frac{1}{m} \int_{t-m}^{t} \mathrm{NP}(s) \mathrm{d} s\right) \mathrm{d} t
$$

(c) We have:

$$
f(s, t)=\lambda e^{-\lambda(t-s)}
$$

and:

$$
\begin{aligned}
\int_{-\infty}^{t} \mathrm{NP}(s) f(s, t) \mathrm{d} s & =\int_{-\infty}^{t} \mathrm{NP}(s) \lambda e^{-\lambda(t-s)} \mathrm{d} s \\
& =\lambda \int_{-\infty}^{t} \mathrm{NP}(s) e^{-\lambda(t-s)} \mathrm{d} s \\
& =\lambda N(t)
\end{aligned}
$$

We deduce that:

$$
\mathrm{d} N(t)=(\mathrm{NP}(t)-\lambda N(t)) \mathrm{d} t
$$

7.4.3 Continuous-time analysis of the constant amortization mortgage (CAM)

1. We have $\mathrm{d} N(t)=-P(t) \mathrm{d} t$ where $A(t)=I(t)+P(t)$ and $I(t)=i N(t)$. We deduce that:

$$
\mathrm{d} N(t)=(i N(t)-A) \mathrm{d} t
$$

We know that the solution has the following form ${ }^{2}$:

$$
N(t)=C e^{i t}+\frac{A}{i}
$$

where C is a constant. Since $N(0)=N_{0}$, we have:

$$
C=N_{0}-\frac{A}{i}
$$

[^27]and:
$$
N(t)=\left(N_{0}-\frac{A}{i}\right) e^{i t}+\frac{A}{i}
$$

At the maturity m, we have $N(m)=0$, implying that:

$$
\begin{aligned}
\left(N_{0}-\frac{A}{i}\right) e^{i m}+\frac{A}{i}=0 & \Leftrightarrow \quad \frac{A}{i}=\frac{N_{0} e^{i m}}{e^{i m}-1} \\
& \Leftrightarrow \quad A=\frac{i N_{0}}{1-e^{-i m}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
N(t) & =\mathbf{1}\{t<m\} \cdot\left(\left(N_{0}-\frac{N_{0}}{1-e^{-i m}}\right) e^{i t}+\frac{N_{0}}{1-e^{-i m}}\right) \\
& =\mathbf{1}\{t<m\} \cdot N_{0} \frac{1-e^{-i(m-t)}}{1-e^{-i m}}
\end{aligned}
$$

because $N(t)=0$ when $t \geq m$.
2. More generally, we have:

$$
N(t, u)=1\{t \leq u<t+m\} \cdot N(t) \frac{1-e^{-i(t+m-u)}}{1-e^{-i m}}
$$

This implies that:

$$
\mathbf{S}(t, u)=\mathbf{1}\{t \leq u<t+m\} \cdot \frac{1-e^{-i(t+m-u)}}{1-e^{-i m}}
$$

and:

$$
\mathbf{S}^{\star}(t, u)=\frac{\int_{u-m}^{t} \mathrm{NP}(s)\left(1-e^{-i(s+m-u)}\right) \mathrm{d} s}{\int_{t-m}^{t} \mathrm{NP}(s)\left(1-e^{-i(s+m-t)}\right) \mathrm{d} s}
$$

If we assume that $\mathrm{NP}(s)$ is constant, we have:

$$
\begin{aligned}
\mathbf{S}^{\star}(t, u) & =\frac{\left[s+\frac{1}{i} e^{-i(s+m-u)}\right]_{u-m}^{t}}{\left[s+\frac{1}{i} e^{-i(s+m-t)}\right]_{t-m}^{t}} \\
& =\frac{t+m-u+\frac{e^{-i(t+m-u)}-1}{i}}{m+\frac{e^{-i m}-1}{i}} \\
& =\frac{i(t+m-u)+e^{-i(t+m-u)}-1}{i m+e^{-i m}-1}
\end{aligned}
$$

3. We have:

$$
f(t, u)=\mathbf{1}\{t \leq u<t+m\} \cdot \frac{i e^{-i(t+m-u)}}{1-e^{-i m}}
$$

It follows that:

$$
\begin{aligned}
\mathcal{D}(t) & =\frac{i e^{-i m}}{1-e^{-i m}} \int_{t}^{t+m}(u-t) e^{i(u-t)} \mathrm{d} u \\
& =\frac{i e^{-i m}}{1-e^{-i m}} \int_{0}^{m} v e^{i v} \mathrm{~d} v \\
& =\frac{i e^{-i m}}{1-e^{-i m}}\left(\frac{m e^{i m}}{i}-\frac{e^{i m}-1}{i^{2}}\right) \\
& =\frac{1}{1-e^{-i m}}\left(m-\frac{1-e^{-i m}}{i}\right) \\
& =\frac{m}{1-e^{-i m}}-\frac{1}{i}
\end{aligned}
$$

because we have:

$$
\begin{aligned}
\int_{0}^{m} v e^{i v} \mathrm{~d} v & =\left[\frac{v e^{i v}}{i}\right]_{0}^{m}-\int_{0}^{m} \frac{e^{i v}}{i} \mathrm{~d} v \\
& =\left[\frac{v e^{i v}}{i}\right]_{0}^{m}-\left[\frac{e^{i v}}{i^{2}}\right]_{0}^{m} \\
& =\frac{m e^{i m}}{i}-\frac{e^{i m}-1}{i^{2}}
\end{aligned}
$$

7.4.4 Valuation of non-maturity deposits

1. The current market value of liabilities is the expected discounted value of future cash flows, which are made up of interest payments $i(t) D(t)$ and deposit inflows $\partial_{t} D(t)$:

$$
\begin{equation*}
L_{0}=\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t}\left(i(t) D(t)-\partial_{t} D(t)\right) \mathrm{d} t\right] \tag{7.1}
\end{equation*}
$$

2. Since we have:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-r(t) t}\left(i(t) D(t)-\partial_{t} D(t)\right) \mathrm{d} t= & \int_{0}^{\infty} e^{-r(t) t} i(t) D(t) \mathrm{d} t- \\
& \int_{0}^{\infty} e^{-r(t) t} \partial_{t} D(t) \mathrm{d} t
\end{aligned}
$$

and:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-r(t) t} \partial_{t} D(t) \mathrm{d} t & =\left[e^{-r(t) t} D(t)\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-r(t) t} r(t) D(t) \mathrm{d} t \\
& =-D_{0}+\int_{0}^{\infty} e^{-r(t) t} r(t) D(t) \mathrm{d} t
\end{aligned}
$$

we deduce that:

$$
\begin{align*}
L_{0} & =\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t}\left(i(t) D(t)-\partial_{t} D(t)\right) \mathrm{d} t\right] \\
& =D_{0}+\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t}(i(t)-r(t)) D(t) \mathrm{d} t\right] \tag{7.2}
\end{align*}
$$

3. The current value of deposit accounts is the difference between the current value of deposits D_{0} and the current value of liabilities L_{0} :

$$
\begin{align*}
V_{0} & =D_{0}-L_{0} \\
& =\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t}(r(t)-i(t)) D(t) \mathrm{d} t\right] \\
& =\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} m(t) D(t) \mathrm{d} t\right] \tag{7.3}
\end{align*}
$$

where $m(t)=r(t)-i(t)$ is the margin of the bank. This is the equation obtained by Jarrow and Van Deventer (1998), who notice that V_{0} is "the net present value of an exotic interest rate swap paying floating at $i(t)$ and receiving floating at $r(t)$ on a random principal of $D(t)$ ".
4. If the margin $m(t)$ is constant, we obtain:

$$
\begin{align*}
V_{0} & =\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} m(t) D(t) \mathrm{d} t\right] \\
& =m_{0} \mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} \mathrm{~d} t\right] D_{\infty} \\
& =m_{0} r_{\infty}^{-1} D_{\infty} \tag{7.4}
\end{align*}
$$

where r_{∞} can be interpreted as the average market rate ${ }^{3}$:

$$
r_{\infty}=\frac{1}{\mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} \mathrm{~d} t\right]}
$$

5. The variation of $i(t)$ is equal to a constant α plus a linear correction term $\beta(r(t)-i(t))$:

$$
\begin{aligned}
\frac{\mathrm{d} i(t)}{\mathrm{d} t} & =\alpha+\beta(r(t)-i(t)) \\
& =\beta r(t)+(\alpha-\beta i(t))
\end{aligned}
$$

It follows that $i(t)$ is an increasing function of $r(t)$. Moreover, $i(t)$ decreases (resp. increases) if $\alpha-\beta i(t) \leq 0$ (resp. $\alpha-\beta i(t)>0)$. This implies that $i(t)$ is a meanreverting process, where the steady state is $i_{\infty}=\beta^{-1} \alpha$. The variation of $D(t)$ is explained by two components:

$$
\frac{\mathrm{d} D(t)}{\mathrm{d} t}=\underbrace{\gamma\left(D_{\infty}-D(t)\right)}_{C_{1}(t)}-\underbrace{\delta(r(t)-i(t))}_{C_{2}(t)}
$$

[^28]The first component $C_{1}(t)$ is the traditional mean-reverting adjustment between the deposit $D(t)$ and its long-term value D_{∞}, whereas the second component $C_{2}(t)$ is the negative impact of the excess of the market rate over the savings rate. It follows that:

$$
\begin{equation*}
i(t)=e^{-\beta t} i_{0}+\beta \int_{0}^{t} e^{-\beta(t-s)}\left(r(s)+\frac{\alpha}{\beta}\right) \mathrm{d} s \tag{7.5}
\end{equation*}
$$

and:

$$
\begin{equation*}
D(t)=e^{-\gamma t} D_{0}+\left(1-e^{-\gamma t}\right) D_{\infty}-\delta \int_{0}^{t} e^{-\gamma(t-s)}(r(s)-i(s)) \mathrm{d} s \tag{7.6}
\end{equation*}
$$

6. In the case where $r(t)$ is constant and equal to r_{0}, we obtain:

$$
\begin{align*}
i(t) & =e^{-\beta t} i_{0}+\left(\alpha+\beta r_{0}\right) \int_{0}^{t} e^{-\beta(t-s)} \mathrm{d} s \\
& =e^{-\beta t} i_{0}+\left(\alpha+\beta r_{0}\right)\left[\frac{e^{-\beta(t-s)}}{\beta}\right]_{0}^{t} \\
& =e^{-\beta t} i_{0}+\left(1-e^{-\beta t}\right)\left(r_{0}+\frac{\alpha}{\beta}\right) \\
& =i_{0}+\left(1-e^{-\beta t}\right)\left(r_{0}+\frac{\alpha}{\beta}-i_{0}\right) \tag{7.7}
\end{align*}
$$

It follows that:

$$
\begin{align*}
r(t)-i(t) & =r_{0}-\left(e^{-\beta t} i_{0}+\left(1-e^{-\beta t}\right)\left(r_{0}+\frac{\alpha}{\beta}\right)\right) \\
& =e^{-\beta t}\left(r_{0}-i_{0}\right)-\frac{\alpha}{\beta}\left(1-e^{-\beta t}\right) \tag{7.8}
\end{align*}
$$

and:

$$
\begin{align*}
D(t)= & D_{\infty}+e^{-\gamma t}\left(D_{0}-D_{\infty}\right)-\delta\left(r_{0}-i_{0}\right) \int_{0}^{t} e^{-\gamma(t-s)} e^{-\beta s} \mathrm{~d} s+ \\
& \frac{\alpha \delta}{\beta} \int_{0}^{t} e^{-\gamma(t-s)}\left(1-e^{-\beta s}\right) \mathrm{d} s \tag{7.9}
\end{align*}
$$

Since we have:

$$
\int_{0}^{t} e^{-\gamma(t-s)} e^{-\beta s} \mathrm{~d} s=\left[\frac{e^{-\gamma(t-s)-\beta s}}{\gamma-\beta}\right]_{0}^{t}
$$

and:

$$
\int_{0}^{t} e^{-\gamma(t-s)}\left(1-e^{-\beta s}\right) \mathrm{d} s=\left[\frac{e^{-\gamma(t-s)}}{\gamma}-\frac{e^{-\gamma(t-s)-\beta s}}{\gamma-\beta}\right]_{0}^{t}
$$

we deduce that:

$$
\begin{aligned}
D(t)= & D_{\infty}+e^{-\gamma t}\left(D_{0}-D_{\infty}\right)-\frac{\delta\left(e^{-\beta t}-e^{-\gamma t}\right)}{\gamma-\beta}\left(r_{0}-i_{0}\right)+ \\
& \frac{\alpha \delta}{\beta}\left(\frac{1-e^{-\gamma t}}{\gamma}-\frac{e^{-\beta t}-e^{-\gamma t}}{\gamma-\beta}\right)
\end{aligned}
$$

7. If α is equal to zero and we combine Equations (7.8) and (7.9), we obtain:

$$
\begin{aligned}
e^{-r_{0} t}(r(t)-i(t)) D(t)= & e^{-\left(r_{0}+\beta\right) t}\left(r_{0}-i_{0}\right) D_{\infty}+ \\
& e^{-\left(r_{0}+\beta+\gamma\right) t}\left(r_{0}-i_{0}\right)\left(D_{0}-D_{\infty}\right)- \\
& \frac{\delta\left(e^{-\left(r_{0}+2 \beta\right) t}-e^{-\left(r_{0}+\beta+\gamma\right) t}\right)}{\gamma-\beta}\left(r_{0}-i_{0}\right)^{2}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
V_{0}= & \int_{0}^{\infty} e^{-\left(r_{0}+\beta\right) t}\left(r_{0}-i_{0}\right) D_{\infty} \mathrm{d} t+ \\
& \int_{0}^{\infty} e^{-\left(r_{0}+\gamma+\beta\right) t}\left(r_{0}-i_{0}\right)\left(D_{0}-D_{\infty}\right) \mathrm{d} t- \\
& \int_{0}^{\infty} \frac{\delta e^{-\left(r_{0}+2 \beta\right) t}}{\gamma-\beta}\left(r_{0}-i_{0}\right)^{2} \mathrm{~d} t+ \\
& \int_{0}^{\infty} \frac{\delta e^{-\left(r_{0}+\gamma+\beta\right) t}}{\gamma-\beta}\left(r_{0}-i_{0}\right)^{2} \mathrm{~d} t
\end{aligned}
$$

We also have:

$$
\begin{aligned}
V_{0}= & {\left[\frac{e^{-\left(r_{0}+\beta\right) t}\left(r_{0}-i_{0}\right) D_{\infty}}{-\left(r_{0}+\beta\right)}\right]_{0}^{\infty}+} \\
& {\left[\frac{e^{-\left(r_{0}+\gamma+\beta\right) t}\left(r_{0}-i_{0}\right)\left(D_{0}-D_{\infty}\right)}{-\left(r_{0}+\gamma+\beta\right)}\right]_{0}^{\infty}-} \\
& {\left[\frac{\delta e^{-\left(r_{0}+2 \beta\right) t}\left(r_{0}-i_{0}\right)^{2}}{-\left(r_{0}+2 \beta\right)(\gamma-\beta)}\right]_{0}^{\infty}+\left[\frac{\delta e^{-\left(r_{0}+\gamma+\beta\right) t}\left(r_{0}-i_{0}\right)^{2}}{-\left(r_{0}+\gamma+\beta\right)(\gamma-\beta)}\right]_{0}^{\infty} }
\end{aligned}
$$

Therefore, the net asset value is equal to:

$$
\begin{align*}
V_{0}= & \frac{\left(r_{0}-i_{0}\right) D_{\infty}}{\left(r_{0}+\beta\right)}+\frac{\left(r_{0}-i_{0}\right)\left(D_{0}-D_{\infty}\right)}{\left(r_{0}+\gamma+\beta\right)}+ \\
& \frac{\delta\left(r_{0}-i_{0}\right)^{2}}{\left(r_{0}+\gamma+\beta\right)(\gamma-\beta)}-\frac{\delta\left(r_{0}-i_{0}\right)^{2}}{\left(r_{0}+2 \beta\right)(\gamma-\beta)} \tag{7.10}
\end{align*}
$$

We deduce that the sensitivity of V_{0} with respect to r_{0} is equal to:

$$
\begin{align*}
\frac{\partial V_{0}}{\partial r_{0}}= & \frac{\left(i_{0}+\beta\right) D_{\infty}}{\left(r_{0}+\beta\right)^{2}}+\frac{\left(D_{0}-D_{\infty}\right)\left(i_{0}+\gamma+\beta\right)}{\left(r_{0}+\gamma+\beta\right)^{2}}+ \\
& \frac{\delta\left(r_{0}-i_{0}\right)\left(r_{0}+i_{0}+2(\gamma+\beta)\right)}{\left(r_{0}+\gamma+\beta\right)^{2}(\gamma-\beta)}- \\
& \frac{\delta\left(r_{0}-i_{0}\right)\left(r_{0}++i_{0}+4 \beta\right)}{\left(r_{0}+2 \beta\right)^{2}(\gamma-\beta)} \tag{7.11}
\end{align*}
$$

8. From Equation (7.3), we deduce that:

$$
\begin{align*}
\frac{\partial V_{0}}{\partial r(t)}= & \mathbb{E}\left[-\int_{0}^{\infty} t e^{-r(t) t}(r(t)-i(t)) D(t) \mathrm{d} t\right]+ \\
& \mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} \frac{\partial(r(t)-i(t))}{\partial r(t)} D(t) \mathrm{d} t\right]+ \\
& \mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t}(r(t)-i(t)) \frac{\partial D(t)}{\partial r(t)} \mathrm{d} t\right] \tag{7.12}
\end{align*}
$$

De Jong and Wielhouwer (2003) observe that the sensitivity of the net asset value is the sum of three components: the interest rate sensitivity of the expected discount margins, the margin sensitivity with respect to the market rate, and the impact of $r(t)$ on the deposit balance $D(t)$. Since we have:

$$
\frac{\partial(r(t)-i(t))}{\partial r_{0}}=e^{-\beta t}
$$

and:

$$
\frac{\partial D(t)}{\partial r_{0}}=-\frac{\delta\left(e^{-\beta t}-e^{-\gamma t}\right)}{\gamma-\beta}
$$

we deduce that:

$$
\begin{align*}
\frac{\partial V_{0}}{\partial r_{0}}= & -\left(r_{0}-i_{0}\right) \int_{0}^{\infty} t e^{-\left(r_{0}+\beta\right) t} D(t) \mathrm{d} t+ \\
& \alpha \int_{0}^{\infty} t e^{-r_{0} t}\left(\frac{1-e^{-\beta t}}{\beta}\right) D(t) \mathrm{d} t+\int_{0}^{\infty} e^{-\left(r_{0}+\beta\right) t} D(t) \mathrm{d} t- \\
& \frac{\delta\left(r_{0}-i_{0}\right)}{\gamma-\beta} \int_{0}^{\infty}\left(e^{-\left(r_{0}+2 \beta\right) t}-e^{-\left(r_{0}+\beta+\gamma\right) t}\right) \mathrm{d} t+ \\
& \frac{\alpha \delta}{\gamma-\beta} \int_{0}^{\infty}\left(e^{-\left(r_{0}+\beta\right) t}-e^{-\left(r_{0}+\gamma\right) t}\right)\left(\frac{1-e^{-\beta t}}{\beta}\right) \mathrm{d} t \tag{7.13}
\end{align*}
$$

This sensitivity can be computed analytically, but it is a complex formula with many terms. This is why it is better to calculate it using the Gauss-Legendre numerical integration method. The duration of deposits is then defined as:

$$
\mathcal{D}_{D}=-\frac{1}{V_{0}} \frac{\partial V_{0}}{\partial r_{0}}
$$

9. In Figure 7.1, we have represented the deposit rate $i(t)$ with respect to the time t. We notice that:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} i(t) & =\lim _{t \rightarrow \infty} i_{0}+\left(1-e^{-\beta t}\right)\left(r_{0}+\frac{\alpha}{\beta}-i_{0}\right) \\
& =r_{0}+\frac{\alpha}{\beta}
\end{aligned}
$$

Since the margin is equal to $r(t)-i(t)$, it is natural to assume that $\alpha<0$ in order to verify the condition ${ }^{4} i(t)<r(t)$. The dynamics of $D(t)$ is given in Figure 7.2. It depends on the relative position between D_{0} and D_{∞}. Another important parameter is the mean-reverting coefficient γ. In Figure 7.3, we have represented the mark-tomarket V_{0}, its sensitivity with respect to r_{0} and the corresponding duration. We notice that the normal case where $i_{0}<r_{0}$ corresponds to a negative duration, because the sensitivity is positive. We explain this result because $\alpha=0$ is not realistic, meaning that the margin is equal to zero on average. If we assume that α is negative or the margin is positive, we obtain a positive duration (see Figure 7.4). In particular, we verify that the duration of deposits is higher when market rates are low.

[^29]

FIGURE 7.1: Dynamics of the deposit rate $i(t)$

FIGURE 7.2: Dynamics of the deposit balance $D(t)$

FIGURE 7.3: Duration of deposits when α is equal to zero

Duration

FIGURE 7.4: Duration of deposits when the margin is positive

7.4.5 Impact of prepayment on the amortization scheme of the CAM

1. We deduce that the dynamics of $N(t)$ is equal to:

$$
\begin{aligned}
\mathrm{d} N(t) & =\mathbb{1}\{t<m\} \cdot N_{0} \frac{-i e^{-i(m-t)}}{1-e^{-i m}} \mathrm{~d} t \\
& =-i e^{-i(m-t)}\left(\mathbb{1}\{t<m\} \cdot N_{0} \frac{1}{1-e^{-i m}}\right) \mathrm{d} t \\
& =-\frac{i e^{-i(m-t)}}{1-e^{-i(m-t)}} N(t) \mathrm{d} t
\end{aligned}
$$

2. The prepayment rate has a negative impact on $\mathrm{d} N(t)$ because it reduces the outstanding amount $N(t)$:

$$
\mathrm{d} \tilde{N}(t)=-\frac{i e^{-i(m-t)}}{1-e^{-i(m-t)}} \tilde{N}(t) \mathrm{d} t-\lambda_{p}(t) \tilde{N}(t) \mathrm{d} t
$$

3. It follows that:

$$
\mathrm{d} \ln \tilde{N}(t)=-\left(\frac{i e^{-i(m-t)}}{1-e^{-i(m-t)}}+\lambda_{p}(t)\right) \mathrm{d} t
$$

and:

$$
\begin{aligned}
\ln \tilde{N}(t)-\ln \tilde{N}(0) & =\int_{0}^{t} \frac{-i e^{-i(m-s)}}{1-e^{-i(m-s)}} \mathrm{d} s-\int_{0}^{t} \lambda_{p}(s) \mathrm{d} s \\
& =\left[\ln \left(1-e^{-i(m-s)}\right)\right]_{0}^{t}-\int_{0}^{t} \lambda_{p}(s) \mathrm{d} s \\
& =\ln \left(\frac{1-e^{-i(m-t)}}{1-e^{-i m}}\right)-\int_{0}^{t} \lambda_{p}(s) \mathrm{d} s
\end{aligned}
$$

and:

$$
\begin{aligned}
\tilde{N}(t) & =\left(N_{0} \frac{1-e^{-i(m-t)}}{1-e^{-i m}}\right) e^{-\int_{0}^{t} \lambda_{p}(s) \mathrm{d} s} \\
& =N(t) \mathbf{S}_{p}(t)
\end{aligned}
$$

where $\mathbf{S}_{p}(t)$ is the survival function associated to the hazard rate $\lambda_{p}(t)$.
4. We have:

$$
\tilde{N}(t, u)=\mathbf{1}\{t \leq u<t+m\} \cdot N(t) \frac{1-e^{-i(t+m-u)}}{1-e^{-i m}} e^{-\lambda_{p}(u-t)}
$$

this implies that:

$$
\tilde{\mathbf{S}}(t, u)=\mathbf{1}\{t \leq u<t+m\} \cdot \frac{e^{-\lambda_{p}(u-t)}-e^{-i m+\left(i-\lambda_{p}\right)(u-t)}}{1-e^{-i m}}
$$

and:

$$
\tilde{f}(t, u)=1\{t \leq u<t+m\} \cdot \frac{\lambda_{p} e^{-\lambda_{p}(u-t)}+\left(i-\lambda_{p}\right) e^{-i m+\left(i-\lambda_{p}\right)(u-t)}}{1-e^{-i m}}
$$

It follows that:

$$
\begin{aligned}
\tilde{\mathcal{D}}(t)= & \frac{\lambda_{p}}{1-e^{-i m}} \int_{t}^{t+m}(u-t) e^{-\lambda_{p}(u-t)} \mathrm{d} u+ \\
& \frac{\left(i-\lambda_{p}\right) e^{-i m}}{1-e^{-i m}} \int_{t}^{t+m}(u-t) e^{\left(i-\lambda_{p}\right)(u-t)} \mathrm{d} u \\
= & \frac{\lambda_{p}}{1-e^{-i m}} \int_{0}^{m} v e^{-\lambda_{p} v} \mathrm{~d} v+\frac{\left(i-\lambda_{p}\right) e^{-i m}}{1-e^{-i m}} \int_{0}^{m} v e^{\left(i-\lambda_{p}\right) v} \mathrm{~d} v \\
= & \frac{\lambda_{p}}{1-e^{-i m}}\left(\frac{m e^{-\lambda_{p} m}}{-\lambda_{p}}-\frac{e^{-\lambda_{p} m}-1}{\lambda_{p}^{2}}\right)+ \\
& \frac{\left(i-\lambda_{p}\right) e^{-i m}}{1-e^{-i m}}\left(\frac{m e^{\left(i-\lambda_{p}\right) m}}{\left(i-\lambda_{p}\right)}-\frac{e^{\left(i-\lambda_{p}\right) m}-1}{\left(i-\lambda_{p}\right)^{2}}\right) \\
= & \frac{1}{1-e^{-i m}}\left(\frac{e^{-i m}-e^{-\lambda_{p} m}}{i-\lambda_{p}}+\frac{1-e^{-\lambda_{p} m}}{\lambda_{p}}\right)
\end{aligned}
$$

because we have:

$$
\begin{aligned}
\int_{0}^{m} v e^{\alpha v} \mathrm{~d} v & =\left[\frac{v e^{\alpha v}}{\alpha}\right]_{0}^{m}-\int_{0}^{m} \frac{e^{\alpha v}}{\alpha} \mathrm{~d} v \\
& =\left[\frac{v e^{\alpha v}}{\alpha}\right]_{0}^{m}-\left[\frac{e^{\alpha v}}{\alpha^{2}}\right]_{0}^{m} \\
& =\frac{m e^{\alpha m}}{\alpha}-\frac{e^{\alpha m}-1}{\alpha^{2}}
\end{aligned}
$$

Chapter 8

Systemic Risk and Shadow Banking System

Part II

Mathematical and Statistical Tools

Chapter 9

Model Risk of Exotic Derivatives

9.4.1 Option pricing and martingale measure

1. Since we have:

$$
V(t)=\phi(t) S(t)+\psi(t) B(t)
$$

we deduce that:

$$
\psi(t)=\frac{V(t)-\phi(t) S(t)}{B(t)}
$$

It follows that:

$$
\begin{aligned}
\mathrm{d} V(t) & =\phi(t) \mathrm{d} S(t)+\psi(t) \mathrm{d} B(t) \\
& =\phi(t) \mathrm{d} S(t)+r(V(t)-\phi(t) S(t)) \mathrm{d} t \\
& =r V(t) \mathrm{d} t+\phi(t)(\mathrm{d} S(t)-r S(t) \mathrm{d} t)
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
\mathrm{d} \tilde{S}(t) & =-r e^{-r t} S(t) \mathrm{d} t+e^{-r t} \mathrm{~d} S(t) \\
& =e^{-r t}(\mathrm{~d} S(t)-r S(t) \mathrm{d} t)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\mathrm{d} V(t) & =r V(t) \mathrm{d} t+\phi(t)(\mathrm{d} S(t)-r S(t) \mathrm{d} t) \\
& =r V(t) \mathrm{d} t+e^{r t} \phi(t) \mathrm{d} \tilde{S}(t)
\end{aligned}
$$

Finally, we deduce that:

$$
\begin{aligned}
\mathrm{d} \tilde{V}(t) & =-r e^{-r t} V(t) \mathrm{d} t+e^{-r t} \mathrm{~d} V(t) \\
& =-r e^{-r t} V(t) \mathrm{d} t+e^{-r t}\left(r V(t) \mathrm{d} t+e^{r t} \phi(t) \mathrm{d} \tilde{S}(t)\right) \\
& =\phi(t) \mathrm{d} \tilde{S}(t)
\end{aligned}
$$

3. Under the probability measure \mathbb{Q}, we remind that:

$$
\mathrm{d} S(t)=r S(t) \mathrm{d} t+\sigma S(t) \mathrm{d} W^{\mathbb{Q}}(t)
$$

Then, we have:

$$
\begin{aligned}
\mathrm{d} \tilde{S}(t) & =e^{-r t}(\mathrm{~d} S(t)-r S(t) \mathrm{d} t) \\
& =e^{-r t} \sigma S(t) \mathrm{d} W^{\mathbb{Q}}(t) \\
& =\sigma \tilde{S}(t) \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

We conclude that $\tilde{S}(t)$ is a martingale. Since $\mathrm{d} \tilde{V}(t)=\phi(t) \mathrm{d} \tilde{S}(t), \tilde{V}(t)$ is also a martingale. We deduce that:

$$
\tilde{V}(t)=\mathbb{E}^{\mathbb{Q}}\left[\tilde{V}(T) \mid \mathcal{F}_{t}\right]
$$

and:

$$
\begin{aligned}
V(t) & =e^{r t} \mathbb{E}^{\mathbb{Q}}\left[e^{-r T} V(T) \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\left[V(T) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

4. We have:

$$
\mathrm{d} S(t)=\mu S(t) \mathrm{d} t+\sigma S(t) \mathrm{d} W(t)
$$

and:

$$
\begin{aligned}
\mathrm{d} \tilde{S}(t) & =e^{-r t}(\mathrm{~d} S(t)-r S(t) \mathrm{d} t) \\
& =(\mu-r) \tilde{S}(t) \mathrm{d} t+\sigma \tilde{S}(t) \mathrm{d} W(t)
\end{aligned}
$$

We set:

$$
W^{\mathbb{Q}}(t)=W(t)+\left(\frac{\mu-r}{\sigma}\right) t
$$

Using Girsanov's theorem, we know that $W^{\mathbb{Q}}(t)$ is a Brownian motion under the probability measure \mathbb{Q} defined by:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}} & =M(t) \\
& =\exp \left(-\frac{1}{2} \int_{0}^{t}\left(\frac{\mu-r}{\sigma}\right)^{2} \mathrm{~d} s-\int_{0}^{t}\left(\frac{\mu-r}{\sigma}\right) \mathrm{d} W(s)\right)
\end{aligned}
$$

Moreover, we know that $M(t)$ is an \mathcal{F}_{t}-martingale.
5. We have:

$$
V(T)=\mathbb{1}\{S(T) \geq K\}
$$

and:

$$
\begin{aligned}
S(T) \geq K & \Leftrightarrow S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W^{\mathbb{Q}}(T)} \geq K \\
& \Leftrightarrow W^{\mathbb{Q}}(T) \geq \frac{1}{\sigma}\left(\ln K-\ln S_{0}-\left(r-\frac{1}{2} \sigma^{2}\right) T\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
V(0) & =e^{-r T} \mathbb{E}^{\mathbb{Q}}[\mathbb{1}\{S(T) \geq K\}] \\
& =e^{-r T} \operatorname{Pr}\{S(T) \geq K\} \\
& =e^{-r T} \operatorname{Pr}\left\{W^{\mathbb{Q}}(T) \geq \frac{1}{\sigma}\left(\ln K-\ln S_{0}-\left(r-\frac{1}{2} \sigma^{2}\right) T\right)\right\} \\
& =e^{-r T} \Phi\left(-\frac{1}{\sigma \sqrt{T}}\left(\ln K-\ln S_{0}-\left(r-\frac{1}{2} \sigma^{2}\right) T\right)\right)
\end{aligned}
$$

Therefore, the price of the binary option is:

$$
V(0)=e^{-r T} \Phi\left(\frac{1}{\sigma \sqrt{T}}\left(\ln \frac{S_{0}}{K}+r T\right)-\frac{1}{2} \sigma \sqrt{T}\right)
$$

9.4.2 The Vasicek model

1. We have:

$$
\frac{1}{2} \sigma^{2} \frac{\partial^{2} B(t, r)}{\partial r^{2}}+(a(b-r(t))-\lambda(t) \sigma) \frac{\partial B(t, r)}{\partial r}+\frac{\partial B(t, r)}{\partial t}-r(t) B(t, r)=0
$$

and:

$$
B(T, r(T))=1
$$

2. We remind that the solution of the Ornstein-Uhlenbeck process is:

$$
r(t)=r_{0} e^{-a t}+b\left(1-e^{-a t}\right)+\sigma \int_{0}^{t} e^{a(s-t)} \mathrm{d} W(s)
$$

It follows that:

$$
\begin{aligned}
Z & =\int_{0}^{T}\left(r_{0} e^{-a t}+b\left(1-e^{-a t}\right)+\sigma \int_{0}^{t} e^{a(s-t)} \mathrm{d} W(s)\right) \mathrm{d} t \\
& =r_{0}\left[-\frac{e^{-a t}}{a}\right]_{0}^{T}+b\left[t+\frac{e^{-a t}}{a}\right]_{0}^{T}+\sigma \int_{0}^{T} \int_{0}^{t} e^{a(s-t)} \mathrm{d} W(s) \mathrm{d} t \\
& =b T+\left(r_{0}-b\right)\left(\frac{1-e^{-a T}}{a}\right)+\sigma \int_{0}^{T} \int_{0}^{t} e^{a(s-t)} \mathrm{d} W(s) \mathrm{d} t
\end{aligned}
$$

We note $I=\int_{0}^{T} \int_{0}^{t} e^{a(s-t)} \mathrm{d} W(s) \mathrm{d} t$. Using Fubini's theorem for stochastic integrals, we have:

$$
\begin{aligned}
I & =\int_{0}^{T} \int_{t}^{T} e^{a(t-s)} \mathrm{d} s \mathrm{~d} W(t) \\
& =\int_{0}^{T} \frac{1-e^{-a(T-t)}}{a} \mathrm{~d} W(t)
\end{aligned}
$$

Since I is a sum of independent Gaussian random variables, it follows that Z is also a Gaussian random variable.
3. We have:

$$
\mathbb{E}[Z]=b T+\left(r_{0}-b\right)\left(\frac{1-e^{-a T}}{a}\right)
$$

and:

$$
\begin{aligned}
\operatorname{var}(Z) & =\mathbb{E}\left[\sigma \int_{0}^{T} \frac{1-e^{-a(T-t)}}{a} \mathrm{~d} W(t)\right]^{2} \\
& =\frac{\sigma^{2}}{a^{2}} \int_{0}^{T}\left(1-e^{-a(T-t)}\right)^{2} \mathrm{~d} t \\
& =\frac{\sigma^{2}}{a^{2}} \int_{0}^{T}\left(1-2 e^{-a(T-t)}+e^{-2 a(T-t)}\right) \mathrm{d} t \\
& =\frac{\sigma^{2}}{a^{2}}\left(T-\frac{2}{a}\left(1-e^{-a T}\right)+\frac{1}{2 a}\left(1-e^{-2 a T}\right)\right)
\end{aligned}
$$

Another expression is:

$$
\operatorname{var}(Z)=\frac{\sigma^{2}}{a^{2}}\left(T-\beta-\frac{a \beta^{2}}{2}\right)
$$

where:

$$
\beta=\frac{1-e^{-a T}}{a}
$$

4. We have:

$$
\begin{aligned}
B\left(0, r_{0}\right) & =\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{0}^{T} r(t) \mathrm{d} t} \mid \mathcal{F}_{0}\right] \\
& =\mathbb{E}^{\mathbb{Q}}\left[e^{-Z} \mid \mathcal{F}_{0}\right]
\end{aligned}
$$

Under the probability measure $\mathbb{Q}, r(t)$ is an Ornstein-Uhlenbeck process:

$$
\begin{aligned}
\mathrm{d} r(t) & =a(b-r(t)) \mathrm{d} t+\sigma \mathrm{d} W(t) \\
& =a(b-r(t)) \mathrm{d} t+\sigma\left(\mathrm{d} W^{\mathbb{Q}}(t)-\lambda \mathrm{d} t\right) \\
& =(a(b-r(t))-\lambda \sigma) \mathrm{d} t+\sigma \mathrm{d} W^{\mathbb{Q}}(t) \\
& =a\left(b^{\prime}-r(t)\right) \mathrm{d} t+\sigma \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

where:

$$
b^{\prime}=b-\frac{\lambda \sigma}{a}
$$

It follows that:

$$
B\left(0, r_{0}\right)=e^{-\mathbb{E}^{\mathbb{Q}}[Z]+\frac{1}{2} \operatorname{var}^{\mathbb{Q}}(Z)}
$$

and:

$$
\begin{aligned}
-\mathbb{E}^{\mathbb{Q}}[Z]+\frac{1}{2} \operatorname{var}^{\mathbb{Q}}(Z) & =-b^{\prime} T-\left(r_{0}-b^{\prime}\right) \beta+\frac{\sigma^{2}}{2 a^{2}}\left(T-\beta-\frac{a \beta^{2}}{2}\right) \\
& =-r_{0} \beta-b^{\prime}(T-\beta)+\frac{\sigma^{2}}{2 a^{2}}(T-\beta)-\frac{\sigma^{2} \beta^{2}}{4 a} \\
& =-r_{0} \beta-\left(b^{\prime}-\frac{\sigma^{2}}{2 a^{2}}\right)(T-\beta)-\frac{\sigma^{2} \beta^{2}}{4 a}
\end{aligned}
$$

Finally, we obtain:

$$
B\left(0, r_{0}\right)=\exp \left(-r_{0} \beta-\left(b^{\prime}-\frac{\sigma^{2}}{2 a^{2}}\right)(T-\beta)-\frac{\sigma^{2} \beta^{2}}{4 a}\right)
$$

9.4.3 The Black model

1. We have:

$$
\left\{\begin{array}{l}
\frac{1}{2} \sigma^{2} F^{2} \partial_{F}^{2} \mathcal{C}(t, F)+\partial_{t} \mathcal{C}(t, F)-r \mathcal{C}(t, F)=0 \\
\mathcal{C}(T, S(T))=\max (F(T)-K, 0)
\end{array}\right.
$$

2. The Feynman-Kac formula is:

$$
\mathcal{C}(0)=e^{-r T} \mathbb{E}\left[\max (F(T)-K, 0) \mid \mathcal{F}_{0}\right]
$$

We know that $F(T)$ is a log-normal random variable:

$$
F(T)=F_{0} e^{-\frac{1}{2} \sigma^{2} T+\sigma(W(T)-W(0))}
$$

We note $I=\mathbb{E}\left[\max (F(T)-K, 0) \mid \mathcal{F}_{0}\right]$. We obtain:

$$
\begin{aligned}
I & =\int_{-\infty}^{\infty}\left(F_{0} e^{-\frac{1}{2} \sigma^{2} T+\sigma \sqrt{T} u}-K\right)^{+} \phi(u) \mathrm{d} u \\
& =\int_{d}^{\infty}\left(F_{0} e^{-\frac{1}{2} \sigma^{2} T+\sigma \sqrt{T} u}-K\right) \phi(u) \mathrm{d} u \\
& =F_{0} e^{-\frac{1}{2} \sigma^{2} T} \int_{d}^{\infty} e^{\sigma \sqrt{T} u} \phi(u) \mathrm{d} u-K \int_{d}^{\infty} \phi(u) \mathrm{d} u
\end{aligned}
$$

where:

$$
d=-\frac{1}{\sigma \sqrt{T}} \ln \frac{F_{0}}{K}+\frac{1}{2} \sigma \sqrt{T}
$$

We have:

$$
\begin{aligned}
\int_{d}^{\infty} \phi(u) \mathrm{d} u & =1-\Phi(d) \\
& =\Phi(-d)
\end{aligned}
$$

and:

$$
\begin{aligned}
\int_{d}^{\infty} e^{\sigma \sqrt{T} u} \phi(u) \mathrm{d} u & =\int_{d}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\sigma \sqrt{T} u-\frac{1}{2} u^{2}} \mathrm{~d} u \\
& =e^{\frac{1}{2} \sigma^{2} T} \int_{d}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(u-\sigma \sqrt{T})^{2}} \mathrm{~d} u \\
& =e^{\frac{1}{2} \sigma^{2} T} \int_{d-\sigma \sqrt{T}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} v^{2}} \mathrm{~d} v \\
& =e^{\frac{1}{2} \sigma^{2} T}(1-\Phi(d-\sigma \sqrt{T})) \\
& =e^{\frac{1}{2} \sigma^{2} T} \Phi(-d+\sigma \sqrt{T})
\end{aligned}
$$

Finally, we deduce that:

$$
\begin{aligned}
\mathcal{C}(0) & =e^{-r T}\left(F_{0} e^{-\frac{1}{2} \sigma^{2} T} e^{\frac{1}{2} \sigma^{2} T} \Phi(-d+\sigma \sqrt{T})-K \Phi(-d)\right) \\
& =F_{0} e^{-r T} \Phi\left(d_{1}\right)-K e^{-r T} \Phi\left(d_{2}\right)
\end{aligned}
$$

where:

$$
d_{1}=\frac{1}{\sigma \sqrt{T}} \ln \frac{F_{0}}{K}+\frac{1}{2} \sigma \sqrt{T}
$$

and:

$$
d_{2}=\frac{1}{\sigma \sqrt{T}} \ln \frac{F_{0}}{K}-\frac{1}{2} \sigma \sqrt{T}
$$

3. Under the risk-neutral probability measure \mathbb{Q}, we have:

$$
\mathrm{d} S(t)=r S(t) \mathrm{d} t+\sigma S(t) \mathrm{d} W^{\mathbb{Q}}(t)
$$

The price of a future contract on this stock is equal to:

$$
F(t)=e^{-r t} S(t)
$$

Using Ito's lemma, we deduce that:

$$
\begin{aligned}
\mathrm{d} F(t) & =-r e^{-r t} S(t) \mathrm{d} t+e^{-r t} \mathrm{~d} S(t) \\
& =\sigma e^{-r t} S(t) \mathrm{d} W^{\mathbb{Q}}(t) \\
& =\sigma F(t) \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

We can then apply the Black formula to price an European option on $F(t)$.
4. In this case, the PDE representation becomes:

$$
\frac{1}{2} \sigma^{2} F^{2} \partial_{F}^{2} \mathcal{C}(t, F)+\partial_{t} \mathcal{C}(t, F)-r(t) \mathcal{C}(t, F)=0
$$

It follows that the Feynman-Kac formula is:

$$
\mathcal{C}(0)=\mathbb{E}\left[e^{-\int_{0}^{T} r(s) \mathrm{d} s} \max (F(T)-K, 0) \mid \mathcal{F}_{0}\right]
$$

Since $r(t)$ and $F(t)$ are independent, we obtain:

$$
\begin{aligned}
\mathcal{C}(0) & =\mathbb{E}\left[e^{-\int_{0}^{T} r(s) \mathrm{d} s} \mid \mathcal{F}_{0}\right] \cdot \mathbb{E}\left[\max (F(T)-K, 0) \mid \mathcal{F}_{0}\right] \\
& =B(0, T) \cdot\left(F_{0} \Phi\left(d_{1}\right)-K \Phi\left(d_{2}\right)\right)
\end{aligned}
$$

We deduce that the discount factor $e^{-r T}$ is replaced by the current bond price $B(0, T)$.
5. If $r(t)$ and $F(t)$ are not independent, the stochastic discount $\exp \left(-\int_{0}^{T} r(s) \mathrm{d} s\right)$ is not independent from the forward price $F(T)$ and we cannot separate the two terms in the mathematical expectation.
6. We remind that the price of the zero-coupon bond is given by:

$$
B(t, T)=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{t}^{T} r(s) \mathrm{d} s} \mid \mathcal{F}_{t}\right]
$$

The instantaneous forward rate $f(t, T)$ is defined as follows:

$$
f(t, T)=-\frac{\partial \ln B(t, T)}{\partial T}
$$

We consider that the numéraire is the bond price $B(t, T)$ and we note \mathbb{Q}^{\star} the associated forward probability measure.
(a) We have:

$$
\begin{aligned}
\frac{\partial B(t, T)}{\partial T} & =\frac{\partial}{\partial T} \mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{t}^{T} r(s) \mathrm{d} s} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}^{\mathbb{Q}}\left[\left.\frac{\partial e^{-\int_{t}^{T} r(s) \mathrm{d} s}}{\partial T} \right\rvert\, \mathcal{F}_{t}\right] \\
& =-\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{t}^{T} r(s) \mathrm{d} s} r(T) \mid \mathcal{F}_{t}\right] \\
& =-\mathbb{E}^{\mathbb{Q}}\left[\left.\frac{M(t)}{M(T)} r(T) \right\rvert\, \mathcal{F}_{t}\right]
\end{aligned}
$$

where $M(t)=\exp \left(\int_{0}^{t} r(s) \mathrm{d} s\right)$ is the spot numéraire. We consider the change of numéraire $(M(t) \longrightarrow N(t)=B(t, T))$ and we obtain:

$$
\begin{aligned}
\frac{\partial B(t, T)}{\partial T} & =-\mathbb{E}^{\mathbb{Q}^{\star}}\left[\left.\frac{N(t)}{N(T)} r(T) \right\rvert\, \mathcal{F}_{t}\right] \\
& =-N(t) \mathbb{E}^{\mathbb{Q}^{\star}}\left[r(T) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

because $N(T)=B(T, T)=1$. Since $r(T)=f(T, T)$, we deduce that:

$$
\frac{\partial B(t, T)}{\partial T}=-B(t, T) \mathbb{E}^{\mathbb{Q}^{*}}\left[f(T, T) \mid \mathcal{F}_{t}\right]
$$

(b) We have:

$$
\begin{aligned}
f(t, T) & =-\frac{\partial \ln B(t, T)}{\partial T} \\
& =-\frac{1}{B(t, T)} \frac{\partial B(t, T)}{\partial T} \\
& =\mathbb{E}^{\mathbb{Q}^{*}}\left[f(T, T) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

$f(t, T)$ is then an F_{t}-martingale under the forward probability measure \mathbb{Q}^{\star}.
(c) We know that:

$$
\begin{aligned}
\mathcal{C}(0) & =\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{0}^{T} r(s) \mathrm{d} s} \max (f(T, T)-K, 0) \mid \mathcal{F}_{0}\right] \\
& =\mathbb{E}^{\mathbb{Q}}\left[\left.\frac{M(t)}{M(T)} \max (f(T, T)-K, 0) \right\rvert\, \mathcal{F}_{0}\right]
\end{aligned}
$$

Using the change of numéraire $N(t)=B(t, T)$, we obtain:

$$
\begin{aligned}
\mathcal{C}(0) & =\mathbb{E}^{\mathbb{Q}^{\star}}\left[\left.\frac{N(t)}{N(T)} \max (f(T, T)-K, 0) \right\rvert\, \mathcal{F}_{0}\right] \\
& =B(t, T) \mathbb{E}^{\mathbb{Q}^{\star}}\left[\max (f(T, T)-K, 0) \mid \mathcal{F}_{0}\right]
\end{aligned}
$$

Using the Black model, we deduce that the price of the option is ${ }^{1}$:

$$
\mathcal{C}(0)=B(0, T) \cdot\left(r_{0} \Phi\left(d_{1}\right)-K \Phi\left(d_{2}\right)\right)
$$

where d_{1} and d_{2} are the two values defined previously.

9.4.4 Change of numéraire and the Girsanov theorem

Part one

1. Using Itô's lemma, we obtain:

$$
\mathrm{d}(X(t) Y(t))=X(t) \mathrm{d} Y(t)+Y(t) \mathrm{d} X(t)+\langle\mathrm{d} X(t), \mathrm{d} Y(t)\rangle
$$

and:

$$
\mathrm{d}\left(\frac{1}{Y(t)}\right)=-\frac{\mathrm{d} Y(t)}{Y^{2}(t)}+\frac{\langle\mathrm{d} Y(t), \mathrm{d} Y(t)\rangle}{Y^{3}(t)}
$$

[^30]2. Let $Z(t)$ be the ratio of $X(t)$ and $Y(t)$:
$$
Z(t)=\frac{X(t)}{Y(t)}
$$

We deduce that:

$$
\begin{aligned}
\mathrm{d} Z(t)= & X(t) \mathrm{d}\left(\frac{1}{Y(t)}\right)+\frac{1}{Y(t)} \mathrm{d} X(t)+\left\langle\mathrm{d} X(t), \mathrm{d}\left(\frac{1}{Y(t)}\right)\right\rangle \\
= & \frac{\mathrm{d} X(t)}{Y(t)}+X(t)\left(-\frac{\mathrm{d} Y(t)}{Y^{2}(t)}+\frac{\langle\mathrm{d} Y(t), \mathrm{d} Y(t)\rangle}{Y^{3}(t)}\right)+ \\
& \left\langle\mathrm{d} X(t),-\frac{\mathrm{d} Y(t)}{Y^{2}(t)}+\frac{\langle\mathrm{d} Y(t), \mathrm{d} Y(t)\rangle}{Y^{3}(t)}\right\rangle \\
= & \frac{\mathrm{d} X(t)}{Y(t)}-\frac{X(t)}{Y^{2}(t)} \mathrm{d} Y(t)+X(t) \frac{\langle\mathrm{d} Y(t), \mathrm{d} Y(t)\rangle}{Y^{3}(t)}- \\
& \frac{\langle\mathrm{d} X(t), \mathrm{d} Y(t)\rangle}{Y^{2}(t)}
\end{aligned}
$$

and:

$$
\begin{equation*}
\frac{\mathrm{d} Z(t)}{Z(t)}=\frac{\mathrm{d} X(t)}{X(t)}-\frac{\mathrm{d} Y(t)}{Y(t)}+\frac{\langle\mathrm{d} Y(t), \mathrm{d} Y(t)\rangle}{Y^{2}(t)}-\frac{\langle\mathrm{d} X(t), \mathrm{d} Y(t)\rangle}{X(t) Y(t)} \tag{9.1}
\end{equation*}
$$

Part two

1. The Girsanov theorem states that the change of probability only affects the drift and not the diffusion.
2. We have:

$$
\begin{aligned}
\mathrm{d} S(t) & =\mu_{S}^{\star}(t) S(t) \mathrm{d} t+\sigma_{S}(t) S(t) \mathrm{d} W^{\mathbb{Q}^{\star}}(t) \\
& =\mu_{S}^{\star}(t) S(t) \mathrm{d} t+\sigma_{S}(t) S(t)\left(\mathrm{d} W^{\mathbb{Q}}(t)-g(t) \mathrm{d} t\right) \\
& =\left(\mu_{S}^{\star}(t)-g(t) \sigma_{S}(t)\right) S(t) \mathrm{d} t+\sigma_{S}(t) S(t) \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

If follows that:

$$
\mu_{S}^{\star}(t)-g(t) \sigma_{S}(t)=\mu_{S}(t)
$$

or:

$$
g(t)=\frac{\mu_{S}^{\star}(t)-\mu_{S}(t)}{\sigma_{S}(t)}
$$

Using Girsanov's theorem, we deduce that the Radon-Nikodym derivative is equal to:

$$
\begin{aligned}
Z(t) & =\frac{\mathrm{d} \mathbb{Q}^{\star}}{\mathrm{d} \mathbb{Q}} \\
& =\exp \left(\int_{0}^{t} g(s) \mathrm{d} W^{\mathbb{Q}}(s)-\frac{1}{2} \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)
\end{aligned}
$$

We know that $Z(t)$ is an \mathcal{F}_{t}-martingale and we have:

$$
\frac{\mathrm{d} Z(t)}{Z(t)}=g(t) \mathrm{d} W^{\mathbb{Q}}(t)
$$

3. We have:

$$
Z(t)=\frac{M(0)}{N(0)} \frac{N(t)}{M(t)}
$$

Using Equation (9.1), we have:

$$
\begin{aligned}
\frac{\mathrm{d} Z(t)}{Z(t)}= & \mu_{N}(t) \mathrm{d} t+\sigma_{N}(t) \mathrm{d} W^{\mathbb{Q}}(t)- \\
& \left(\mu_{M}(t) \mathrm{d} t+\sigma_{M}(t) \mathrm{d} W^{\mathbb{Q}}(t)\right)+ \\
& \sigma_{M}^{2}(t) \mathrm{d} t-\sigma_{N}(t) \sigma_{M}(t) \mathrm{d} t \\
= & \left(\mu_{N}(t)-\mu_{M}(t)\right) \mathrm{d} t-\sigma_{M}(t)\left(\sigma_{N}(t)-\sigma_{M}(t)\right) \mathrm{d} t+ \\
& \left(\sigma_{N}(t)-\sigma_{M}(t)\right) \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

We deduce that:

$$
g(t)=\sigma_{N}(t)-\sigma_{M}(t)
$$

and:

$$
\mu_{N}(t)=\mu_{M}(t)+\sigma_{M}(t)\left(\sigma_{N}(t)-\sigma_{M}(t)\right)
$$

4. Since $g(t)=\sigma_{N}(t)-\sigma_{M}(t)$, it follows that:

$$
\begin{align*}
\mu_{S}^{\star}(t) & =\mu_{S}(t)+g(t) \sigma_{S}(t) \\
& =\mu_{S}(t)+\sigma_{S}(t)\left(\sigma_{N}(t)-\sigma_{M}(t)\right) \tag{9.2}
\end{align*}
$$

5. We have:

$$
\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \frac{\mathrm{d} N(t)}{N(t)}\right\rangle=\sigma_{S}(t) \sigma_{N}(t) \mathrm{d} t
$$

and:

$$
\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \frac{\mathrm{d} M(t)}{M(t)}\right\rangle=\sigma_{S}(t) \sigma_{M}(t) \mathrm{d} t
$$

We conclude that Equation (9.2) is equivalent to:

$$
\mu_{S}^{\star}(t) \mathrm{d} t-\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \frac{\mathrm{d} N(t)}{N(t)}\right\rangle=\mu_{S}(t) \mathrm{d} t-\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \frac{\mathrm{d} M(t)}{M(t)}\right\rangle
$$

We also notice that:

$$
\begin{aligned}
\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \mathrm{d} \ln \frac{N(t)}{M(t)}\right\rangle & =\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \frac{\mathrm{d} Z(t)}{Z(t)}\right\rangle \\
& =\sigma_{S}(t)\left(\sigma_{N}(t)-\sigma_{M}(t)\right) \mathrm{d} t
\end{aligned}
$$

and:

$$
\mu_{S}^{\star}(t) \mathrm{d} t=\mu_{S}(t) \mathrm{d} t+\left\langle\frac{\mathrm{d} S(t)}{S(t)}, \mathrm{d} \ln \frac{N(t)}{M(t)}\right\rangle
$$

Part three

1. Using Equation (9.1), we obtain:

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}= & \frac{\mathrm{d} S(t)}{S(t)}-\frac{\mathrm{d} N(t)}{N(t)}+\frac{\langle\mathrm{d} N(t), \mathrm{d} N(t)\rangle}{N^{2}(t)}-\frac{\langle\mathrm{d} S(t), \mathrm{d} N(t)\rangle}{S(t) N(t)} \\
= & r(t) \mathrm{d} t+\sigma_{S}(t) \mathrm{d} W_{S}^{\mathbb{Q}}(t)-\left(r(t) \mathrm{d} t+\sigma_{N}(t) \mathrm{d} W_{N}^{\mathbb{Q}}(t)\right)+ \\
= & \sigma_{N}^{2}(t) \mathrm{d} t-\rho \sigma_{S}(t) \sigma_{N}(t) \mathrm{d} t \\
= & \left(\sigma_{N}^{2}(t)-\rho \sigma_{S}(t) \sigma_{N}(t)\right) \mathrm{d} t+\sigma_{S}(t) \mathrm{d} W_{S}^{\mathbb{Q}}(t)- \\
& \sigma_{N}(t) \mathrm{d} W_{N}^{\mathbb{Q}}(t)
\end{aligned}
$$

(a) We have:

$$
\mathrm{d} N(t)=r(t) N(t) \mathrm{d} t
$$

and:

$$
N(t)=e^{\int_{0}^{t} r(s) \mathrm{d} s}
$$

We deduce that the discounted asset price is:

$$
\begin{aligned}
\tilde{S}(t) & =\frac{S(t)}{N(t)} \\
& =e^{-\int_{0}^{t} r(s) \mathrm{d} s} S(t)
\end{aligned}
$$

Since $\sigma_{N}(t)$ is equal to zero, it follows that:

$$
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}=\sigma_{S}(t) \mathrm{d} W_{S}^{\mathbb{Q}}(t)
$$

We conclude that $\tilde{S}(t)$ is an \mathcal{F}_{t}-martingale under the risk-neutral probability measure \mathbb{Q}.
(b) We note:

$$
W^{\mathbb{Q}}(t)=W_{S}^{\mathbb{Q}}(t)=W_{N}^{\mathbb{Q}}(t)
$$

The Girsanov theorem gives ${ }^{2}$:

$$
\mathrm{d} W^{\mathbb{Q}^{\star}}(t)=\mathrm{d} W^{\mathbb{Q}}(t)-\sigma_{N}(t) \mathrm{d} t
$$

and:

$$
\mathrm{d} W^{\mathbb{Q}}(t)=\mathrm{d} W^{\mathbb{Q}^{\star}}(t)+\sigma_{N}(t) \mathrm{d} t
$$

We deduce that:

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}= & \left(\sigma_{N}^{2}(t)-\sigma_{S}(t) \sigma_{N}(t)\right) \mathrm{d} t+\left(\sigma_{S}(t)-\sigma_{N}(t)\right) \mathrm{d} W^{\mathbb{Q}}(t) \\
= & \left(\sigma_{N}^{2}(t)-\sigma_{S}(t) \sigma_{N}(t)\right) \mathrm{d} t+\left(\sigma_{S}(t)-\sigma_{N}(t)\right) \sigma_{N}(t) \mathrm{d} t \\
& \left(\sigma_{S}(t)-\sigma_{N}(t)\right) \mathrm{d} W^{\mathbb{Q}^{\star}}(t) \\
= & \tilde{\sigma}(t) \mathrm{d} W^{\mathbb{Q}^{\star}}(t)
\end{aligned}
$$

where:

$$
\tilde{\sigma}(t)=\sigma_{S}(t)-\sigma_{N}(t)
$$

(c) Let us introduce the Brownian motion $\tilde{W}^{\mathbb{Q}}(t)$ such that:

$$
\tilde{\sigma}(t) \mathrm{d} \tilde{W}^{\mathbb{Q}}(t)=\sigma_{S}(t) \mathrm{d} W_{S}^{\mathbb{Q}}(t)-\sigma_{N}(t) \mathrm{d} W_{N}^{\mathbb{Q}}(t)
$$

We have:

$$
\tilde{\sigma}^{2}(t)=\sigma_{S}^{2}(t)-2 \rho \sigma_{S}(t) \sigma_{N}(t)+\sigma_{N}^{2}(t)
$$

We conclude that the risk-neutral dynamics of $\tilde{S}(t)$ is given by:

$$
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}=\left(\sigma_{N}^{2}(t)-\rho \sigma_{S}(t) \sigma_{N}(t)\right) \mathrm{d} t+\tilde{\sigma}(t) \mathrm{d} \tilde{W}^{\mathbb{Q}}(t)
$$

[^31]We now consider the following decomposition:

$$
W_{S}^{\mathbb{Q}}(t)=\rho W_{N}^{\mathbb{Q}}(t)+\sqrt{1-\rho^{2}} W_{S}^{\perp}(t)
$$

where $W_{S}^{\perp}(t) \perp W_{S}^{\mathbb{Q}}(t)$. We deduce that:

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}= & \left(\sigma_{N}^{2}(t)-\rho \sigma_{S}(t) \sigma_{N}(t)\right) \mathrm{d} t+ \\
& \left(\rho \sigma_{S}(t)-\sigma_{N}(t)\right) \mathrm{d} W_{N}^{\mathbb{Q}}(t)+\sigma_{S}(t) \sqrt{1-\rho^{2}} \mathrm{~d} W_{S}^{\perp}(t)
\end{aligned}
$$

Since we have:

$$
\mathrm{d} W^{\mathbb{Q}^{\star}}(t)=\mathrm{d} W_{N}^{\mathbb{Q}}(t)-\sigma_{N}(t) \mathrm{d} t
$$

we obtain:

$$
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}=\left(\rho \sigma_{S}(t)-\sigma_{N}(t)\right) \mathrm{d} W^{\mathbb{Q}^{\star}}(t)+\sigma_{S}(t) \sqrt{1-\rho^{2}} \mathrm{~d} W_{S}^{\perp}(t)
$$

We notice that:

$$
\tilde{\sigma}(t) \mathrm{d} \tilde{W}^{\mathbb{Q}^{\star}}(t)=\left(\rho \sigma_{S}(t)-\sigma_{N}(t)\right) \mathrm{d} W^{\mathbb{Q}^{\star}}(t)+\sigma_{S}(t) \sqrt{1-\rho^{2}} \mathrm{~d} W_{S}^{\perp}(t)
$$

We deduce that:

$$
\frac{\mathrm{d} \tilde{S}(t)}{\tilde{S}(t)}=\tilde{\sigma}(t) \mathrm{d} \tilde{W}^{\mathbb{Q}^{*}}(t)
$$

9.4.5 The HJM model and the forward probability measure

1. Since we have:

$$
N(t)=B\left(t, T_{2}\right)=e^{-\int_{t}^{T_{2}} f(t, u) \mathrm{d} u}
$$

we deduce that the Radon-Nikodym derivative is given by:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbb{Q}^{\star}}{\mathrm{d} \mathbb{Q}} & =\frac{M(0) N\left(T_{2}\right)}{N\left(T_{2}\right) N(0)} \\
& =e^{-\int_{0}^{T_{2}} r(t) \mathrm{d} t} \frac{N\left(T_{2}\right)}{N(0)} \\
& =e^{-\int_{0}^{T_{2}}(r(t)-f(0, t)) \mathrm{d} t}
\end{aligned}
$$

2. We have seen that the dynamics of the instantaneous spot rate is:

$$
r(t)=r(0)+\int_{0}^{t}\left(\sigma(s, t) \int_{s}^{t} \sigma(s, u) \mathrm{d} u\right) \mathrm{d} s+\int_{0}^{t} \sigma(s, t) \mathrm{d} W^{\mathbb{Q}}(s)
$$

It follows that:

$$
r(t)-f(0, t)=\int_{0}^{t}\left(\sigma(s, t) \int_{s}^{t} \sigma(s, u) \mathrm{d} u\right) \mathrm{d} s+\int_{0}^{t} \sigma(s, t) \mathrm{d} W^{\mathbb{Q}}(s)
$$

Using Fubini's theorem, we have:

$$
\begin{aligned}
\int_{0}^{T_{2}}(r(t)-f(0, t)) \mathrm{d} t= & \int_{0}^{T_{2}}\left(\int_{0}^{t}\left(\sigma(s, t) \int_{s}^{t} \sigma(s, u) \mathrm{d} u\right) \mathrm{d} s\right) \mathrm{d} t+ \\
& \int_{0}^{T_{2}}\left(\int_{0}^{t} \sigma(s, t) \mathrm{d} W^{\mathbb{Q}}(s)\right) \mathrm{d} t \\
= & \int_{0}^{T_{2}}\left(\int_{s}^{T_{2}}\left(\sigma(s, t) \int_{v}^{t} \sigma(s, u) \mathrm{d} u\right) \mathrm{d} t\right) \mathrm{d} s+ \\
& \int_{0}^{T_{2}}\left(\int_{s}^{T_{2}} \sigma(s, t) \mathrm{d} t\right) \mathrm{d} W^{\mathbb{Q}}(s)
\end{aligned}
$$

We remind that:

$$
\begin{aligned}
a\left(t, T_{2}\right) & =-\int_{t}^{T_{2}} \alpha(t, v) \mathrm{d} v \\
& =-\int_{t}^{T_{2}}\left(\sigma(t, v) \int_{t}^{v} \sigma(t, u) \mathrm{d} u\right) \mathrm{d} v
\end{aligned}
$$

and:

$$
b\left(t, T_{2}\right)=-\int_{t}^{T_{2}} \sigma(t, v) \mathrm{d} v
$$

We deduce that:

$$
\int_{0}^{T_{2}}(r(t)-f(0, t)) \mathrm{d} t=-\int_{0}^{T_{2}} a\left(t, T_{2}\right) \mathrm{d} t-\int_{0}^{T_{2}} b\left(t, T_{2}\right) \mathrm{d} W^{\mathbb{Q}}(t)
$$

Finally, we conclude that:

$$
\frac{\mathrm{d} \mathbb{Q}^{\star}}{\mathrm{d} \mathbb{Q}}=e^{\int_{0}^{T_{2}} a\left(t, T_{2}\right) \mathrm{d} t+\int_{0}^{T_{2}} b\left(t, T_{2}\right) \mathrm{d} W^{\mathbb{Q}}(t)}
$$

3. Since the no-arbitrage condition in the HJM model is:

$$
a\left(t, T_{2}\right)+\frac{1}{2} b^{2}\left(t, T_{2}\right)=0
$$

we obtain:

$$
\frac{\mathrm{d} \mathbb{Q}^{\star}}{\mathrm{d} \mathbb{Q}}=e^{\int_{0}^{T_{2}} g(t) \mathrm{d} W^{\mathbb{Q}}(t)-\frac{1}{2} \int_{0}^{T_{2}} g^{2}(t) \mathrm{d} t}
$$

where:

$$
g(t)=b\left(t, T_{2}\right)
$$

The Girsanov theorem states that:

$$
W^{\mathbb{Q}^{\star}\left(T_{2}\right)}(t)=W^{\mathbb{Q}}(t)-\int_{0}^{t} g(s) \mathrm{d} s
$$

is a Brownian motion under the forward probability measure $\mathbb{Q}^{\star}\left(T_{2}\right)$. We deduce that:

$$
W^{\mathbb{Q}^{\star}\left(T_{2}\right)}(t)=W^{\mathbb{Q}}(t)-\int_{0}^{t} b\left(s, T_{2}\right) \mathrm{d} s
$$

4. We have:

$$
\mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{2}\right)}(t)=\mathrm{d} W^{\mathbb{Q}}(t)-b\left(t, T_{2}\right) \mathrm{d} t
$$

It follows that:

$$
\begin{aligned}
\mathrm{d} f\left(t, T_{1}\right) & =\alpha\left(t, T_{1}\right) \mathrm{d} t+\sigma\left(t, T_{1}\right) \mathrm{d} W^{\mathbb{Q}}(t) \\
& =\alpha\left(t, T_{1}\right) \mathrm{d} t+\sigma\left(t, T_{1}\right)\left(\mathrm{d} W^{\mathbb{Q}^{\star}}(t)+b\left(t, T_{2}\right) \mathrm{d} t\right) \\
& =\left(\alpha\left(t, T_{1}\right)+\sigma\left(t, T_{1}\right) b\left(t, T_{2}\right)\right) \mathrm{d} t+\sigma\left(t, T_{1}\right) \mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{2}\right)}(t)
\end{aligned}
$$

Since we have:

$$
\begin{aligned}
\alpha\left(t, T_{1}\right)+\sigma\left(t, T_{1}\right) b\left(t, T_{2}\right)= & \sigma\left(t, T_{1}\right) \int_{t}^{T_{1}} \sigma(t, u) \mathrm{d} u- \\
& \sigma\left(t, T_{1}\right) \int_{t}^{T_{2}} \sigma(t, u) \mathrm{d} u
\end{aligned}
$$

We conclude that:

$$
\mathrm{d} f\left(t, T_{1}\right)=-\left(\sigma\left(t, T_{1}\right) \int_{T_{1}}^{T_{2}} \sigma(t, u) \mathrm{d} u\right) \mathrm{d} t+\sigma\left(t, T_{1}\right) \mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{2}\right)}(t)
$$

5. When T_{2} is equal to T_{1}, we have:

$$
\int_{T_{1}}^{T_{1}} \sigma(t, u) \mathrm{d} u=0
$$

and:

$$
\mathrm{d} f\left(t, T_{1}\right)=\sigma\left(t, T_{1}\right) \mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{1}\right)}(t)
$$

We deduce that $f\left(t, T_{1}\right)$ is a martingale under the forward probability measure $\mathbb{Q}^{\star}\left(T_{1}\right)$.
6. (a) Let $s \leq t$. We have:

$$
\frac{B(t, T)}{B(s, T)}=e^{\int_{s}^{t}\left(r(u)-\frac{1}{2} b^{2}(u, T)\right) \mathrm{d} u+b(u, T) \mathrm{d} W^{\mathbb{Q}}(u)}
$$

and:

$$
\begin{aligned}
\frac{B\left(t, T_{2}\right)}{B\left(t, T_{1}\right)} & =\frac{B\left(s, T_{2}\right) e^{\int_{s}^{t}\left(r(u)-\frac{1}{2} b^{2}\left(u, T_{2}\right)\right) \mathrm{d} u+b\left(u, T_{2}\right) \mathrm{d} W^{\mathbb{Q}}(u)}}{B\left(s, T_{1}\right) e^{\int_{s}^{t}\left(r(u)-\frac{1}{2} b^{2}\left(u, T_{1}\right)\right) \mathrm{d} u+b\left(u, T_{1}\right) \mathrm{d} W^{\mathbb{Q}}(u)}} \\
& =\frac{B\left(s, T_{2}\right)}{B\left(s, T_{1}\right)} e^{X(s, t)}
\end{aligned}
$$

where:

$$
\begin{aligned}
X(s, t)= & -\frac{1}{2} \int_{s}^{t}\left(b^{2}\left(u, T_{2}\right)-b^{2}\left(u, T_{1}\right)\right) \mathrm{d} u+ \\
& \int_{s}^{t}\left(b\left(u, T_{2}\right)-b\left(u, T_{1}\right)\right) \mathrm{d} W^{\mathbb{Q}}(u)
\end{aligned}
$$

(b) We have:

$$
\mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{1}\right)}(t)=\mathrm{d} W^{\mathbb{Q}}(t)-b\left(t, T_{1}\right) \mathrm{d} t
$$

We deduce that:

$$
\begin{aligned}
X(s, t)= & -\frac{1}{2} \int_{s}^{t}\left(b^{2}\left(u, T_{2}\right)-b^{2}\left(u, T_{1}\right)\right) \mathrm{d} u+ \\
& \int_{s}^{t}\left(b\left(u, T_{2}\right)-b\left(u, T_{1}\right)\right) \mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{1}\right)}(u)+ \\
& \int_{s}^{t}\left(b\left(u, T_{2}\right)-b\left(u, T_{1}\right)\right) b\left(u, T_{1}\right) \mathrm{d} u \\
= & -\frac{1}{2} \int_{s}^{t}\left(b\left(u, T_{2}\right)-b\left(u, T_{1}\right)\right)^{2} \mathrm{~d} u+ \\
& \int_{s}^{t}\left(b\left(u, T_{2}\right)-b\left(u, T_{1}\right)\right) \mathrm{d} W^{\mathbb{Q}^{\star}\left(T_{1}\right)}(u)
\end{aligned}
$$

We notice that $e^{X(s, t)}$ is an exponential martingale:

$$
\mathbb{E}\left[e^{X(s, t)} \mathcal{F}_{s}\right]=e^{X(s, s)}=1
$$

We conclude that:

$$
\begin{aligned}
\mathbb{E}\left[\frac{B\left(t, T_{2}\right)}{B\left(t, T_{1}\right)} \mathcal{F}_{s}\right] & =\mathbb{E}\left[\frac{B\left(s, T_{2}\right)}{B\left(s, T_{1}\right)} e^{X(s, t)} \mathcal{F}_{s}\right] \\
& =\frac{B\left(s, T_{2}\right)}{B\left(s, T_{1}\right)}
\end{aligned}
$$

9.4.6 Equivalent martingale measure in the Libor market model

1. Since we have:

$$
\begin{aligned}
\frac{B\left(t, T_{j}\right)}{B\left(t, T_{j+1}\right)} & =1+\left(T_{j+1}-T_{j}\right) L\left(t, T_{j}, T_{j+1}\right) \\
& =1+\delta_{j} L_{j}(t)
\end{aligned}
$$

we obtain:

$$
\frac{B\left(t, T_{j+1}\right)}{B\left(t, T_{j}\right)}=\frac{1}{1+\delta_{j} L_{j}(t)}
$$

It follows that:

$$
\begin{aligned}
\frac{B\left(t, T_{k+1}\right)}{B\left(t, T_{i+1}\right)} & =\frac{B\left(t, T_{k+1}\right)}{B\left(t, T_{k}\right)} \times \frac{B\left(t, T_{k}\right)}{B\left(t, T_{k-1}\right)} \times \cdots \times \frac{B\left(t, T_{i+2}\right)}{B\left(t, T_{i+1}\right)} \\
& =\prod_{j=i+1}^{k} \frac{B\left(t, T_{j+1}\right)}{B\left(t, T_{j}\right)} \\
& =\prod_{j=i+1}^{k} \frac{1}{1+\delta_{j} L_{j}(t)}
\end{aligned}
$$

2. We remind that:

$$
M(t)=B\left(t, T_{i+1}\right)
$$

and:

$$
N(t)=B\left(t, T_{k+1}\right)
$$

We have:

$$
\begin{aligned}
Z(t) & =\frac{\mathrm{d} \mathbb{Q}^{\star}\left(T_{k+1}\right)}{\mathrm{d} \mathbb{Q}^{\star}\left(T_{i+1}\right)} \\
& =\frac{N(t) / N(0)}{M(t) / M(0)}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
Z(t) & =\frac{B\left(0, T_{i+1}\right) B\left(t, T_{k+1}\right)}{B\left(0, T_{k+1}\right) B\left(t, T_{i+1}\right)} \\
& =\frac{B\left(0, T_{i+1}\right)}{B\left(0, T_{k+1}\right)} \prod_{j=i+1}^{k} \frac{1}{1+\delta_{j} L_{j}(t)}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\mathrm{d} \ln Z(t) & =\mathrm{d}\left(\frac{B\left(0, T_{i+1}\right)}{B\left(0, T_{k+1}\right)} \prod_{j=i+1}^{k} \frac{1}{1+\delta_{j} L_{j}(t)}\right) \\
& =-\sum_{j=i+1}^{k} \mathrm{~d} \ln \left(1+\delta_{j} L_{j}(t)\right) \\
& =-\sum_{j=i+1}^{k} \frac{\mathrm{~d}\left(1+\delta_{j} L_{j}(t)\right)}{1+\delta_{j} L_{j}(t)} \\
& =-\sum_{j=i+1}^{k} \frac{\delta_{j} \mathrm{~d} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \\
& =-\sum_{j=i+1}^{k} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \mathrm{d} W_{j}^{\mathbb{Q}^{\star}\left(T_{j+1}\right)}(t)
\end{aligned}
$$

4. We obtain:

$$
\begin{aligned}
\zeta & =\left\langle\frac{\mathrm{d} L_{i}(t)}{L_{i}(t)}, \mathrm{d} \ln Z(t)\right\rangle \\
& =\left\langle\gamma_{i}(t) \mathrm{d} W_{i}^{\mathbb{Q}^{\star}}(t),-\sum_{j=i+1}^{k} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \mathrm{d} W_{j}^{\mathbb{Q}^{\star}\left(T_{j+1}\right)}(t)\right\rangle \\
& =-\gamma_{i}(t) \sum_{j=i+1}^{k} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)}\left\langle\mathrm{d} W_{i}^{\mathbb{Q}^{\star}\left(T_{i+1}\right)}(t), \mathrm{d} W_{j}^{\mathbb{Q}^{\star}\left(T_{j+1}\right)}(t)\right\rangle \\
& =-\gamma_{i}(t) \sum_{j=i+1}^{k} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \rho_{i, j} \mathrm{~d} t
\end{aligned}
$$

5. Under the probability measure $\mathbb{Q}^{\star}\left(T_{i+1}\right)$, we have:

$$
\frac{\mathrm{d} L_{i}(t)}{L_{i}(t)}=\mu_{i}(t) \mathrm{d} t+\gamma_{i}(t) \mathrm{d} W_{i}^{\mathbb{Q}^{\star}\left(T_{i+1}\right)}(t)
$$

where $\mu_{i}(t)=0$. In Question 5, Part two, Exercise 9.4.4, we have shown that:

$$
\frac{\mathrm{d} L_{i}(t)}{L_{i}(t)}=\mu_{i, k}(t) \mathrm{d} t+\gamma_{i}(t) \mathrm{d} W_{k}^{\mathbb{Q}^{\star}\left(T_{k+1}\right)}(t)
$$

where:

$$
\mu_{i, k}(t) \mathrm{d} t=\mu_{i}(t) \mathrm{d} t+\left\langle\frac{\mathrm{d} L_{i}(t)}{L_{i}(t)}, \mathrm{d} \ln Z(t)\right\rangle
$$

We deduce that:

$$
\begin{aligned}
\mu_{i, k}(t) & =\mu_{i}(t)-\gamma_{i}(t) \sum_{j=i+1}^{k} \rho_{i, j} \gamma_{j}(t) \frac{\delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \\
& =-\gamma_{i}(t) \sum_{j=i+1}^{k} \rho_{i, j} \gamma_{j}(t) \frac{\left(T_{j+1}-T_{j}\right) L\left(t, T_{j}, T_{j+1}\right)}{1+\left(T_{j+1}-T_{j}\right) L\left(t, T_{j}, T_{j+1}\right)}
\end{aligned}
$$

6. If $T_{k+1}<T_{i+1}$, we have:

$$
\begin{aligned}
\frac{B\left(t, T_{k+1}\right)}{B\left(t, T_{i+1}\right)} & =\frac{B\left(t, T_{k+1}\right)}{B\left(t, T_{k+2}\right)} \times \frac{B\left(t, T_{k+2}\right)}{B\left(t, T_{k+3}\right)} \times \cdots \times \frac{B\left(t, T_{i}\right)}{B\left(t, T_{i+1}\right)} \\
& =\prod_{j=k+1}^{i} \frac{B\left(t, T_{j}\right)}{B\left(t, T_{j+1}\right)} \\
& =\prod_{j=k+1}^{i}\left(1+\delta_{j} L_{j}(t)\right)
\end{aligned}
$$

We deduce that:

$$
Z(t)=\frac{B\left(0, T_{i+1}\right)}{B\left(0, T_{k+1}\right)} \prod_{j=k+1}^{i}\left(1+\delta_{j} L_{j}(t)\right)
$$

It follows that:

$$
\mathrm{d} \ln Z(t)=\sum_{j=k+1}^{i} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \mathrm{d} W_{j}^{\mathbb{Q}^{\star}\left(T_{j+1}\right)}(t)
$$

and:

$$
\zeta=\gamma_{i}(t) \sum_{j=k+1}^{i} \frac{\gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \rho_{i, j} \mathrm{~d} t
$$

We conclude that:

$$
\frac{\mathrm{d} L_{i}(t)}{L_{i}(t)}=\gamma_{i}(t) \sum_{j=k+1}^{i} \frac{\rho_{i, j} \gamma_{j}(t) \delta_{j} L_{j}(t)}{1+\delta_{j} L_{j}(t)} \mathrm{d} t+\gamma_{i}(t) \mathrm{d} W_{k}^{\mathbb{Q}^{\star}\left(T_{k+1}\right)}(t)
$$

9.4.7 Displaced diffusion option pricing

1. We have:

$$
\begin{aligned}
\mathrm{d} S(t)= & \left(\partial_{t} \alpha(t)+\partial_{t} \beta(t) X(t)+\beta(t) \mu(t, X(t))\right) \mathrm{d} t+ \\
& \beta(t) \sigma(t, X(t)) \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
b S(t) & =\partial_{t} \alpha(t)+\partial_{t} \beta(t) X(t)+\beta(t) \mu(t, X(t)) \\
& =\partial_{t} \alpha(t)+\partial_{t} \beta(t)\left(\frac{S(t)-\alpha(t)}{\beta(t)}\right)+\beta(t) \mu\left(t, \frac{S(t)-\alpha(t)}{\beta(t)}\right)
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
b S(t) & =\partial_{t} \alpha(t)+\partial_{t} \beta(t)\left(\frac{S(t)-\alpha(t)}{\beta(t)}\right)+\mu(t) \beta(t)\left(\frac{S(t)-\alpha(t)}{\beta(t)}\right) \\
& =\partial_{t} \alpha(t)-\left(\frac{\partial_{t} \beta(t)}{\beta(t)}+\mu(t)\right) \alpha(t)+\left(\frac{\partial_{t} \beta(t)}{\beta(t)}+\mu(t)\right) S(t)
\end{aligned}
$$

meaning that:

$$
\left\{\begin{array}{l}
\partial_{t} \alpha(t)-\left(\beta(t)^{-1} \partial_{t} \beta(t)+\mu(t)\right) \alpha(t)=0 \\
\beta(t)^{-1} \partial_{t} \beta(t)+\mu(t)=b
\end{array}\right.
$$

We deduce that:

$$
\partial_{t} \alpha(t)-b \alpha(t)=0
$$

and:

$$
\alpha(t)=\alpha_{0} e^{b t}
$$

We also have:

$$
\frac{\partial_{t} \beta(t)}{\beta(t)}=b-\mu(t)
$$

and:

$$
\beta(t)=\beta_{0} e^{\int_{0}^{t}(b-\mu(s)) \mathrm{d} s}
$$

3. We deduce that:

$$
\begin{equation*}
\mathrm{d} S(t)=b S(t) \mathrm{d} t+\beta(t)^{1-\gamma} \sigma(t)(S(t)-\alpha(t))^{\gamma} \mathrm{d} W^{\mathbb{Q}}(t) \tag{9.3}
\end{equation*}
$$

4. We have:

$$
\mathrm{d} X(t)=\mu(t) X(t) \mathrm{d} t+\sigma(t) X(t) \mathrm{d} W^{\mathbb{Q}}(t)
$$

and:

$$
X(t)=X_{0} e^{\int_{0}^{t}\left(\mu(s)-\frac{1}{2} \sigma^{2}(s)\right) \mathrm{d} s+\int_{0}^{t} \sigma(s) \mathrm{d} W^{\mathbb{Q}}(s)}
$$

By noticing that $S_{0}=\alpha_{0}+\beta_{0} X_{0}$, it follows that:

$$
\begin{aligned}
S(t) & =\alpha(t)+\beta(t) X_{0} e^{\int_{0}^{t}\left(\mu(s)-\frac{1}{2} \sigma^{2}(s)\right) \mathrm{d} s+\int_{0}^{t} \sigma(s) \mathrm{d} W^{\mathbb{Q}}(s)} \\
& =\alpha_{0} e^{b t}+\left(S_{0}-\alpha_{0}\right) e^{\int_{0}^{t}\left(b-\frac{1}{2} \sigma^{2}(s)\right) \mathrm{d} s+\int_{0}^{t} \sigma(s) \mathrm{d} W^{\mathbb{Q}}(s)}
\end{aligned}
$$

5. The payoff of the European call option is:

$$
\begin{aligned}
f(S(T)) & =(S(T)-K)^{+} \\
& =\left(\left(S(T)-\alpha_{0} e^{b T}\right)-\left(K-\alpha_{0} e^{b T}\right)\right)^{+}
\end{aligned}
$$

It follows that the option price is equal to:

$$
\mathcal{C}\left(t_{0}, S_{0}\right)=C_{\mathrm{BS}}\left(S_{0}-\alpha_{0}, K-\alpha_{0} e^{b T}, \sqrt{\int_{0}^{t} \sigma^{2}(s) \mathrm{d} s}, T, b, r\right)
$$

9.4.8 Dupire local volatility model

We assume that:

$$
\mathrm{d} S(t)=b S(t) \mathrm{d} t+\sigma(t, S(t)) S(t) \mathrm{d} W^{\mathbb{Q}}(t)
$$

1. Let $\mathcal{C}(T, K)$ be the price of the European call option, whose maturity is T and strike is K. We remind that:

$$
\begin{aligned}
& \frac{1}{2} \sigma^{2}(T, K) K^{2} \partial_{K}^{2} \mathcal{C}(T, K)-b K \partial_{K} \mathcal{C}(T, K)- \\
& \partial_{T} \mathcal{C}(T, K)+(b-r) \mathcal{C}(T, K)=0
\end{aligned}
$$

We deduce that:

$$
\sigma^{2}(T, K)=\frac{A^{\prime}(T, K)}{B^{\prime}(T, K)}
$$

where:

$$
A^{\prime}(T, K)=2 b K \partial_{K} \mathcal{C}(T, K)+2 \partial_{T} \mathcal{C}(T, K)-2(b-r) \mathcal{C}(T, K)
$$

and:

$$
B^{\prime}(T, K)=K^{2} \partial_{K}^{2} \mathcal{C}(T, K)
$$

2. We have:

$$
\mathcal{C}(T, K)=S_{0} e^{(b-r) T} \Phi\left(d_{1}\right)-K e^{-r T} \Phi\left(d_{2}\right)
$$

where:

$$
d_{1}=\frac{1}{\Sigma(T, K) \sqrt{T}}\left(\ln \left(\frac{S_{0}}{K}\right)+b T\right)+\frac{1}{2} \Sigma(T, K) \sqrt{T}
$$

and $d_{2}=d_{1}-\Sigma(T, K) \sqrt{T}$. We note $C_{\mathrm{BS}}(T, K, \Sigma)$ the Black-Scholes formula. We have:

$$
\begin{aligned}
\partial_{K} \mathcal{C}(T, K)= & \partial_{K} C_{\mathrm{BS}}(T, K, \Sigma(T, K))+ \\
& \partial_{K} \Sigma(T, K) \partial_{\Sigma} C_{\mathrm{BS}}(T, K, \Sigma(T, K))
\end{aligned}
$$

and:

$$
\begin{aligned}
\partial_{K}^{2} \mathcal{C}(T, K)= & \partial_{K}^{2} C_{\mathrm{BS}}(T, K, \Sigma(T, K))+ \\
& 2 \partial_{K} \Sigma(T, K) \partial_{\Sigma, K}^{2} C_{\mathrm{BS}}(T, K, \Sigma(T, K))+ \\
& \partial_{K}^{2} \Sigma(T, K) \partial_{\Sigma} C_{\mathrm{BS}}(T, K, \Sigma(T, K))+ \\
& \left(\partial_{K} \Sigma(T, K)\right)^{2} \partial_{\Sigma}^{2} C_{\mathrm{BS}}(T, K, \Sigma(T, K))
\end{aligned}
$$

The derivative of $\mathcal{C}(T, K)$ with respect to the maturity T is equal to:

$$
\begin{aligned}
\partial_{T} \mathcal{C}(T, K)= & \partial_{T} C_{\mathrm{BS}}(T, K, \Sigma(T, K))+ \\
& \partial_{T} \Sigma(T, K) \partial_{\Sigma} C_{\mathrm{BS}}(T, K, \Sigma(T, K))
\end{aligned}
$$

The different Black-Scholes derivatives are ${ }^{3}$:

$$
\begin{aligned}
\partial_{K} C_{\mathrm{BS}}(T, K, \Sigma)= & -e^{-r T} \Phi\left(d_{2}\right) \\
\partial_{\Sigma} C_{\mathrm{BS}}(T, K, \Sigma)= & S_{0} e^{(b-r) T} \sqrt{T} \phi\left(d_{1}\right)=K e^{-r T} \sqrt{T} \phi\left(d_{2}\right) \\
\partial_{K}^{2} C_{\mathrm{BS}}(T, K, \Sigma)= & e^{-r T} \frac{\phi\left(d_{2}\right)}{K \Sigma \sqrt{T}} \\
\partial_{\Sigma}^{2} C_{\mathrm{BS}}(T, K, \Sigma)= & e^{-r T} \frac{K \sqrt{T} \phi\left(d_{2}\right) d_{1} d_{2}}{\Sigma} \\
\partial_{\Sigma, K}^{2} C_{\mathrm{BS}}(T, K, \Sigma)= & e^{-r T} \frac{d_{1} \phi\left(d_{2}\right)}{\Sigma} \\
\partial_{T} C_{\mathrm{BS}}(T, K, \Sigma)= & (b-r) S_{0} e^{(b-r) T} \Phi\left(d_{1}\right)+ \\
& K e^{-r T}\left(r \Phi\left(d_{2}\right)+\frac{\Sigma \phi\left(d_{2}\right)}{2 \sqrt{T}}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
A^{\prime}(T, K)= & -2 b K e^{-r T} \Phi\left(d_{2}\right)+2 b K^{2} e^{-r T} \sqrt{T} \phi\left(d_{2}\right) \partial_{K} \Sigma(T, K)+ \\
& 2(b-r) S_{0} e^{(b-r) T} \Phi\left(d_{1}\right)+ \\
& 2 K e^{-r T}\left(r \Phi\left(d_{2}\right)+\frac{\Sigma(T, K) \phi\left(d_{2}\right)}{2 \sqrt{T}}\right)+ \\
& 2 K e^{-r T} \sqrt{T} \phi\left(d_{2}\right) \partial_{T} \Sigma(T, K)- \\
& 2(b-r)\left(S_{0} e^{(b-r) T} \Phi\left(d_{1}\right)-K e^{-r T} \Phi\left(d_{2}\right)\right) \\
= & 2 b K^{2} e^{-r T} \sqrt{T} \phi\left(d_{2}\right) \partial_{K} \Sigma(T, K)+ \\
& \frac{K e^{-r T} \Sigma(T, K) \phi\left(d_{2}\right)}{\sqrt{T}}+2 K e^{-r T} \sqrt{T} \phi\left(d_{2}\right) \partial_{T} \Sigma(T, K) \\
= & e^{-r T} \frac{K \phi\left(d_{2}\right)}{\Sigma(T, K) \sqrt{T}} A(T, K)
\end{aligned}
$$

where:

$$
\begin{align*}
A(T, K)= & \Sigma^{2}(T, K)+2 b K T \Sigma(T, K) \partial_{K} \Sigma(T, K)+ \\
& 2 T \Sigma(T, K) \partial_{T} \Sigma(T, K) \tag{9.4}
\end{align*}
$$

We also have:

$$
\begin{aligned}
B^{\prime}(T, K)= & e^{-r T} \frac{K \phi\left(d_{2}\right)}{\Sigma(T, K) \sqrt{T}}+2 e^{-r T} \frac{K^{2} d_{1} \phi\left(d_{2}\right)}{\Sigma(T, K)} \partial_{K} \Sigma(T, K)+ \\
& e^{-r T} K^{3} \sqrt{T} \phi\left(d_{2}\right) \partial_{K}^{2} \Sigma(T, K)+ \\
& e^{-r T} \frac{K^{3} \sqrt{T} \phi\left(d_{2}\right) d_{1} d_{2}}{\Sigma(T, K)}\left(\partial_{K} \Sigma(T, K)\right)^{2} \\
= & e^{-r T} \frac{K \phi\left(d_{2}\right)}{\Sigma(T, K) \sqrt{T}} B(T, K)
\end{aligned}
$$

[^32]where:
\[

$$
\begin{align*}
B(T, K)= & 1+2 K \sqrt{T} d_{1} \partial_{K} \Sigma(T, K)+K^{2} T \Sigma(T, K) \partial_{K}^{2} \Sigma(T, K)+ \\
& K^{2} T d_{1} d_{2}\left(\partial_{K} \Sigma(T, K)\right)^{2} \tag{9.5}
\end{align*}
$$
\]

We conclude that:

$$
\begin{aligned}
\sigma^{2}(T, K) & =\frac{A^{\prime}(T, K)}{B^{\prime}(T, K)} \\
& =\frac{A(T, K)}{B(T, K)}
\end{aligned}
$$

where $A(T, K)$ and $B(T, K)$ are given by Equations (9.4) and (9.5).
3. We follow the proof given by van der Kamp (2009) ${ }^{4}$. Let \tilde{f} denote the discounted payoff function:

$$
\tilde{f}(T, S(T))=e^{-r(T-t)}(S(T)-K)^{+}
$$

Itô's lemma gives:

$$
\begin{aligned}
\mathrm{d} \tilde{f}(T, S)= & -r e^{-r(T-t)}(S-K)^{+} \mathrm{d} T+b S e^{-r(T-t)} \mathbb{1}\{S>K\} \mathrm{d} T+ \\
& \frac{1}{2} \sigma^{2}(T, S) S^{2} e^{-r(T-t)} \delta(S-K) \mathrm{d} T+ \\
& \sigma(T, S) S e^{-r(T-t)} \mathbb{1}\{S>K\} \mathrm{d} W^{\mathbb{Q}}(t)
\end{aligned}
$$

where $\delta(x)$ is the Dirac delta function. We deduce that:

$$
\begin{aligned}
\partial_{T} \mathcal{C}(T, K)= & \frac{\mathbb{E}\left[\mathrm{d} \tilde{f}(T, S(T)) \mid \mathcal{F}_{t}\right]}{\mathrm{d} T} \\
= & r e^{-r(T-t)} K \mathbb{E}\left[\mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]+ \\
& (b-r) e^{-r(T-t)} \mathbb{E}\left[S(T) \mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]+ \\
& \frac{1}{2} e^{-r(T-t)} \mathbb{E}\left[\sigma^{2}(T, S(T)) S^{2}(T) \delta(S(T)-K) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

4. We have:

$$
\begin{aligned}
\mathcal{C}(T, K) & =\mathbb{E}\left[\tilde{f}(T, S(T)) \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} \mathbb{E}\left[(S(T)-K) \mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\partial_{K} \mathcal{C}(T, K)= & -e^{-r(T-t)} \mathbb{E}\left[\mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]- \\
& e^{-r(T-t)} \mathbb{E}\left[(S(T)-K) \delta(S(T)-K) \mid \mathcal{F}_{t}\right] \\
= & -e^{-r(T-t)} \mathbb{E}\left[\mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

and:

$$
\partial_{K}^{2} \mathcal{C}(T, K)=e^{-r(T-t)} \mathbb{E}\left[\delta(S(T)-K) \mid \mathcal{F}_{t}\right]
$$

We notice that:

$$
\partial_{T} \mathcal{C}(T, K)=\frac{\mathbb{E}\left[\mathrm{d} \tilde{f}(T, S(T)) \mid \mathcal{F}_{t}\right]}{\mathrm{d} T}
$$

[^33]Since we have:

$$
\mathbb{E}[S(T) \mathbb{1}\{S(T)>K\}]=e^{r(T-t)} \mathcal{C}(T, K)+K \mathbb{1}\{S(T)>K\}
$$

we obtain:

$$
\begin{aligned}
\partial_{T} \mathcal{C}(T, K)= & r e^{-r(T-t)} K \mathbb{E}\left[\mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]+ \\
& (b-r) \mathbb{E}\left[\mathcal{C}(T, K)+e^{-r(T-t)} K \mathbb{1}\{S(T)>K\} \mid \mathcal{F}_{t}\right]+ \\
& \frac{1}{2} e^{-r(T-t)} Q(T, K)
\end{aligned}
$$

We also have:

$$
\begin{aligned}
Q(T, K) & =\mathbb{E}\left[\sigma^{2}(T, S(T)) S^{2}(T) \mid S(T)=K\right] \cdot \mathbb{E}\left[\delta(S(T)-K) \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}\left[\sigma^{2}(T, S(T)) \mid S(T)=K\right] K^{2} e^{r(T-t)} \partial_{K}^{2} \mathcal{C}(T, K)
\end{aligned}
$$

We conclude that:

$$
\begin{aligned}
\partial_{T} \mathcal{C}(T, K)= & r K \partial_{K} \mathcal{C}(T, K)+(b-r) \mathcal{C}(T, K)- \\
& (b-r) K \partial_{K} \mathcal{C}(T, K)+ \\
& \frac{1}{2} \mathbb{E}\left[\sigma^{2}(T, S(T)) \mid S(T)=K\right] K^{2} \partial_{K}^{2} C(T, K)
\end{aligned}
$$

and:

$$
\begin{aligned}
& \frac{1}{2} \sigma^{2}(T, K) K^{2} \partial_{K}^{2} \mathcal{C}(T, K)-b K \partial_{K} \mathcal{C}(T, K)- \\
& \partial_{T} \mathcal{C}(T, K)+(b-r) \mathcal{C}(T, K)=0
\end{aligned}
$$

5. (a) Since we have:

$$
x=\ln \frac{S_{0}}{K}+b T
$$

we deduce that:

$$
d_{1}=\frac{x}{\Sigma(T, K) \sqrt{T}}+\frac{1}{2} \Sigma(T, K) \sqrt{T}
$$

and:

$$
d_{2}=\frac{x}{\Sigma(T, K) \sqrt{T}}-\frac{1}{2} \Sigma(T, K) \sqrt{T}
$$

We also notice that:

$$
d_{1} d_{2}=\frac{x^{2}}{\Sigma^{2}(T, K) T}-\frac{1}{4} \Sigma^{2}(T, K) T
$$

(b) The first derivatives of $x=\varphi(T, K)$ are equal to:

$$
\partial_{K} \varphi(T, K)=-\frac{1}{K}
$$

and:

$$
\partial_{T} \varphi(T, K)=b
$$

It follows that:

$$
\begin{aligned}
\partial_{K} \Sigma(T, K) & =\partial_{K} \tilde{\Sigma}(T, \varphi(T, K)) \\
& =\partial_{x} \tilde{\Sigma}(T, x) \partial_{K} \varphi(T, K) \\
& =-\frac{1}{K} \partial_{x} \tilde{\Sigma}(T, x)
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{T} \Sigma(T, K) & =\partial_{T} \tilde{\Sigma}(T, \varphi(T, K)) \\
& =\partial_{T} \tilde{\Sigma}(T, x)+b \partial_{x} \tilde{\Sigma}(T, x)
\end{aligned}
$$

We also have:

$$
\partial_{K}^{2} \Sigma(T, K)=\frac{1}{K^{2}} \partial_{x} \tilde{\Sigma}(T, x)+\frac{1}{K^{2}} \partial_{x}^{2} \tilde{\Sigma}(T, x)
$$

(c) We deduce that:

$$
\tilde{\sigma}(T, x)=\sqrt{\frac{\tilde{A}(T, x)}{\tilde{B}(T, x)}}
$$

where $\tilde{A}(T, x)=A(T, K)$ and $\tilde{B}(T, x)=B(T, K)$. Using Equations (9.4) and (9.5), we obtain:

$$
\begin{aligned}
\tilde{A}(T, x)= & \tilde{\Sigma}^{2}(T, x)-2 b T \tilde{\Sigma}(T, x) \partial_{x} \tilde{\Sigma}(T, x)+ \\
& 2 T \tilde{\Sigma}(T, x)\left(\partial_{T} \tilde{\Sigma}(T, x)+b \partial_{x} \tilde{\Sigma}(T, x)\right) \\
= & \tilde{\Sigma}^{2}(T, x)+2 T \tilde{\Sigma}(T, x) \partial_{T} \tilde{\Sigma}(T, x)
\end{aligned}
$$

and:

$$
\begin{aligned}
\tilde{B}(T, x)= & 1-2\left(x \tilde{\Sigma}^{-1}(T, x)+\frac{1}{2} T \tilde{\Sigma}(T, x)\right) \partial_{x} \tilde{\Sigma}(T, x)+ \\
& T \tilde{\Sigma}(T, x)\left(\partial_{x} \tilde{\Sigma}(T, x)+\partial_{x}^{2} \tilde{\Sigma}(T, x)\right)+ \\
& \left(x^{2} \tilde{\Sigma}^{-2}(T, x)-\frac{1}{4} T^{2} \tilde{\Sigma}^{2}(T, x)\right)\left(\partial_{x} \tilde{\Sigma}(T, x)\right)^{2} \\
= & \left(1-x \tilde{\Sigma}^{-1}(T, x) \partial_{x} \tilde{\Sigma}(T, x)\right)^{2}+ \\
& T \tilde{\Sigma}(T, x) \partial_{x}^{2} \tilde{\Sigma}(T, x)- \\
& \frac{1}{4}\left(T \tilde{\Sigma}(T, x) \partial_{x} \tilde{\Sigma}(T, x)\right)^{2}
\end{aligned}
$$

(d) When T is equal to zero, we obtain:

$$
\tilde{\sigma}^{2}(0, x)=\frac{\tilde{\Sigma}^{2}(0, x)}{\left(1-x \tilde{\Sigma}^{-1}(0, x) \partial_{x} \tilde{\Sigma}(0, x)\right)^{2}}
$$

and:

$$
\tilde{\Sigma}(0, x)=\left(1-\frac{x \partial_{x} \tilde{\Sigma}(0, x)}{\tilde{\Sigma}(0, x)}\right) \tilde{\sigma}(0, x)
$$

The explicit solution of this equation is:

$$
\tilde{\Sigma}(0, x)=\left(\int_{0}^{1} \tilde{\sigma}^{-1}(0, x y) \mathrm{d} y\right)^{-1}
$$

We deduce that:

$$
\partial_{x} \tilde{\Sigma}(0, x)=\frac{\int_{0}^{1} y \tilde{\sigma}^{-2}(0, x y) \partial_{x} \tilde{\sigma}(0, x y) \mathrm{d} y}{\left(\int_{0}^{1} \tilde{\sigma}^{-1}(0, x y) \mathrm{d} y\right)^{2}}
$$

It follows that:

$$
\begin{aligned}
\partial_{x} \tilde{\Sigma}(0,0) & =\frac{\int_{0}^{1} y \mathrm{~d} y}{\left(\int_{0}^{1} \mathrm{~d} y\right)^{2}} \partial_{x} \tilde{\sigma}(0,0) \\
& =\frac{1}{2} \partial_{x} \tilde{\sigma}(0,0)
\end{aligned}
$$

9.4.9 The stochastic normal model

1. We have ${ }^{5}$:

$$
\begin{aligned}
\Sigma_{N}(T, K)= & \Sigma_{B}(T, K) \sqrt{F_{0} K} \times \\
& \frac{1+\frac{1}{24} \ln ^{2} F_{0} / K+\frac{1}{1920} \ln ^{4} F_{0} / K}{1+\frac{1}{24}\left(1-\frac{1}{120} \ln ^{2} F_{0} / K\right) \Sigma_{B}^{2}(T, K) T+\frac{1}{5760} \Sigma_{B}^{4}(T, K) T^{2}}
\end{aligned}
$$

2. We have ${ }^{6}$:

$$
\begin{aligned}
\Sigma_{N}(T, K)= & \alpha\left(F_{0} K\right)^{\beta / 2}\left(\frac{z}{\chi(z)}\right) \times \\
& \left(\frac{1+\frac{1}{24} \ln ^{2} F_{0} / K+\frac{1}{1920} \ln ^{4} F_{0} / K}{1+\frac{1}{24}(1-\beta)^{2} \ln ^{2} F_{0} / K+\frac{1}{1920}(1-\beta)^{4} \ln ^{4} F_{0} / K}\right) \times \\
& \left(1+\left(\frac{-\beta(2-\beta) \alpha^{2}}{24\left(F_{0} K\right)^{1-\beta}}+\frac{\rho \alpha \nu \beta}{4\left(F_{0} K\right)^{(1-\beta) / 2}}+\frac{2-3 \rho^{2}}{24} \nu^{2}\right) T\right)
\end{aligned}
$$

where:

$$
z=\frac{\nu}{\alpha}\left(F_{0} K\right)^{(1-\beta) / 2} \ln \frac{F_{0}}{K}
$$

and

$$
\chi(z)=\ln \left(\frac{\sqrt{1-2 \rho z+z^{2}}+z-\rho}{1-\rho}\right)
$$

In the sequel, we introduce the notation $\varphi(z)=\sqrt{1-2 \rho z+z^{2}}$.
3. When β is equal to 0 , we obtain:

$$
\Sigma_{N}(T, K)=\alpha\left(\frac{z}{\chi(z)}\right)\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right)
$$

where:

$$
z=\frac{\nu}{\alpha} \sqrt{F_{0} K} \ln \frac{F_{0}}{K}
$$

and:

$$
\chi(z)=\ln \left(\frac{\sqrt{1-2 \rho z+z^{2}}+z-\rho}{1-\rho}\right)
$$

[^34]4. Since we have:
$$
\lim _{K \rightarrow F_{0}} \frac{z}{\chi(z)}=1
$$
we deduce the expression of the ATM volatility:
$$
\Sigma_{N}\left(T, F_{0}\right)=\alpha\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right)
$$
5. We notice that z is a function of K. By introducing the notation $z=z(K)$, we have:
\[

$$
\begin{aligned}
\partial_{K} \chi(z(K)) & =\frac{\frac{-2 \rho \partial_{K} z(K)+2 z(K) \partial_{K} z(K)}{2 \sqrt{1-2 \rho z(K)+z^{2}(K)}}+\partial_{K} z(K)}{\sqrt{1-2 \rho z(K)+z^{2}(K)}+z(K)-\rho} \\
& =\frac{\partial_{K} z(K)}{\sqrt{1-2 \rho z(K)+z^{2}(K)}}
\end{aligned}
$$
\]

and:

$$
\begin{aligned}
\partial_{K} z(K) & =\frac{\nu}{\alpha} \sqrt{F_{0}} \partial_{K}\left(\sqrt{K}\left(\ln F_{0}-\ln K\right)\right) \\
& =\frac{\nu}{\alpha} \sqrt{F_{0}}\left(\frac{\ln F_{0}}{2 \sqrt{K}}-\frac{\sqrt{K}}{K}-\frac{\ln K}{2 \sqrt{K}}\right) \\
& =\frac{\nu}{\alpha} \sqrt{\frac{F_{0}}{K}}\left(\ln \sqrt{\frac{F_{0}}{K}}-1\right)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\partial_{K}\left(\frac{z(K)}{\chi(z(K))}\right) & =\frac{\chi(z(K)) \partial_{K} z(K)-z(K) \partial_{K} \chi(z(K))}{\chi^{2}(z(K))} \\
& =\left(\frac{\chi(z(K)) \varphi(z(K))-z(K)}{\chi^{2}(z(K)) \varphi(z(K))}\right) \partial_{K} z(K) \\
& =\left(\frac{1}{\chi(z(K))}-\frac{z(K)}{\chi^{2}(z) \varphi(z(K))}\right) \partial_{K} z(K)
\end{aligned}
$$

where:

$$
\varphi(z(K))=\sqrt{1-2 \rho z(K)+z^{2}(K)}
$$

We deduce that:

$$
\begin{align*}
\partial_{K} \Sigma_{N}(T, K)= & \alpha\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right) \partial_{K}\left(\frac{z(K)}{\chi(z(K))}\right) \\
= & \nu\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right) \sqrt{\frac{F_{0}}{K}}\left(\ln \sqrt{\frac{F_{0}}{K}}-1\right) \\
& \left(\frac{1}{\chi(z)}-\frac{z}{\chi^{2}(z) \sqrt{1-2 \rho z+z^{2}}}\right) \tag{9.6}
\end{align*}
$$

6. We have:

$$
\mathcal{C}(T, K)=\left(F_{0}-K\right) \Phi(d)+\sigma_{N} \sqrt{T} \phi(d)
$$

where:

$$
d=\frac{F_{0}-K}{\sigma_{N} \sqrt{T}}
$$

7. Using the results of Breeden and Litzenberger (1978), we have:

$$
\begin{aligned}
\mathbb{Q}(T, K) & =\operatorname{Pr}\{F(T) \leq K\} \\
& =1+\frac{\partial \mathcal{C}_{t}(T, K)}{\partial K}
\end{aligned}
$$

When σ_{N} is equal to the function $\Sigma_{N}(T, K)$, we deduce that:

$$
\begin{aligned}
\mathbb{Q}(T, K)= & 1-\Phi(d)+\left(F_{0}-K\right) \phi(d) \cdot \partial_{K} d+ \\
& \sqrt{T} \phi(d) \cdot \partial_{K} \Sigma_{N}(T, K)-\Sigma_{N}(T, K) \sqrt{T} d \phi(d) \cdot \partial_{K} d \\
= & 1-\Phi(d)+\phi(d) \sqrt{T} \cdot \partial_{K} \Sigma_{N}(T, K)
\end{aligned}
$$

where $\partial_{K} \Sigma_{N}(T, K)$ is given by Equation (9.6).
8. For the density function, we have:

$$
\begin{aligned}
q(T, K)= & -\phi(d) \cdot \partial_{K} d-d \phi(d) \sqrt{T} \cdot \partial_{K} d \cdot \partial_{K} \Sigma_{N}(T, K)+ \\
& \phi(d) \sqrt{T} \cdot \partial_{K}^{2} \Sigma_{N}(T, K)
\end{aligned}
$$

We notice that:

$$
\begin{aligned}
\partial_{K} d & =\frac{-\Sigma_{N}(T, K) \sqrt{T}-\left(F_{0}-K\right) \sqrt{T} \cdot \partial_{K} \Sigma_{N}(T, K)}{\Sigma_{N}^{2}(T, K) T} \\
& =-\frac{1+d \sqrt{T} \cdot \partial_{K} \Sigma_{N}(T, K)}{\Sigma_{N}(T, K) \sqrt{T}}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
q(T, K)= & \frac{\phi(d)}{\Sigma_{N}(T, K) \sqrt{T}}\left(1+d \sqrt{T} \cdot \partial_{K} \Sigma_{N}(T, K)\right)^{2}+ \\
& \phi(d) \sqrt{T} \cdot \partial_{K}^{2} \Sigma_{N}(T, K)
\end{aligned}
$$

To calculate the probability density function of $F(T)$, we need to calculate $\partial_{K} \Sigma_{N}(T, K)$ and $\partial_{K}^{2} \Sigma_{N}(T, K)$. If we use the approximation $z=\nu \alpha^{-1}\left(F_{0}-K\right)$, we have $\partial_{K} z=-\nu \alpha^{-1}$. We deduce that:

$$
\partial_{K} \Sigma_{N}(T, K)=-\nu\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right)\left(\frac{1}{\chi(z)}-\frac{z}{\chi^{2}(z) \sqrt{1-2 \rho z+z^{2}}}\right)
$$

and:

$$
\partial_{K}^{2} \Sigma_{N}(T, K)=\frac{\nu^{2}}{\alpha}\left(1+\frac{2-3 \rho^{2}}{24} \nu^{2} T\right) D
$$

where:

$$
\begin{aligned}
D= & \frac{2}{\chi^{2}(z)\left(1-2 \rho z+z^{2}\right)}\left(\frac{z}{\chi(z) \sqrt{1-2 \rho z+z^{2}}}-1\right)+ \\
& \frac{z(z-\rho)}{\chi^{2}(z)\left(1-2 \rho z+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

9. When $\beta=0$, the SABR model becomes:

$$
\left\{\begin{array}{l}
\mathrm{d} F(t)=\alpha(t) \mathrm{d} W_{1}^{\mathbb{Q}}(t) \\
\mathrm{d} \alpha(t)=\nu \alpha(t) \mathrm{d} W_{2}^{\mathbb{Q}}(t)
\end{array}\right.
$$

Since we have $\alpha(0)=\alpha$, we obtain:

$$
\alpha(t)=\alpha e^{-\frac{1}{2} \nu^{2} t+\nu W_{2}^{Q}(t)}
$$

and:

$$
\mathrm{d} F(t)=\alpha e^{-\frac{1}{2} \nu^{2} t+\nu W_{2}^{\mathbb{Q}}(t)} \mathrm{d} W_{1}^{\mathbb{Q}}(t)
$$

It follows that:

$$
F(t)=F_{0}+\alpha \int_{0}^{t} e^{-\frac{1}{2} \nu^{2} s+\nu W_{2}^{\mathbb{Q}}(s)} \mathrm{d} W_{1}^{\mathbb{Q}}(s)
$$

Using the scaling property, we deduce that:

$$
F(t)=F_{0}+\frac{\alpha}{\nu} \int_{0}^{\nu^{2} t} e^{-\frac{1}{2} s+W_{2}(s)} \mathrm{d} W_{1}(s)
$$

where $W_{1}(t)$ and $W_{2}(t)$ have the same properties $W_{1}^{\mathbb{Q}}(t)$ and $W_{2}^{\mathbb{Q}}(t)$.
10. We note:

$$
\begin{aligned}
X(t) & =\int_{0}^{t} e^{-\frac{1}{2} s+W_{2}(s)} \mathrm{d} W_{1}(s) \\
M^{a}(t) & =e^{-\frac{1}{2} a t+a W_{2}(t)} \\
M(t) & =e^{-\frac{1}{2} t+W_{2}(t)}
\end{aligned}
$$

We have:

$$
\mathrm{d} X(t)=e^{-\frac{1}{2} t+W_{2}(t)} \mathrm{d} W_{1}(t)=M(t) \mathrm{d} W_{1}(t)
$$

and:

$$
\mathrm{d}\langle X(t)\rangle=e^{-t+2 W_{2}(t)} \mathrm{d} t=M(t)^{2} \mathrm{~d} t
$$

Using Itô's lemma, we deduce that:

$$
\begin{aligned}
\mathrm{d} X^{n}(t) & =n X^{n-1}(t) \mathrm{d} X(t)+\frac{n(n-1)}{2} X^{n-2}(t) \mathrm{d}\langle X(t)\rangle \\
& =n X^{n-1}(t) M(t) \mathrm{d} W_{1}(t)+\frac{n(n-1)}{2} X^{n-2}(t) M(t)^{2} \mathrm{~d} t
\end{aligned}
$$

Since we have:

$$
\mathrm{d} M^{a}(t)=\frac{a(a-1)}{2} M^{a}(t) \mathrm{d} t+a M^{a}(t) \mathrm{d} W_{2}(t)
$$

we obtain:

$$
\begin{aligned}
\mathrm{d}\left(X^{n}(t) M^{a}(t)\right)= & X^{n}(t) \mathrm{d} M^{a}(t)+M^{a}(t) \mathrm{d} X^{n}(t)+\mathrm{d}\left\langle X^{n}(t), M^{a}(t)\right\rangle \\
= & \frac{a(a-1)}{2} X^{n}(t) M^{a}(t) \mathrm{d} t+a X^{n}(t) M^{a}(t) \mathrm{d} W_{2}(t)+ \\
& n X^{n-1}(t) M^{a}(t) M(t) \mathrm{d} W_{1}(t)+ \\
& \frac{n(n-1)}{2} X^{n-2}(t) M^{a}(t) M(t)^{2} \mathrm{~d} t+ \\
& n \rho a X^{n-1}(t) M^{a}(t) M(t) \mathrm{d} t
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\frac{\mathbb{E}\left[\mathrm{d}\left(X^{n}(t) M^{a}(t)\right)\right]}{\mathrm{d} t}= & \frac{a(a-1)}{2} \mathbb{E}\left[X^{n}(t) M^{a}(t)\right]+ \\
& \frac{n(n-1)}{2} \mathbb{E}\left[X^{n-2}(t) M^{a}(t) M(t)^{2}\right]+ \\
& n \rho a \mathbb{E}\left[X^{n-1}(t) M^{a}(t) M(t)\right]
\end{aligned}
$$

We notice that $M^{a}(t) M(t)=M^{a+1}(t)$ and $M^{a}(t) M(t)^{2}=M^{a+2}(t)$. We conclude that:

$$
\frac{\mathrm{d} \Psi^{n, a}(t)}{\mathrm{d} t}=\frac{a(a-1)}{2} \Psi^{n, a}(t)+\frac{n(n-1)}{2} \Psi^{n-2, a+2}(t)+n \rho a \Psi^{n-1, a+1}(t)
$$

where:

$$
\Psi^{n, a}(t)=\mathbb{E}\left[X^{n}(t) M^{a}(t)\right]
$$

Therefore, the relationship between $\Psi^{n, a}(t)$ and the moments of $F(t)$ is:

$$
\mathbb{E}\left[\left(F(t)-F_{0}\right)^{n}\right]=\left(\frac{\alpha}{\nu}\right)^{n} \Psi^{n, 0}\left(\nu^{2} t\right)
$$

11. For $n=0$, we have:

$$
\begin{aligned}
\Psi^{0, a}(t) & =\mathbb{E}\left[X^{0}(t) M^{a}(t)\right] \\
& =\mathbb{E}\left[e^{-\frac{1}{2} a t+a W_{2}(t)}\right] \\
& =e^{-\frac{1}{2} a t} e^{\frac{1}{2} a^{2} t} \\
& =e^{\frac{1}{2} a(a-1) t}
\end{aligned}
$$

For $n=1$, we have:

$$
\begin{aligned}
\frac{\mathrm{d} \Psi^{1, a}(t)}{\mathrm{d} t} & =\frac{a(a-1)}{2} \Psi^{1, a}(t)+\rho a \Psi^{0, a+1}(t) \\
& =\frac{a(a-1)}{2} \Psi^{1, a}(t)+\rho a e^{\frac{1}{2} a(a+1) t}
\end{aligned}
$$

We deduce that ${ }^{7}$:

$$
\begin{aligned}
\Psi^{1, a}(t) & =e^{\frac{1}{2} a(a-1) t} \int_{0}^{t} e^{-\frac{1}{2} a(a-1) s} \rho a e^{\frac{1}{2} a(a+1) s} \mathrm{~d} s \\
& =\rho e^{\frac{1}{2} a(a-1) t}\left[e^{a s}\right]_{0}^{t} \\
& =\rho e^{\frac{1}{2} a(a-1) t}\left(e^{a t}-1\right)
\end{aligned}
$$

For $n=2$, we solve the ODE:

$$
\begin{aligned}
\frac{\mathrm{d} \Psi^{2, a}(t)}{\mathrm{d} t} & =\frac{a(a-1)}{2} \Psi^{2, a}(t)+2 \rho a \Psi^{1, a+1}(t)+\Psi^{0, a+2}(t) \\
& =\frac{a(a-1)}{2} \Psi^{2, a}(t)+h(t)
\end{aligned}
$$

[^35]where:
$$
h(t)=2 \rho^{2} a e^{\frac{a(a+1)}{2} t}\left(e^{(a+1) t}-1\right)+e^{\frac{(a+1)(a+2)}{2} t}
$$

The solution is given by:

$$
\begin{aligned}
\Psi^{2, a}(t) & =e^{\frac{a(a-1)}{2} t} \int_{0}^{t} e^{-\frac{a(a-1)}{2} s} h(s) \mathrm{d} s \\
& =e^{\frac{a(a-1)}{2} t}\left(\left(\frac{2 \rho^{2} a+1}{2 a+1}\right)\left(e^{(2 a+1) t}-1\right)-2 \rho^{2}\left(e^{a t}-1\right)\right)
\end{aligned}
$$

For $n=3$ and $a=0$, the ODE becomes:

$$
\begin{aligned}
\frac{\mathrm{d} \Psi^{3,0}(t)}{\mathrm{d} t} & =3 \Psi^{1,2}(t) \\
& =3 \rho e^{t}\left(e^{2 t}-1\right)
\end{aligned}
$$

The solution is then:

$$
\Psi^{3,0}(t)=\rho\left(e^{3 t}-3 e^{t}+2\right)
$$

For $n=4$ and $a=0$, we obtain:

$$
\begin{aligned}
\frac{\mathrm{d} \Psi^{4,0}(t)}{\mathrm{d} t} & =6 \Psi^{2,2}(t) \\
& =6 e^{t}\left(\left(\frac{4 \rho^{2}+1}{5}\right)\left(e^{5 t}-1\right)-2 \rho^{2}\left(e^{2 t}-1\right)\right)
\end{aligned}
$$

and:

$$
\Psi^{4,0}(t)=\frac{4 \rho^{2}+1}{5} e^{6 t}-4 \rho^{2} e^{3 t}-\frac{6}{5}\left(4 \rho^{2}+1\right) e^{t}+12 \rho^{2} e^{t}-4 \rho^{2}+1
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[F(t)-F_{0}\right] & =\left(\frac{\alpha}{\nu}\right)^{1} \Psi^{1,0}\left(\nu^{2} t\right) \\
& =0
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[\left(F(t)-F_{0}\right)^{2}\right] & =\left(\frac{\alpha}{\nu}\right)^{2} \Psi^{2,0}\left(\nu^{2} t\right) \\
& =\frac{\alpha^{2}}{\nu^{2}}\left(e^{\nu^{2} t}-1\right)
\end{aligned}
$$

For the third moment, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[\left(F(t)-F_{0}\right)^{3}\right] & =\left(\frac{\alpha}{\nu}\right)^{3} \Psi^{3,0}\left(\nu^{2} t\right) \\
& =\rho \frac{\alpha^{3}}{\nu^{3}}\left(e^{3 \nu^{2} t}-3 e^{\nu^{2} t}+2\right)
\end{aligned}
$$

Finally, the fourth moment is equal to:

$$
\begin{aligned}
\mathbb{E}\left[\left(F(t)-F_{0}\right)^{4}\right]= & \left(\frac{\alpha}{\nu}\right)^{4} \Psi^{4,0}\left(\nu^{2} t\right) \\
= & \frac{\alpha^{4}}{\nu^{4}}\left(\frac{1}{5}\left(4 \rho^{2}+1\right) e^{6 \nu^{2} t}-4 \rho^{2} e^{3 \nu^{2} t}\right)+ \\
& \frac{\alpha^{4}}{\nu^{4}}\left(\frac{6}{5}\left(6 \rho^{2}-1\right) e^{\nu^{2} t}-4 \rho^{2}+1\right)
\end{aligned}
$$

12. We have:

$$
\begin{aligned}
\sigma^{2}(F(t)) & =\frac{\alpha^{2}}{\nu^{2}}\left(e^{\nu^{2}} t-1\right) \\
& \simeq \frac{\alpha^{2}}{\nu^{2}}\left(1+\nu^{2} t+\frac{1}{2} \nu^{4} t^{2}+\frac{1}{6} \nu^{6} t^{3}-1\right) \\
& =\alpha^{2}\left(t+\frac{1}{2} \nu^{2} t^{2}+\frac{1}{6} \nu^{4} t^{3}\right)
\end{aligned}
$$

Using the same approximation method, the skewness coefficient is:

$$
\begin{aligned}
\gamma_{1}(F(t)) & =\frac{\rho\left(e^{3 \nu^{2} t}-3 e^{\nu^{2} t}+2\right)}{\left(e^{\nu^{2} t}-1\right)^{\frac{3}{2}}} \\
& \simeq 3 \rho \nu \sqrt{t}+4 \rho \nu^{3} t \sqrt{t}
\end{aligned}
$$

whereas the expression of the kurtosis is:

$$
\begin{aligned}
\gamma_{2}(F(t)) & =\frac{\left(4 \rho^{2}+1\right) e^{6 \nu^{2} t}-20 \rho^{2}\left(e^{3 \nu^{2} t}+1\right)+\left(36 \rho^{2}-6\right) e^{\nu^{2} t}+5}{5\left(e^{\nu^{2} t}-1\right)^{2}} \\
& \simeq \frac{3+\left(7+11 \rho^{2}\right) \nu^{2} t}{\left(1+\frac{1}{2} \nu^{2} t+\frac{1}{6} \nu^{4} t^{2}\right)^{2}}
\end{aligned}
$$

13. (a) Using the formula given in Question (1), we obtain the following equivalent normal volatility:

K	7%	10%	13%
$\Sigma_{B}(T, K)$	30%	20%	30%
$\Sigma_{N}(T, K)$	2.51389%	1.99667%	3.41753%

(b) The method of least squares gives $\alpha=0.017573, \beta=0, \nu=1.448791$ and $\rho=0.383867$. We verify that the fitted smile adjust perfectly the three observed volatilities.
(c) The cumulative distribution function is shown in Figure 9.1. We notice that the cdf is not an increasing function when the forward rate is close to zero. As a result, the density function takes negative value. We deduce that there is arbitrage opportunities.
(d) Using the formula calculated in Question (8), we obtain Figure 9.2. With the approximation $\sqrt{F_{0} K} \ln \frac{F_{0}}{K} \simeq F_{0}-K$, the probability density function becomes always positive.
(e) The skewness is equal to 10.43 , whereas the kurtosis is equal to 1822.60 . These values are very high, meaning that the stochastic normal model is far to be Gaussian. This result is surprising. However, we can show that the long-term probability distribution of $F(t)$ in the SABR model is non-degenerate contrary to Black and normal models. For instance, when ρ is equal to zero, we obtain:

$$
F(\infty) \stackrel{\text { law }}{=} F_{0}+\frac{\alpha}{\nu} \mathcal{N}(0,1) \sqrt{\frac{1}{2 Z_{1 / 2}}}
$$

where Z_{k} is a Gamma random variable with parameter k.

FIGURE 9.1: Cumulative distribution function of $F(1)$

FIGURE 9.2: Probability density function of $F(1)$

Remark 1 To find the distribution of $F(\infty)$, we use the following result ${ }^{8}$ of Donati-Martin et al. (2001): Let $\xi(t)=-\left(c t+\sigma B(t)+N^{+}(t)-N^{-}(t)\right)$ where $N^{+}(t)$ and $N^{-}(t)$ are two independent Poisson processes and $B(t)$ is a Brownian motion. Let $A(t)=\int_{0}^{t} \exp (\xi(s)) \mathrm{d} s$, $X(t)=\exp (\xi(t)) \int_{0}^{t} \exp (-\xi(s)) \mathrm{d} s$ and T_{α} denotes an exponential variable of parameter α independent of $\xi(t)$. The law μ_{α} of $A\left(T_{\alpha}\right)$ satisfies $\mu_{\alpha}=\alpha^{-1} \mathcal{L}^{\star} \mu_{\alpha}$ where \mathcal{L} denotes the infinitesimal generator of the Markov process $X(t)$. Let us consider the special case $\xi(t)=\sigma B(t)-c t$. We have:

$$
\mathrm{d} X(t)=\sigma X(t) \mathrm{d} B(t)+\left(\left(\frac{\sigma^{2}}{2}-c\right) X(t)+1\right) \mathrm{d} t
$$

and:

$$
\mathcal{L}=\left(\left(\frac{\sigma^{2}}{2}-c\right) x+1\right) \partial_{x}+\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2}
$$

We deduce that the density function of $A(\infty)$ is equal to:

$$
f_{A(\infty)}(u)=\frac{\theta^{k}}{\Gamma(k) u^{k+1}} \exp \left(-\frac{\theta}{u}\right)
$$

where $\theta=2 / \sigma^{2}$ and $k=2 c / \sigma^{2}$. Therefore, we have:

$$
A(\infty) \stackrel{\text { law }}{=} \frac{\theta}{Z_{k}}
$$

where Z_{k} is the Gamma random variable with parameter k. In the stochastic Gaussian model with $\rho=0$, we have:

$$
\left\{\begin{array}{l}
\mathrm{d} F(t)=\alpha(t) F(t)^{\beta} \mathrm{d} W_{1}^{\mathbb{Q}}(t) \\
\mathrm{d} \alpha(t)=\nu \alpha(t) \mathrm{d} W_{2}^{\mathbb{Q}}(t)
\end{array}\right.
$$

where $W_{1}^{\mathbb{Q}}(t)$ and $W_{2}^{\mathbb{Q}}(t)$ are independent. It follows that:

$$
\alpha(t)=\alpha \exp \left(-\frac{1}{2} \nu^{2} t+\nu \mathrm{d} W_{2}^{\mathbb{Q}}(t)\right)
$$

and:

$$
F(t)=F_{0}+\alpha \int_{0}^{t} \exp \left(-\frac{1}{2} \nu^{2} s+\nu \mathrm{d} W_{2}^{\mathbb{Q}}(s)\right) \mathrm{d} W_{1}^{\mathbb{Q}}(s)
$$

We deduce that $F(t) \stackrel{\text { law }}{=} F_{0}+\alpha W_{1}^{\mathbb{Q}}(\langle F(t)\rangle)$ where:

$$
\langle F(t)\rangle=\int_{0}^{t} \exp \left(2 \nu W_{2}^{\mathbb{Q}}(s)-\nu^{2} s\right) \mathrm{d} s
$$

We have:

$$
\langle F(\infty)\rangle \stackrel{\text { law }}{=} \frac{\theta}{Z_{k}}
$$

where $\theta=2 /(2 \nu)^{2}=1 /\left(2 \nu^{2}\right)$ and $k=2 \nu^{2} /(2 \nu)^{2}=1 / 2$. Since we have $W_{1}^{\mathbb{Q}}(t) \stackrel{\text { law }}{=}$ $\mathcal{N}(0,1) \sqrt{t}$, we conclude that:

$$
F(\infty) \stackrel{\text { law }}{=} F_{0}+\alpha \mathcal{N}(0,1) \sqrt{\frac{1}{2 \nu^{2} Z_{1 / 2}}}
$$

[^36]
9.4.10 The quadratic Gaussian model

1. We know that the bond price:

$$
B(t, T)=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{t}^{T} r(s) \mathrm{d} s}\right]
$$

is the solution of the following PDE:

$$
\begin{align*}
& \frac{1}{2} \operatorname{tr}\left(\Sigma(t) \partial_{X}^{2} B(t, T) \Sigma(t)^{\top}\right)+ \\
& \partial_{X} B(t, T)^{\top}(a(t)+B(t) X(t))+ \\
& \quad \partial_{t} B(t, T)-r(t) B(t, T)=0 \tag{9.7}
\end{align*}
$$

with $B(T, T)=1$.
2. We assume that the solution of $B(t, T)$ has the following form:

$$
B(t, T)=\exp \left(-\hat{\alpha}(t, T)-\hat{\beta}(t, T)^{\top} X(t)-X(t)^{\top} \hat{\Gamma}(t, T) X(t)\right)
$$

where $\hat{\Gamma}(t, T)$ is a symmetric matrix. We obtain:

$$
\frac{\partial_{t} B(t, T)}{B(t, T)}=-\partial_{t} \hat{\alpha}(t, T)-\partial_{t} \hat{\beta}(t, T)^{\top} X(t)-X(t)^{\top} \partial_{t} \hat{\Gamma}(t, T) X(t)
$$

and:

$$
\frac{\partial_{X} B(t, T)}{B(t, T)}=-\hat{\beta}(t, T)-2 \hat{\Gamma}(t, T) X(t)
$$

We deduce that:

$$
\begin{aligned}
\frac{\partial_{X}^{2} B(t, T)}{B(t, T)}= & \frac{\partial_{X}\left(\partial_{X} B(t, T)^{\top}\right)}{B(t, T)} \\
= & -2 \hat{\Gamma}(t, T)+ \\
& (\hat{\beta}(t, T)+2 \hat{\Gamma}(t, T) X(t))(\hat{\beta}(t, T)+2 \hat{\Gamma}(t, T) X(t))^{\top} \\
= & -2 \hat{\Gamma}(t, T)+\hat{\beta}(t, T) \hat{\beta}(t, T)^{\top}+ \\
& 2 \hat{\Gamma}(t, T) X(t) \hat{\beta}(t, T)^{\top}+ \\
& 2 \hat{\beta}(t, T) X(t)^{\top} \hat{\Gamma}(t, T)+ \\
& 4 \hat{\Gamma}(t, T) X(t) X(t)^{\top} \hat{\Gamma}(t, T)
\end{aligned}
$$

By using the matrix property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ if the product $B A$ makes a sense, we can write Equation (9.7) as follows:

$$
\begin{array}{r}
-\operatorname{tr}\left(\Sigma(t) \hat{\Gamma}(t, T) \Sigma(t)^{\top}\right)+ \\
\frac{1}{2} \operatorname{tr}\left(\Sigma(t) \hat{\beta}(t, T) \hat{\beta}(t, T)^{\top} \Sigma(t)^{\top}\right)+ \\
+2 X(t)^{\top} \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)+ \\
2 X(t)^{\top} \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T) X(t)- \\
(\hat{\beta}(t, T)+2 \hat{\Gamma}(t, T) X(t))^{\top}(a(t)+B(t) X(t))- \\
\partial_{t} \hat{\alpha}(t, T)-X(t)^{\top} \partial_{t} \hat{\beta}(t, T)-X(t)^{\top} \partial_{t} \hat{\Gamma}(t, T) X(t)- \\
\left(\alpha(t)+X(t)^{\top} \beta(t)+X(t)^{\top} \Gamma(t) X(t)\right)=0
\end{array}
$$

We regroup the terms by the polynomial degree in X. For degree 0, we obtain:

$$
\begin{gathered}
-\operatorname{tr}\left(\Sigma(t) \hat{\Gamma}(t, T) \Sigma(t)^{\top}\right)+ \\
\frac{1}{2} \operatorname{tr}\left(\Sigma(t) \hat{\beta}(t, T) \hat{\beta}(t, T)^{\top} \Sigma(t)^{\top}\right)- \\
\hat{\beta}(t, T)^{\top} a(t)-\partial_{t} \hat{\alpha}(t, T)-\alpha(t)=0
\end{gathered}
$$

or:

$$
\begin{aligned}
\partial_{t} \hat{\alpha}(t, T)= & -\operatorname{tr}\left(\Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T)\right)-\hat{\beta}(t, T)^{\top} a(t)+ \\
& \frac{1}{2} \hat{\beta}(t, T)^{\top} \Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)-\alpha(t)
\end{aligned}
$$

For degree 1, we obtain:

$$
\begin{aligned}
& 2 \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)-B(t)^{\top} \hat{\beta}(t, T)- \\
& 2 \hat{\Gamma}(t, T) a(t)-\partial_{t} \hat{\beta}(t, T)-\beta(t)=0
\end{aligned}
$$

or:

$$
\begin{aligned}
\partial_{t} \hat{\beta}(t, T)= & -B(t)^{\top} \hat{\beta}(t, T)+2 \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)- \\
& 2 \hat{\Gamma}(t, T) a(t)-\beta(t)
\end{aligned}
$$

For degree 2, we obtain:

$$
\begin{array}{r}
2 \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T)-2 \hat{\Gamma}(t, T) B(t)- \\
\partial_{t} \hat{\Gamma}(t, T)-\Gamma(t)=0
\end{array}
$$

or:

$$
\begin{aligned}
\partial_{t} \hat{\Gamma}(t, T)= & 2 \hat{\Gamma}(t, T) \Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T)- \\
& 2 \hat{\Gamma}(t, T) B(t)-\Gamma(t)
\end{aligned}
$$

3. $B(t)$ must be a diagonal matrix in order to ensure that $\hat{\Gamma}(t, T)$ is a symmetric matrix. Indeed, if we do not consider this hypothesis, we obtain:

$$
\begin{aligned}
\partial_{t} \hat{\Gamma}(t, T)= & \frac{1}{2}\left(\hat{\Gamma}(t, T)+\hat{\Gamma}(t, T)^{\top}\right) \Sigma(t) \Sigma(t)^{\top}\left(\hat{\Gamma}(t, T)+\hat{\Gamma}(t, T)^{\top}\right)- \\
& \left(\hat{\Gamma}(t, T)+\hat{\Gamma}(t, T)^{\top}\right) B(t)-\Gamma(t)
\end{aligned}
$$

It follows that the term $\left(\hat{\Gamma}(t, T)+\hat{\Gamma}(t, T)^{\top}\right) B(t)$ is not symmetric.
4. We recall that:

$$
\mathrm{d} X(t)=(\tilde{a}(t)+\tilde{B}(t) X(t)) \mathrm{d} t+\Sigma(t) \mathrm{d} W^{\mathbb{Q}^{\star}(T)}(t)
$$

where:

$$
\tilde{a}(t)=a(t)-\Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)
$$

and:

$$
\tilde{B}(t)=B(t)-2 \Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T)
$$

It follows that:

$$
\begin{aligned}
X(t)= & e^{\tilde{B}(t)} X_{0}+e^{\tilde{B}(t)} \int_{0}^{t} e^{-\tilde{B}(s)} \tilde{a}(s) \mathrm{d} s+ \\
& e^{\tilde{B}(t)} \int_{0}^{t} e^{-\tilde{B}(s)} \Sigma(s) \mathrm{d} W^{\mathbb{Q}^{\star}(T)}(s)
\end{aligned}
$$

We conclude that $X(t)$ is Gaussian under the forward probability measure $\mathbb{Q}^{\star}(T)$:

$$
X(t) \sim \mathcal{N}(m(0, t), V(0, t))
$$

We have:

$$
m(0, t)=e^{\tilde{B}(t)} X_{0}+e^{\tilde{B}(t)} \int_{0}^{t} e^{-\tilde{B}(s)} \tilde{a}(s) \mathrm{d} s
$$

that is the solution of the following EDO:

$$
\begin{aligned}
\partial_{t} m(0, t)= & \tilde{a}(t)+\tilde{B}(t) m(0, t) \\
= & a(t)-\Sigma(t) \Sigma(t)^{\top} \hat{\beta}(t, T)+ \\
& B(t) m(0, t)-2 \Sigma(t) \Sigma(t)^{\top} \hat{\Gamma}(t, T) m(0, t)
\end{aligned}
$$

We also have:

$$
V(0, t)=\int_{0}^{t} e^{\tilde{B}(t)} e^{-\tilde{B}(s)} \Sigma(s) \Sigma(s)^{\top} e^{-\tilde{B}(s)^{\top}} e^{\tilde{B}(t)^{\top}} \mathrm{d} s
$$

or:

$$
e^{-\tilde{B}(t)} V(0, t) e^{-\tilde{B}(t)^{\top}}=\int_{0}^{t} e^{-\tilde{B}(s)} \Sigma(s) \Sigma(s)^{\top} e^{-\tilde{B}(s)^{\top}} \mathrm{d} s
$$

It follows that:

$$
\begin{aligned}
& -\tilde{B}(t) e^{-\tilde{B}(t)} V(0, t) e^{-\tilde{B}(t)^{\top}+} \\
& \quad e^{-\tilde{B}(t)} \partial_{t} V(0, t) e^{-\tilde{B}(t)^{\top}-} \\
& \quad e^{-\tilde{B}(t)} V(0, t) \tilde{B}(t)^{\top} e^{-\tilde{B}(t)^{\top}}=e^{-\tilde{B}(t)} \Sigma(t) \Sigma(t)^{\top} e^{-\tilde{B}(t)^{\top}}
\end{aligned}
$$

or:

$$
\begin{aligned}
\partial_{t} V(0, t)= & \tilde{B}(t) V(0, t)+V(0, t) \tilde{B}(t)^{\top}+\Sigma(t) \Sigma(t)^{\top} \\
= & B(t) V(0, t)+V(0, t) B(t)^{\top}- \\
& 4 V(0, t) \hat{\Gamma}(t, T)^{\top} \Sigma(t) \Sigma(t)^{\top}+\Sigma(t) \Sigma(t)^{\top}
\end{aligned}
$$

In our approach, the dynamics of $m(0, t)$ and $V(0, t)$ are obtained under the forward probability measure $\mathbb{Q}^{\star}(T)$. In the paper of El Karoui et al. (1992a), the dynamics of $m(t, T)$ and $V(t, T)$ are obtained under the probability measure $\mathbb{Q}^{\star}(t, T)$:

$$
\left\{\begin{aligned}
\partial_{T} m(t, T)= & a(T)+B(T) m(t, T)-2 V(t, T) \Gamma(T) m(t, T)- \\
& V(t, T) \beta(T) \\
\partial_{T} V(t, T)= & V(t, T) B(T)^{\top}+B(T) V(t, T)- \\
& 2 V(t, T) \Gamma(T) V(t, T)+\Sigma(T) \Sigma(T)^{\top}
\end{aligned}\right.
$$

5. The Libor rate $L\left(t, T_{i-1}, T_{i}\right)$ at time t between the dates T_{i-1} and T_{i} is defined by:

$$
L\left(t, T_{i-1}, T_{i}\right)=\frac{1}{\delta_{i-1}}\left(\frac{B\left(t, T_{i-1}\right)}{B\left(t, T_{i}\right)}-1\right)
$$

where $\delta_{i-1}=T_{i}-T_{i-1}$.
6. The payoff of the caplet is given by:

$$
\begin{aligned}
f(X) & =\delta_{i-1}\left(L\left(t, T_{i-1}, T_{i}\right)-K\right)^{+} \\
& =\left(\frac{B\left(t, T_{i-1}\right)}{B\left(t, T_{i}\right)}-\left(1+\delta_{i-1} K\right)\right)^{+} \\
& =\frac{1}{B\left(t, T_{i}\right)}\left(B\left(t, T_{i-1}\right)-\left(1+\delta_{i-1} K\right) B\left(t, T_{i}\right)\right)^{+}
\end{aligned}
$$

It follows that the price of the caplet is given by:

$$
\begin{aligned}
\text { Caplet } & =\mathbb{E}^{\mathbb{Q}}\left[\frac{e^{-\int_{0}^{T_{i}} r(s) \mathrm{d} s}}{B\left(t, T_{i}\right)}\left(B\left(t, T_{i-1}\right)-\left(1+\delta_{i-1} K\right) B\left(t, T_{i}\right)\right)^{+}\right] \\
& =B(0, t) \mathbb{E}^{\mathbb{Q}^{\star}(t)}\left[\left(B\left(t, T_{i-1}\right)-\left(1+\delta_{i-1} K\right) B\left(t, T_{i}\right)\right)^{+}\right] \\
& =B(0, t) \mathbb{E}^{\mathbb{Q}^{\star}(t)}[\max (0, g(X))]
\end{aligned}
$$

where:

$$
\begin{aligned}
g(x)= & \exp \left(-\hat{\alpha}\left(t, T_{i-1}\right)-\hat{\beta}\left(t, T_{i-1}\right) x-\hat{\Gamma}\left(t, T_{i-1}\right) x^{2}\right)- \\
& \left(1+\delta_{i-1} K\right) \exp \left(-\hat{\alpha}\left(t, T_{i}\right)-\hat{\beta}\left(t, T_{i}\right) x-\hat{\Gamma}\left(t, T_{i}\right) x^{2}\right)
\end{aligned}
$$

7. We have:

$$
\begin{aligned}
\text { Caplet } & =B(0, t) \int_{-\infty}^{+\infty} f(x) \phi(x ; m(0, t), V(0, t)) \mathrm{d} x \\
& =B(0, t) \int_{-\infty}^{+\infty} \max (0, g(x)) \phi(x ; m(0, t), V(0, t)) \mathrm{d} x \\
& =B(0, t) \int_{\mathcal{E}} g(x) \phi(x ; m(0, t), V(0, t)) \mathrm{d} x \\
& =B(0, t) \int_{\mathcal{E}} h(x) \mathrm{d} x
\end{aligned}
$$

where $\mathcal{E}=\{x: g(x) \geq 0\}$ is the exercise domain of the option and:

$$
h(x)=g(x) \phi(x ; m(0, t), V(0, t))
$$

We note $a_{i}=\hat{\Gamma}\left(t, T_{i}\right), b_{i}=\hat{\beta}\left(t, T_{i}\right), c_{i}=\hat{\alpha}\left(t, T_{i}\right)$ and $d=1+\delta_{i-1} K$. It follows that:

$$
\begin{aligned}
g(x) \geq 0 & \Leftrightarrow \exp \left(-a_{i-1} x^{2}-b_{i-1} x-c_{i-1}\right) \geq d \exp \left(-a_{i} x^{2}-b_{i} x-c_{i}\right) \\
& \Leftrightarrow a_{i-1} x^{2}+b_{i-1} x+c_{i-1} \leq a_{i} x^{2}+b_{i} x+c_{i}-\ln d \\
& \Leftrightarrow a x^{2}+b x+c \geq 0
\end{aligned}
$$

where $a=a_{i}-a_{i-1}, b=b_{i}-b_{i-1}, c=c_{i}-c_{i-1}-\ln d$. Let $\Delta=b^{2}-4 a c$ be the discriminant of the quadratic polynomial. If $\Delta \leq 0$ and $a>0, \mathcal{E}=(-\infty,+\infty)$. If $\Delta \leq 0$ and $a<0, \mathcal{E}=\emptyset$. If $\Delta>0$ and $a>0, \mathcal{E}=\left(-\infty, x_{1}\right] \cup\left[x_{2},+\infty\right)$ where:

$$
x_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

and:

$$
x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

If $\Delta>0$ and $a \leq 0, \mathcal{E}=\left[x_{1}, x_{2}\right]$.
8. We have:

$$
\begin{aligned}
\mathcal{J} & =\int_{x_{1}}^{x_{2}} \frac{e^{-a x^{2}-b x-c}}{\sqrt{2 \pi V}} e^{-\frac{1}{2 V}(x-m)^{2}} \mathrm{~d} x \\
& =\int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2 \pi V}} e^{P(x)} \mathrm{d} x
\end{aligned}
$$

where $P(x)$ is a quadratic polynomial:

$$
\begin{aligned}
P(x) & =-\frac{1}{2 V}(x-m)^{2}-a x^{2}-b x-c \\
& =-\frac{1}{2 V} x^{2}+\frac{m}{V} x-\frac{m^{2}}{2 V}-a x^{2}-b x-c \\
& =-\left(\frac{1}{2 V}+a\right) x^{2}+\left(\frac{m}{V}-b\right) x-\left(\frac{m^{2}}{2 V}+c\right) \\
& =-\frac{1}{2}\left(\frac{1+2 a V}{V}\right) x^{2}+\left(\frac{m-b V}{V}\right) x-\left(\frac{m^{2}+2 c V}{2 V}\right)
\end{aligned}
$$

We can write $P(x)$ as follows:

$$
\begin{aligned}
P(x) & =-\frac{1}{2 \tilde{V}} x^{2}+\frac{\tilde{m}}{\tilde{V}} x-\frac{\tilde{m}^{2}}{2 \tilde{V}}-\tilde{c} \\
& =-\frac{1}{2 \tilde{V}}(x-\tilde{m})^{2}-\tilde{c}
\end{aligned}
$$

where:

$$
\begin{aligned}
\tilde{V} & =\frac{V}{1+2 a V} \\
\tilde{m} & =\frac{m-b V}{1+2 a V} \\
\tilde{c} & =\left(\frac{m^{2}+2 c V}{2 V}\right)-\frac{\tilde{m}^{2}}{2 \tilde{V}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathcal{J} & =\int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2 \pi V}} e^{-\frac{1}{2 \tilde{V}}(x-\tilde{m})^{2}-\tilde{c}} \mathrm{~d} x \\
& =\sqrt{\frac{\tilde{V}}{V}} e^{-\tilde{c}} \int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2 \pi \tilde{V}}} e^{-\frac{1}{2 \tilde{V}}(x-\tilde{m})^{2}} \mathrm{~d} x \\
& =\sqrt{\frac{1}{1+2 a V}} e^{-\tilde{c}}\left(\Phi\left(\frac{x_{2}-\tilde{m}}{\sqrt{\tilde{V}}}\right)-\Phi\left(\frac{x_{1}-\tilde{m}}{\sqrt{\tilde{V}}}\right)\right)
\end{aligned}
$$

We also have:

$$
\frac{x-\tilde{m}}{\sqrt{\tilde{V}}}=\sqrt{\frac{1+2 a V}{V}} x+\sqrt{V} \frac{b-m / V}{\sqrt{1+2 a V}}
$$

and:

$$
\begin{aligned}
\tilde{c} & =\left(\frac{m^{2}+2 c V}{2 V}\right)-\frac{\tilde{m}^{2}}{2 \tilde{V}} \\
& =c+\frac{m^{2}(1+2 a V)}{2 V(1+2 a V)}-\frac{(m-b V)^{2}}{2 V(1+2 a V)} \\
& =c+\frac{2 a m^{2}+2 b m-b^{2} V}{2(1+2 a V)}
\end{aligned}
$$

9. The price of the caplet is equal to:

$$
\begin{aligned}
\text { Caplet } & =B(0, t) \int_{\mathcal{E}} h(x) \mathrm{d} x \\
& =B(0, t) \mathcal{I}_{i-1}(\mathcal{E})-B(0, t)\left(1+\delta_{i-1} K\right) \mathcal{I}_{i}(\mathcal{E})
\end{aligned}
$$

where:

$$
\mathcal{I}_{i}(\mathcal{E})=\int_{\mathcal{E}} e^{-\hat{\alpha}\left(t, T_{i}\right)-\hat{\beta}\left(t, T_{i}\right) x-\hat{\Gamma}\left(t, T_{i}\right) x^{2}} \phi(x ; m(0, t), V(0, t)) \mathrm{d} x
$$

Since we can write $\mathcal{I}_{i}(\mathcal{E})$ in terms of \mathcal{J}, we obtain an analytical formula of the caplet price. For instance, if $\mathcal{E}=\left(-\infty, x_{1}\right] \cup\left[x_{2},+\infty\right)$, we have:

$$
\begin{aligned}
\mathcal{I}_{i}(\mathcal{E})= & \mathcal{J}\left(\hat{\alpha}\left(t, T_{i}\right), \hat{\beta}\left(t, T_{i}\right), \hat{\Gamma}\left(t, T_{i}\right), m(0, t), V(0, t),-\infty, x_{1}\right)+ \\
& \mathcal{J}\left(\hat{\alpha}\left(t, T_{i}\right), \hat{\beta}\left(t, T_{i}\right), \hat{\Gamma}\left(t, T_{i}\right), m(0, t), V(0, t), x_{2},+\infty\right)
\end{aligned}
$$

If $\mathcal{E}=\left[x_{1}, x_{2}\right], \mathcal{I}_{i}(\mathcal{E})$ becomes:

$$
\mathcal{I}_{i}(\mathcal{E})=\mathcal{J}\left(\hat{\alpha}\left(t, T_{i}\right), \hat{\beta}\left(t, T_{i}\right), \hat{\Gamma}\left(t, T_{i}\right), m(0, t), V(0, t), x_{1}, x_{2}\right)
$$

9.4.11 Pricing two-asset basket options

1. Let $f\left(S_{1}(T), S_{2}(T)\right)=\left(\alpha_{1} S_{1}(T)+\alpha_{2} S_{2}(T)-K\right)^{+}$be the payoff of the option. Using Feynman-Kac representation, we know that:

$$
\mathcal{C}_{0}=\mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{0}^{T} r \mathrm{~d} t} f\left(S_{1}(T), S_{2}(T)\right)\right]
$$

where:

$$
\left\{\begin{array}{l}
S_{1}(T)=S_{1}(0) e^{\left(b_{1}-\frac{1}{2} \sigma_{1}^{2}\right) T+\sigma_{1} \sqrt{T} \varepsilon_{1}} \\
S_{2}(T)=S_{2}(0) e^{\left(b_{2}-\frac{1}{2} \sigma_{2}^{2}\right) T+\sigma_{2} \sqrt{T} \varepsilon_{2}}
\end{array}\right.
$$

and $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is a standardized Gaussian random vector with $\rho\left(\varepsilon_{1}, \varepsilon_{2}\right)=\rho$. Since the probability density function of $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is equal to:

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x_{1}^{2}+x_{2}^{2}-2 \rho x_{1} x_{2}\right)}
$$

we have:

$$
\mathcal{C}_{0}=e^{-r T} \iint_{\mathbb{R}^{2}} g\left(x_{1}, x_{2}\right) h\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

where:

$$
\left\{\begin{array}{l}
g\left(x_{1}, x_{2}\right)=\left(g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)-K\right)^{+} \\
g_{1}\left(x_{1}\right)=\alpha_{1} S_{1}(0) e^{\left(b_{1}-\frac{1}{2} \sigma_{1}^{2}\right) T+\sigma_{1} \sqrt{T} x_{1}} \\
g_{2}\left(x_{2}\right)=\alpha_{2} S_{2}(0) e^{\left(b_{2}-\frac{1}{2} \sigma_{2}^{2}\right) T+\sigma_{2} \sqrt{T} x_{2}}
\end{array}\right.
$$

2. (a) Since we have:

$$
A e^{b+c x}-D \geq 0 \Leftrightarrow x \geq \frac{1}{c} \ln \frac{D}{A}-\frac{b}{c}
$$

we deduce that ${ }^{9}$:

$$
\begin{aligned}
\mathbb{E}\left[\left(A e^{b+c \varepsilon}-D\right)^{+}\right]= & \int_{\mathbb{R}}\left(A e^{b+c x}-D\right)^{+} \phi(x) \mathrm{d} x \\
= & A e^{b} \int_{\frac{1}{c} \ln \frac{D}{A}-\frac{b}{c}}^{\infty} e^{c x} \phi(x) \mathrm{d} x- \\
& D \int_{\frac{1}{c} \ln \frac{D}{A}-\frac{b}{c}}^{\infty} \phi(x) \mathrm{d} x \\
= & A e^{b+\frac{1}{2} c^{2}} \int_{\frac{1}{c} \ln \frac{D}{A}-\frac{b}{c}-c}^{\infty} e^{c x} \phi(x) \mathrm{d} x- \\
& D \int_{\frac{1}{c} \ln \frac{D}{A}-\frac{b}{c}}^{\infty} \phi(x) \mathrm{d} x \\
= & A e^{b+\frac{1}{2} c^{2}} \Phi\left(d_{1}\right)-D \Phi\left(d_{1}+c\right)
\end{aligned}
$$

where:

$$
d_{1}=\frac{1}{c}\left(\ln \frac{A}{D}+b\right)
$$

(b) If $A<0$ and $D>0$, we have:

$$
\left(A e^{b+c \varepsilon}-D\right)^{+}=0
$$

and:

$$
\mathbb{E}\left[\left(A e^{b+c \varepsilon}-D\right)^{+}\right]=0
$$

If $A<0$ and $D<0$, we have:

$$
\left(A e^{b+c \varepsilon}-D\right)^{+}=\left(-D+A e^{b+c \varepsilon}\right)^{+}
$$

and:

$$
\mathbb{E}\left[\left(A e^{b+c \varepsilon}-D\right)^{+}\right]=-D \Phi\left(-d_{1}-c\right)+A e^{b+\frac{1}{2} c^{2}} \Phi\left(-d_{1}\right)
$$

If $A>0$ and $D<0$, we have:

$$
\left(A e^{b+c \varepsilon}-D\right)^{+}=A e^{b+c \varepsilon}-D
$$

and:

$$
\mathbb{E}\left[\left(A e^{b+c \varepsilon}-D\right)^{+}\right]=A e^{b+\frac{1}{2} c^{2}}-D
$$

3. Using the Cholesky decomposition, we have:

$$
\varepsilon_{2}=\rho \varepsilon_{1}+\sqrt{1-\rho^{2}} \varepsilon_{3}
$$

where $\left(\varepsilon_{1}, \varepsilon_{3}\right)$ is a standardized Gaussian random vector with $\rho\left(\varepsilon_{1}, \varepsilon_{3}\right)=0$. We deduce that the pdf of $\left(\varepsilon_{1}, \varepsilon_{3}\right)$ is given by:

$$
h^{\prime}\left(x_{1}, x_{3}\right)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{3}^{2}\right)}
$$

[^37]$$
e^{c x} \phi(x)=e^{\frac{1}{2} c^{2}} e^{-\frac{1}{2}(x-c)^{2}}
$$

Therefore, we have:

$$
\mathcal{C}_{0}=e^{-r T} \iint_{\mathbb{R}^{2}} g^{\prime}\left(x_{1}, x_{3}\right) h^{\prime}\left(x_{1}, x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{3}
$$

where:

$$
\left\{\begin{array}{l}
g^{\prime}\left(x_{1}, x_{3}\right)=\left(g_{1}^{\prime}\left(x_{1}\right)+g_{2}^{\prime}\left(x_{1}, x_{3}\right)-K\right)^{+} \\
g_{1}^{\prime}\left(x_{1}\right)=\alpha_{1} S_{1}(0) e^{\left(b_{1}-\frac{1}{2} \sigma_{1}^{2}\right) T+\sigma_{1} \sqrt{T} x_{1}} \\
g_{2}^{\prime}\left(x_{1}, x_{3}\right)=\alpha_{2} S_{2}(0) e^{\left(b_{2}-\frac{1}{2} \sigma_{2}^{2}\right) T+\rho \sigma_{2} \sqrt{T} x_{1}+\sqrt{1-\rho^{2}} \sigma_{2} \sqrt{T} x_{3}}
\end{array}\right.
$$

It follows that:

$$
\mathcal{C}_{0}=\int_{\mathbb{R}} e^{-r T}\left(\int_{\mathbb{R}}\left(g_{2}^{\prime}\left(x_{1}, x_{3}\right)-\left(K-g_{1}^{\prime}\left(x_{1}\right)\right)\right)^{+} \phi\left(x_{3}\right) \mathrm{d} x_{3}\right) \phi\left(x_{1}\right) \mathrm{d} x_{1}
$$

where:

$$
\begin{aligned}
g_{2}^{\prime}\left(x_{1}, x_{3}\right)= & \left(\alpha_{2} S_{2}(0) e^{\rho \sigma_{2} \sqrt{T} x_{1}}\right) \times \\
& e^{\left(b_{2}-\frac{1}{2} \rho^{2} \sigma_{2}^{2}-\frac{1}{2}\left(1-\rho^{2}\right) \sigma_{2}^{2}\right) T+\sqrt{1-\rho^{2}} \sigma_{2} \sqrt{T} x_{3}}
\end{aligned}
$$

Since we have $S_{2}^{\star}>0$ and $K^{\star}>0$, we deduce that:

$$
\mathcal{C}_{0}=\int_{\mathbb{R}} \mathrm{BS}\left(S^{\star}, K^{\star}, \sigma^{\star}, T, b^{\star}, r\right) \phi\left(x_{1}\right) \mathrm{d} x_{1}
$$

where:

$$
\left\{\begin{array}{l}
S^{\star}=\alpha_{2} S_{2}(0) e^{\rho \sigma_{2} \sqrt{T} x_{1}} \\
K^{\star}=K-\alpha_{1} S_{1}(0) e^{\left(b_{1}-\frac{1}{2} \sigma_{1}^{2}\right) T+\sigma_{1} \sqrt{T} x_{1}} \\
\sigma^{\star}=\sigma_{2} \sqrt{1-\rho^{2}} \\
b^{\star}=b_{2}-\frac{1}{2} \rho^{2} \sigma_{2}^{2}
\end{array}\right.
$$

In this case, the Black-Scholes formula is equal to:

$$
\operatorname{BS}\left(S^{\star}, K^{\star}, \sigma^{\star}, T, b^{\star}, r\right)=S^{\star} e^{\left(b^{\star}-r\right) T} \Phi\left(d_{1}\right)-K^{\star} e^{-r T} \Phi\left(d_{2}\right)
$$

where:

$$
d_{1}=\frac{1}{\sigma^{\star} \sqrt{T}}\left(\ln \frac{S^{\star}}{K^{\star}}+b^{\star} T\right)+\frac{1}{2} \sigma^{\star} \sqrt{T}
$$

and:

$$
d_{2}=d_{1}-\sigma^{\star} \sqrt{T}
$$

4. If $\alpha_{1}>0, \alpha_{2}<0$ and $K>0$, we obtain the same formula:

$$
\mathcal{C}_{0}=\int_{\mathbb{R}} \mathrm{BS}\left(S^{\star}, K^{\star}, \sigma^{\star}, T, b^{\star}, r\right) \phi\left(x_{1}\right) \mathrm{d} x_{1}
$$

with:

$$
\mathrm{BS}(S, K, \sigma, T, b, r)=-S^{\star} e^{\left(b^{\star}-r\right) T} \Phi\left(-d_{1}\right)+K^{\star} e^{-r T} \Phi\left(-d_{2}\right)
$$

5. In the general case, we can obtain the following options:

$$
\mathbb{E}\left[\left(\alpha_{1} S_{1}(T)+\alpha_{2} S_{2}(T)-K\right)^{+}\right]= \begin{cases}\mathbb{E}\left[\left(S^{\star}-K^{\star}\right)^{+}\right] & \text {(call) } \\ \mathbb{E}\left[\left(K^{\star}-S^{\star}\right)^{+}\right] & \text {(put) } \\ \mathbb{E}\left[S^{\star}\right]+K^{\star} & \text { (e) } \\ 0 & \text { (0) }\end{cases}
$$

where $S^{\star}>0$ and $K^{\star}>0$. Table 9.1 shows that we cannot always transform the two-dimensional integral into a one-dimensional integral.

TABLE 9.1: Pricing basket options with one-dimensional integration

Case	α_{1}	α_{2}	K	Type	S^{\star}	K^{\star}	1D
$\# 1$	+	+	+	(call)	$\alpha_{1} S_{1}(T)+\alpha_{2} S_{2}(T)$	K	
$\# 2$	+	+	-	(e)	$\alpha_{1} S_{1}(T)+\alpha_{2} S_{2}(T)$	$-K$	\checkmark
$\# 3$	+	-	+	(call)	$\alpha_{1} S_{1}(T)$	$K-\alpha_{2} S_{2}(T)$	\checkmark
$\# 4$	+	-	-	(call)	$\alpha_{1} S_{1}(T)-K$	$-\alpha_{2} S_{2}(T)$	
$\# 5$	-	+	+	(call)	$\alpha_{2} S_{2}(T)$	$K-\alpha_{1} S_{1}(T)$	\checkmark
$\# 6$	-	+	-	(call)	$\alpha_{2} S_{2}(T)-K$	$-\alpha_{1} S_{1}(T)$	
$\# 7$	-	-	+	(0)			\checkmark
$\# 8$	-	-	-	(put)	$\alpha_{1} S_{1}(T)+\alpha_{2} S_{2}(T)$	K	

Chapter 10

Statistical Inference and Model Estimation

10.3.1 Probability distribution of the t-statistic in the case of the linear regression model

1. We verify that $\mathbf{H}^{\top}=\left(\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right)^{\top}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}=\mathbf{H}$ and:

$$
\begin{aligned}
\mathbf{H}^{2} & =\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \\
& =\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \\
& =\mathbf{H}
\end{aligned}
$$

Since I_{n} is symetric, we also deduce that $\mathbf{L}=I_{n}-\mathbf{H}$ is symetric and idempotent:

$$
\begin{aligned}
\mathbf{L}^{2} & =\left(I_{n}-\mathbf{H}\right)\left(I_{n}-\mathbf{H}\right) \\
& =I_{n}-2 \mathbf{H}+\mathbf{H}^{2} \\
& =I_{n}-2 \mathbf{H}+\mathbf{H} \\
& =I_{n}-\mathbf{H}
\end{aligned}
$$

2. We have:

$$
\mathbf{L X}=\left(I_{n}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right) \mathbf{X}=\mathbf{X}-\mathbf{X}=0
$$

and:

$$
\mathbf{X}^{\top} \mathbf{L}=\left(\mathbf{L}^{\top} \mathbf{X}\right)^{\top}=(\mathbf{L} \mathbf{X})^{\top}=0
$$

We notice that:

$$
\hat{\mathbf{Y}}=\mathbf{X} \hat{\beta}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{H Y}
$$

and:

$$
\hat{\mathbf{U}}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{H Y}=\mathbf{L Y}
$$

We deduce that:

$$
\hat{\mathbf{U}}=\mathbf{L Y}=\mathbf{L}(\mathbf{X} \beta+\mathbf{U})=\mathbf{L} \mathbf{X} \beta+\mathbf{L} \mathbf{U}=\mathbf{L} \mathbf{U}
$$

3. We have:

$$
\begin{aligned}
\operatorname{trace}(\mathbf{L}) & =\operatorname{trace}\left(I_{n}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right) \\
& =\operatorname{trace}\left(I_{n}\right)-\operatorname{trace}\left(\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right) \\
& =\operatorname{trace}\left(I_{n}\right)-\operatorname{trace}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right) \\
& =\operatorname{trace}\left(I_{n}\right)-\operatorname{trace}\left(I_{K}\right) \\
& =n-K
\end{aligned}
$$

We know that the rank of an idempotent matrix is equal to its trace. We deduce that $\operatorname{rank}(\mathbf{L})=\operatorname{trace}(\mathbf{L})=n-K$.
4. We have:

$$
\operatorname{RSS}(\hat{\beta})=\hat{\mathbf{U}}^{\top} \hat{\mathbf{U}}=(\mathbf{L} \mathbf{U})^{\top}(\mathbf{L} \mathbf{U})=\mathbf{U}^{\top} \mathbf{L}^{\top} \mathbf{L} \mathbf{U}=\mathbf{U}^{\top} \mathbf{L} \mathbf{U}
$$

It follows that:

$$
\begin{aligned}
\mathbb{E}[\operatorname{RSS}(\hat{\beta})] & =\mathbb{E}\left[\mathbf{U}^{\top} \mathbf{L} \mathbf{U}\right] \\
& =\mathbb{E}\left[\operatorname{trace}\left(\mathbf{U}^{\top} \mathbf{L} \mathbf{U}\right)\right] \\
& =\mathbb{E}\left[\operatorname{trace}\left(\mathbf{L} \mathbf{U}^{\top} \mathbf{U}\right)\right] \\
& =\operatorname{trace}\left(\mathbb{E}\left[\mathbf{L} \mathbf{U}^{\top} \mathbf{U}\right]\right) \\
& =\operatorname{trace}\left(\mathbf{L} \mathbb{E}\left[\mathbf{U}^{\top} \mathbf{U}\right]\right) \\
& =\sigma^{2} \operatorname{trace}(\mathbf{L}) \\
& =(n-K) \sigma^{2}
\end{aligned}
$$

and:

$$
\mathbb{E}\left[\hat{\sigma}^{2}\right]=\mathbb{E}\left[\frac{\operatorname{RSS}(\hat{\beta})}{n-K}\right]=\sigma^{2}
$$

5. We have:

$$
\begin{aligned}
\mathbf{U}^{\top} \mathbf{L} \mathbf{U} & =\sigma^{2}\left(\left(\sigma I_{n}\right)^{-1} \mathbf{U}\right)^{\top} \mathbf{L}\left(\left(\sigma I_{n}\right)^{-1} \mathbf{U}\right) \\
& =\sigma^{2} \mathbf{V}^{\top} \mathbf{L} \mathbf{V}
\end{aligned}
$$

Since $\mathbf{V}^{\top} \mathbf{L V}$ is a normalized Gaussian quadratic form, we have:

$$
\mathbf{V}^{\top} \mathbf{L V} \sim \chi_{\nu}^{2}
$$

because $\nu=\operatorname{rank} \mathbf{L}=n-K$. We deduce that:

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\operatorname{RSS}(\hat{\beta})}{n-K} \\
& =\frac{\mathbf{U}^{\top} \mathbf{L} \mathbf{U}}{n-K} \\
& =\frac{\sigma^{2}}{n-K} \mathbf{V}^{\top} \mathbf{L V} \\
& \sim \frac{\sigma^{2}}{n-K} \chi_{n-K}^{2}
\end{aligned}
$$

6. We have:

$$
\begin{aligned}
\operatorname{cov}(\hat{\beta}, \hat{\mathbf{U}}) & =\mathbb{E}\left[(\hat{\beta}-\beta)(\hat{\mathbf{U}}-0)^{\top}\right] \\
& =\mathbb{E}\left[(\hat{\beta}-\beta) \hat{\mathbf{U}}^{\top}\right] \\
& =\mathbb{E}\left[\hat{\beta} \hat{\mathbf{U}}^{\top}\right]-\beta \mathbb{E}\left[\hat{\mathbf{U}}^{\top}\right] \\
& =\mathbb{E}\left[\left(\beta+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{U}\right)(\mathbf{L} \mathbf{U})^{\top}\right] \\
& =\beta \mathbb{E}[\mathbf{U}]^{\top} \mathbf{L}^{\top}+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}\left[\mathbf{U U}^{\top}\right] \mathbf{L}^{\top} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{L} \\
& =0
\end{aligned}
$$

7. We deduce that $\hat{\beta}$ and $\hat{\sigma}^{2}$ are independent, because $\hat{\sigma}^{2}$ is a function of $\hat{\mathbf{U}}$. Moreover, we have:
and:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\sigma^{2}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)_{j, j}}} \sim \mathcal{N}(0,1)
$$

$$
\frac{(n-K) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{n-K}^{2}
$$

It follows that:

$$
\begin{aligned}
t\left(\hat{\beta}_{j}\right) & =\frac{\hat{\beta}_{j}-\beta_{j}}{\hat{\sigma}\left(\hat{\beta}_{j}\right)} \\
& =\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\hat{\sigma}^{2}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)_{j, j}}} \\
& =\frac{\sqrt{\sqrt{\sigma^{2}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)_{j, j}}}}{\sqrt{\frac{(n-K) \hat{\sigma}^{2}}{(n-K) \sigma^{2}}}} \\
& \sim \frac{\mathcal{N}(0,1)}{\sqrt{\frac{\chi_{n-K}^{2}}{n-K}}} \\
& \sim \mathbf{t}_{n-K}
\end{aligned}
$$

10.3.2 Linear regression without a constant

1. We have:

$$
\begin{aligned}
& \mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{ccc}
x_{1,1} & & x_{1, K} \\
& \ddots & \\
x_{n, 1} & & x_{n, K}
\end{array}\right), \\
& \beta=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right), \quad \varepsilon=\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
\end{aligned}
$$

where $\varepsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. The sum of squared residuals $\varepsilon^{\top} \varepsilon$ is ${ }^{1}$:

$$
\begin{aligned}
\varepsilon^{\top} \varepsilon & =(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta) \\
& =\mathbf{Y}^{\top} \mathbf{Y}-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}-\mathbf{Y}^{\top} \mathbf{X} \beta+\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta \\
& =\mathbf{Y}^{\top} \mathbf{Y}-2 \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\hat{\beta} & =\arg \min \varepsilon^{\top} \varepsilon \\
& =\arg \min \frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right)
\end{aligned}
$$

$\hat{\beta}$ is the solution of a QP problem with $Q=\mathbf{X}^{\top} \mathbf{X}$ and $R=\mathbf{X}^{\top} \mathbf{Y}$.

[^38]2. (a) We consider that there is a constant in the explanatory variables and we note $\mathbf{X}=\left(\begin{array}{cc}\mathbf{1} & \mathbf{X}_{\star}\end{array}\right)$ where \mathbf{X}_{\star} is the matrix of exogenous data without the constant. We write the coefficient β as follows:

$$
\beta=\binom{\beta_{0}}{\beta_{\star}}
$$

The first-order condition of the previous optimization problem is $Q \hat{\beta}=R$ or $\mathbf{X}^{\top} \mathbf{X} \hat{\beta}=\mathbf{X}^{\top} \mathbf{Y}$. We deduce that:

$$
\left\{\begin{aligned}
\mathbf{1}^{\top} \mathbf{1} \hat{\beta}_{0}+\mathbf{1}^{\top} \mathbf{X}_{\star} \hat{\beta}_{\star} & =\mathbf{1}^{\top} \mathbf{Y} \\
\mathbf{X}_{\star}^{\top} \mathbf{1} \hat{\beta}_{0}+\mathbf{X}_{\star}^{\top} \mathbf{X}_{\star} \hat{\beta}_{\star} & =\mathbf{X}_{\star}^{\top} \mathbf{Y}
\end{aligned}\right.
$$

If the residuals are centered, we must verify that $\mathbf{1}^{\top} \hat{\varepsilon}=0$ or $\mathbf{1}^{\top}\left(\mathbf{Y}-\hat{\beta}_{0} \mathbf{1}-\hat{\beta}_{\star} \mathbf{X}_{\star}\right)=$ 0 . We have ${ }^{2}$:

$$
\begin{aligned}
\mathbf{1}^{\top}\left(\mathbf{Y}-\hat{\beta}_{0} \mathbf{1}-\hat{\beta}_{\star} \mathbf{X}_{\star}\right)= & \mathbf{1}^{\top} \mathbf{Y}-\mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}-\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star} \\
= & \mathbf{1}^{\top} \mathbf{1} \hat{\beta}_{0}+\mathbf{1}^{\top} \mathbf{X}_{\star} \hat{\beta}_{\star}-\mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}-\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star} \\
= & \operatorname{trace}\left(\mathbf{1}^{\top} \mathbf{1} \hat{\beta}_{0}\right)+\operatorname{trace}\left(\mathbf{1}^{\top} \mathbf{X}_{\star} \hat{\beta}_{\star}\right)- \\
& \mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}-\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star} \\
= & \operatorname{trace}\left(\mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}\right)+\operatorname{trace}\left(\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star}\right)- \\
& \mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}-\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star} \\
= & \mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}+\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star}-\mathbf{1}^{\top} \hat{\beta}_{0} \mathbf{1}-\mathbf{1}^{\top} \hat{\beta}_{\star} \mathbf{X}_{\star} \\
= & 0
\end{aligned}
$$

Adding a constant in the explanatory variables allows to center the residuals. If there is no intercept in the linear model, there is no reason that the residuals are centered.
(b) To center the residuals, we must add the constraint $\mathbf{1}^{\top} \varepsilon=0$. We have $\mathbf{1}^{\top} \varepsilon=$ $\mathbf{1}^{\top} \mathbf{Y}-\mathbf{1}^{\top} \mathbf{X} \beta$, which implies that $\mathbf{1}^{\top} \mathbf{X} \beta=\mathbf{1}^{\top} \mathbf{Y}$. The QP problem becomes:

$$
\begin{aligned}
\hat{\beta} & =\arg \min \frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right) \\
\text { s.t. } & \left(\mathbf{1}^{\top} \mathbf{X}\right) \beta=\left(\mathbf{1}^{\top} \mathbf{Y}\right)
\end{aligned}
$$

We obtain a new QP problem with $Q=\mathbf{X}^{\top} \mathbf{X}, R=\mathbf{X}^{\top} \mathbf{Y}, A=\mathbf{1}^{\top} \mathbf{X}$ et $B=$ $\mathbf{1}^{\top} \mathbf{Y}$.
(c) To transform the implicit constraints, we consider the explicit parametrization:

$$
\beta=C \gamma+D
$$

where C is the orthonormal basis for the kernel of the matrix $A=\mathbf{1}^{\top} \mathbf{X}$ and D is defined as follows:

$$
\begin{aligned}
D & =\left(A^{\top} A\right)^{\star} A^{\top} B \\
& =\left(\mathbf{X}^{\top} \mathbf{1 1} \mathbf{1}^{\top} \mathbf{X}\right)^{\star} \mathbf{X}^{\top} \mathbf{1 1}^{\top} \mathbf{Y}
\end{aligned}
$$

[^39]where $\left(A^{\top} A\right)^{\star}$ is the Moore-Penrose inverse of the matrix $A^{\top} A$. As the dimension of β is $K \times 1$, the matrices C, γ and D have the following dimensions $K \times(K-1)$, $(K-1) \times 1$ and $K \times 1$. The objective function becomes then:
\[

$$
\begin{aligned}
f(\beta)= & \frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right) \\
= & \frac{1}{2}(C \gamma+D)^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)(C \gamma+D)-(C \gamma+D)^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right) \\
= & \frac{1}{2} \gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{X} C \gamma+\frac{1}{2} D^{\top} \mathbf{X}^{\top} \mathbf{X} C \gamma+\frac{1}{2} \gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{X} D+ \\
& \frac{1}{2} D^{\top} \mathbf{X}^{\top} \mathbf{X} D-\gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{Y}-D^{\top} \mathbf{X}^{\top} \mathbf{Y} \\
= & \frac{1}{2} \gamma^{\top}\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right) \gamma+\gamma^{\top}\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} D-C^{\top} \mathbf{X}^{\top} \mathbf{Y}\right)+ \\
& \left(\frac{1}{2} D^{\top} \mathbf{X}^{\top} \mathbf{X} D-D^{\top} \mathbf{X}^{\top} \mathbf{Y}\right)
\end{aligned}
$$
\]

We deduce that:

$$
\hat{\gamma}=\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} D)
$$

and:

$$
\hat{\beta}=C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} D)+D
$$

The analytical solution consists in computing C, D and finally $\hat{\beta}$.

10.3.3 Linear regression with linear constraints

1. (a) We have:

$$
\begin{aligned}
\operatorname{RSS}(\beta) & =\mathbf{U}^{\top} \mathbf{U} \\
& =(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta) \\
& =\left(\mathbf{Y}^{\top}-\beta^{\top} \mathbf{X}^{\top}\right)(\mathbf{Y}-\mathbf{X} \beta) \\
& =\mathbf{Y}^{\top} \mathbf{Y}-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}-\mathbf{Y}^{\top} \mathbf{X} \beta+\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta \\
& =\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta-2 \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\mathbf{Y}^{\top} \mathbf{Y}
\end{aligned}
$$

(b) The first-order condition is:

$$
\frac{\partial \operatorname{RSS}(\beta)}{\partial \beta}=2 \mathbf{X}^{\top} \mathbf{X} \beta-2^{\top} \mathbf{X}^{\top} \mathbf{Y}=0
$$

We deduce that:

$$
\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

(c) We have:

$$
\begin{aligned}
\hat{\beta} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{X} \beta+\mathbf{U}) \\
& =\beta+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{U}
\end{aligned}
$$

Since $\mathbf{X} \perp \mathbf{U}, \hat{\beta}$ is an unbiased estimator of β :

$$
\begin{aligned}
\mathbb{E}[\hat{\beta}] & =\mathbb{E}\left[\beta+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{U}\right] \\
& =\beta+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbb{E}\left[\mathbf{X}^{\top} \mathbf{U}\right] \\
& =\beta
\end{aligned}
$$

and the variance of $\hat{\beta}$ is:

$$
\begin{aligned}
\operatorname{cov}(\hat{\beta}) & =\mathbb{E}\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\top}\right] \\
& =\mathbb{E}\left[\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{U U}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right] \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}\left[\mathbf{U} \mathbf{U}^{\top}\right] \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} I_{n} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

2. (a) We have:

$$
\begin{aligned}
& \tilde{\beta}=\quad \arg \min \operatorname{RSS}(\beta) \\
& \text { s.t. }\left\{\begin{array}{c}
A \beta=B \\
C \beta \geq D
\end{array}\right.
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
& \tilde{\beta}= \arg \min \frac{1}{2} \beta^{\top}\left(2 \mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(2 \mathbf{X}^{\top} \mathbf{Y}\right) \\
& \text { s.t. } \quad\left\{\begin{array}{l}
A \beta=B \\
C \beta \geq D
\end{array}\right.
\end{aligned}
$$

We obtain a QP program with $Q=2 \mathbf{X}^{\top} \mathbf{X}$ and $R=2 \mathbf{X}^{\top} \mathbf{Y}$.
(b) We obtain $\hat{\beta}_{1}=-1.01, \hat{\beta}_{2}=0.95, \hat{\beta}_{3}=2.04, \hat{\beta}_{4}=3.10$ and $\hat{\beta}_{5}=-0.08$.
i. If $\sum_{i=1}^{5} \beta_{i}=1$, we have:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=1
$$

We obtain $\tilde{\beta}_{1}=-2.40, \tilde{\beta}_{2}=1.08, \tilde{\beta}_{3}=0.49, \tilde{\beta}_{4}=2.43$ and $\tilde{\beta}_{5}=-0.60$.
ii. If $\beta_{1}=\beta_{2}=\beta_{5}$, we have:

$$
A=\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\binom{0}{0}
$$

We obtain $\tilde{\beta}_{1}=\tilde{\beta}_{2}=\tilde{\beta}_{5}=-0.08, \tilde{\beta}_{3}=2.22$ and $\tilde{\beta}_{4}=3.17$.
iii. If $\beta_{1} \geq \beta_{2} \geq \beta_{3} \geq \beta_{4} \geq \beta_{5}$, we have:

$$
C=\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We obtain $\tilde{\beta}_{1}=1.33, \tilde{\beta}_{2}=1.33, \tilde{\beta}_{3}=1.33, \tilde{\beta}_{4}=1.33$ and $\tilde{\beta}_{5}=-0.23$.
iv. If $\beta_{1} \leq \beta_{2} \leq \beta_{3} \leq \beta_{4} \leq \beta_{5}$ and $\sum_{i=1}^{5} \beta_{i}=1$, we have:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right), \quad B=1
$$

and:

$$
C=\left(\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We obtain $\tilde{\beta}_{1}=-2.63, \tilde{\beta}_{2}=0.91, \tilde{\beta}_{3}=0.91, \tilde{\beta}_{4}=0.91$ and $\tilde{\beta}_{5}=0.91$. The first-order condition of the QP program is:

$$
Q \tilde{\beta}-R-A^{\top} \lambda_{A}+C^{\top} \lambda_{C}=0
$$

where λ_{A} is the Lagrange coefficient associated to the equality constraint and λ_{C} is a vector of dimension 4×1 corresponding to the Lagrange coefficient associated to inequality constraints. Moreover, they verify the Kuhn-Tucker conditions:

$$
\min \left(\lambda_{C}, C \tilde{\beta}-D\right)=0
$$

Since $\lambda_{A}=-192.36304$, we have:

$$
C^{\top} \lambda_{C}=-\left(Q \tilde{\beta}-R-A^{\top} \lambda_{A}\right)=\left(\begin{array}{r}
0.0000 \\
3.7244 \\
-2.8742 \\
24.7449 \\
-25.5951
\end{array}\right)
$$

We deduce that:

$$
\lambda_{C}=\left(\begin{array}{r}
0.0000 \\
3.7244 \\
0.8501 \\
25.5951
\end{array}\right)
$$

3. (a) We have:

$$
f(\beta ; \lambda)=\frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right)-\lambda^{\top}(A \beta-B)
$$

The first-order condition is:

$$
\frac{\partial f(\beta ; \lambda)}{\partial \beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\left(\mathbf{X}^{\top} \mathbf{Y}\right)-A^{\top} \lambda=0
$$

We have then:

$$
\tilde{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}\right)-\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top} \lambda
$$

Since $A \beta=B$, we have:

$$
A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}\right)-A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top} \lambda=B
$$

or:

$$
\lambda=\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}\right)-B\right)
$$

We deduce that:

$$
\begin{aligned}
\tilde{\beta}= & \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}\right)- \\
& \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1}\left(A\left(X^{\top} X\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}\right)-B\right) \\
= & \hat{\beta}-\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1}(A \hat{\beta}-B)
\end{aligned}
$$

(b) To transform the explicit constraints into implicit constraints, we consider the parametrization:

$$
\beta=C \gamma+D
$$

where C is the orthonormal basis associated to the kernel of A and $D=$ $\left(A^{\top} A\right)^{\star} A^{\top} B$ where $\left(A^{\top} A\right)^{\star}$ is the Moore-Penrose inverse of $A^{\top} A$. The objective function becomes:

$$
\begin{aligned}
\operatorname{RSS}(\beta)= & \frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right) \beta-\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right) \\
= & \frac{1}{2}(C \gamma+D)^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)(C \gamma+D)-(C \gamma+D)^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right) \\
= & \frac{1}{2}\left(\gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{X} C \gamma+D^{\top} \mathbf{X}^{\top} \mathbf{X} C \gamma\right)+ \\
& \frac{1}{2}\left(\gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{X} D+D^{\top} \mathbf{X}^{\top} \mathbf{X} D\right)- \\
& \gamma^{\top} C^{\top} \mathbf{X}^{\top} \mathbf{Y}-D^{\top} \mathbf{X}^{\top} \mathbf{Y} \\
= & \frac{1}{2} \gamma^{\top}\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right) \gamma+\gamma^{\top}\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} D-C^{\top} \mathbf{X}^{\top} \mathbf{Y}\right)+ \\
& \left(\frac{1}{2} D^{\top} \mathbf{X}^{\top} \mathbf{X} D-D^{\top} \mathbf{X}^{\top} \mathbf{Y}\right)
\end{aligned}
$$

Therefore we deduce that:

$$
\hat{\gamma}=\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} D)
$$

and:

$$
\tilde{\beta}=C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} D)+D
$$

(c) The expression of the estimator under explicit constraints is:

$$
\begin{aligned}
\tilde{\beta}= & \hat{\beta}-\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1}(A \hat{\beta}-B) \\
= & \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(I-A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1} A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right) \\
& \left(\mathbf{X}^{\top} \mathbf{Y}\right)+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1} B
\end{aligned}
$$

whereas the expression of the estimator under implicit constraints is:

$$
\begin{aligned}
\tilde{\beta}= & C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} D)+D \\
= & C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}\right)+ \\
& \left(I-C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top} \mathbf{X}\right) D
\end{aligned}
$$

We also have $A C=0$ and $D=\left(A^{\top} A\right)^{\star} A^{\top} B$. For any positive definite matrix M, we have:

$$
M^{-1}\left(I-A^{\top}\left(A M^{-1} A^{\top}\right)^{-1} A M^{-1}\right)=C\left(C^{\top} M C\right)^{-1} C^{\top}
$$

and:

$$
\begin{aligned}
& \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1}= \\
& \left(I-C\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top} \mathbf{X}^{\top} \mathbf{X}\right)\left(A^{\top} A\right)^{\star} A^{\top}
\end{aligned}
$$

We deduce that the two estimators are equivalent.
(d) If $\beta_{1}=\beta_{2}$ and $\beta_{1}=\beta_{5}+1$, we have:

$$
A=\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\binom{0}{1}
$$

We deduce that the estimator under explicit constraints is:

$$
\begin{aligned}
\tilde{\beta}= & \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(I-A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1} A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right) . \\
& \left(\mathbf{X}^{\top} \mathbf{Y}\right)+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\left(A\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} A^{\top}\right)^{-1} B \\
= & \left(\begin{array}{r}
0.28040 \\
0.28040 \\
2.08942 \\
3.21265 \\
-0.71960
\end{array}\right)
\end{aligned}
$$

We can write the explicit constraints into implicit constraints:

$$
\begin{aligned}
\beta & =C \gamma+D \\
& =\left(\begin{array}{llc}
0 & 0 & \frac{1}{\sqrt{3}} \\
0 & 0 & \frac{1}{\sqrt{3}} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right)+\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
0 \\
0 \\
-\frac{2}{3}
\end{array}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\tilde{\gamma} & =\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}-\mathbf{X}^{\top} \mathbf{X} D\right) \\
& =\left(\begin{array}{r}
2.08942 \\
3.21265 \\
-0.09168
\end{array}\right)
\end{aligned}
$$

We obtain the same solution:

$$
\begin{aligned}
\tilde{\beta} & =C \tilde{\gamma}+D \\
& =\left(\begin{array}{r}
0.28040 \\
0.28040 \\
2.08942 \\
3.21265 \\
-0.71960
\end{array}\right)
\end{aligned}
$$

Remark 2 The matrices C and D of the previous $\beta=C \gamma+D$ correspond to the orthonormal matrix of A and the matrix $\left(A^{\top} A\right)^{\star} A^{\top} B$. However, there exist many decomposition $\beta=C \gamma+D$ because the only restriction is that C is an orthogonal matrix of A. For instance, if we choose:

$$
\begin{aligned}
\beta & =C \gamma+D \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right)+\left(\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

we obtain:

$$
\begin{aligned}
\tilde{\gamma} & =\left(C^{\top} \mathbf{X}^{\top} \mathbf{X} C\right)^{-1} C^{\top}\left(\mathbf{X}^{\top} \mathbf{Y}-\mathbf{X}^{\top} \mathbf{X} D\right) \\
& =\left(\begin{array}{l}
0.28040 \\
2.08942 \\
3.21265
\end{array}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\tilde{\beta} & =C \tilde{\gamma}+D \\
& =\left(\begin{array}{r}
0.28040 \\
0.28040 \\
2.08942 \\
3.21265 \\
-0.71960
\end{array}\right)
\end{aligned}
$$

10.3.4 Maximum likelihood estimation of the Poisson distribution

1. We have:

$$
\begin{aligned}
\ell(\lambda) & =\sum_{i=1}^{n} \ln \operatorname{Pr}\left\{Y_{i}=y_{i}\right\} \\
& =\sum_{i=1}^{n} \ln \left(\frac{e^{-\lambda} \lambda^{y_{i}}}{y_{i}!}\right) \\
& =-n \lambda+\ln (\lambda) \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} \ln \left(y_{i}!\right)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\frac{\partial \ell(\lambda)}{\partial \lambda}=0 & \Leftrightarrow \quad-n+\frac{\sum_{i=1}^{n} y_{i}}{\hat{\lambda}}=0 \\
& \Leftrightarrow \quad \hat{\lambda}=\frac{\sum_{i=1}^{n} y_{i}}{n}=\bar{y}
\end{aligned}
$$

2. We have:

$$
\frac{\partial^{2} \ell(\lambda)}{\partial \lambda^{2}}=-\frac{\sum_{i=1}^{n} y_{i}}{\lambda^{2}}
$$

We deduce that:

$$
\begin{aligned}
\mathcal{I}(\lambda) & =\mathbb{E}\left[\frac{\sum_{i=1}^{n} Y_{i}}{\lambda^{2}}\right] \\
& =\frac{n}{\lambda}
\end{aligned}
$$

The variance based on the Information matrix is then:

$$
\operatorname{var}(\hat{\lambda})=\frac{\hat{\lambda}}{n}
$$

If we use the Hessian matrix, we obtain:

$$
\operatorname{var}(\hat{\lambda})=\frac{\hat{\lambda}^{2}}{\sum_{i=1}^{n} y_{i}}=\frac{\hat{\lambda}^{2}}{n \bar{y}}=\frac{\hat{\lambda}}{n}
$$

We obtain the same expression.

10.3.5 Maximum likelihood estimation of the Exponential distribution

1. We have:

$$
\begin{aligned}
\ell(\lambda) & =\sum_{i=1}^{n} \ln \lambda e^{-\lambda y_{i}} \\
& =n \ln \lambda-\lambda \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\frac{\partial \ell(\lambda)}{\partial \lambda}=0 & \Leftrightarrow \frac{n}{\hat{\lambda}}-\sum_{i=1}^{n} y_{i}=0 \\
& \Leftrightarrow \hat{\lambda}=\frac{n}{\sum_{i=1}^{n} y_{i}}=\frac{1}{\bar{y}}
\end{aligned}
$$

2. We have:

$$
\frac{\partial^{2} \ell(\lambda)}{\partial \lambda^{2}}=-\frac{n}{\lambda^{2}}
$$

We deduce that:

$$
\mathcal{I}(\lambda)=\frac{n}{\lambda^{2}}
$$

The variance based on the Information matrix is then:

$$
\operatorname{var}(\hat{\lambda})=\frac{\hat{\lambda}^{2}}{n}
$$

It is equal to the variance based on the Hessian matrix.

10.3.6 Relationship between the linear regression, the maximum likeli-

 hood method and the method of moments1. We have:

$$
\begin{aligned}
\ell(\theta) & =-\frac{n}{2} \ln 2 \pi-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{y_{i}-x_{i}^{\top} \beta}{\sigma}\right)^{2} \\
& =-\frac{n}{2} \ln 2 \pi-\frac{n}{2} \ln \sigma^{2}-\frac{(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)}{2 \sigma^{2}}
\end{aligned}
$$

The vector of parameters θ is:

$$
\theta=\binom{\beta}{\sigma}
$$

2. It follows that:

$$
\begin{aligned}
\frac{\partial \ell(\theta)}{\partial \beta} & =\frac{2 \mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} \beta)}{2 \sigma^{2}} \\
& =\frac{\mathbf{X}^{\top} \mathbf{Y}-\mathbf{X}^{\top} \mathbf{X} \beta}{\sigma^{2}}
\end{aligned}
$$

and:

$$
\frac{\partial \ell(\theta)}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)}{2 \sigma^{4}}
$$

We deduce that:

$$
\begin{aligned}
\frac{\partial \boldsymbol{\ell}(\theta)}{\partial \beta}=0 & \Leftrightarrow \mathbf{X}^{\top} \mathbf{Y}-\mathbf{X}^{\top} \mathbf{X} \hat{\beta}=0 \\
& \Leftrightarrow \hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial \ell(\theta)}{\partial \sigma^{2}}=0 & \Leftrightarrow-\frac{n}{2 \hat{\sigma}^{2}}+\frac{(\mathbf{Y}-\mathbf{X} \hat{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \hat{\beta})}{2 \hat{\sigma}^{4}}=0 \\
& \Leftrightarrow \hat{\sigma}^{2}=\frac{(\mathbf{Y}-\mathbf{X} \hat{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \hat{\beta})}{n}
\end{aligned}
$$

We verify that $\hat{\beta}_{\mathrm{ML}}=\hat{\beta}_{\mathrm{OLS}}$ and $\hat{\sigma}_{\mathrm{ML}}^{2}<\hat{\sigma}_{\text {OLS }}^{2}$ because:

$$
\hat{\sigma}_{\mathrm{OLS}}^{2}=\frac{(\mathbf{Y}-\mathbf{X} \hat{\beta})^{\top}(\mathbf{Y}-\mathbf{X} \hat{\beta})}{n-K}
$$

3. We have:

$$
\begin{aligned}
\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \beta^{\top}} & =-\frac{\mathbf{X}^{\top} \mathbf{X}}{\sigma^{2}} \\
\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \sigma^{2}} & =-\frac{\mathbf{X}^{\top}(\mathbf{Y}-\mathbf{X} \beta)}{\sigma^{4}} \\
& =-\frac{\mathbf{X}^{\top} \mathbf{U}}{\sigma^{4}} \\
\frac{\partial^{2} \ell(\theta)}{\partial \sigma^{2} \partial \sigma^{2}} & =\frac{n}{2 \sigma^{4}}-\frac{(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)}{\sigma^{6}} \\
& =\frac{n}{2 \sigma^{4}}-\frac{\mathbf{U}^{\top} \mathbf{U}}{\sigma^{6}}
\end{aligned}
$$

It follows that:

$$
H(\theta)=\left(\begin{array}{cc}
-\mathbf{X}^{\top} \mathbf{X} / \sigma^{2} & -\mathbf{X}^{\top} \mathbf{U} / \sigma^{4} \\
-\mathbf{X}^{\top} \mathbf{U} / \sigma^{4} & n /\left(2 \sigma^{4}\right)-\mathbf{U}^{\top} \mathbf{U} / \sigma^{6}
\end{array}\right)
$$

and:

$$
\begin{aligned}
I(\theta) & =-\mathbb{E}[H(\theta)] \\
& =\left(\begin{array}{cc}
\mathbf{X}^{\top} \mathbf{X} / \sigma^{2} & \mathbb{E}\left[\mathbf{X}^{\top} \mathbf{U}\right] / \sigma^{4} \\
\mathbb{E}\left[\mathbf{X}^{\top} \mathbf{U}\right] / \sigma^{4} & \mathbb{E}\left[\mathbf{U}^{\top} \mathbf{U}\right] / \sigma^{6}-\frac{n}{2} / \sigma^{4}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbf{X}^{\top} \mathbf{X} / \sigma^{2} & 0 \\
0 & \frac{n}{2} / \sigma^{4}
\end{array}\right)
\end{aligned}
$$

because we have $\mathbb{E}\left[\mathbf{X}^{\top} \mathbf{U}\right]=0$ and $\mathbb{E}\left[\mathbf{U}^{\top} \mathbf{U}\right]=\mathbb{E}\left[\sum_{i=1}^{n} u_{i}^{2}\right]=n \sigma^{2}$. We deduce that:

$$
\begin{aligned}
\operatorname{var}(\theta) & =I(\theta)^{-1} \\
& =\left(\begin{array}{cc}
\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} & 0 \\
0 & 2 \sigma^{4} / n
\end{array}\right)
\end{aligned}
$$

Finally, we obtain:

$$
\operatorname{var}(\hat{\beta})=\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

and:

$$
\operatorname{var}\left(\hat{\sigma}^{2}\right)=\frac{2 \hat{\sigma}^{4}}{n}
$$

We notice that the expressions of $\operatorname{var}\left(\hat{\beta}_{\mathrm{ML}}\right)$ and $\operatorname{var}\left(\hat{\beta}_{\mathrm{OLS}}\right)$ are similar, but they do not use the same standard deviation of residuals $\hat{\sigma}$.

10.3.7 The Gaussian mixture model

1. We can write Y as follows:

$$
Y=B Y_{1}+(1-B) Y_{2}
$$

where B is a Bernoulli random variable independent from Y_{1} and Y_{2}, and whose parameter is π_{1}. We have:

$$
\begin{aligned}
\mathbb{E}\left[Y^{k}\right] & =\mathbb{E}\left[\left(B Y_{1}+(1-B) Y_{2}\right)^{k}\right] \\
& =\mathbb{E}\left[\sum_{i=0}^{k}\binom{k}{i}\left(B Y_{1}\right)^{k-i}\left((1-B) Y_{2}\right)^{i}\right] \\
& =\sum_{i=0}^{k}\binom{k}{i} \mathbb{E}\left[\left(B Y_{1}\right)^{k-i}\left((1-B) Y_{2}\right)^{i}\right]
\end{aligned}
$$

Since Y_{1} and Y_{2} are independent, we have $\mathbb{E}\left[\left(B Y_{1}\right)^{k-i}\left((1-B) Y_{2}\right)^{i}\right]$ when $i \neq 0$ or $i \neq k$. It follows that:

$$
\begin{aligned}
\mathbb{E}\left[Y^{k}\right] & =\mathbb{E}\left[B^{k} Y_{1}^{k}\right]+\mathbb{E}\left[(1-B)^{k} Y_{2}^{k}\right] \\
& =\mathbb{E}\left[B^{k}\right] \mathbb{E}\left[Y_{1}^{k}\right]+\mathbb{E}\left[(1-B)^{k}\right] \mathbb{E}\left[Y_{2}^{k}\right] \\
& =\pi_{1} \mathbb{E}\left[Y_{1}^{k}\right]+\pi_{2} \mathbb{E}\left[Y_{2}^{k}\right]
\end{aligned}
$$

because B is independent from Y_{1} and $Y_{2}, B^{k} \sim \mathcal{B}\left(\pi_{1}\right)$ and $(1-B)^{k} \sim \mathcal{B}\left(\pi_{2}\right)$.
2. We deduce that:

$$
\begin{aligned}
\mathbb{E}[Y] & =\pi_{1} \mathbb{E}\left[Y_{1}\right]+\pi_{2} \mathbb{E}\left[Y_{2}\right] \\
& =\pi_{1} \mu_{1}+\pi_{2} \mu_{2}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}(Y) & =\mathbb{E}\left[Y^{2}\right]-\mathbb{E}^{2}[Y] \\
& =\pi_{1} \mathbb{E}\left[Y_{1}^{2}\right]+\pi_{2} \mathbb{E}\left[Y_{2}^{2}\right]-\mathbb{E}^{2}[Y]
\end{aligned}
$$

Since we know that $\mathbb{E}\left[Y_{i}^{2}\right]=\mu_{i}^{2}+\sigma_{i}^{2}$, we obtain:

$$
\begin{aligned}
\operatorname{var}(Y) & =\pi_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+\pi_{2}\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)-\left(\pi_{1} \mu_{1}+\pi_{2} \mu_{2}\right)^{2} \\
& =\pi_{1} \sigma_{1}^{2}+\pi_{2} \sigma_{2}^{2}+\pi_{1}\left(1-\pi_{1}\right)\left(\mu_{1}^{2}+\mu_{2}^{2}\right)-2 \pi_{1} \pi_{2} \mu_{1} \mu_{2} \\
& =\pi_{1} \sigma_{1}^{2}+\pi_{2} \sigma_{2}^{2}+\pi_{1} \pi_{2}\left(\mu_{1}-\mu_{2}\right)^{2}
\end{aligned}
$$

because $\pi_{2}=1-\pi_{1}$.
3. We remind that $\mathbb{E}\left[Y_{i}^{3}\right]=\mu_{i}^{3}+3 \mu_{i} \sigma_{i}^{2}$. It follows that:

$$
\begin{aligned}
\mathbb{E}\left[(Y-\mathbb{E}[Y])^{3}\right]= & \mathbb{E}\left[Y^{3}\right]-3 \mathbb{E}[Y] \operatorname{var}(Y)-\mathbb{E}^{3}[Y] \\
= & \pi_{1}\left(\mu_{1}^{3}+3 \mu_{1} \sigma_{1}^{2}\right)+\pi_{2}\left(\mu_{2}^{3}+3 \mu_{2} \sigma_{2}^{2}\right)- \\
& 3\left(\pi_{1} \mu_{1}+\pi_{2} \mu_{2}\right)\left(\pi_{1} \sigma_{1}^{2}+\pi_{2} \sigma_{2}^{2}+\pi_{1} \pi_{2}\left(\mu_{1}-\mu_{2}\right)^{2}\right)- \\
& \left(\pi_{1} \mu_{1}+\pi_{2} \mu_{2}\right)^{3} \\
= & \pi_{1} \pi_{2}\left(\pi_{2}-\pi_{1}\right)\left(\mu_{1}-\mu_{2}\right)^{3}+3 \pi_{1} \pi_{2}\left(\mu_{1}-\mu_{2}\right)\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)
\end{aligned}
$$

We deduce that the skewness coefficient is equal to:

$$
\gamma_{1}(Y)=\frac{\pi_{1} \pi_{2}\left(\left(\pi_{2}-\pi_{1}\right)\left(\mu_{1}-\mu_{2}\right)^{3}+3\left(\mu_{1}-\mu_{2}\right)\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)\right)}{\left(\pi_{1} \sigma_{1}^{2}+\pi_{2} \sigma_{2}^{2}+\pi_{1} \pi_{2}\left(\mu_{1}-\mu_{2}\right)^{2}\right)^{3 / 2}}
$$

10.3.8 Parameter estimation of diffusion processes

1. The solution is:

$$
X(t)=X(s) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right)(t-s)+\sigma(W(t)-W(s))}
$$

It follows that:

$$
\ln X(t)-\ln X(s)=\left(\mu-\frac{1}{2} \sigma^{2}\right)(t-s)+\sigma(W(t)-W(s))
$$

Since $W(t)-W(s) \sim \mathcal{N}(0, t-s)$, we deduce that the log-likelihood function of the sample \mathbf{X} is:

$$
\begin{aligned}
\ell(\mu, \sigma) & =-\frac{1}{2} \sum_{i=1}^{T}\left(\ln 2 \pi+\ln \left(\sigma^{2} \Delta t_{i}\right)+\frac{\varepsilon_{i}^{2}}{\sigma^{2} \Delta t_{i}}\right) \\
& =-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{T} \ln \Delta t_{i}-\frac{1}{2} \sum_{i=1}^{T} \frac{\varepsilon_{i}^{2}}{\sigma^{2} \Delta t_{i}}
\end{aligned}
$$

where $\Delta t_{i}=t_{i}-t_{i-1}$ and ε_{i} is the innovation process:

$$
\varepsilon_{i}=\ln x_{i}-\ln x_{i-1}-\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t_{i}
$$

2. The solution is:

$$
X(t)=X(s) e^{-a(t-s)}+b\left(1-e^{-a(t-s)}\right)+\sigma \int_{s}^{t} e^{-a(t-u)} \mathrm{d} W(u)
$$

where:

$$
\int_{s}^{t} e^{-a(t-u)} \mathrm{d} W(u) \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{2 a}\left(1-e^{-2 a(t-s)}\right)\right)
$$

We deduce that:

$$
\begin{aligned}
\ell(a, b, \sigma)= & -\frac{1}{2} \sum_{i=1}^{T}\left(\ln 2 \pi+\ln \left(\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a \Delta t_{i}}\right)\right)\right)- \\
& \frac{1}{2} \sum_{i=1}^{T} \frac{2 a \varepsilon_{i}^{2}}{\sigma^{2}\left(1-e^{-2 a \Delta t_{i}}\right)} \\
= & -\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \frac{\sigma^{2}}{2 a}-\frac{1}{2} \sum_{i=1}^{T} \ln \left(1-e^{-2 a \Delta t_{i}}\right)- \\
& \frac{a \varepsilon_{i}^{2}}{\sigma^{2}\left(1-e^{-2 a \Delta t_{i}}\right)}
\end{aligned}
$$

where:

$$
\varepsilon_{i}=x_{i}-x_{i-1} e^{-a \Delta t_{i}}-b\left(1-e^{-a \Delta t_{i}}\right)
$$

3. We have:

$$
X(t)-X(s) \approx \mu(s, X(s))(t-s)+\sigma(s, X(s))(W(t)-W(s))
$$

We deduce that:

$$
\ell(\theta)=-\frac{1}{2} \sum_{i=1}^{T}\left(\ln 2 \pi+\ln \left(\sigma^{2}\left(t_{i-1}, x_{i-1}\right) \Delta t_{i}\right)+\frac{\varepsilon_{i}^{2}}{\sigma^{2}\left(t_{i-1}, x_{i-1}\right) \Delta t_{i}}\right)
$$

where: $\varepsilon_{i}=x_{i}-x_{i-1}-\mu\left(t_{i-1}, x_{i-1}\right) \Delta t_{i}$. In the case of the CIR process, we obtain:

$$
\begin{align*}
\ell(a, b, \sigma)= & -\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{T} \ln \left(x_{i-1} \Delta t_{i}\right) \\
& -\frac{1}{2} \sum_{i=1}^{T} \frac{\varepsilon_{i}^{2}}{\sigma^{2} x_{i-1} \Delta t_{i}} \tag{10.1}
\end{align*}
$$

where:

$$
\varepsilon_{i}=x_{i}-x_{i-1}-a\left(b-x_{i-1}\right) \Delta t_{i}
$$

We assume that $X(s, t)=X(t) \mid X(s)$ is normally-distributed $\mathcal{N}\left(m_{1}(s, t), m_{2}(s, t)\right)$ where $m_{1}(s, t)=\mathbb{E}[X(s, t)]$ and $m_{2}(s, t)=\mathbb{E}\left[\left(X(s, t)-m_{1}(s, t)\right)^{2}\right]$.Then, we have:

$$
\ell(\theta)=-\frac{1}{2} \sum_{i=1}^{T}\left(\ln 2 \pi+\ln m_{2}\left(t_{i-1}, t_{i}\right)+\frac{\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right)^{2}}{m_{2}\left(t_{i-1}, t_{i}\right)}\right)
$$

In the case of the CIR process, we have:

$$
m_{1}\left(t_{i-1}, t_{i}\right)=x_{i-1} e^{-a \Delta t_{i}}+b\left(1-e^{-a \Delta t_{i}}\right)
$$

and:

$$
m_{2}\left(t_{i-1}, t_{i}\right)=\sigma^{2}\left(x_{i-1} \frac{\left(e^{-a \Delta t_{i}}-e^{-2 a \Delta t_{i}}\right)}{a}+b \frac{\left(1-e^{-a \Delta t_{i}}\right)^{2}}{2 a}\right)
$$

We deduce that:

$$
\begin{align*}
\ell(a, b, \sigma)= & -\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}- \\
& \frac{1}{2} \sum_{i=1}^{T} \ln \left(x_{i-1} \frac{\left(e^{-a \Delta t_{i}}-e^{-2 a \Delta t_{i}}\right)}{a}+b \frac{\left(1-e^{-a \Delta t_{i}}\right)^{2}}{2 a}\right)- \\
& \frac{1}{2} \sum_{i=1}^{T} \frac{\varepsilon_{i}^{2}}{\sigma^{2} x_{i-1} \Delta t_{i}} \tag{10.2}
\end{align*}
$$

where:

$$
\varepsilon_{i}=x_{i}-x_{i-1} e^{-a \Delta t_{i}}-b\left(1-e^{-a \Delta t_{i}}\right)
$$

When $\Delta t_{i} \rightarrow 0$, we have $e^{-a \Delta t_{i}} \approx 1-a \Delta t_{i}$ and $e^{-2 a \Delta t_{i}} \approx 1-2 a \Delta t_{i}$. It follows that:

$$
\begin{aligned}
\frac{\left(e^{-a \Delta t_{i}}-e^{-2 a \Delta t_{i}}\right)}{a} & \approx \frac{\left(1-a \Delta t_{i}\right)-\left(1-2 a \Delta t_{i}\right)}{a} \\
& \approx \Delta t_{i}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\left(1-e^{-a \Delta t_{i}}\right)^{2}}{2 a} & \approx \frac{1-2\left(1-a \Delta t_{i}\right)+\left(1-2 a \Delta t_{i}\right)}{2 a} \\
& \approx 0
\end{aligned}
$$

We deduce that $m_{1}\left(t_{i-1}, t_{i}\right) \approx x_{i-1}\left(1-a \Delta t_{i}\right)+a b \Delta t_{i}, m_{2}\left(t_{i-1}, t_{i}\right) \approx \sigma^{2} x_{i-1} \Delta t_{i}$ and

$$
\begin{aligned}
\varepsilon_{i} & \approx x_{i}-x_{i-1}\left(1-a \Delta t_{i}\right)-a b \Delta t_{i} \\
& \approx x_{i}-x_{i-1}-a\left(b-x_{i-1}\right) \Delta t_{i}
\end{aligned}
$$

We conclude that the log-likelihood functions (10.1) and (10.2) converge to the same expression when $\Delta t_{i} \rightarrow 0$.
4. For the geometric Brownian motion, we have $\mathbb{E}_{t_{i-1}}\left[\varepsilon_{i}\right]=0$ and $\mathbb{E}_{t_{i-1}}\left[\varepsilon_{i}^{2}-\sigma^{2} \Delta t_{i}\right]=0$. We deduce that:

$$
\left\{\begin{array}{l}
h_{i, 1}(\mu, \sigma)=\ln x_{i}-\ln x_{i-1}-\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t_{i} \\
h_{i, 2}(\mu, \sigma)=\left(\ln x_{i}-\ln x_{i-1}-\left(\mu-\frac{1}{2} \sigma^{2}\right) \Delta t_{i}\right)^{2}-\sigma^{2} \Delta t_{i}
\end{array}\right.
$$

For the Ornstein-Uhlenbeck process, we can use the same two moment conditions and the orthogonal condition $\mathbb{E}_{t_{i-1}}\left[\varepsilon_{i} x_{i-1}\right]=0$. Finally, we obtain:

$$
\left\{\begin{array}{l}
h_{i, 1}(\theta)=x_{i}-x_{i-1} e^{-a \Delta t_{i}}-b\left(1-e^{-a \Delta t_{i}}\right) \\
h_{i, 2}(\theta)=\left(x_{t}-x_{t-1} e^{-a \Delta t_{i}}-b\left(1-e^{-a \Delta t_{i}}\right)\right)^{2}-\sigma^{2}\left(\frac{1-e^{-2 a \Delta t_{i}}}{2 a}\right) \\
h_{i, 3}(\theta)=\left(x_{i}-x_{i-1} e^{-a \Delta t_{i}}-b\left(1-e^{-a \Delta t_{i}}\right)\right) x_{i-1}
\end{array}\right.
$$

For the CIR process, we proceed as for the OU process:

$$
\left\{\begin{array}{l}
h_{i, 1}(\theta)=x_{i}-m_{1}\left(t_{i-1}, t_{i}\right) \\
h_{i, 2}(\theta)=\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right)^{2}-m_{2}\left(t_{i-1}, t_{i}\right) \\
h_{i, 3}(\theta)=\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right) x_{i-1}
\end{array}\right.
$$

where:

$$
m_{1}\left(t_{i-1}, t_{i}\right)=x_{i-1} e^{-a \Delta t_{i}}+b\left(1-e^{-a \Delta t_{i}}\right)
$$

and:

$$
m_{2}\left(t_{i-1}, t_{i}\right)=\sigma^{2}\left(x_{i-1} \frac{\left(e^{-a \Delta t_{i}}-e^{-2 a \Delta t_{i}}\right)}{a}+b \frac{\left(1-e^{-a \Delta t_{i}}\right)^{2}}{2 a}\right)
$$

5. If we use the Euler-Maruyama scheme:

$$
X(t)-X(s) \approx a(b-X(s))(t-s)+\sigma|X(s)|^{\gamma}(W(t)-W(s))
$$

we obtain:

$$
\left\{\begin{array}{l}
h_{i, 1}(\theta)=x_{i}-m_{1}\left(t_{i-1}, t_{i}\right) \\
h_{i, 2}(\theta)=\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right)^{2}-m_{2}\left(t_{i-1}, t_{i}\right) \\
h_{i, 3}(\theta)=\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right) x_{i-1} \\
h_{i, 4}(\theta)=\left(\left(x_{i}-m_{1}\left(t_{i-1}, t_{i}\right)\right)^{2}-m_{2}\left(t_{i-1}, t_{i}\right)\right) x_{i-1}
\end{array}\right.
$$

where:

$$
m_{1}\left(t_{i-1}, t_{i}\right)=x_{i-1}+a\left(b-x_{i-1}\right) \Delta t_{i}
$$

and:

$$
m_{2}\left(t_{i-1}, t_{i}\right)=\sigma^{2}\left|x_{i-1}\right|^{2 \gamma} \Delta t_{i}
$$

10.3.9 The Tobit model

1. We note $\tilde{X} \underset{\tilde{X}}{=} X \mid X \geq c$ the truncated random variable. The probability density function of \tilde{X} is equal to:

$$
f(x)=\frac{1}{\sigma(1-\Phi(\alpha))} \phi\left(\frac{x-\mu}{\sigma}\right)
$$

where $\alpha=\sigma^{-1}(c-\mu)$. We have ${ }^{3}$:

$$
\begin{align*}
\mathbb{E}[\tilde{X}] & =\frac{1}{1-\Phi(\alpha)} \int_{c}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \mathrm{d} x \\
& =\frac{1}{1-\Phi(\alpha)} \int_{\alpha}^{\infty}(\mu+\sigma y) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y \\
& =\frac{1}{1-\Phi(\alpha)}\left(\mu \int_{\alpha}^{\infty} \phi(y) \mathrm{d} y+\sigma[-\phi(y)]_{\alpha}^{\infty}\right) \\
& =\mu+\sigma \lambda(\alpha) \tag{10.3}
\end{align*}
$$

where $\lambda(\alpha)$ is the inverse Mills ratio:

$$
\lambda(\alpha)=\frac{\phi(\alpha)}{1-\Phi(\alpha)}=\frac{\phi(-\alpha)}{\Phi(-\alpha)}
$$

[^40]We have:

$$
\begin{aligned}
\mathbb{E}\left[\tilde{X}^{2}\right]= & \frac{1}{1-\Phi(\alpha)} \int_{c}^{\infty} x^{2} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \mathrm{d} x \\
= & \frac{1}{1-\Phi(\alpha)} \int_{\alpha}^{\infty}(\mu+\sigma y)^{2} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \mathrm{d} y \\
= & \frac{1}{1-\Phi(\alpha)}\left(\mu^{2} \int_{\alpha}^{\infty} \phi(y) \mathrm{d} y+2 \mu \sigma[-\phi(y)]_{\alpha}^{\infty}+\right. \\
& \left.\sigma^{2} \int_{\alpha}^{\infty} y^{2} \phi(y) \mathrm{d} y\right) \\
= & \mu^{2}+2 \mu \sigma \lambda(\alpha)+\frac{\sigma^{2}}{1-\Phi(\alpha)}\left([-y \phi(y)]_{\alpha}^{\infty}+\int_{\alpha}^{\infty} \phi(y) \mathrm{d} y\right) \\
= & \mu^{2}+2 \mu \sigma \lambda(\alpha)+\sigma^{2}(1+\alpha \lambda(\alpha))
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{var}(\tilde{X})= & \mathbb{E}\left[\tilde{X}^{2}\right]-\mathbb{E}^{2}[\tilde{X}] \\
= & \mu^{2}+2 \mu \sigma \lambda(\alpha)+ \\
& \sigma^{2}(1+\alpha \lambda(\alpha))-\mu^{2}-2 \mu \sigma \lambda(\alpha)-\sigma^{2} \lambda^{2}(\alpha) \\
= & \sigma^{2}(1-\delta(\alpha))
\end{aligned}
$$

where:

$$
\delta(\alpha)=\lambda(\alpha)(\lambda(\alpha)-\alpha)
$$

We can show that truncation reduces variance because we have $0 \leq \delta(\alpha) \leq 1$.
2. The censured random variable \tilde{Y} can be written as follows:

$$
\tilde{Y}=\left\{\begin{array}{lll}
X & \text { if } & X \geq c \\
c & \text { if } & X<c
\end{array}\right.
$$

We have:

$$
\begin{aligned}
\mathbb{E}[\tilde{Y}] & =\operatorname{Pr}\{Y=c\} \mathbb{E}[\tilde{Y} \mid X<c]+\operatorname{Pr}\{Y \neq c\} \mathbb{E}[X \mid X \geq c] \\
& =\operatorname{Pr}\{X<c\} c+\operatorname{Pr}\{X \geq c\} \mathbb{E}[\tilde{X}] \\
& =\Phi(\alpha) c+(1-\Phi(\alpha))(\mu+\sigma \lambda(\alpha))
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\mathbb{E}\left[\tilde{Y}^{2}\right] & =\operatorname{Pr}\{Y=c\} \mathbb{E}\left[\tilde{Y}^{2} \mid X<c\right]+\operatorname{Pr}\{Y \neq c\} \mathbb{E}\left[X^{2} \mid X \geq c\right] \\
& =\Phi(\alpha) c^{2}+(1-\Phi(\alpha)) \mathbb{E}\left[\tilde{X}^{2}\right] \\
& =\Phi(\alpha) c^{2}+(1-\Phi(\alpha))\left(\mu^{2}+2 \mu \sigma \lambda(\alpha)+\sigma^{2}(1+\alpha \lambda(\alpha))\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{var}(\tilde{Y})= & \mathbb{E}\left[\tilde{Y}^{2}\right]-\mathbb{E}^{2}[\tilde{Y}] \\
= & \Phi(\alpha) c^{2}+(1-\Phi(\alpha))\left(\mu^{2}+2 \mu \sigma \lambda(\alpha)+\sigma^{2}(1+\alpha \lambda(\alpha))\right)- \\
& \Phi^{2}(\alpha) c^{2}-2 \Phi(\alpha)(1-\Phi(\alpha))(\mu c+\sigma c \lambda(\alpha))- \\
& (1-\Phi(\alpha))^{2}\left(\mu^{2}+2 \mu \sigma \lambda(\alpha)+\sigma^{2} \lambda^{2}(\alpha)\right) \\
= & \Phi(\alpha)(1-\Phi(\alpha)) c^{2}+\Phi(\alpha)(1-\Phi(\alpha)) \mu^{2}+ \\
& 2 \Phi(\alpha) \phi(\alpha) \mu \sigma+(\phi(\alpha)(\alpha-\phi(\alpha))+1-\Phi(\alpha)) \sigma^{2}- \\
& 2 \Phi(\alpha)(1-\Phi(\alpha)) \mu c-2 \Phi(\alpha) \phi(\alpha) \sigma c \\
= & \Phi(\alpha)(1-\Phi(\alpha))(c-\mu)^{2}-2 \Phi(\alpha) \phi(\alpha)(c-\mu) \sigma+ \\
& (1-\Phi(\alpha))(1+\lambda(\alpha)(\alpha-\phi(\alpha))) \sigma^{2} \\
= & \Phi(\alpha)(1-\Phi(\alpha)) \alpha^{2} \sigma^{2}-2 \Phi(\alpha) \phi(\alpha) \alpha \sigma^{2}+ \\
& (1-\Phi(\alpha))\left(1-\delta(\alpha)-\lambda(\alpha) \phi(\alpha)+\lambda^{2}(\alpha)\right) \sigma^{2} \\
= & \sigma^{2}(1-\Phi(\alpha))\left(\Phi(\alpha) \alpha^{2}-2 \Phi(\alpha) \lambda(\alpha) \alpha+\right. \\
& \left.1-\delta(\alpha)-\lambda(\alpha) \phi(\alpha)+\lambda^{2}(\alpha)\right) \\
= & \sigma^{2}(1-\Phi(\alpha))\left((1-\delta(\alpha))+(\alpha-\lambda(\alpha))^{2} \Phi(\alpha)\right)
\end{aligned}
$$

because we have:

$$
-\Phi(\alpha) \lambda^{2}(\alpha)-\lambda(\alpha) \phi(\alpha)+\lambda^{2}(\alpha)=0
$$

3. In Figures 10.1 and 10.2 , we have reported the corresponding probability density function of the truncated random variable \tilde{X} and the censored random variable \tilde{Y}. We obtain $\mathbb{E}[\tilde{X}]=3.7955, \mathbb{E}\left[\tilde{X}^{2}\right]=18.3864, \sigma(\tilde{X})=1.9952, \mathbb{E}[\tilde{Y}]=2.7627, \mathbb{E}\left[\tilde{Y}^{2}\right]=$ 11.9632 and $\sigma(\tilde{Y})=2.0810$. We verify that truncation reduces variance: $\sigma(\tilde{X}) \leq$ $\sigma(X)$. In the case of truncation, some observations are excluded, implying that we observe only a part of the probability density function. In the case od censoring, the probability density function is a mixture of continuous and discrete distributions. In particular, we observe a probability mass at the censoring point $X=c$.
4. We have:

$$
\begin{aligned}
\operatorname{Pr}\{Y=0\} & =\operatorname{Pr}\left\{Y^{\star} \leq 0\right\} \\
& =\operatorname{Pr}\left\{x^{\top} \beta+U \leq 0\right\} \\
& =\operatorname{Pr}\left\{U \leq-x^{\top} \beta\right\} \\
& =\Phi\left(-\frac{x^{\top} \beta}{\sigma}\right) \\
& =1-\Phi\left(\frac{x^{\top} \beta}{\sigma}\right)
\end{aligned}
$$

We deduce that the log-likelihood function is equal to:

$$
\begin{aligned}
\ell(\theta)= & \sum_{i=1}^{n}\left(1-d_{i}\right) \ln \left(1-\Phi\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)\right)- \\
& \frac{1}{2} \sum_{i=1}^{n} d_{i}\left(\ln 2 \pi+\ln \sigma^{2}+\left(\frac{y_{i}-x_{i}^{\top} \beta}{\sigma}\right)^{2}\right)
\end{aligned}
$$

where d_{i} is a dummy variable that is equal to 1 if $y_{i}>0$.

FIGURE 10.1: Frequency (in \%) of the truncated random variable

FIGURE 10.2: Frequency (in \%) of the censored random variable
5. We have:

$$
\frac{\partial}{\partial x} \ln (1-\Phi(f(x)))=-\frac{\phi(f(x))}{1-\Phi(f(x))} f^{\prime}(x)
$$

and:

$$
\frac{\partial}{\partial \beta}\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)=\frac{x_{i}}{\sigma}
$$

We also have:

$$
\frac{\partial}{\partial \sigma^{2}}\left(\frac{1}{\sigma}\right)=-\frac{1}{2 \sigma^{3}}
$$

We deduce that the ML estimator satisfies the following first-order conditions:

$$
\begin{equation*}
\frac{\partial \ell(\theta)}{\partial \beta}=-\frac{1}{\sigma} \sum_{d_{i}=0}\left(\frac{\phi_{i}}{1-\Phi_{i}}\right) x_{i}+\frac{1}{\sigma^{2}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}=0 \tag{10.4}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{\partial \ell(\theta)}{\partial \sigma^{2}}=\frac{1}{2 \sigma^{3}} \sum_{d_{i}=0}\left(\frac{\phi_{i}}{1-\Phi_{i}}\right) x_{i}^{\top} \beta+\frac{1}{2 \sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)^{2}-\frac{n_{1}}{2 \sigma^{2}}=0 \tag{10.5}
\end{equation*}
$$

where $\phi_{i}=\phi\left(\frac{x_{i}^{\top} \beta}{\sigma}\right), \Phi_{i}=\Phi\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)$ and $n_{1}=\sum_{i=1}^{n} d_{i}$.
6. Since $\partial_{x} \phi(x)=-x \phi(x)$, we have:

$$
\frac{\partial}{\partial x}\left(\frac{\phi(f(x))}{1-\Phi(f(x))}\right)=\frac{\phi(f(x))(\phi(f(x))-f(x)(1-\Phi(f(x)))) f^{\prime}(x)}{(1-\Phi(f(x)))^{2}}
$$

It follows that:

$$
\frac{\partial}{\partial \beta^{\top}}\left(\frac{\phi_{i}}{1-\Phi_{i}}\right)=\frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(\phi_{i}-\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)\right) \frac{x_{i}}{\sigma}
$$

and:

$$
\frac{\partial}{\partial \sigma^{2}}\left(\frac{\phi_{i}}{1-\Phi_{i}}\right)=-\frac{1}{2 \sigma^{3}} \frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(\phi_{i}-\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)\right) x_{i}^{\top} \beta
$$

For the Hessian matrix, we obtain:

$$
\begin{aligned}
\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \beta^{\top}}= & -\frac{1}{\sigma^{2}} \sum_{d_{i}=0} \frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(\phi_{i}-\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)\right) x_{i} x_{i}^{\top}- \\
& \frac{1}{\sigma^{2}} \sum_{d_{i}=1} x_{i} x_{i}^{\top}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \sigma^{2}}= & \frac{1}{2 \sigma^{3}}\left(\sum_{d_{i}=0} \frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(1-\Phi_{i}\right)+\right. \\
& \left.\sum_{d_{i}=0} \frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(\phi_{i}\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)-\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)^{2}\right)\right) x_{i}- \\
& \frac{1}{\sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}
\end{aligned}
$$

We also have:

$$
\frac{\partial}{\partial \sigma^{2}}\left(\frac{1}{\sigma^{3}}\right)=-\frac{3}{2 \sigma^{5}}
$$

and:

$$
\begin{aligned}
\frac{\partial^{2} \ell(\theta)}{\partial \sigma^{2} \partial \sigma^{2}}= & -\frac{1}{4 \sigma^{4}} \sum_{d_{i}=0} \frac{\phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(3\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)+\right. \\
& \left.\phi_{i}\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)^{2}-\left(1-\Phi_{i}\right)\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)^{3}\right)- \\
& \frac{1}{\sigma^{6}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)^{2}+\frac{n_{1}}{2 \sigma^{4}}
\end{aligned}
$$

7. By multiplying the system of equations (10.4) by $\beta^{\top} /\left(2 \sigma^{2}\right)$, we obtain:

$$
-\frac{1}{2 \sigma^{3}} \sum_{d_{i}=0}\left(\frac{\phi_{i}}{1-\Phi_{i}}\right) x_{i}^{\top} \beta+\frac{1}{2 \sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}^{\top} \beta=0
$$

Combining this result with Equation (10.5) gives:

$$
\frac{1}{2 \sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}^{\top} \beta+\frac{1}{2 \sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)^{2}-\frac{n_{1}}{2 \sigma^{2}}=0
$$

We deduce that:

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{n_{1}} \sum_{d_{i}=1}\left(\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}^{\top} \beta+\left(y_{i}-x_{i}^{\top} \beta\right)^{2}\right) \\
& =\frac{1}{n_{1}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) y_{i}
\end{aligned}
$$

Let D_{i} be the Bernouilli random variable such that:

$$
\begin{aligned}
\operatorname{Pr}\left\{D_{i}=1\right\} & =\operatorname{Pr}\left\{Y_{i}^{\star}>0\right\} \\
& =\operatorname{Pr}\left\{U_{i} \geq-x_{i}^{\top} \beta\right\} \\
& =\Phi\left(\frac{x_{i}^{\top} \beta}{\sigma}\right)
\end{aligned}
$$

Let Ω_{i} be a random variable that is independent from D_{i}. We have:

$$
\mathbb{E}\left[\sum_{d_{i}=0} \Omega_{i}\right]=\mathbb{E}\left[\sum_{i=1}^{n}\left(1-D_{i}\right) \Omega_{i}\right]=\sum_{i=1}^{n}\left(1-\Phi_{i}\right) \mathbb{E}\left[\Omega_{i}\right]
$$

and:

$$
\mathbb{E}\left[\sum_{d_{i}=1} \Omega_{i}\right]=\mathbb{E}\left[\sum_{i=1}^{n} D_{i} \Omega_{i}\right]=\sum_{i=1}^{n} \Phi_{i} \mathbb{E}\left[\Omega_{i}\right]
$$

By introducting the notation:

$$
z_{i}=\frac{x_{i}^{\top} \beta}{\sigma}
$$

we obtain:

$$
\begin{aligned}
\mathbb{E}\left[\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \beta^{\top}}\right]= & -\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \frac{\left(1-\Phi_{i}\right) \phi_{i}}{\left(1-\Phi_{i}\right)^{2}}\left(\phi_{i}-\left(1-\Phi_{i}\right) z_{i}\right) x_{i} x_{i}^{\top}- \\
& \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \Phi_{i} x_{i} x_{i}^{\top} \\
= & -\sum_{i=1}^{n} a_{i} x_{i} x_{i}^{\top}
\end{aligned}
$$

where:

$$
a_{i}=-\frac{1}{\sigma^{2}}\left(\phi_{i} z_{i}-\frac{\phi_{i}^{2}}{1-\Phi_{i}}-\Phi_{i}\right)
$$

Using Equation (10.3), we have:

$$
\begin{aligned}
\mathbb{E}\left[D_{i}\left(y_{i}-x_{i}^{\top} \beta\right)\right] & =\mathbb{E}\left[D_{i} U_{i}\right] \\
& =\mathbb{E}\left[D_{i}\right] \sigma \frac{\phi_{i}}{\Phi_{i}} \\
& =\sigma \phi_{i}
\end{aligned}
$$

It follows that:

$$
\mathbb{E}\left[\frac{1}{\sigma^{4}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}\right]=\frac{1}{\sigma^{3}} \sum_{i=1}^{n} \phi_{i} x_{i}
$$

and:

$$
\mathbb{E}\left[\frac{\partial^{2} \ell(\theta)}{\partial \beta \sigma^{2}}\right]=-\sum_{i=1}^{n} b_{i} x_{i}
$$

where:

$$
\begin{aligned}
b_{i} & =\frac{1}{2 \sigma^{3}}\left(-\phi_{i}-\frac{\phi_{i}^{2} z_{i}}{1-\Phi_{i}}+\phi_{i} z_{i}^{2}\right)+\frac{1}{\sigma^{4}} \sigma \phi_{i} \\
& =\frac{1}{2 \sigma^{3}}\left(\phi_{i} z_{i}^{2}+\phi_{i}-\frac{\phi_{i}^{2} z_{i}}{1-\Phi_{i}}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
\sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)^{2} & =\sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)\left(y_{i}-x_{i}^{\top} \beta\right) \\
& =n_{1} \sigma^{2}-\sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}^{\top} \beta
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[\frac{n_{1}}{2 \sigma^{4}}-\frac{1}{\sigma^{6}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right)^{2}\right] & =\mathbb{E}\left[-\frac{n_{1}}{2 \sigma^{4}}+\frac{1}{\sigma^{6}} \sum_{d_{i}=1}\left(y_{i}-x_{i}^{\top} \beta\right) x_{i}^{\top} \beta\right] \\
& =-\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n} \Phi_{i}+\frac{1}{\sigma^{4}} \sum_{i=1}^{n} \phi_{i} z_{i}
\end{aligned}
$$

We deduce that:

$$
\mathbb{E}\left[\frac{\partial^{2} \ell(\theta)}{\partial \beta \partial \beta^{\top}}\right]=-\sum_{i=1}^{n} c_{i}
$$

where:

$$
\begin{aligned}
c_{i} & =-\frac{1}{4 \sigma^{4}}\left(-3 \phi_{i} z_{i}-\frac{\phi_{i}^{2} z_{i}^{2}}{1-\Phi_{i}}+\phi_{i} z_{i}^{3}\right)+\frac{1}{2 \sigma^{4}} \Phi_{i}-\frac{1}{\sigma^{4}} \phi_{i} z_{i} \\
& =-\frac{1}{4 \sigma^{4}}\left(\phi_{i} z_{i}^{3}+\phi_{i} z_{i}-\frac{\phi_{i}^{2} z_{i}^{2}}{1-\Phi_{i}}-2 \Phi_{i}\right)
\end{aligned}
$$

We conclude that the information matrix is equal to:

$$
\begin{aligned}
\mathcal{I}(\theta) & =-\mathbb{E}\left[\frac{\partial^{2} \ell(\theta)}{\partial \theta \partial \theta^{\top}}\right] \\
& =\left(\begin{array}{cc}
\sum_{i=1}^{n} a_{i} x_{i} x_{i}^{\top} & \sum_{i=1}^{n} b_{i} x_{i} \\
\sum_{i=1}^{n} b_{i} x_{i} & \sum_{i=1}^{n} c_{i}
\end{array}\right)
\end{aligned}
$$

We retrieve the formula obtained by Amemiya (1973).
8. We note \mathbf{Y}_{1} the $n_{1} \times 1$ vector of the explained variable and \mathbf{X}_{1} the $n_{1} \times K$ matrices of explanatory variables when the data are not censured. We also notice that:

$$
\frac{\phi_{i}}{1-\Phi_{i}}=\lambda\left(x_{i}^{\top} \beta\right)
$$

where λ is the inverse Mills ratio. The first-order condition (10.4) becomes:

$$
-\hat{\sigma} \mathbf{X}_{0}^{\top} \boldsymbol{\Lambda}_{0}+\mathbf{X}_{1}^{\top}\left(\mathbf{Y}_{1}-\mathbf{X}_{1} \hat{\beta}\right)=0
$$

where $\boldsymbol{\Lambda}_{0}$ is $\left(n-n_{1}\right) \times 1$ vector of inverse Mills ratio and \mathbf{X}_{0} is the $\left(n-n_{1}\right) \times K$ matrices of explanatory variables when the data are censured. We deduce that:

$$
\begin{align*}
\hat{\beta} & =\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\top} \mathbf{Y}_{1}-\hat{\sigma}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{0}^{\top} \boldsymbol{\Lambda}_{0} \\
& =\hat{\beta}_{1}-\hat{\sigma}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{0}^{\top} \boldsymbol{\Lambda}_{0} \tag{10.6}
\end{align*}
$$

It follows that the OLS estimator $\hat{\beta}_{1}$ based on non-censured data is biased.
9. We apply results obtained in Question 1 to the random variable U with $\mu=0$, $c=-x^{\top} \beta$ and $\alpha=\sigma^{-1}(c-\mu)$. We have:

$$
\begin{align*}
\mathbb{E}[Y \mid Y>0] & =\mathbb{E}\left[x^{\top} \beta+U \mid U>-x^{\top} \beta\right] \\
& =x^{\top} \beta+\mathbb{E}\left[U \mid U>-x^{\top} \beta\right] \\
& =x^{\top} \beta+\sigma \lambda\left(-\frac{x^{\top} \beta}{\sigma}\right) \tag{10.7}
\end{align*}
$$

and:

$$
\begin{align*}
\mathbb{E}[Y \mid Y \leq 0] & =\mathbb{E}\left[x^{\top} \beta+U \mid U \leq-x^{\top} \beta\right] \\
& =x^{\top} \beta+\mathbb{E}\left[U \mid U \leq-x^{\top} \beta\right] \\
& =x^{\top} \beta-\sigma \lambda\left(\frac{x^{\top} \beta}{\sigma}\right) \tag{10.8}
\end{align*}
$$

Using Question 2, we obtain:

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[\max \left(x^{\top} \beta+U, 0\right)\right] \\
& =x^{\top} \beta+\mathbb{E}\left[\max \left(U,-x^{\top} \beta\right)\right] \\
& =x^{\top} \beta+\Phi\left(-\frac{x^{\top} \beta}{\sigma}\right) x^{\top} \beta+\sigma\left(1-\Phi\left(-\frac{x^{\top} \beta}{\sigma}\right)\right) \lambda\left(-\frac{x^{\top} \beta}{\sigma}\right) \\
& =\Phi\left(\frac{x^{\top} \beta}{\sigma}\right)\left(x^{\top} \beta+\sigma \lambda\left(-\frac{x^{\top} \beta}{\sigma}\right)\right) \\
& =\Phi\left(\frac{x^{\top} \beta}{\sigma}\right) \mathbb{E}[Y \mid Y>0]
\end{aligned}
$$

From Equation (10.7), we deduce that the corresponding linear model is:

$$
\mathbf{Y}_{1}=\mathbf{X}_{1} \tilde{\beta}+\sigma \boldsymbol{\Lambda}_{1}
$$

and:

$$
\begin{align*}
\tilde{\beta} & =\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\top} \mathbf{Y}_{1}-\hat{\sigma}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\top} \boldsymbol{\Lambda}_{1} \\
& =\hat{\beta}_{1}-\hat{\sigma}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\top} \boldsymbol{\Lambda}_{1} \tag{10.9}
\end{align*}
$$

The difference between the estimators (10.6) and (10.9) is the term $\mathbf{X}^{\top} \boldsymbol{\Lambda}$ which is calculated with censored data in the maximum likelihood and non-censored data in the last approach. However, the estimators (10.6) and (10.9) can not be used in practice because they depend on $\hat{\sigma}$ and on the inverse Mills ratio that is a function of $\hat{\beta}$ and $\hat{\sigma}$.
10. The ML estimates are $\hat{\beta}_{0}^{(\mathrm{ML})}=2.8467, \hat{\beta}_{1}^{(\mathrm{ML})}=1.0843, \hat{\beta}_{2}^{(\mathrm{ML})}=0.9869$ and $\hat{\sigma}^{(\mathrm{ML})}=$ 5.5555. The OLS estimates based on the non-censored data are $\hat{\beta}_{0}^{(\mathrm{OLS})}=6.2002$, $\hat{\beta}_{1}^{(\mathrm{OLS})}=0.6757, \hat{\beta}_{2}^{(\mathrm{OLS})}=0.7979$. We verify that:

$$
\hat{\beta}^{(\mathrm{OLS})}-\hat{\sigma}^{(\mathrm{ML})}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{0}^{\top} \boldsymbol{\Lambda}_{0}^{(\mathrm{ML})}=\left(\begin{array}{c}
2.8467 \\
1.0843 \\
0.9869
\end{array}\right)=\hat{\beta}^{(\mathrm{ML})}
$$

and:

$$
\hat{\beta}^{(\mathrm{OLS})}-\hat{\sigma}^{(\mathrm{ML})}\left(\mathbf{X}_{1}^{\top} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\top} \boldsymbol{\Lambda}_{1}^{(\mathrm{ML})}=\left(\begin{array}{c}
2.7095 \\
1.0065 \\
1.0522
\end{array}\right) \neq \hat{\beta}^{(\mathrm{ML})}
$$

The ML estimator combines the non-censored data - $\hat{\beta}^{(O L S)}$ - and the censored data $-\mathbf{X}_{0}^{\top} \boldsymbol{\Lambda}_{0}^{(\mathrm{ML})}$. This is not the case of the second estimator, which is only based on non-censored data $-\hat{\beta}^{(\mathrm{OLS})}$ and $\mathbf{X}_{1}^{\top} \boldsymbol{\Lambda}_{1}^{(\mathrm{ML})}$. The second estimator is then less efficient than the ML estimator since it does not use all the information provided by the data.
11. The conditional predicted value of \breve{y}_{i}^{\star} is:

$$
\breve{y}_{i}^{\star}=\left\{\begin{array}{cl}
x_{i}^{\top} \hat{\beta}^{(\mathrm{ML})}-\hat{\sigma}^{(\mathrm{ML})} \lambda\left(\frac{x_{i}^{\top} \hat{\beta}^{(\mathrm{ML})}}{\hat{\sigma}^{(\mathrm{ML})}}\right) & \text { if } y_{i} \leq 0 \\
x_{i}^{\top} \hat{\beta}^{(\mathrm{ML})}+\hat{\sigma}^{(\mathrm{ML})} \lambda\left(-\frac{x_{i}^{\top} \hat{\beta}^{(\mathrm{ML})}}{\hat{\sigma}^{(\mathrm{ML})}}\right) & \text { if } y_{i}>0
\end{array}\right.
$$

whereas the unconditional expectation is $\hat{y}_{i}^{\star}=x_{i}^{\top} \hat{\beta}^{(\mathrm{ML})}$. These values are reported in Table 10.1.

TABLE 10.1: Predicted values \breve{y}_{i}^{\star} and \hat{y}_{i}^{\star}

i	1	2	3	4	5	6	7	8	9	10
y_{i}	4.0	0.0	0.5	0.0	0.0	17.4	18.0	0.0	0.0	9.7
\breve{y}_{i}^{\star}	3.5	-12.7	5.1	-5.9	-5.9	14.3	17.6	-4.2	-5.4	4.0
\hat{y}_{i}^{\star}	-3.0	-12.6	1.6	-3.4	-3.4	14.2	17.6	0.8	-2.4	-1.4
i	11	12	13	14	15	16	17	18	19	20
y_{i}	9.7	1.8	6.5	26.1	0.0	5.0	21.6	6.2	9.9	1.4
\breve{y}_{i}^{\star}	9.3	5.1	6.2	16.3	-15.1	3.6	19.6	5.9	9.3	6.4
\hat{y}_{i}^{\star}	8.6	1.6	3.9	16.3	-15.1	-2.5	19.6	3.4	8.6	4.3
i	21	22	23	24	25	26	27	28	29	30
y_{i}	5.0	0.0	0.0	18.1	0.0	7.7	0.0	0.0	0.0	4.0
\breve{y}_{i}^{\star}	4.1	-5.8	-9.4	15.7	-3.3	17.3	-6.2	-5.4	-3.4	12.2
\hat{y}_{i}^{\star}	-0.8	-3.2	-8.8	15.7	3.8	17.3	-3.9	-2.3	3.2	12.0

10.3.10 Derivation of Kalman filter equations

1. We have:

$$
\begin{aligned}
\hat{\alpha}_{t \mid t-1} & =\mathbb{E}_{t-1}\left[\alpha_{t}\right] \\
& =\mathbb{E}_{t-1}\left[T_{t} \alpha_{t-1}+c_{t}+R_{t} \eta_{t}\right] \\
& =T_{t} \mathbb{E}_{t-1}\left[\alpha_{t-1}\right]+c_{t} \\
& =T_{t} \hat{\alpha}_{t-1 \mid t-1}+c_{t}
\end{aligned}
$$

We introduce the notation $\delta_{t}=\alpha_{t}-\hat{\alpha}_{t \mid t-1}$. It follows that:

$$
\begin{aligned}
\delta_{t} & =T_{t} \alpha_{t-1}+c_{t}+R_{t} \eta_{t}-\left(T_{t} \hat{\alpha}_{t-1 \mid t-1}+c_{t}\right) \\
& =T_{t}\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right)+R_{t} \eta_{t}
\end{aligned}
$$

and:

$$
\begin{aligned}
\delta_{t} \delta_{t}^{\top}= & T_{t}\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right)\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right)^{\top} T_{t}^{\top}+ \\
& 2 T_{t}\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right) \eta_{t}^{\top} R_{t}^{\top}+ \\
& R_{t} \eta_{t} \eta_{t}^{\top} R_{t}^{\top}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
P_{t \mid t-1}= & \mathbb{E}_{t-1}\left[\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)^{\top}\right] \\
= & T_{t} \mathbb{E}_{t-1}\left[\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right)\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right)^{\top}\right] T_{t}^{\top}+ \\
& 2 T_{t} \mathbb{E}_{t-1}\left[\left(\alpha_{t-1}-\hat{\alpha}_{t-1 \mid t-1}\right) \eta_{t}^{\top}\right] R_{t}^{\top}+ \\
& R_{t} \mathbb{E}_{t-1}\left[\eta_{t} \eta_{t}^{\top}\right] R_{t}^{\top} \\
= & T_{t} P_{t-1 \mid t-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top}
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
v_{t} & =y_{t}-\mathbb{E}_{t-1}\left[y_{t}\right] \\
& =y_{t}-\mathbb{E}_{t-1}\left[Z_{t} \alpha_{t}+d_{t}+\epsilon_{t}\right] \\
& =y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t} \\
& =Z_{t}\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)+\epsilon_{t}
\end{aligned}
$$

Since $\hat{\alpha}_{t \mid t-1}$ is a Gaussian vector, v_{t} is also Gaussian with:

$$
\begin{aligned}
\mathbb{E}_{t-1}\left[v_{t}\right] & =\mathbb{E}_{t-1}\left[y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t}\right] \\
& =Z_{t} \mathbb{E}_{t-1}\left[\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right]+\mathbb{E}_{t-1}\left[\epsilon_{t}\right] \\
& =\mathbf{0}
\end{aligned}
$$

and:

$$
\begin{aligned}
F_{t} & =\mathbb{E}_{t-1}\left[\left(v_{t}-\mathbf{0}\right)\left(v_{t}-\mathbf{0}\right)^{\top}\right] \\
& =\mathbb{E}_{t-1}\left[\left(Z_{t}\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)+\epsilon_{t}\right)\left(Z_{t}\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)+\epsilon_{t}\right)^{\top}\right] \\
& =Z_{t} \mathbb{E}_{t-1}\left[\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)^{\top}\right] Z_{t}^{\top}+\mathbb{E}_{t-1}\left[\epsilon_{t} \epsilon_{t}^{\top}\right] \\
& =Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\mathbb{E}_{t-1}\left[\alpha_{t} v_{t}^{\top}\right]= & \mathbb{E}_{t-1}\left[\alpha_{t}\left(Z_{t}\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)+\epsilon_{t}\right)^{\top}\right] \\
= & \mathbb{E}_{t-1}\left[\alpha_{t}\left(\alpha_{t}^{\top}-\hat{\alpha}_{t \mid t-1}^{\top}\right) Z_{t}^{\top}\right]+\mathbb{E}_{t-1}\left[\alpha_{t} \epsilon_{t}^{\top}\right] \\
= & \mathbb{E}_{t-1}\left[\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)\left(\alpha_{t}^{\top}-\hat{\alpha}_{t \mid t-1}^{\top}\right)\right] Z_{t}^{\top}+ \\
& \hat{\alpha}_{t \mid t-1} \mathbb{E}_{t-1}\left[\alpha_{t}^{\top}-\hat{\alpha}_{t \mid t-1}^{\top}\right] Z_{t}^{\top} \\
= & P_{t \mid t-1} Z_{t}^{\top}
\end{aligned}
$$

and:

$$
\begin{aligned}
\binom{\alpha_{t}}{v_{t}} & =\binom{\alpha_{t}}{Z_{t}\left(\alpha_{t}-\hat{\alpha}_{t \mid t-1}\right)+\epsilon_{t}} \\
& =\left(\begin{array}{cc}
I_{m} & \mathbf{0} \\
Z_{t} & I_{n}
\end{array}\right)\binom{\alpha_{t}}{\epsilon_{t}}+\binom{\mathbf{0}}{-Z_{t} \hat{\alpha}_{t \mid t-1}} \\
& =A_{t}\binom{\alpha_{t}}{\epsilon_{t}}+B_{t}
\end{aligned}
$$

Conditionally to the filtration \mathcal{F}_{t-1}, the random vector (α_{t}, v_{t}) is a linear combination $A_{t} X_{t}+B_{t}$ of the independent Gaussian random vector $X_{t}=\left(\alpha_{t}, \epsilon_{t}\right)$. We deduce that:

$$
\binom{\alpha_{t}}{v_{t}} \sim \mathcal{N}\left(\binom{\hat{\alpha}_{t \mid t-1}}{\mathbf{0}},\left(\begin{array}{cc}
P_{t \mid t-1} & P_{t \mid t-1} Z_{t}^{\top} \\
Z_{t} P_{t \mid t-1} & F_{t}
\end{array}\right)\right)
$$

4. We deduce that:

$$
\begin{aligned}
\hat{\alpha}_{t \mid t} & =\mathbb{E}_{t}\left[\alpha_{t}\right] \\
& =\mathbb{E}\left[\alpha_{t} \mid v_{t}=y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t}\right]
\end{aligned}
$$

Using the standard results of the conditional distribution, we obtain:

$$
\hat{\alpha}_{t \mid t}=\hat{\alpha}_{t \mid t-1}+P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1}\left(y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t}\right)
$$

and:

$$
P_{t \mid t}=P_{t \mid t-1}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t} P_{t \mid t-1}
$$

5. The Kalman filter corresponds to the following recursive equations:

$$
\left\{\begin{array}{l}
\hat{\alpha}_{t \mid t-1}=T_{t} \hat{\alpha}_{t-1 \mid t-1}+c_{t} \\
P_{t \mid t-1}=T_{t} P_{t-1 \mid t-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top} \\
v_{t}=y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t} \\
F_{t}=Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t} \\
\hat{\alpha}_{t \mid t}=\hat{\alpha}_{t \mid t-1}+P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} v_{t} \\
P_{t \mid t}=P_{t \mid t-1}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t} P_{t \mid t-1}
\end{array}\right.
$$

We have:

$$
\begin{aligned}
\hat{\alpha}_{t+1 \mid t} & =T_{t+1} \hat{\alpha}_{t \mid t}+c_{t+1} \\
& =T_{t+1}\left(\hat{\alpha}_{t \mid t-1}+P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} v_{t}\right)+c_{t+1} \\
& =T_{t+1} \hat{\alpha}_{t \mid t-1}+c_{t+1}+K_{t} v_{t}
\end{aligned}
$$

where K_{t} is the gain matrix:

$$
K_{t}=T_{t+1} P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1}
$$

Since we have $v_{t}=y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}-d_{t}$, we can write the state space model as follows:

$$
\left\{\begin{array}{l}
y_{t}=Z_{t} \hat{\alpha}_{t \mid t-1}+d_{t}+v_{t} \\
\hat{\alpha}_{t+1 \mid t}=T_{t+1} \hat{\alpha}_{t \mid t-1}+c_{t+1}+K_{t} v_{t}
\end{array}\right.
$$

If $v_{t}=\mathbf{0}$, then $\hat{\alpha}_{t+1 \mid t}=T_{t+1} \hat{\alpha}_{t \mid t-1}+c_{t+1} . K_{t}$ indicates how the filter changes the classical estimation $T_{t+1} \hat{\alpha}_{t \mid t-1}+c_{t+1}$ when it takes into account innovation errors. Therefore, K_{t} is the correction matrix of the prediction-correction method.
6. We introduce the process $\gamma_{t}=\gamma_{t-1}$ with $\gamma_{0}=1$. Another representation of the state space model is:

$$
\left\{\begin{array}{l}
y_{t}=Z_{t} \alpha_{t}+d_{t} \gamma_{t}+\epsilon_{t} \\
\alpha_{t}=T_{t} \alpha_{t-1}+c_{t} \gamma_{t}+R_{t} \eta_{t} \\
\gamma_{t}=\gamma_{t-1}
\end{array}\right.
$$

We obtain:

$$
\left\{\begin{array}{l}
y_{t}=Z_{t}^{\star} \alpha_{t}^{\star} \\
\alpha_{t}^{\star}=T_{t}^{\star} \alpha_{t-1}^{\star}+R_{t}^{\star} \eta_{t}^{\star}
\end{array}\right.
$$

where:

$$
\begin{aligned}
Z_{t}^{\star} & =\left(\begin{array}{lll}
Z_{t} & d_{t} & I_{n}
\end{array}\right) \\
T_{t}^{\star} & =\left(\begin{array}{ccc}
T_{t} & c_{t} & \mathbf{0} \\
\mathbf{0} & 1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right) \\
R_{t}^{\star} & =\left(\begin{array}{cc}
R_{t} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right)
\end{aligned}
$$

The state vector becomes $\alpha_{t}^{\star}=\left(\alpha_{t}, \gamma_{t}, \epsilon_{t}\right)$ whereas the noise process $\eta_{t}^{\star}=\left(\eta_{t}, \epsilon_{t}\right)$ is a Gaussian random vector $\mathcal{N}\left(\mathbf{0}, Q_{t}^{\star}\right)$ where:

$$
Q_{t}^{\star}=\left(\begin{array}{cc}
Q_{t} & C_{t}^{\top} \\
C_{t} & H_{t}
\end{array}\right)
$$

7. If we apply the Kalman filter to the augmented state space model, we obtain:

$$
\left\{\begin{array}{l}
\hat{\alpha}_{t \mid t-1}^{\star}=T_{t}^{\star} \hat{\alpha}_{t-1 \mid t-1}^{\star} \\
P_{t \mid t-1}^{\star}=T_{t}^{\star} P_{t-1 \mid t-1}^{\star} T_{t}^{\star \top}+R_{t}^{\star} Q_{t}^{\star} R_{t}^{\star \top} \\
\hat{y}_{t \mid t-1}^{\star}=Z_{t}^{\star} \hat{\alpha}_{t \mid t-1}^{\star} \\
v_{t}^{\star}=y_{t}-\hat{y}_{t t \mid-1}^{\star \mid} \\
F_{t}^{\star}=Z_{t}^{\star} P_{t \mid t-1}^{\star} Z_{t}^{\star \top} \\
\hat{\alpha}_{t \mid t}^{\star}=\hat{\alpha}_{t \mid t-1}^{\star}+P_{t \mid t-1}^{\star} Z_{t}^{\star \top} F_{t}^{\star-1} v_{t}^{\star} \\
P_{t \mid t}^{\star}=P_{t \mid t-1}^{\star}-P_{t \mid t-1}^{\star} Z_{t}^{\star \top} F_{t}^{\star-1} Z_{t}^{\star} P_{t \mid t-1}^{\star}
\end{array}\right.
$$

We have $\hat{\alpha}_{0}^{\star}=\left(\hat{\alpha}_{0}, 0, \mathbf{0}\right)$ and:

$$
P_{0}^{\star}=\left(\begin{array}{ccc}
P_{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & 0 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

We assume that $P_{t \mid t}^{\star}$ has the following structure:

$$
P_{t \mid t}^{\star}=\left(\begin{array}{ccc}
P_{t \mid t} & \mathbf{0} & V_{t} \\
\mathbf{0} & 0 & \mathbf{0} \\
V_{t}^{\top} & \mathbf{0} & W_{t}
\end{array}\right)
$$

We deduce that $V_{t}=R_{t} C_{t}^{\top}$ and $W_{t}=H_{t}$. Finally, we obtain:

$$
\left\{\begin{array}{l}
\hat{\alpha}_{t \mid t-1}=T_{t} \hat{\alpha}_{t-1 \mid t-1}+c_{t} \\
P_{t \mid t-1}=T_{t} P_{t-1 \mid t-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top} \\
\hat{y}_{t \mid t-1}=Z_{t} \hat{\alpha}_{t \mid t-1}+d_{t} \\
v_{t}=y_{t}-\hat{y}_{t \mid t-1} \\
F_{t}=Z_{t} P_{t \mid t-1} Z_{t}^{\top}+2 Z_{t} R_{t} C_{t}^{\top}+H_{t} \\
G_{t}=P_{t \mid t-1} Z_{t}^{\top}+R_{t} C_{t}^{\top} \\
\hat{\alpha}_{t \mid t}=\hat{\alpha}_{t \mid t-1}+G_{t} F_{t}^{-1} v_{t} \\
P_{t \mid t}=P_{t \mid t-1}-G_{t} F_{t}^{-1} G_{t}^{\top}
\end{array}\right.
$$

10.3.11 Steady state of time-invariant state space model

1. We have $\alpha_{t}=\left(y_{t}, \varepsilon_{t}\right)$ and:

$$
\alpha_{t}=\left(\begin{array}{cc}
\phi_{1} & 0 \\
0 & 0
\end{array}\right) \alpha_{t-1}+\binom{\mu}{0}+\binom{1}{1} \eta_{t}
$$

Using the standard SSM notations, we have $c=(\mu, 0), R=(1,1), Q=\sigma_{\varepsilon}^{2}$ and:

$$
T=\left(\begin{array}{cc}
\phi_{1} & 0 \\
0 & 0
\end{array}\right)
$$

It follows that:

$$
I_{2}-T=\left(\begin{array}{cc}
1-\phi_{1} & 0 \\
0 & 1
\end{array}\right)
$$

and:

$$
\begin{aligned}
\left(I_{2}-T\right)^{-1} & =\frac{1}{1-\phi_{1}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1-\phi_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{1-\phi_{1}} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The steady state $\hat{\alpha}_{\infty}$ is then equal to:

$$
\begin{aligned}
\hat{\alpha}_{\infty} & =\left(I_{2}-T\right)^{-1} c \\
& =\frac{1}{1-\phi_{1}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1-\phi_{1}
\end{array}\right)\binom{\mu}{0} \\
& =\binom{\frac{\mu}{1-\phi_{1}}}{0}
\end{aligned}
$$

We also have:

$$
R Q R^{\top}=\sigma_{\varepsilon}^{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

and:

$$
T \otimes T=\left(\begin{array}{cccc}
\phi_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We obtain:

$$
\left(I_{4}-T \otimes T\right)^{-1}=\left(\begin{array}{cccc}
\frac{1}{1-\phi_{1}^{2}} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and:

$$
\begin{aligned}
\operatorname{vec}\left(P_{\infty}\right) & =\left(I_{4}-T \otimes T\right)^{-1} \operatorname{vec}\left(R Q R^{\top}\right) \\
& =\left(\begin{array}{c}
\frac{1}{1-\phi_{1}^{2}} \sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right)
\end{aligned}
$$

We finally deduce that:

$$
P_{\infty}=\left(\begin{array}{cc}
\frac{\sigma_{\varepsilon}^{2}}{1-\phi_{1}^{2}} & \sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} & \sigma_{\varepsilon}^{2}
\end{array}\right)
$$

2. We have $\alpha_{t}=\left(y_{t}, \varepsilon_{t}\right)$ and:

$$
\alpha_{t}=\left(\begin{array}{cc}
0 & -\theta_{1} \\
0 & 0
\end{array}\right) \alpha_{t-1}+\binom{\mu}{0}+\binom{1}{1} \eta_{t}
$$

Using the standard SSM notations, we have $c=(\mu, 0), R=(1,1), Q=\sigma_{\varepsilon}^{2}$ and:

$$
T=\left(\begin{array}{cc}
0 & -\theta_{1} \\
0 & 0
\end{array}\right)
$$

We obtain:

$$
\left(I_{2}-T\right)^{-1}=\left(\begin{array}{cc}
1 & -\theta_{1} \\
0 & 1
\end{array}\right)
$$

and:

$$
\hat{\alpha}_{\infty}=\left(\begin{array}{cc}
1 & -\theta_{1} \\
0 & 1
\end{array}\right)\binom{\mu}{0}=\binom{\mu}{0}
$$

We have:

$$
I_{4}-T \otimes T=\left(\begin{array}{cccc}
1 & 0 & 0 & -\theta_{1}^{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and:

$$
\operatorname{vec}\left(P_{\infty}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \theta_{1}^{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right)=\left(\begin{array}{c}
\sigma_{\varepsilon}^{2}\left(1+\theta_{1}^{2}\right) \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right)
$$

Finally, we obtain:

$$
P_{\infty}=\sigma_{\varepsilon}^{2}\left(\begin{array}{cc}
1+\theta_{1}^{2} & 1 \\
1 & 1
\end{array}\right)
$$

3. We have $\alpha_{t}=\left(y_{t}, \varepsilon_{t}\right)$ and:

$$
\alpha_{t}=\left(\begin{array}{cc}
\phi_{1} & -\theta_{1} \\
0 & 0
\end{array}\right) \alpha_{t-1}+\binom{\mu}{0}+\binom{1}{1} \eta_{t}
$$

Using the standard SSM notations, we have $c=(\mu, 0), R=(1,1), Q=\sigma_{\varepsilon}^{2}$ and:

$$
T=\left(\begin{array}{cc}
\phi_{1} & -\theta_{1} \\
0 & 0
\end{array}\right)
$$

We obtain:

$$
\left(I_{2}-T\right)^{-1}=\frac{1}{1-\phi_{1}}\left(\begin{array}{cc}
1 & -\theta_{1} \\
0 & 1-\phi_{1}
\end{array}\right)
$$

and:

$$
\hat{\alpha}_{\infty}=\frac{1}{1-\phi_{1}}\left(\begin{array}{cc}
1 & -\theta_{1} \\
0 & 1-\phi_{1}
\end{array}\right)\binom{\mu}{0}=\binom{\frac{\mu}{1-\phi_{1}}}{0}
$$

We also have:

$$
T \otimes T=\left(\begin{array}{cccc}
\phi_{1}^{2} & -\phi_{1} \theta_{1} & -\phi_{1} \theta_{1} & \theta_{1}^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It follows that:

$$
\operatorname{vec}\left(P_{\infty}\right)=\left(\begin{array}{cccc}
\frac{1}{1-\phi_{1}^{2}} & -\frac{\phi_{1} \theta_{1}}{1-\phi_{1}^{2}} & -\frac{\phi_{1} \theta_{1}}{1-\phi_{1}^{2}} & \frac{\theta_{1}^{2}}{1-\phi_{1}^{2}} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right)
$$

and:

$$
P_{\infty}=\sigma_{\varepsilon}^{2}\left(\begin{array}{cc}
\frac{1-2 \phi_{1} \theta_{1}+\theta_{1}^{2}}{1-\phi_{1}^{2}} & 1 \\
1 & 1
\end{array}\right)
$$

4. We have $\alpha_{t}=\left(y_{t}, u_{t}\right)$ and:

$$
\alpha_{t}=\left(\begin{array}{cc}
0 & \theta_{1} \\
0 & \theta_{1}
\end{array}\right) \alpha_{t-1}+\binom{\mu}{0}+\binom{1}{1} \eta_{t}
$$

Using the standard SSM notations, we have $c=(\mu, 0), R=(1,1), Q=\sigma_{\varepsilon}^{2}$ and:

$$
T=\left(\begin{array}{ll}
0 & \theta_{1} \\
0 & \theta_{1}
\end{array}\right)
$$

We obtain:

$$
\hat{\alpha}_{\infty}=\frac{1}{1-\theta_{1}}\left(\begin{array}{cc}
1-\theta_{1} & \theta_{1} \\
0 & 1
\end{array}\right)\binom{\mu}{0}=\binom{\mu}{0}
$$

and:

$$
\operatorname{vec}\left(P_{\infty}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{\theta_{1}^{2}}{1-\theta_{1}^{2}} \\
0 & 1 & 0 & \frac{\theta_{1}^{2}}{1-\theta^{2}} \\
0 & 0 & 1 & \frac{\theta_{1}^{2}}{1-\theta_{1}^{2}} \\
0 & 0 & 0 & \frac{1}{1-\theta_{1}^{2}}
\end{array}\right)\left(\begin{array}{c}
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2} \\
\sigma_{\varepsilon}^{2}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{1-\theta_{1}^{2}} \\
\frac{1}{1-\theta_{1}^{2}} \\
\frac{1}{1-\theta_{1}^{2}} \\
\frac{1}{1-\theta_{1}^{2}}
\end{array}\right) \sigma_{\varepsilon}^{2}
$$

We deduce that:

$$
P_{\infty}=\sigma_{\varepsilon}^{2}\left(\begin{array}{ll}
\frac{1}{1-\theta_{1}^{2}} & \frac{1}{1-\theta_{1}^{2}} \\
\frac{1}{1-\theta_{1}^{2}} & \frac{1}{1-\theta_{1}^{2}}
\end{array}\right)
$$

10.3.12 Kalman information filter versus Kalman covariance filter

In what follows, X^{-1} defines the inverse of the square matrix X and Y^{-1} defines the Moore-Penrose pseudo-inverse of the non-square matrix Y.

1. We have:

$$
\begin{aligned}
\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1} A & =\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1}\left(A^{-1}\right)^{-1} \\
& =\left(A^{-1}\left(I_{m}+A B^{\top} C^{-1} B\right)\right)^{-1} \\
& =\left(A^{-1}+B^{\top} C^{-1} B\right)^{-1}
\end{aligned}
$$

2. If the relationship $\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1}=I_{m}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B$ is true, we must verify that:

$$
\begin{aligned}
(*) & =\left(I_{m}+A B^{\top} C^{-1} B\right)\left(I_{m}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B\right) \\
& =I_{m}
\end{aligned}
$$

We have:

$$
\begin{aligned}
(*) & =\left(I_{m}+A B^{\top} C^{-1} B\right)\left(I_{m}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B\right) \\
& =\left(I_{m}+A B^{\top} C^{-1} B\right)-\left(I_{m}+A B^{\top} C^{-1} B\right) A B^{\top}\left(C+B A B^{\top}\right)^{-1} B \\
& =\left(I_{m}+A B^{\top} C^{-1} B\right)-\left(I_{m}+A B^{\top} C^{-1} B\right) A B^{\top}\left(B^{-1} C+A B^{\top}\right)^{-1} \\
& =\left(I_{m}+A B^{\top} C^{-1} B\right)-\left(I_{m}+A B^{\top} C^{-1} B\right)\left(B^{-1} C B^{\top^{-1}} A^{-1}+I_{m}\right)^{-1}
\end{aligned}
$$

Since we have:

$$
\begin{aligned}
I_{m}+A B^{\top} C^{-1} B & =\left(A B^{\top} C^{-1} B\right)\left(\left(A B^{\top} C^{-1} B\right)^{-1}+I_{m}\right) \\
& =\left(A B^{\top} C^{-1} B\right)\left(B^{-1} C B^{\top^{-1}} A^{-1}+I_{m}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
(*)= & \left(I_{m}+A B^{\top} C^{-1} B\right)- \\
& \left(A B^{\top} C^{-1} B\right)\left(B^{-1} C B^{\top^{-1}} A^{-1}+I_{m}\right)\left(B^{-1} C B^{\top^{-1}} A^{-1}+I_{m}\right)^{-1} \\
= & \left(I_{m}+A B^{\top} C^{-1} B\right)-\left(A B^{\top} C^{-1} B\right) \\
= & I_{m}
\end{aligned}
$$

3. Using Questions 1 and 2 , we have:

$$
\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1} A=\left(A^{-1}+B^{\top} C^{-1} B\right)^{-1}
$$

and:

$$
\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1}=I_{m}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B
$$

We deduce that:

$$
\begin{aligned}
\left(A^{-1}+B^{\top} C^{-1} B\right)^{-1} & =\left(I_{m}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B\right) A \\
& =A-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B A
\end{aligned}
$$

and:

$$
\begin{aligned}
(*)= & \left(I_{m}+A B^{\top} C^{-1} B\right)^{-1} A B^{\top} C^{-1} \\
= & \left(A^{-1}+B^{\top} C^{-1} B\right)^{-1} B^{\top} C^{-1} \\
= & \left(A-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B A\right) B^{\top} C^{-1} \\
= & A B^{\top} C^{-1}-A B^{\top}\left(C+B A B^{\top}\right)^{-1} B A B^{\top} C^{-1} \\
= & A B^{\top} C^{-1}-A B^{\top}\left(C+B A B^{\top}\right)^{-1}\left(\left(B A B^{\top}+C\right) C^{-1}-I\right) \\
= & A B^{\top} C^{-1}-A B^{\top}\left(C+B A B^{\top}\right)^{-1}\left(B A B^{\top}+C\right) C^{-1}+ \\
& A B^{\top}\left(C+B A B^{\top}\right)^{-1} \\
= & A B^{\top} C^{-1}-A B^{\top} C^{-1}+A B^{\top}\left(C+B A B^{\top}\right)^{-1}
\end{aligned}
$$

Finally, we obtain the expected result:

$$
\left(I_{m}+A B^{\top} C^{-1} B\right)^{-1} A B^{\top} C^{-1}=A B^{\top}\left(C+B A B^{\top}\right)^{-1}
$$

4. We have:

$$
\begin{aligned}
(*) & =\left(I_{m}+D^{-1} A\right)(A+D)^{-1} \\
& =(A+D)^{-1}+D^{-1} A(A+D)^{-1} \\
& =(A+D)^{-1}+D^{-1}\left(I_{m}+D A^{-1}\right)^{-1} \\
& =(A+D)^{-1}+D^{-1}\left(I_{m}-\left(I_{m}+D A^{-1}\right)^{-1} D A^{-1}\right) \\
& =(A+D)^{-1}+D^{-1}-D^{-1}\left(A D^{-1}+I_{m}\right)^{-1} \\
& =(A+D)^{-1}+D^{-1}-(A+D)^{-1} \\
& =D^{-1}
\end{aligned}
$$

5. Let V be a covariance matrix. The information matrix \mathbb{I} is the inverse of the covariance matrix V :

$$
\mathbb{I}=V^{-1}
$$

This matrix is used in the method of maximum likelihood.
6. The state $\hat{\alpha}_{t \mid t}^{\star}\left(\right.$ resp. $\left.\hat{\alpha}_{t \mid t-1}^{\star}\right)$ is the estimator of α_{t} normalized by the covariance matrix given the filtration $\mathcal{F}_{t}\left(\right.$ resp. $\left.\mathcal{F}_{t-1}\right)$.
7. We have:

$$
\begin{aligned}
\mathbb{I}_{t \mid t} P_{t \mid t-1} & =P_{t \mid t}^{-1} P_{t \mid t-1} \\
& =P_{t \mid t-1}^{-1}\left(I_{m}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t}\right)^{-1} P_{t \mid t-1} \\
& =P_{t \mid t-1}^{-1}\left(I_{m}+P_{t \mid t-1} Z_{t}^{\top} H_{t}^{-1} Z_{t}\right) P_{t \mid t-1} \\
& =I_{m}+Z_{t}^{\top} H_{t}^{-1} Z_{t} P_{t \mid t-1}
\end{aligned}
$$

because:

$$
\begin{aligned}
(*) & =\left(I_{m}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t}\right)^{-1} \\
& =I_{m}-P_{t \mid t-1} Z_{t}^{\top}\left(-F_{t}+Z_{t} P_{t \mid t-1} Z_{t}^{\top}\right)^{-1} Z_{t} \\
& =I_{m}-P_{t \mid t-1} Z_{t}^{\top}\left(-H_{t}\right)^{-1} Z_{t} \\
& =I_{m}+P_{t \mid t-1} Z_{t}^{\top} H_{t}^{-1} Z_{t}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
(*) & =\mathbb{I}_{t \mid t} P_{t \mid t-1} Z_{t}^{\top}\left(Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t}\right)^{-1} \\
& =\left(I_{m}+Z_{t}^{\top} H_{t}^{-1} Z_{t} P_{t \mid t-1}\right) Z_{t}^{\top}\left(Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t}\right)^{-1} \\
& =Z_{t}^{\top}\left(I_{n}+H_{t}^{-1} Z_{t} P_{t \mid t-1} Z_{t}^{\top}\right)\left(Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t}\right)^{-1}
\end{aligned}
$$

By using Question 4 with $A=Z_{t} P_{t \mid t-1} Z_{t}^{\top}$ and $D=H_{t}$, we obtain:

$$
\mathbb{I}_{t \mid t} P_{t \mid t-1} Z_{t}^{\top}\left(Z_{t} P_{t \mid t-1} Z_{t}^{\top}+H_{t}\right)^{-1}=Z_{t}^{\top} H_{t}^{-1}
$$

8. We have:
(a)

$$
\begin{aligned}
\mathbb{I}_{t \mid t-1} & =P_{t \mid t-1}^{-1} \\
& =\left(T_{t} P_{t-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top}\right)^{-1} \\
& =\left(T_{t} \mathbb{I}_{t-1 \mid t-1}^{-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top}\right)^{-1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\hat{\alpha}_{t \mid t-1}^{\star} & =\mathbb{I}_{t \mid t-1} \hat{\alpha}_{t \mid t-1} \\
& =\mathbb{I}_{t \mid t-1} T_{t} \hat{\alpha}_{t-1 \mid t-1} \\
& =\mathbb{I}_{t \mid t-1} T_{t} \mathbb{I}_{t-1 \mid t-1}^{-1} \hat{\alpha}_{t-1 \mid t-1}^{\star}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathbb{I}_{t \mid t} & =P_{t \mid t}^{-1} \\
& =P_{t \mid t-1}^{-1}\left(I_{m}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t}\right)^{-1} \\
& =P_{t \mid t-1}^{-1}\left(I_{m}+P_{t \mid t-1} Z_{t}^{\top} H_{t}^{-1} Z_{t}\right) \\
& =\mathbb{I}_{t \mid t-1}+Z_{t}^{\top} H_{t}^{-1} Z_{t}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\hat{\alpha}_{t \mid t}^{\star} & =\mathbb{I}_{t \mid t} \hat{\alpha}_{t \mid t} \\
& =\mathbb{I}_{t \mid t}\left(\hat{\alpha}_{t \mid t-1}+P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1}\left(y_{t}-Z_{t} \hat{\alpha}_{t \mid t-1}\right)\right) \\
= & \mathbb{I}_{t \mid t}\left(I_{m}-P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} Z_{t}\right) \hat{\alpha}_{t \mid t-1}+ \\
& \mathbb{I}_{t \mid t} P_{t \mid t-1} Z_{t}^{\top} F_{t}^{-1} y_{t} \\
& =\hat{\alpha}_{t \mid t-1}^{\star}+Z_{t}^{\top} H_{t}^{-1} y_{t}
\end{aligned}
$$

We deduce that the recursive equations of the Kalman information filter are:

$$
\left\{\begin{array}{l}
\mathbb{I}_{t \mid t-1}=\left(T_{t} \mathbb{I}_{t-1 \mid t-1}^{-1} T_{t}^{\top}+R_{t} Q_{t} R_{t}^{\top}\right)^{-1} \\
\hat{\alpha}_{t \mid t-1}^{\star}=\mathbb{I}_{t \mid t-1} T_{t} \mathbb{I}_{t-1 \mid t-1}^{-1} \hat{\alpha}_{t-1 \mid t-1}^{\star} \\
\mathbb{I}_{t \mid t}=\mathbb{I}_{t \mid t-1}+Z_{t}^{\top} H_{t}^{-1} Z_{t} \\
\hat{\alpha}_{t \mid t}^{\star}=\hat{\alpha}_{t \mid t-1}^{\star}+Z_{t}^{\top} H_{t}^{-1} y_{t}
\end{array}\right.
$$

From a numerical point of views, the number of matrix operations is:

- 5 additions, 10 multiplications and 1 inverse for the covariance filter;
- 3 additions, 10 multiplications and 2 inverses for the information filter;

It is not obvious that the computational time is reduced when using the information filter. Its advantage may be due to the inverse of $\mathbb{I}_{t-1 \mid t-1}$ that can be more stable than F_{t}^{-1} in some cases.
9. We have:

$$
\ell(\theta)=-\frac{n T}{2} \ln (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \ln \left|F_{t}\right|-\frac{1}{2} \sum_{t=1}^{T} v_{t}^{\top} F_{t}^{-1} v_{t}
$$

In the case of the Kalman information matrix, we have:

$$
\left\{\begin{array}{l}
F_{t}=Z_{t} \mathbb{I}_{t \mid t-1}^{-1} Z_{t}^{\top}+H_{t} \\
v_{t}=y_{t}-Z_{t} \mathbb{I}_{t \mid t-1}^{-1} \hat{\alpha}_{t \mid t-1}^{\star} \\
\hat{\alpha}_{0}^{\star}=\mathbf{0} \\
\mathbb{I}_{0}=\mathbf{0}
\end{array}\right.
$$

In the case of the Kalman covariance matrix, we set $\alpha_{0} \sim \mathcal{N}\left(\mathbf{0}, \kappa I_{m}\right)$ where κ is a scalar sufficiently high such that $\mathbb{I}_{0}=\kappa^{-1} I_{m} \simeq \mathbf{0}$.

10.3.13 Granger representation theorem

1. We have:

$$
y_{t}=\mu_{t}+\Phi_{1}^{\prime} y_{t-1}+\varepsilon_{t}
$$

We deduce that:

$$
y_{t}-y_{t-1}=\mu_{t}+\Phi_{1}^{\prime} y_{t-1}-y_{t-1}+\varepsilon_{t}
$$

and:

$$
\Delta y_{t}=\mu_{t}+\left(\Phi_{1}^{\prime}-I_{n}\right) y_{t-1}+\varepsilon_{t}
$$

2. We have:

$$
y_{t}=\mu_{t}+\Phi_{1}^{\prime} y_{t-1}+\Phi_{2}^{\prime} y_{t-2}+\varepsilon_{t}
$$

We deduce that:

$$
\begin{aligned}
\Delta y_{t} & =\mu_{t}+\left(\Phi_{1}^{\prime}-I_{n}\right) y_{t-1}+\Phi_{2}^{\prime} y_{t-2}+\varepsilon_{t} \\
& =\mu_{t}+\left(\Phi_{1}^{\prime}+\Phi_{2}^{\prime}-I_{n}\right) y_{t-1}-\Phi_{2}^{\prime} \Delta y_{t-1}+\varepsilon_{t}
\end{aligned}
$$

3. The relationship is true for $p=1$ and $p=2$. We note:

$$
\Pi^{(p)}=\sum_{i=1}^{p} \Phi_{i}^{\prime}-I_{n}
$$

and

$$
\Phi_{i}^{(p)}=-\sum_{j=i+1}^{p} \Phi_{j}^{\prime}
$$

We notice that:

$$
\begin{aligned}
\Pi^{(p)} & =\sum_{i=1}^{p} \Phi_{i}^{\prime}-I_{n} \\
& =\left(\sum_{i=1}^{p-1} \Phi_{i}^{\prime}-I_{n}\right)+\Phi_{p}^{\prime} \\
& =\Pi^{(p-1)}+\Phi_{p}^{\prime}
\end{aligned}
$$

and:

$$
\begin{aligned}
\Phi_{i}^{(p)} & =-\sum_{j=i+1}^{p} \Phi_{j}^{\prime} \\
& =-\sum_{j=i+1}^{p-1} \Phi_{j}^{\prime}-\Phi_{p}^{\prime} \\
& =\Phi_{i}^{(p-1)}-\Phi_{p}^{\prime}
\end{aligned}
$$

We prove the relationship by induction. Let us assume that it holds for the order $p-1$. We have:

$$
\begin{aligned}
\Delta y_{t} & =y_{t}-y_{t-1} \\
& =\mu_{t}+\sum_{i=1}^{p} \Phi_{i}^{\prime} y_{t-i}+\varepsilon_{t}-y_{t-1} \\
& =\mu_{t}+\sum_{i=1}^{p-1} \Phi_{i}^{\prime} y_{t-i}+\varepsilon_{t}-y_{t-1}+\Phi_{p}^{\prime} y_{t-p} \\
= & \mu_{t}+\Pi^{(p-1)} y_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{(p-1)} \Delta y_{t-i}+\varepsilon_{t}+\Phi_{p}^{\prime} y_{t-p} \\
= & \mu_{t}+\left(\Pi^{(p)}-\Phi_{p}^{\prime}\right) y_{t-1}+\sum_{i=1}^{p-1}\left(\Phi_{i}^{(p)}+\Phi_{p}^{\prime}\right) \Delta y_{t-i}+ \\
& \varepsilon_{t}+\Phi_{p}^{\prime} y_{t-p} \\
= & \mu_{t}+\Pi^{(p)} y_{t-1}+\sum_{i=1}^{p} \Phi_{i}^{(p)} \Delta y_{t-i}+\varepsilon_{t}+\eta_{t}
\end{aligned}
$$

Since $\Phi_{p}^{(p)}=\mathbf{0}$, the value of η_{t} is equal to:

$$
\begin{aligned}
\eta_{t}= & -\Phi_{p}^{\prime} y_{t-1}+\sum_{i=1}^{p-1} \Phi_{p}^{\prime} \Delta y_{t-i}-\Phi_{p}^{(p)} \Delta y_{t-p}+\Phi_{p}^{\prime} y_{t-p} \\
= & -\Phi_{p}^{\prime} y_{t-1}+\sum_{i=1}^{p-1} \Phi_{p}^{\prime}\left(y_{t-i}-y_{t-i-1}\right)+\Phi_{p}^{\prime} y_{t-p} \\
= & -\Phi_{p}^{\prime} y_{t-1}+\Phi_{p}^{\prime} y_{t-1}-\Phi_{p}^{\prime} y_{t-2}+\Phi_{p}^{\prime} y_{t-2}+ \\
& \cdots-\Phi_{p}^{\prime} y_{t-p}+\Phi_{p}^{\prime} y_{t-p} \\
= & \mathbf{0}
\end{aligned}
$$

It follows that the statement also holds for the order p.

10.3.14 Probability distribution of the periodogram

1. Since $a\left(\lambda_{j}\right)$ and $b\left(\lambda_{j}\right)$ are the sums of Gaussian random variables, they are also Gaussian. We have:

$$
\begin{aligned}
\mathbb{E}\left[a\left(\lambda_{j}\right)\right] & =\mathbb{E}\left[\frac{1}{\sqrt{n}} \sum_{t=1}^{n} y_{t} \cos \left(\lambda_{j} t\right)\right] \\
& =\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \mathbb{E}\left[y_{t}\right] \cos \left(\lambda_{j} t\right) \\
& =0
\end{aligned}
$$

and $\mathbb{E}\left[b\left(\lambda_{j}\right)\right]=0$. For the variance, we have:

$$
\begin{aligned}
\operatorname{var}\left(a\left(\lambda_{j}\right)\right)= & \mathbb{E}\left[\left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} y_{t} \cos \left(\lambda_{j} t\right)\right)^{2}\right] \\
= & \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[y_{t}^{2}\right] \cos ^{2}\left(\lambda_{j} t\right)+ \\
& \frac{1}{n} \sum_{s \neq t} \mathbb{E}\left[y_{s} y_{t}\right] \cos \left(\lambda_{j} s\right) \cos \left(\lambda_{j} t\right) \\
= & \frac{\sigma^{2}}{n} \sum_{t=1}^{n} \cos ^{2}\left(\lambda_{j} t\right)+0 \\
= & \frac{\sigma^{2}}{n} \sum_{t=1}^{n}\left(\frac{\cos \left(2 \lambda_{j} t\right)+1}{2}\right)
\end{aligned}
$$

If $\lambda_{j} \neq 0$, we obtain:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{var}\left(a\left(\lambda_{j}\right)\right) & =\frac{\sigma^{2}}{2}+\frac{\sigma^{2}}{2} \lim _{n \rightarrow \infty} \sum_{t=1}^{n} \frac{\cos \left(2 \lambda_{j} t\right)}{n} \\
& =\frac{\sigma^{2}}{2}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\operatorname{var}\left(b\left(\lambda_{j}\right)\right) & =\mathbb{E}\left[\left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} y_{t} \sin \left(\lambda_{j} t\right)\right)^{2}\right] \\
& =\frac{\sigma^{2}}{n} \sum_{t=1}^{n} \sin ^{2}\left(\lambda_{j} t\right) \\
& =\frac{\sigma^{2}}{n} \sum_{t=1}^{n}\left(\frac{1-\cos \left(2 \lambda_{j} t\right)}{2}\right)
\end{aligned}
$$

f $\lambda_{j} \neq 0$, we obtain:

$$
\lim _{n \rightarrow \infty} \operatorname{var}\left(b\left(\lambda_{j}\right)\right)=\frac{\sigma^{2}}{2}
$$

We deduce that $a\left(\lambda_{j}\right) \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{2}\right)$ and $b\left(\lambda_{j}\right) \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{2}\right)$.
2. We have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{cov}\left(a\left(\lambda_{j}\right), b\left(\lambda_{j}\right)\right) & =\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{1}{n} \sum_{s=1}^{n} y_{s} \cos \left(\lambda_{j} s\right) \sum_{t=1}^{n} y_{t} \sin \left(\lambda_{j} t\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n} \sum_{t=1}^{n} \cos \left(\lambda_{j} t\right) \sin \left(\lambda_{j} t\right) \\
& =0
\end{aligned}
$$

It follows that $a\left(\lambda_{j}\right)$ and $b\left(\lambda_{j}\right)$ are asymptotically independent. We conclude that:

$$
\frac{2}{\sigma^{2}}\left(a^{2}\left(\lambda_{j}\right)+b^{2}\left(\lambda_{j}\right)\right) \sim \chi_{2}^{2}
$$

and:

$$
\frac{4 \pi}{\sigma^{2}} I_{y}\left(\lambda_{j}\right) \sim \chi_{2}^{2}
$$

3. We verify that:

$$
\mathbb{E}\left[I_{y}\left(\lambda_{j}\right)\right]=\frac{f_{y}\left(\lambda_{j}\right)}{2} \mathbb{E}\left[\chi_{2}^{2}\right]=f_{y}\left(\lambda_{j}\right)
$$

and:

$$
\operatorname{var}\left(I_{y}\left(\lambda_{j}\right)\right)=\frac{f_{y}^{2}\left(\lambda_{j}\right)}{4} \operatorname{var}\left(\chi_{2}^{2}\right)=f_{y}^{2}\left(\lambda_{j}\right)
$$

Since we have:

$$
\operatorname{Pr}\left\{0.0506 \leq \chi_{2}^{2} \leq 7.3778\right\}=95 \%
$$

we deduce that:

$$
\operatorname{Pr}\left\{0.0506 \leq 2 \frac{I_{y}\left(\lambda_{j}\right)}{f_{y}\left(\lambda_{j}\right)} \leq 7.3778\right\}=95 \%
$$

Finally, we obtain:

$$
\operatorname{Pr}\left\{0.27 \cdot I_{y}\left(\lambda_{j}\right) \leq f_{y}\left(\lambda_{j}\right) \leq 39.5 \cdot I_{y}\left(\lambda_{j}\right)\right\}=95 \%
$$

4. If $\lambda_{j}=0$, we obtain:

$$
\lim _{n \rightarrow \infty} \operatorname{var}(a(0))=\frac{\sigma^{2}}{n} \sum_{t=1}^{n}\left(\frac{1+1}{2}\right)=\sigma^{2}
$$

and:

$$
\operatorname{var}(b(0))=0
$$

It follows that:

$$
\frac{1}{\sigma^{2}}\left(a^{2}(0)+b^{2}(0)\right) \sim \chi_{1}^{2}
$$

and:

$$
\frac{2 \pi}{\sigma^{2}} I_{y}(0) \sim \chi_{1}^{2}
$$

For a white noise process, we have $f_{y}(0)=(2 \pi)^{-1} \sigma^{2}$. Therefore, we can make the hypothesis that:

$$
\lim _{n \rightarrow \infty} \frac{I_{y}(0)}{f_{y}(0)} \sim \chi_{1}^{2}
$$

We notice that:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[I_{y}(0)\right]=f_{y}(0) \cdot \mathbb{E}\left[\chi_{1}^{2}\right]=f_{y}(0)
$$

and:

$$
\lim _{n \rightarrow \infty} \operatorname{var}\left(I_{y}(0)\right)=f_{y}^{2}(0) \cdot \operatorname{var}\left(\chi_{1}^{2}\right)=2 f_{y}^{2}(0)
$$

10.3.15 Spectral density function of structural time series models

1. We use the canonical representation of state space models. For Model (M1), we have $Z_{t}=1, \alpha_{t}=\mu_{t}, d_{t}=0, H_{t}=\sigma_{\varepsilon}^{2}, T_{t}=1, c_{t}=0, R_{t}=1$ and $Q_{t}=\sigma_{\eta}^{2}$. For model (M2), we obtain $Z_{t}=\left(\begin{array}{ll}1 & 0\end{array}\right), \alpha_{t}=\binom{\mu_{t}}{\beta_{t}}, d_{t}=0, H_{t}=\sigma_{\varepsilon}^{2}, T_{t}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, $c_{t}=\binom{0}{0}, R_{t}=I$ and $Q_{t}=\left(\begin{array}{cc}\sigma_{\eta}^{2} & 0 \\ 0 & \sigma_{\zeta}^{2}\end{array}\right)$.
2. For Model (M1), we have:

$$
\begin{aligned}
(1-L) y_{t} & =\left(\mu_{t}+\varepsilon_{t}\right)-\left(\mu_{t-1}+\varepsilon_{t-1}\right) \\
& =\left(\mu_{t}-\mu_{t-1}\right)+\left(\varepsilon_{t}-\varepsilon_{t-1}\right) \\
& =\eta_{t}+(1-L) \varepsilon_{t}
\end{aligned}
$$

Since the sum of two stationary processes is stationary, it follows that $\eta_{t}+(1-L) \varepsilon_{t}$ is stationary. We deduce that the stationary form is $\mathcal{S}\left(y_{t}\right)=(1-L) y_{t}$. The spectral density function is equal to:

$$
\begin{aligned}
f_{\mathcal{S}(y)}(\lambda) & =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+\left|1-e^{-i \lambda}\right|^{2} \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+|1-(\cos (-\lambda)+i \sin (-\lambda))|^{2} \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+|1-(\cos \lambda-i \sin \lambda)|^{2} \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+|(1-\cos \lambda)+i \sin \lambda|^{2} \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+\left((1-\cos \lambda)^{2}+\sin ^{2} \lambda\right) \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+\left(1-2 \cos \lambda+\cos ^{2} \lambda+\sin ^{2} \lambda\right) \sigma_{\varepsilon}^{2}\right) \\
& =(2 \pi)^{-1}\left(\sigma_{\eta}^{2}+2(1-\cos \lambda) \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

For Model (M2), we have:

$$
\begin{aligned}
(1-L) y_{t} & =\left(\mu_{t}+\varepsilon_{t}\right)-\left(\mu_{t-1}+\varepsilon_{t-1}\right) \\
& =\left(\mu_{t}-\mu_{t-1}\right)+\left(\varepsilon_{t}-\varepsilon_{t-1}\right) \\
& =\beta_{t-1}+\eta_{t}+\left(\varepsilon_{t}-\varepsilon_{t-1}\right)
\end{aligned}
$$

$(1-L) y_{t}$ is not stationary because the process β_{t} is integrated of order 1 . We have:

$$
\begin{aligned}
(1-L)^{2} y_{t} & =(1-L)\left(\beta_{t-1}+\eta_{t}+\left(\varepsilon_{t}-\varepsilon_{t-1}\right)\right) \\
& =\left(\beta_{t-1}-\beta_{t-2}\right)+\left(\eta_{t}-\eta_{t-1}\right)+(1-L)^{2} \varepsilon_{t} \\
& =\zeta_{t-1}+(1-L) \eta_{t}+(1-L)^{2} \varepsilon_{t}
\end{aligned}
$$

Since this is the sum of three independent stationary processes, the stationary form of y_{t} is equal to $S\left(y_{t}\right)=(1-L)^{2} y_{t}$. We have ${ }^{4}$:

$$
\begin{aligned}
\left|\left(1-e^{-i \lambda}\right)^{2}\right|^{2} & =\left|1-e^{-i \lambda}\right|^{2}\left|1-e^{-i \lambda}\right|^{2} \\
& =(2(1-\cos \lambda))^{2} \\
& =4(1-\cos \lambda)^{2}
\end{aligned}
$$

We conclude that:

$$
f_{\mathcal{S}(y)}(\lambda)=\frac{\sigma_{\zeta}^{2}+2(1-\cos \lambda) \sigma_{\eta}^{2}+4(1-\cos \lambda)^{2} \sigma_{\varepsilon}^{2}}{2 \pi}
$$

3. In Figure 10.3, we have represented the spectral density functions of Models (M1) and (M2) when $\sigma_{\varepsilon}=\sigma_{\eta}=\sigma_{\zeta}=1$. We observe that they are similar for low frequencies, and the difference between the two processes comes from the dynamics on high frequencies.
4. μ_{t} is the stochastic trend, β_{t} is an $\operatorname{AR}(1)$ process that can be viewed as a meanreverting component when $\phi<0$ and γ_{t} is a stochastic seasonal process. When $\sigma_{\omega}=0$, we have:

$$
\gamma_{t-s+1}+\ldots+\gamma_{t-1}+\gamma_{t}=0
$$

[^41]

FIGURE 10.3: Spectral density function of Models (M1) and (M2)

Since we have $\gamma_{t-s}+\ldots+\gamma_{t-2}+\gamma_{t-1}=0$, we deduce that:

$$
\begin{aligned}
\gamma_{t} & =-\left(\gamma_{t-s+1}+\ldots+\gamma_{t-1}\right) \\
& =\gamma_{t-s}
\end{aligned}
$$

We obtain a deterministic seasonal time series, where s represents the period length of a season. For example, if $s=4$, we obtain:

$$
\left\{\begin{array}{l}
\gamma_{t}=\gamma_{t-4}=\gamma_{t-8}=\ldots \\
\gamma_{t+1}=\gamma_{t-3}=\gamma_{t-7}=\ldots \\
\gamma_{t+2}=\gamma_{t-2}=\gamma_{t-6}=\ldots \\
\gamma_{t+3}=\gamma_{t-1}=\gamma_{t-5}=\ldots
\end{array}\right.
$$

The process repeats every four time periods. If $\sigma_{\omega} \neq 0$, we have $\gamma_{t-s+1}+\ldots+\gamma_{t-1}+$ $\gamma_{t}=\omega_{t}$ and $\gamma_{t-s}+\ldots+\gamma_{t-2}+\gamma_{t-1}=\omega_{t-1}$. Therefore, we have:

$$
\begin{aligned}
\gamma_{t} & =\omega_{t}-\left(\gamma_{t-s+1}+\ldots+\gamma_{t-1}\right) \\
& =\omega_{t}-\left(\omega_{t-1}-\gamma_{t-s}\right) \\
& =\gamma_{t-s}+\left(\omega_{t}-\omega_{t-1}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}_{t-s}\left[\gamma_{t}\right] & =\mathbb{E}_{t-s}\left[\gamma_{t-s}+\left(\omega_{t}-\omega_{t-1}\right)\right] \\
& =\gamma_{t-s}
\end{aligned}
$$

It follows that γ_{t} is a stochastic seasonal process.
5. We have:

$$
\begin{aligned}
z_{t}= & (1-L)\left(1-L^{s}\right) y_{t} \\
= & \left(1-L^{s}\right) \eta_{t}+(1-L)\left(1-L^{s}\right) \beta_{t}+(1-L)\left(1-L^{s}\right) \varepsilon_{t}+ \\
& (1-L)\left(1-L^{s}\right) \gamma_{t}
\end{aligned}
$$

and:

$$
\begin{aligned}
(1-L)\left(1-L^{s}\right) \gamma_{t} & =\left(\gamma_{t}-\gamma_{t-1}\right)-\left(\gamma_{t-s}-\gamma_{t-s-1}\right) \\
& =\left(\gamma_{t}-\gamma_{t-s}\right)-\left(\gamma_{t-1}-\gamma_{t-s-1}\right) \\
& =\left(\omega_{t}-\omega_{t-1}\right)-\left(\omega_{t-1}-\omega_{t-2}\right) \\
& =\omega_{t}-2 \omega_{t-1}+\omega_{t-2} \\
& =(1-L)^{2} \omega_{t}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
z_{t}= & \left(1-L^{s}\right) \eta_{t}+(1-L)\left(1-L^{s}\right) \beta_{t}+ \\
& (1-L)\left(1-L^{s}\right) \varepsilon_{t}+(1-L)^{2} \omega_{t}
\end{aligned}
$$

If we assume that $|\phi|<1$, then β_{t} is stationary. Moreover, we know that $\eta_{t}, \varepsilon_{t}$ and ω_{t} are stationary. We conclude that z_{t} is stationary and $\mathcal{S}\left(y_{t}\right)=(1-L)\left(1-L^{s}\right) y_{t}$ is a stationary form of y_{t}.
6. Another stationary form of y_{t} is $\left(1-L^{s}\right) y_{t}$. Indeed, we have:

$$
\left(1-L^{s}\right) y_{t}=\left(1-L^{s}\right) \mu_{t}+\left(1-L^{s}\right) \beta_{t}+\left(1-L^{s}\right) \varepsilon_{t}+(1-L) \omega_{t}
$$

and:

$$
\begin{aligned}
\left(1-L^{s}\right) \mu_{t} & =\mu_{t}-\mu_{t-s} \\
& =\left(\mu_{t-1}+\eta_{t}\right)-\mu_{t-s} \\
& =\eta_{t}+\left(\mu_{t-2}+\eta_{t-1}\right)-\mu_{t-s} \\
& =\eta_{t}+\eta_{t-1}+\ldots+\eta_{t-s-1}
\end{aligned}
$$

We deduce that $\left(1-L^{s}\right) \mu_{t}$ and $\left(1-L^{s}\right) y_{t}$ are stationary.
7. We note $g_{\lambda}(\varphi(L))=\left|\varphi\left(e^{-i \lambda}\right)\right|^{2}$. We have:

$$
\begin{aligned}
g_{\lambda}\left(1-L^{s}\right) & =\left|1-\left(e^{-i \lambda}\right)^{s}\right|^{2} \\
& =\left|1-e^{-i s \lambda}\right|^{2} \\
& =(1-\cos s \lambda)^{2}+\sin ^{2} s \lambda \\
& =2(1-\cos s \lambda)
\end{aligned}
$$

and:

$$
\begin{aligned}
g_{\lambda}\left((1-L)\left(1-L^{s}\right)\right) & =g_{\lambda}(1-L) \cdot g_{\lambda}\left(1-L^{s}\right) \\
& =4(1-\cos \lambda)(1-\cos s \lambda)
\end{aligned}
$$

We remind that

$$
\begin{aligned}
g_{\lambda}\left((1-\phi L)^{-1}\right) & =\frac{1}{\left|1-\phi e^{-i \lambda}\right|^{2}} \\
& =\frac{1}{(1-\phi \cos \lambda)^{2}+\phi^{2} \sin ^{2} \lambda} \\
& =\frac{1}{1-2 \phi \cos \lambda+\phi^{2}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
2 \pi f_{\mathcal{S}(y)}(\lambda)= & g_{\lambda}\left(1-L^{s}\right) \sigma_{\eta}^{2}+g_{\lambda}\left(\frac{(1-L)\left(1-L^{s}\right)}{1-\phi L}\right) \sigma_{\zeta}^{2}+ \\
& g_{\lambda}\left((1-L)\left(1-L^{s}\right)\right) \sigma_{\varepsilon}^{2}+g_{\lambda}\left((1-L)^{2}\right) \sigma_{\omega}^{2} \\
= & 2(1-\cos s \lambda) \sigma_{\eta}^{2}+ \\
& \left(\frac{4(1-\cos \lambda)(1-\cos s \lambda)}{1-2 \phi \cos \lambda+\phi^{2}}\right) \sigma_{\zeta}^{2}+ \\
& 4(1-\cos \lambda)(1-\cos s \lambda) \sigma_{\varepsilon}^{2} \\
& \left(4-8 \cos \lambda+4 \cos ^{2} \lambda\right) \sigma_{\omega}^{2}
\end{aligned}
$$

We have seen that:

$$
\begin{aligned}
g_{\lambda}\left((1-L)\left(1-L^{s}\right)\right)= & g_{\lambda}\left(1-L-L^{s}+L^{s+1}\right) \\
= & 4-4 \cos \lambda-4 \cos s \lambda+ \\
& 2 \cos (s-1) \lambda+2 \cos (s-1) \lambda
\end{aligned}
$$

By using the properties of trigonometric functions, we obtain:

$$
\begin{aligned}
g_{\lambda}\left((1-L)\left(1-L^{s}\right)\right)= & 4-4 \cos \lambda-4 \cos s \lambda+ \\
& 2(\cos s \lambda \cos \lambda-\sin s \lambda \sin \lambda)+ \\
& 2(\cos s \lambda \cos \lambda+\sin s \lambda \sin \lambda) \\
= & 4-4 \cos \lambda-4 \cos s \lambda+4 \cos s \lambda \cos \lambda \\
= & 4(1-\cos \lambda)(1-\cos s \lambda)
\end{aligned}
$$

The spectral density function is then defined as follows:

$$
\begin{aligned}
f_{\mathcal{S}(y)}(\lambda)= & \pi^{-1}(1-\cos s \lambda) \sigma_{\eta}^{2}+ \\
& \pi^{-1}\left(\frac{2-2 \cos \lambda+\sum_{j=-1}^{1}(3|j|-2) \cos (s+j) \lambda}{1-2 \phi \cos \lambda+\phi^{2}}\right) \sigma_{\zeta}^{2}+ \\
& 2 \pi^{-1}(1-\cos \lambda)(1-\cos s \lambda) \sigma_{\varepsilon}^{2} \\
& 2 \pi^{-1}\left(1-2 \cos \lambda+\cos ^{2} \lambda\right) \sigma_{\omega}^{2}
\end{aligned}
$$

10.3.16 Spectral density function of some processes

We note $g_{\lambda}(\varphi(L))=\left|\varphi\left(e^{-i \lambda}\right)\right|^{2}$.

1. We have:

$$
\begin{aligned}
g_{\lambda}\left(1-L^{s}\right) & =\left|1-\left(e^{-i \lambda}\right)^{s}\right|^{2} \\
& =\left|1-e^{-i s \lambda}\right|^{2} \\
& =(1-\cos s \lambda)^{2}+\sin ^{2} s \lambda \\
& =2(1-\cos s \lambda)
\end{aligned}
$$

Since we have $\left(1-L^{s}\right) y_{t}=\varepsilon_{t}$, we deduce that:

$$
\begin{aligned}
f_{y}(\lambda) & =\frac{\sigma_{\varepsilon}^{2}}{2 \pi g_{\lambda}\left(1-L^{s}\right)} \\
& =\frac{\sigma_{\varepsilon}^{2}}{4 \pi(1-\cos (s \lambda))}
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
f(\lambda) & =\frac{\sigma_{\varepsilon}^{2}}{2 \pi\left|\left(1-e^{-i \lambda}\right)^{d}\right|^{2}} \\
& =\frac{\sigma_{\varepsilon}^{2}}{2 \pi}\left|1-e^{-i \lambda}\right|^{-2 d} \\
& =\frac{\sigma_{\varepsilon}^{2}}{2 \pi}\left((1-\cos \lambda)^{2}+\sin ^{2} \lambda\right)^{-d} \\
& =\frac{\sigma_{\varepsilon}^{2}}{2 \pi}(2(1-\cos \lambda))^{-d} \\
& =\frac{\sigma_{\varepsilon}^{2}}{2 \pi}\left(4 \sin ^{2} \frac{\lambda}{2}\right)^{-d} \\
& =\frac{\sigma_{\varepsilon}^{2}}{2 \pi}\left(2 \sin \frac{\lambda}{2}\right)^{-2 d}
\end{aligned}
$$

because ${ }^{5}$:

$$
\begin{aligned}
\sin ^{2} \frac{\lambda}{2} & =\frac{1}{2}\left(\cos \left(\frac{\lambda}{2}-\frac{\lambda}{2}\right)-\cos \left(\frac{\lambda}{2}+\frac{\lambda}{2}\right)\right) \\
& =\frac{1}{2}(1-\cos \lambda)
\end{aligned}
$$

3. We have:

$$
z_{t}=(1-\phi L)^{-1} u_{t}+(1-\theta L)^{-1} v_{t}
$$

We deduce that:

$$
f_{z}(\lambda)=\frac{\sigma_{u}^{2}}{2 \pi\left(1-2 \phi \cos \lambda+\phi^{2}\right)}+\frac{\left(1-2 \theta \cos \lambda+\theta^{2}\right) \sigma_{u}^{2}}{2 \pi}
$$

[^42](a) The simulated time series z is represented in the first panel Figure 10.4. In the second panel, we also give the periodogram of z :
$$
I_{z}\left(\lambda_{j}\right)=\frac{\left|d_{z}\left(\lambda_{j}\right)\right|^{2}}{2 \pi n}=\frac{1}{2 \pi n}\left|\sum_{t=1}^{n} z_{t} e^{-i \lambda_{j} t}\right|^{2}
$$
where $\lambda_{j}=2 \pi(j-1) / n$ and $j \in\{1, \ldots, n\}$.
Simulation of z_{t}

Periodogram $I_{z}(\lambda)$

Spectral density function $f_{z}(\lambda)$

FIGURE 10.4: The $\mathrm{AR}(1)+\mathrm{MA}(1)$ stochastic process
(b) The Whittle log-likelihood is equal to:

$$
\ell\left(\phi, \sigma_{u}, \theta, \sigma_{v}\right) \simeq-n \ln 2 \pi-\frac{1}{2} \sum_{j=1}^{n} \ln f_{z}\left(\lambda_{j}\right)-\frac{1}{2} \sum_{j=1}^{n} \frac{I_{z}\left(\lambda_{j}\right)}{f_{z}\left(\lambda_{j}\right)}
$$

where $\lambda_{j}=2 \pi j / n$ et $j \in\{0,1, \ldots, n-1\}$. With the simulation in Figure 10.4, we obtain the following estimates: $\hat{\phi}=0.755, \hat{\sigma}_{u}=0.896, \hat{\theta}=0.120$ and $\hat{\sigma}_{v}=0.595$. The true and estimation spectral density functions are given in the third panel in 10.4 .

Chapter 11

Copulas and Dependence

11.4.1 Gumbel logistic copula

1. We recall that the expression of the Gumbel logistic copula is:

$$
\mathbf{C}\left(u_{1}, u_{2}\right)=\frac{u_{1} u_{2}}{u_{1}+u_{2}-u_{1} u_{2}}
$$

We have:

$$
\begin{aligned}
\partial_{1} \mathbf{C}\left(u_{1}, u_{2}\right) & =\frac{u_{2}\left(u_{1}+u_{2}-u_{1} u_{2}\right)-u_{1} u_{2}\left(1-u_{2}\right)}{\left(u_{1}+u_{2}-u_{1} u_{2}\right)^{2}} \\
& =\frac{u_{2}^{2}}{\left(u_{1}+u_{2}-u_{1} u_{2}\right)^{2}}
\end{aligned}
$$

We deduce that the copula density is:

$$
\begin{aligned}
c\left(u_{1}, u_{2}\right) & =\partial_{1,2}^{2} \mathbf{C}\left(u_{1}, u_{2}\right) \\
& =\frac{2 u_{2}\left(u_{1}+u_{2}-u_{1} u_{2}\right)^{2}-2 u_{2}^{2}\left(u_{1}+u_{2}-u_{1} u_{2}\right)\left(1-u_{1}\right)}{\left(u_{1}+u_{2}-u_{1} u_{2}\right)^{4}} \\
& =\frac{2 u_{1} u_{2}}{\left(u_{1}+u_{2}-u_{1} u_{2}\right)^{3}}
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
\lambda^{+}(u) & =\frac{1-2 u+\mathbf{C}(u, u)}{1-u} \\
& =\frac{(1-2 u)(2-u)+u}{(1-u)(2-u)} \\
& =\frac{2 u^{2}-4 u+2}{u^{2}-3 u+2}
\end{aligned}
$$

Using L'Hospital's rule, it follows that:

$$
\begin{aligned}
\lambda^{+} & =\lim _{u \rightarrow 1} \frac{2 u^{2}-4 u+2}{u^{2}-3 u+2} \\
& =\lim _{u \rightarrow 1} \frac{4 u-4}{2 u-3} \\
& =0
\end{aligned}
$$

The Gumbel logistic copula has then no upper tail dependence. For the lower tail
dependence, we obtain:

$$
\begin{aligned}
\lambda^{+} & =\lim _{u \rightarrow 0} \frac{\mathbf{C}(u, u)}{u} \\
& =\lim _{u \rightarrow 0} \frac{u}{2 u-u^{2}} \\
& =\lim _{u \rightarrow 0} \frac{1}{2-2 u} \\
& =\frac{1}{2}
\end{aligned}
$$

We verify that it has a lower tail dependence.

11.4.2 Farlie-Gumbel-Morgenstern copula

1. We have:

$$
\begin{aligned}
\mathbf{C}(u, 0) & =\mathbf{C}(0, u)=0 \\
\mathbf{C}(u, 1) & =\mathbf{C}(1, u)=u \\
\frac{\partial^{2} \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}} & =1+\theta\left(1-2 u_{1}\right)\left(1-2 u_{2}\right)
\end{aligned}
$$

As we have $-1 \leq 1+\theta\left(1-2 u_{1}\right)\left(1-2 u_{2}\right) \leq 1$, it follows that:

$$
\frac{\partial^{2} \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}} \geq 0
$$

We deduce that \mathbf{C} is a copula function.
2. We have:

$$
\begin{aligned}
\lambda & =\lim _{u \rightarrow 1^{-}} \frac{1-2 u+\mathbf{C}(u, u)}{1-u} \\
& =\lim _{u \rightarrow 1^{-}} \frac{1-2 u+u^{2}\left(1+\theta(1-u)^{2}\right)}{1-u} \\
& =\lim _{u \rightarrow 1^{-}}(1-u)\left(1+\theta u^{2}\right) \\
& =0
\end{aligned}
$$

For the Kendall's tau, we obtain:

$$
\tau=
$$

The Spearman's rho is equal to:

$$
\varrho=
$$

3. We calculate the conditional copula:

We simulate $\left(U_{1}, U_{2}\right)$ in the following way:

By applying the PIT method, we obtain:

$$
\begin{aligned}
& x_{1}=\mu+\sigma \Phi^{-1}\left(u_{1}\right) \\
& x_{2}=-\frac{1}{\lambda} \ln \left(1-u_{2}\right)
\end{aligned}
$$

4. We have:

$$
\begin{aligned}
c\left(u_{1}, u_{2}\right) & =\frac{\partial^{2} \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}} \\
& =1+\theta\left(1-2 u_{1}\right)\left(1-2 u_{2}\right)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & c\left(\mathbf{F}_{1}\left(x_{1}\right), \mathbf{F}_{2}\left(x_{2}\right)\right) \times f_{2}\left(x_{1}\right) \times f_{1}\left(x_{1}\right) \\
= & \frac{\lambda}{\sigma}\left(1+\theta\left(1-2 \Phi\left(\frac{x_{1}-\mu}{\sigma}\right)\right)\left(2 e^{-\lambda x_{2}}-1\right)\right) \times \\
& \phi\left(\frac{x_{1}-\mu}{\sigma}\right) \times e^{-\lambda x_{2}}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\ell= & n \ln \lambda-\frac{n}{2} \ln \sigma^{2}-\frac{n}{2} \ln 2 \pi+ \\
& \sum_{i=1}^{n} \ln \left(1+\theta\left(1-2 \Phi\left(\frac{x_{1, i}-\mu}{\sigma}\right)\right)\left(2 e^{-\lambda x_{2, i}}-1\right)\right)- \\
& \frac{1}{2} \sum_{i=1}^{n}\left(\frac{x_{1, i}-\mu}{\sigma}\right)^{2}-\lambda \sum_{i=1}^{n} x_{2, i}
\end{aligned}
$$

11.4.3 Survival copula

1. We have $\mathbf{S}(0,0)=1$ and $\mathbf{S}(\infty, \infty)=0$. We notice that:

$$
\begin{aligned}
\partial_{1,2}^{2} \mathbf{S}\left(x_{1}, x_{2}\right) & = \\
& \leq 0
\end{aligned}
$$

We conclude that \mathbf{S} is a survival function.
2. We have:

$$
\begin{aligned}
\mathbf{S}_{1}\left(x_{1}\right) & =\mathbf{S}\left(x_{1}, 0\right) \\
& =\exp \left(-x_{1}\right)
\end{aligned}
$$

By noting $U_{1}=\mathbf{S}_{1}\left(X_{1}\right)$, we deduce the expression of the survival copula:

$$
\begin{aligned}
\mathbf{C}\left(u_{1}, u_{2}\right) & =\exp \left(-\left(-\ln u_{1}-\ln u_{2}+\theta \frac{\ln u_{1} \ln u_{2}}{\ln u_{1}+\ln u_{2}}\right)\right) \\
& =u_{1} u_{2} \exp \left(\theta \frac{\tilde{u}_{1} \tilde{u}_{2}}{\tilde{u}_{1}+\tilde{u}_{2}}\right)
\end{aligned}
$$

with $\tilde{u}=-\ln u$.

11.4.4 Method of moments

$$
\mathbf{C}_{\left\langle X_{1}, X_{2}\right\rangle}=\theta \mathbf{C}^{-}+(1-\theta) \mathbf{C}^{+}
$$

1. We have:

$$
\mathbf{F}\left(x_{1}, x_{2}\right)=\theta \times \max \left(\Phi\left(x_{1}\right)+\Phi\left(x_{2}\right)-1,0\right)+(1-\theta) \times \min \left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right)
$$

It follows that:

$$
\begin{aligned}
\mathbb{E}\left[X_{1} X_{2}\right]= & \iint x_{1} x_{2} \mathrm{~d} \mathbf{F}\left(x_{1}, x_{2}\right) \\
= & \theta \times \iint x_{1} x_{2} \mathrm{~d} \mathbf{C}^{-}\left(\Phi\left(x_{1}\right), \Phi\left(x_{1}\right)\right)+ \\
& (1-\theta) \times \iint x_{1} x_{2} \mathrm{~d} \mathbf{C}^{+}\left(\Phi\left(x_{1}\right), \Phi\left(x_{1}\right)\right) \\
= & \theta \times(-1)+(1-\theta) \times(+1) \\
= & 1-2 \theta
\end{aligned}
$$

We deduce that:

$$
\rho\left\langle X_{1}, X_{2}\right\rangle=\mathbb{E}\left[X_{1} X_{2}\right]=1-2 \theta
$$

The linear correlation between X_{1} and X_{2} is equal to zero when θ takes the value $1 / 2$.
2. Using the notations $N_{1} \sim \mathcal{N}(0,1)$ and $N_{2} \sim \mathcal{N}(0,1)$, we obtain:

$$
\begin{aligned}
\rho\left\langle X_{1}, X_{2}\right\rangle & =\rho\left\langle\mu_{1}+\sigma_{1} N_{1}, \mu_{2}+\sigma_{2} N_{2}\right\rangle \\
& =\rho\left\langle N_{1}, N_{2}\right\rangle \\
& =1-2 \theta
\end{aligned}
$$

3. We have:

$$
\theta=\frac{1-\rho\left\langle X_{1}, X_{2}\right\rangle}{2}
$$

The MM estimator $\hat{\theta}_{\mathrm{MM}}$ is then equal to:

$$
\hat{\theta}_{\mathrm{MM}}=\frac{1-\hat{\rho}}{2}
$$

where $\hat{\rho}$ is the empirical correlation between X_{1} and X_{2}.

11.4.5 Correlated loss given default rates

1. As we have $x \in[0,1]$, the parameter γ must be positive or equal to zero in order to have $\mathbf{F}(0)=0, \mathbf{F}(1)=1$ and $f(x)=\gamma x^{\gamma-1} \geq 0$.
2. The expression of the log-likelihood function is:

$$
\begin{aligned}
\ell(\gamma) & =\sum_{i=1}^{n} \ln f\left(x_{i}\right) \\
& =\sum_{i=1}^{n} \ln \left(\gamma x_{i}^{\gamma-1}\right) \\
& =n \ln \gamma+(\gamma-1) \sum_{i=1}^{n} \ln x_{i}
\end{aligned}
$$

We deduce the first-order condition:

$$
\frac{\partial \ell(\gamma)}{\partial \gamma}=0 \Leftrightarrow \frac{n}{\gamma}+\sum_{i=1}^{n} \ln x_{i}=0
$$

We finally obtain the ML estimator:

$$
\hat{\gamma}_{\mathrm{ML}}=-\frac{1}{\left(n^{-1} \sum_{i=1}^{n} \ln x_{i}\right)}
$$

3. We have:

$$
\begin{aligned}
\mathbb{E}[\mathrm{LGD}] & =\int_{0}^{1} x \gamma x^{\gamma-1} \mathrm{~d} x \\
& =\gamma \int_{0}^{1} x^{\gamma} \mathrm{d} x \\
& =\gamma\left[\frac{x^{\gamma+1}}{\gamma+1}\right]_{0}^{1} \\
& =\frac{\gamma}{\gamma+1}
\end{aligned}
$$

Let \bar{x} be the empirical mean of the sample $\left\{x_{1}, \ldots, x_{n}\right\}$. The MM estimator $\hat{\gamma}_{\mathrm{MM}}$ satisfies the following equation:

$$
\frac{\hat{\gamma}_{\mathrm{MM}}}{\hat{\gamma}_{\mathrm{MM}}+1}=\bar{x}
$$

We deduce that:

$$
\begin{aligned}
\hat{\gamma}_{\mathrm{MM}} & =\frac{\bar{x}}{1-\bar{x}} \\
& =\frac{\sum_{i=1}^{n} x_{i}}{n-\sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

4. In the case $x_{i}=50 \%$, we obtain:

$$
\hat{\gamma}_{\mathrm{ML}}=-\frac{1}{\ln 0.5}=\ln 2=1.44
$$

and:

$$
\hat{\gamma}_{\mathrm{MM}}=0.5 /(1-0.5)=1.00
$$

The numerical results are different. For example, we have reported the density function of the two probability distributions in Figure 11.1.
5. We have:

$$
\frac{\partial \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1}}=u_{2} e^{-\theta \ln u_{1} \ln u_{2}}-\theta u_{2} \ln u_{2} e^{-\theta \ln u_{1} \ln u_{2}}
$$

and:

$$
\begin{aligned}
\frac{\partial^{2} \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}}= & e^{-\theta \ln u_{1} \ln u_{2}}-\theta \ln u_{1} e^{-\theta \ln u_{1} \ln u_{2}}-\theta \ln u_{2} e^{-\theta \ln u_{1} \ln u_{2}}- \\
& \theta e^{-\theta \ln u_{1} \ln u_{2}}+\theta^{2} \ln u_{1} \ln u_{2} e^{-\theta \ln u_{1} \ln u_{2}} \\
= & \left(1-\theta-\theta \ln \left(u_{1} u_{2}\right)+\theta^{2} \ln u_{1} \ln u_{2}\right) e^{-\theta \ln u_{1} \ln u_{2}}
\end{aligned}
$$

FIGURE 11.1: Density functions associated to ML and MM estimators
6. The bivariate density function is the equal to:

$$
\begin{aligned}
f(x, y)= & c(\mathbf{F}(x), \mathbf{F}(y)) \times f(x) \times f(y) \\
= & \left(1-\theta-\theta\left(\gamma_{1} \ln x+\gamma_{2} \ln y\right)+\theta^{2} \gamma_{1} \gamma_{2} \ln x \ln y\right) \times \\
& e^{-\theta \gamma_{1} \gamma_{2} \ln x \ln y} \times \gamma_{1} x^{\gamma_{1}-1} \times \gamma_{2} y^{\gamma_{2}-1}
\end{aligned}
$$

where γ_{1} and γ_{2} are the parameters associated to the risk classes \mathcal{C}_{1} and \mathcal{C}_{2}. It follows that the log-likelihood function is equal to:

$$
\begin{aligned}
\ell= & n \ln \gamma_{1}+n \ln \gamma_{2}+\left(\gamma_{1}-1\right) \sum_{i=1}^{n} \ln x_{i}+\left(\gamma_{2}-1\right) \sum_{i=1}^{n} \ln y_{i}+ \\
& \sum_{i=1}^{n} \ln \left(1-\theta-\theta\left(\gamma_{1} \ln x_{i}+\gamma_{2} \ln y_{i}\right)+\theta^{2} \gamma_{1} \gamma_{2} \ln x_{i} \ln y_{i}\right)- \\
& \theta \gamma_{1} \gamma_{2} \sum_{i=1}^{n} \ln x_{i} \ln y_{i}
\end{aligned}
$$

7. The first-order conditions are:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \gamma_{1}}= & \frac{n}{\gamma_{1}}+\sum_{i=1}^{n} \ln x_{i}+g_{1}\left(\gamma_{1}, \gamma_{2}, \theta\right) \\
\frac{\partial \ell}{\partial \gamma_{2}}= & \frac{n}{\gamma_{2}}+\sum_{i=1}^{n} \ln y_{i}+g_{2}\left(\gamma_{1}, \gamma_{2}, \theta\right) \\
\frac{\partial \ell}{\partial \theta}= & -\sum_{i=1}^{n} \frac{1+\left(\gamma_{1} \ln x_{i}+\gamma_{2} \ln y_{i}\right)-2 \theta \gamma_{1} \gamma_{2} \ln x_{i} \ln y_{i}}{1-\theta-\theta\left(\gamma_{1} \ln x_{i}+\gamma_{2} \ln y_{i}\right)+\theta^{2} \gamma_{1} \gamma_{2} \ln x_{i} \ln y_{i}}- \\
& \gamma_{1} \gamma_{2} \sum_{i=1}^{n} \ln x_{i} \ln y_{i}
\end{aligned}
$$

with:

$$
\begin{aligned}
g_{1}\left(\gamma_{1}, \gamma_{2}, \theta\right)= & \sum_{i=1}^{n} \frac{\left(\theta^{2} \gamma_{2} \ln y_{i}-\theta\right) \ln x_{i}}{1-\theta-\theta\left(\gamma_{1} \ln x_{i}+\gamma_{2} \ln y_{i}\right)+\theta^{2} \gamma_{1} \gamma_{2} \ln x_{i} \ln y_{i}}- \\
& \theta \gamma_{2} \sum_{i=1}^{n} \ln x_{i} \ln y_{i} \\
g_{2}\left(\gamma_{1}, \gamma_{2}, \theta\right)= & \sum_{i=1}^{n} \frac{\left(\theta^{2} \gamma_{1} \ln x_{i}-\theta\right) \ln y_{i}}{1-\theta-\theta\left(\gamma_{1} \ln x_{i}+\gamma_{2} \ln y_{i}\right)+\theta^{2} \gamma_{1} \gamma_{2} \ln x_{i} \ln y_{i}}- \\
& \theta \gamma_{1} \sum_{i=1}^{n} \ln x_{i} \ln y_{i}
\end{aligned}
$$

When $\hat{\theta}$ is equal to zero, we have $g_{1}\left(\gamma_{1}, \gamma_{2}, 0\right)=0$. In this case, the estimator $\hat{\gamma}_{1}$ corresponds to the ML estimator $\hat{\gamma}_{\mathrm{ML}}$. When we have $\hat{\theta} \neq 0$, we obtain $g_{1}\left(\gamma_{1}, \gamma_{2}, \theta\right) \neq$ 0 and $\hat{\gamma}_{1} \neq \hat{\gamma}_{\text {ML }}$. We obtain this result because more information is available in the bivariate case. The ML method can then correct the estimator $\hat{\gamma}_{\mathrm{ML}}$ by taking into account the dependence function between LGD_{1} and LGD_{2}. For instance, if the estimated copula is equal to the Fréchet upper copula \mathbf{C}^{+}, it is obvious that the two estimators $\hat{\gamma}_{1}$ and $\hat{\gamma}_{2}$ are equal, even if the unidimensional ML estimators are not necessarily equal. Let us consider the following sample:

LGD $_{1}$ (in \%)	50	40	60	50	80	90	70	10	40	40
LGD $_{2}$ (in \%)	60	50	80	70	80	90	80	30	50	70

We obtain $\hat{\gamma}_{\mathrm{ML}}=1.31$ for \mathcal{C}_{1} and $\hat{\gamma}_{\mathrm{ML}}=2.18$ for \mathcal{C}_{2}. With the bivariate ML method, we obtain $\hat{\gamma}_{1}=0.88, \hat{\gamma}_{2}=1.44$ and $\hat{\theta}=1.71$.

11.4.6 Calculation of correlation bounds

1. We have:

$$
\begin{aligned}
\mathbf{C}^{-}\left(u_{1}, u_{2}\right) & =\max \left(u_{1}+u_{2}-1,0\right) \\
\mathbf{C}^{\perp}\left(u_{1}, u_{2}\right) & =u_{1} u_{2} \\
\mathbf{C}^{+}\left(u_{1}, u_{2}\right) & =\min \left(u_{1}, u_{2}\right)
\end{aligned}
$$

Let X_{1} and X_{2} be two random variables. We have:
(i) $\mathbf{C}\left\langle X_{1}, X_{2}\right\rangle=\mathbf{C}^{-}$if and only if there exists a non-increasing function f such that we have $X_{2}=f\left(X_{1}\right)$;
(ii) $\mathbf{C}\left\langle X_{1}, X_{2}\right\rangle=\mathbf{C}^{\perp}$ if and only if X_{1} and X_{2} are independent;
(iii) $\mathbf{C}\left\langle X_{1}, X_{2}\right\rangle=\mathbf{C}^{+}$if and only if there exists a non-decreasing function f such that we have $X_{2}=f\left(X_{1}\right)$.
2. We note $U_{1}=1-\exp (-\lambda \boldsymbol{\tau})$ and $U_{2}=$ LGD.
(a) The dependence between $\boldsymbol{\tau}$ and LGD is maximum when we have $\mathbf{C}\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle=$ \mathbf{C}^{+}. Since we have $U_{1}=U_{2}$, we conclude that:

$$
\mathrm{LGD}+e^{-\lambda \boldsymbol{\tau}}-1=0
$$

(b) We know that:

$$
\rho\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle \in\left[\rho_{\min }\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle, \rho_{\max }\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle\right]
$$

where $\rho_{\min }\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle$ (resp. $\rho_{\max }\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle$) is the linear correlation corresponding to the copula $\mathbf{C}^{-}\left(\right.$resp. $\left.\mathbf{C}^{+}\right)$. It comes that:

$$
\mathbb{E}[\boldsymbol{\tau}]=\sigma(\boldsymbol{\tau})=\frac{1}{\lambda}
$$

and:

$$
\begin{aligned}
\mathbb{E}[\mathrm{LGD}] & =\frac{1}{2} \\
\sigma(\mathrm{LGD}) & =\sqrt{\frac{1}{12}}
\end{aligned}
$$

In the case $\mathbf{C}\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle=\mathbf{C}^{-}$, we have $U_{1}=1-U_{2}$. It follows that LGD $=e^{-\lambda \boldsymbol{\tau}}$. We have:

$$
\begin{aligned}
\mathbb{E}[\boldsymbol{\tau} \mathrm{LGD}] & =\mathbb{E}\left[\boldsymbol{\tau} e^{-\lambda \boldsymbol{\tau}}\right] \\
& =\int_{0}^{\infty} t e^{-\lambda t} \lambda e^{-\lambda t} \mathrm{~d} t \\
& =\int_{0}^{\infty} t \lambda e^{-2 \lambda t} \mathrm{~d} t \\
& =\left[-\frac{t e^{-2 \lambda t}}{2}\right]_{0}^{\infty}+\frac{1}{2} \int_{0}^{\infty} e^{-2 \lambda t} \mathrm{~d} t \\
& =0+\frac{1}{2}\left[-\frac{e^{-2 \lambda t}}{2 \lambda}\right]_{0}^{\infty} \\
& =\frac{1}{4 \lambda}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\rho_{\min }\langle\tau, \mathrm{LGD}\rangle & =\left(\frac{1}{4 \lambda}-\frac{1}{2 \lambda}\right) /\left(\frac{1}{\lambda} \sqrt{\frac{1}{12}}\right) \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

In the case $\mathbf{C}\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle=\mathbf{C}^{+}$, we have LGD $=1-e^{-\lambda \tau}$. We have:

$$
\begin{aligned}
\mathbb{E}[\boldsymbol{\tau} \mathrm{LGD}] & =\mathbb{E}\left[\boldsymbol{\tau}\left(1-e^{-\lambda \boldsymbol{\tau}}\right)\right] \\
& =\int_{0}^{\infty} t\left(1-e^{-\lambda t}\right) \lambda e^{-\lambda t} \mathrm{~d} t \\
& =\int_{0}^{\infty} t \lambda e^{-\lambda t} \mathrm{~d} t-\int_{0}^{\infty} t \lambda e^{-2 \lambda t} \mathrm{~d} t \\
& =\left(\left[-t e^{-\lambda t}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-\lambda t} \mathrm{~d} t\right)-\frac{1}{4 \lambda} \\
& =0+\left[-\frac{e^{-\lambda t}}{\lambda}\right]_{0}^{\infty}-\frac{1}{4 \lambda} \\
& =\frac{3}{4 \lambda}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\rho_{\max }\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle & =\left(\frac{3}{4 \lambda}-\frac{1}{2 \lambda}\right) /\left(\frac{1}{\lambda} \sqrt{\frac{1}{12}}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

We finally obtain the following result:

$$
|\rho\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle| \leq \frac{\sqrt{3}}{2}
$$

(c) We notice that $|\rho\langle\boldsymbol{\tau}, \mathrm{LGD}\rangle|$ is lower than 86.6%, implying that the bounds -1 and +1 can not be reached.
3. (a) If the copula function of $\left(\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}\right)$ is the Fréchet upper bound copula, $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$ are comonotone. We deduce that:

$$
U_{1}=U_{2} \Longleftrightarrow 1-e^{-\lambda_{1} \tau_{1}}=1-e^{-\lambda_{2} \tau_{2}}
$$

and:

$$
\boldsymbol{\tau}_{1}=\frac{\lambda_{2}}{\lambda_{1}} \boldsymbol{\tau}_{2}
$$

(b) We have $U_{1}=1-U_{2}$. It follows that $\mathbf{S}_{1}\left(\boldsymbol{\tau}_{1}\right)=1-\mathbf{S}_{2}\left(\boldsymbol{\tau}_{2}\right)$. We deduce that:

$$
e^{-\lambda_{1} \tau_{1}}=1-e^{-\lambda_{2} \tau_{2}}
$$

and:

$$
\boldsymbol{\tau}_{1}=\frac{-\ln \left(1-e^{-\lambda_{2} \boldsymbol{\tau}_{2}}\right)}{\lambda_{1}}
$$

There exists then a function f such that $\boldsymbol{\tau}_{1}=f\left(\boldsymbol{\tau}_{2}\right)$ with:

$$
f(t)=\frac{-\ln \left(1-e^{-\lambda_{2} t}\right)}{\lambda_{1}}
$$

(c) Using Question $2(\mathrm{~b})$, we known that $\rho \in\left[\rho_{\min }, \rho_{\max }\right]$ where $\rho_{\min }$ and $\rho_{\max }$ are the correlations of $\left(\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}\right)$ when the copula function is respectively \mathbf{C}^{-}and \mathbf{C}^{+}.

We also know that $\rho=1$ (resp. $\rho=-1$) if there exists a linear and increasing (resp. decreasing) function f such that $\boldsymbol{\tau}_{1}=f\left(\boldsymbol{\tau}_{2}\right)$. When the copula is \mathbf{C}^{+}, we have $f(t)=\frac{\lambda_{2}}{\lambda_{1}} t$ and $f^{\prime}(t)=\frac{\lambda_{2}}{\lambda_{1}}>0$. As it is a linear and increasing function, we deduce that $\rho_{\max }=1$. When the copula is \mathbf{C}^{-}, we have:

$$
f(t)=\frac{-\ln \left(1-e^{-\lambda_{2} t}\right)}{\lambda_{1}}
$$

and:

$$
f^{\prime}(t)=-\frac{\lambda_{2} e^{-\lambda_{2} t} \ln \left(1-e^{-\lambda_{2} t}\right)}{\lambda_{1}\left(1-e^{-\lambda_{2} t}\right)}<0
$$

The function $f(t)$ is decreasing, but it is not linear. We deduce that $\rho_{\min } \neq-1$ and:

$$
-1<\rho \leq 1
$$

(d) When the copula is \mathbf{C}^{-}, we know that there exists a decreasing function f such that $X_{2}=f\left(X_{1}\right)$. We also know that the linear correlation reaches the lower bound -1 if the function f is linear:

$$
X_{2}=a+b X_{1}
$$

This implies that $b<0$. When X_{1} takes the value $+\infty$, we obtain:

$$
X_{2}=a+b \times \infty
$$

As the lower bound of X_{2} is equal to zero 0 , we deduce that $a=+\infty$. This means that the function $f(x)=a+b x$ does not exist. We conclude that the lower bound $\rho=-1$ can not be reached.
4. (a) $X_{1}+X_{2}$ is a Gaussian random variable because it is a linear combination of the Gaussian random vector $\left(X_{1}, X_{2}\right)$. We have:

$$
\mathbb{E}\left[X_{1}+X_{2}\right]=\mu_{1}+\mu_{2}
$$

and:

$$
\operatorname{var}\left(X_{1}+X_{2}\right)=\sigma_{1}^{2}+2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}
$$

We deduce that:

$$
X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}\right)
$$

(b) We have:

$$
\begin{aligned}
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & =\mathbb{E}\left[Y_{1} Y_{2}\right]-\mathbb{E}\left[Y_{2}\right] \mathbb{E}\left[Y_{2}\right] \\
& =\mathbb{E}\left[e^{X_{1}+X_{2}}\right]-\mathbb{E}\left[Y_{2}\right] \mathbb{E}\left[Y_{2}\right]
\end{aligned}
$$

We know that $e^{X_{1}+X_{2}}$ is a lognormal random variable. We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[e^{X_{1}+X_{2}}\right] & =\exp \left(\mathbb{E}\left[X_{1}+X_{2}\right]+\frac{1}{2} \operatorname{var}\left(X_{1}+X_{2}\right)\right) \\
& =\exp \left(\mu_{1}+\mu_{2}+\frac{1}{2}\left(\sigma_{1}^{2}+2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}\right)\right) \\
& =e^{\mu_{1}+\frac{1}{2} \sigma_{1}^{2}} e^{\mu_{2}+\frac{1}{2} \sigma_{2}^{2}} e^{\rho \sigma_{1} \sigma_{2}}
\end{aligned}
$$

We finally obtain:

$$
\operatorname{cov}\left(Y_{1}, Y_{2}\right)=e^{\mu_{1}+\frac{1}{2} \sigma_{1}^{2}} e^{\mu_{2}+\frac{1}{2} \sigma_{2}^{2}}\left(e^{\rho \sigma_{1} \sigma_{2}}-1\right)
$$

(c) We have:

$$
\begin{aligned}
\rho\left\langle Y_{1}, Y_{2}\right\rangle & =\frac{e^{\mu_{1}+\frac{1}{2} \sigma_{1}^{2}} e^{\mu_{2}+\frac{1}{2} \sigma_{2}^{2}}\left(e^{\rho \sigma_{1} \sigma_{2}}-1\right)}{\sqrt{e^{2 \mu_{1}+\sigma_{1}^{2}}\left(e^{\sigma_{1}^{2}}-1\right)} \sqrt{e^{2 \mu_{2}+\sigma_{2}^{2}}\left(e^{\sigma_{2}^{2}}-1\right)}} \\
& =\frac{e^{\rho \sigma_{1} \sigma_{2}}-1}{\sqrt{e^{\sigma_{1}^{2}}-1} \sqrt{e^{\sigma_{2}^{2}}-1}}
\end{aligned}
$$

(d) $\rho\left\langle Y_{1}, Y_{2}\right\rangle$ is an increasing function with respect to ρ. We deduce that:

$$
\rho\left\langle Y_{1}, Y_{2}\right\rangle=1 \Longleftrightarrow \rho=1 \text { and } \sigma_{1}=\sigma_{2}
$$

The lower bound of $\rho\left\langle Y_{1}, Y_{2}\right\rangle$ is reached if ρ is equal to -1 . In this case, we have:

$$
\rho\left\langle Y_{1}, Y_{2}\right\rangle=\frac{e^{-\sigma_{1} \sigma_{2}}-1}{\sqrt{e^{\sigma_{1}^{2}}-1} \sqrt{e^{\sigma_{2}^{2}}-1}}>-1
$$

It follows that $\rho\left\langle Y_{1}, Y_{2}\right\rangle \neq-1$.
(e) It is evident that:

$$
\rho\left\langle S_{1}(t), S_{2}(t)\right\rangle=\frac{e^{\rho \sigma_{1} \sigma_{2} t}-1}{\sqrt{e^{\sigma_{1}^{2} t}-1} \sqrt{e^{\sigma_{2}^{2} t}-1}}
$$

In the case $\sigma_{1}=\sigma_{2}$ and $\rho=1$, we have $\rho\left\langle S_{1}(t), S_{2}(t)\right\rangle=1$. Otherwise, we obtain:

$$
\lim _{t \rightarrow \infty} \rho\left\langle S_{1}(t), S_{2}(t)\right\rangle=0
$$

(f) In the case of lognormal random variables, the linear correlation does not necessarily range between -1 and +1 .

11.4.7 The bivariate Pareto copula

1. We have:

$$
\begin{aligned}
\mathbf{F}_{1}\left(x_{1}\right) & =\operatorname{Pr}\left\{X_{1} \leq x_{1}\right\} \\
& =\operatorname{Pr}\left\{X_{1} \leq x_{1}, X_{2} \leq \infty\right\} \\
& =\mathbf{F}\left(x_{1}, \infty\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbf{F}_{1}\left(x_{1}\right)= & 1-\left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{-\alpha}-\left(\frac{\theta_{2}+\infty}{\theta_{2}}\right)^{-\alpha}+ \\
& \left(\frac{\theta_{1}+x_{1}}{\theta_{1}}+\frac{\theta_{2}+\infty}{\theta_{2}}-1\right)^{-\alpha} \\
= & 1-\left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{-\alpha}
\end{aligned}
$$

We conclude that \mathbf{F}_{1} (and \mathbf{F}_{2}) is a Pareto distribution.
2. We have:

$$
\mathbf{C}\left(u_{1}, u_{2}\right)=\mathbf{F}\left(\mathbf{F}_{1}^{-1}\left(u_{1}\right), \mathbf{F}_{2}^{-1}\left(u_{2}\right)\right)
$$

It follows that:

$$
\begin{aligned}
& 1-\left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{-\alpha}=u_{1} \\
\Leftrightarrow & \left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{-\alpha}=1-u_{1} \\
\Leftrightarrow & \frac{\theta_{1}+x_{1}}{\theta_{1}}=\left(1-u_{1}\right)^{-1 / \alpha}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbf{C}\left(u_{1}, u_{2}\right)= & 1-\left(1-u_{1}\right)-\left(1-u_{2}\right)+ \\
& \left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha} \\
= & u_{1}+u_{2}-1+\left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\frac{\partial \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1}}= & 1-\alpha\left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha-1} \times \\
& \left(-\frac{1}{\alpha}\right)\left(1-u_{1}\right)^{-1 / \alpha-1} \times(-1) \\
= & 1-\left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha-1} \times \\
& \left(1-u_{1}\right)^{-1 / \alpha-1}
\end{aligned}
$$

We deduce that the probability density function of the copula is ${ }^{1}$:

$$
\begin{aligned}
c\left(u_{1}, u_{2}\right)= & \frac{\partial^{2} \mathbf{C}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}} \\
= & -(-\alpha-1)\left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha-2} \times \\
& \left(-\frac{1}{\alpha}\right)\left(1-u_{2}\right)^{-1 / \alpha-1} \times(-1) \times\left(1-u_{1}\right)^{-1 / \alpha-1} \\
= & \left(\frac{\alpha+1}{\alpha}\right)\left(\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right)^{-\alpha-2} \times \\
& \left(1-u_{1}-u_{2}+u_{1} u_{2}\right)^{-1 / \alpha-1}
\end{aligned}
$$

In Figure 11.2, we have reported the density of the Pareto copula when α is equal to 1 and 10 .

[^43]

FIGURE 11.2: The Pareto copula
4. We have:

$$
\begin{aligned}
\lambda^{-} & =\lim _{u \rightarrow 0^{+}} \frac{\mathbf{C}(u, u)}{u} \\
& =2 \lim _{u \rightarrow 0^{+}} \frac{\partial \mathbf{C}(u, u)}{\partial u_{1}} \\
& =2 \lim _{u \rightarrow 0^{+}} 1-\left((1-u)^{-1 / \alpha}+(1-u)^{-1 / \alpha}-1\right)^{-\alpha-1}(1-u)^{-1 / \alpha-1} \\
& =2 \lim _{u \rightarrow 0^{+}}(1-1) \\
& =0
\end{aligned}
$$

and:

$$
\begin{aligned}
\lambda^{+} & =\lim _{u \rightarrow 1^{-}} \frac{1-2 u+\mathbf{C}(u, u)}{1-u} \\
& =\lim _{u \rightarrow 1^{-}} \frac{\left((1-u)^{-1 / \alpha}+(1-u)^{-1 / \alpha}-1\right)^{-\alpha}}{1-u} \\
& =\lim _{u \rightarrow 1^{-}}\left(1+1-(1-u)^{1 / \alpha}\right)^{-\alpha} \\
& =2^{-\alpha}
\end{aligned}
$$

The tail dependence coefficients λ^{-}and λ^{+}are given with respect to the parameter α in Figure 11.2. We deduce that the bivariate Pareto copula function has no lower tail dependence $\left(\lambda^{-}=0\right)$, but an upper tail dependence $\left(\lambda^{+}=2^{-\alpha}\right)$.
5. The bivariate Pareto copula family cannot reach \mathbf{C}^{-}because λ^{-}is never equal to 1 .

We notice that:

$$
\lim _{\alpha \rightarrow \infty} \lambda^{+}=0
$$

and

$$
\lim _{\alpha \rightarrow 0} \lambda^{+}=1
$$

This implies that the bivariate Pareto copula may reach \mathbf{C}^{\perp} and \mathbf{C}^{+}for these two limit cases: $\alpha \rightarrow \infty$ and $\alpha \rightarrow 0$. In fact, $\alpha \rightarrow 0$ does not correspond to the copula \mathbf{C}^{+} because λ^{-}is always equal to 0 .
6. (a) We note $U_{1}=\mathbf{F}_{1}\left(X_{1}\right)$ and $U_{2}=\mathbf{F}_{2}\left(X_{2}\right) . X_{1}$ and X_{2} are comonotonic if and only if:

$$
U_{2}=U_{1}
$$

We deduce that:

$$
\begin{aligned}
& 1-\left(\frac{\theta_{2}+X_{2}}{\theta_{2}}\right)^{-\alpha_{2}}=1-\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{-\alpha_{1}} \\
\Leftrightarrow & \left(\frac{\theta_{2}+X_{2}}{\theta_{2}}\right)^{-\alpha_{2}}=\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{-\alpha_{1}} \\
\Leftrightarrow & X_{2}=\theta_{2}\left(\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{\alpha_{1} / \alpha_{2}}-1\right)
\end{aligned}
$$

We know that $\rho\left\langle X_{1}, X_{2}\right\rangle=1$ if and only if there is an increasing linear relationship between X_{1} and X_{2}. This implies that:

$$
\frac{\alpha_{1}}{\alpha_{2}}=1
$$

(b) X_{1} and X_{2} are countermonotonic if and only if:

$$
U_{2}=1-U_{1}
$$

We deduce that:

$$
\begin{aligned}
& \left(\frac{\theta_{2}+X_{2}}{\theta_{2}}\right)^{-\alpha_{2}}=1-\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{-\alpha_{1}} \\
\Leftrightarrow & \left(\frac{\theta_{2}+X_{2}}{\theta_{2}}\right)^{-\alpha_{2}}=1-\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{-\alpha_{1}} \\
\Leftrightarrow & X_{2}=\theta_{2}\left(\left(1-\left(\frac{\theta_{1}+X_{1}}{\theta_{1}}\right)^{-\alpha_{1}}\right)^{1 / \alpha_{2}}-1\right)
\end{aligned}
$$

It is not possible to obtain a decreasing linear function between X_{1} and X_{2}. This implies that $\rho\left\langle X_{1}, X_{2}\right\rangle>-1$.
(c) We have:

$$
\begin{aligned}
\mathbf{F}^{\prime}\left(x_{1}, x_{2}\right)= & \mathbf{C}\left(\mathbf{F}_{1}\left(x_{1}\right), \mathbf{F}_{2}\left(x_{2}\right)\right) \\
= & 1-\left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{-\alpha_{1}}-\left(\frac{\theta_{2}+x_{2}}{\theta_{2}}\right)^{-\alpha_{2}}+ \\
& \left(\left(\frac{\theta_{1}+x_{1}}{\theta_{1}}\right)^{\alpha_{1} / \alpha}+\left(\frac{\theta_{2}+x_{2}}{\theta_{2}}\right)^{\alpha_{2} / \alpha}-1\right)^{-\alpha}
\end{aligned}
$$

The traditional bivariate Pareto distribution $\mathbf{F}\left(x_{1}, x_{2}\right)$ is a special case of $\mathbf{F}^{\prime}\left(x_{1}, x_{2}\right)$ when:

$$
\alpha_{1}=\alpha_{2}=\alpha
$$

Using \mathbf{F}^{\prime} instead of \mathbf{F}, we can control the tail dependence, but also the univariate tail index of the two margins.

Chapter 12

Extreme Value Theory

12.4.1 Uniform order statistics

1. Since we have $f(x)=1$ and $\mathbf{F}(x)=x$, we deduce that:

$$
\begin{aligned}
f_{i: n}(x) & =\frac{n!}{(i-1)!(n-i)!} \cdot x^{i-1} \cdot(1-x)^{n-1} \cdot 1 \\
& =\frac{\Gamma(n+1)}{\Gamma(i) \Gamma(n-i+1)} x^{i-1}(1-x)^{n-i}
\end{aligned}
$$

This is the probability density function of the Beta distribution $\mathcal{B}(\alpha, \beta)$ where $\alpha=i$ and $\beta=n-i+1$.
2. We have:

$$
\begin{aligned}
\mathbb{E}\left[X_{i: n}\right] & =\mathbb{E}[\mathcal{B}(i, n-i+1)] \\
& =\frac{\alpha}{\alpha+\beta} \\
& =\frac{i}{n+1}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\operatorname{var}\left(X_{i: n}\right) & =\operatorname{var}(\mathcal{B}(i, n-i+1)) \\
& =\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
& =\frac{i(n-i+1)}{(n+1)^{2}(n+2)}
\end{aligned}
$$

4. We have:

Sample	$X_{i: 8}$								
	1	2	3	4	5	6	7	8	
1	0.04	0.14	0.24	0.34	0.45	0.55	0.72	0.94	
2	0.12	0.25	0.31	0.32	0.57	0.64	0.69	0.97	
3	0.11	0.17	0.17	0.26	0.50	0.50	0.69	0.85	
4	0.00	0.03	0.15	0.53	0.58	0.77	0.98	0.98	
5	0.15	0.25	0.46	0.62	0.65	0.74	0.85	0.89	
6	0.05	0.07	0.15	0.25	0.65	0.74	0.86	0.93	
7	0.12	0.16	0.33	0.34	0.55	0.61	0.63	0.95	
8	0.01	0.11	0.14	0.47	0.57	0.82	0.87	0.96	
9	0.27	0.55	0.57	0.68	0.73	0.78	0.83	0.85	
10	0.28	0.40	0.68	0.89	0.91	0.94	0.99	0.99	

The empirical and theoretical mean and standard deviation of $X_{i: 8}$ are reported in Table 12.1.

TABLE 12.1: Empirical and theoretical mean and standard deviation of $X_{i: 8}$

i	$X_{i: 8}$	$\mathbb{E}\left[X_{i: n}\right]$	$\hat{\sigma}\left(X_{i: n}\right)$	$\sigma\left(X_{i: n}\right)$
1	0.1150	0.1111	0.0981	0.0994
2	0.2130	0.2222	0.1584	0.1315
3	0.3200	0.3333	0.1918	0.1491
4	0.4700	0.4444	0.2096	0.1571
5	0.6160	0.5556	0.1302	0.1571
6	0.7090	0.6667	0.1333	0.1491
7	0.8110	0.7778	0.1241	0.1315
8	0.9310	0.8889	0.0511	0.0994

5. We reiterate that $X_{i: n} \sim \mathcal{B}(i, n-i+1)$. We deduce that the median statistic follows a symmetric Beta distribution:

$$
X_{k+1: n} \sim \mathcal{B}(k+1, k+1)
$$

Moreover, we have:

$$
X_{i: n} \sim \mathcal{B}(i, 2 k-i)
$$

It follows that the density function of $X_{i: n}$ is right asymmetric if $i \leq k$, symmetric about .5 if $i=k+1$ and left asymmetric otherwise.
6. We consider the change of variable: $U=\mathbf{F}(X)$. It follows that U follows a uniform distribution. Using the previous results, we can deduce that the density function of $U_{i: n}$ is right asymmetric if $i \leq k$, symmetric about .5 if $i=k+1$ and left asymmetric otherwise. Because $\mathbf{F}(x)$ is a symmetric function about $x^{\star}=\mathbf{F}^{-1}$ (0.5), we conclude that the density function of $X_{i: n}$ is right asymmetric if $i \leq k$, symmetric about x^{\star} if $i=k+1$ and left asymmetric otherwise.

12.4.2 Order statistics and return period

1. We have:

$$
\begin{aligned}
\mathbf{F}_{n: n}(x) & =\operatorname{Pr}\left\{\max \left(X_{1}, \ldots, X_{n}\right) \leq x\right\} \\
& =\operatorname{Pr}\left\{X_{1} \leq x, \ldots, X_{n} \leq x\right\} \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left\{X_{i} \leq x\right\} \\
& =\Phi\left(\frac{x-\mu}{\sigma}\right)^{n}
\end{aligned}
$$

2. The density function of $X_{n: n}$ is equal to:

$$
\begin{aligned}
f_{n: n}(x) & =\partial_{x} \mathbf{F}_{n: n}(x) \\
& =\frac{n}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right) \Phi\left(\frac{x-\mu}{\sigma}\right)^{n-1}
\end{aligned}
$$

We deduce that the log-likelihood function of a sample $\left(x_{1}, \ldots, x_{m}\right)$ of the order
statistic $X_{n: n}$ is equal to:

$$
\begin{aligned}
\ell_{n: n}= & m \ln n-\frac{m}{2} \ln (2 \pi)-\frac{m}{2} \ln \sigma^{2}-\sum_{i=1}^{m} \frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}- \\
& (n-1) \ln \Phi\left(\frac{x_{i}-\mu}{\sigma}\right)
\end{aligned}
$$

For each time period n, we calculate $\boldsymbol{\ell}_{n: n}$ and find the estimates $\hat{\mu}_{n: n}$ and $\hat{\sigma}_{n: n}$. Then we test the joint hypothesis:

$$
\mathcal{H}_{0}=\left\{\begin{array}{l}
\hat{\mu}_{1: 1}=\hat{\mu}_{2: 2}=\hat{\mu}_{3: 3}=\ldots=\mu \\
\hat{\sigma}_{1: 1}=\hat{\sigma}_{2: 2}=\hat{\sigma}_{3: 3}=\ldots=\sigma
\end{array}\right.
$$

3. The return period is the average period between two consecutive events. It is equal to:

$$
\mathcal{T}=\frac{n}{p}
$$

where p is the occurrence probability of the event and n is the unit period measured in days. We have:

$$
\mathcal{T}\left(\mathbf{F}_{n: n}^{-1}(\alpha)\right)=\frac{1}{1-\alpha} \times n
$$

We deduce that the return periods are respectively equal to $100,100,500$ and 2200 days.
4. We would like to find the value α that satisfies the following equation:

$$
\mathcal{T}\left(\mathbf{F}_{20: 20}^{-1}(\alpha)\right)=\mathcal{T}\left(\mathbf{F}^{-1}(99.9 \%)\right)
$$

We have:

$$
\frac{1}{1-\alpha} \times 20=\frac{1}{1-0.999} \times 1
$$

We deduce that:

$$
\alpha=1-20 \times 0.001=98 \%
$$

12.4.3 Extreme order statistics of exponential random variables

1. Using the Bayes formula, we have:

$$
\begin{aligned}
\operatorname{Pr}\{\boldsymbol{\tau}>t \mid \boldsymbol{\tau}>s\} & =\frac{\operatorname{Pr}\{\tau>t \bigcap \tau>s\}}{\operatorname{Pr}\{\tau>s\}} \\
& =\frac{\operatorname{Pr}\{\tau>t\}}{\operatorname{Pr}\{\tau>s\}} \\
& =\frac{\mathbf{S}(t)}{\mathbf{S}(s)} \\
& =\frac{e^{-\lambda t}}{e^{-\lambda s}} \\
& =e^{-\lambda(t-s)} \\
& =\operatorname{Pr}\{\tau>t-s\}
\end{aligned}
$$

This implies that the survival function does not depend on the initial time. This Markov property is especially useful in credit models, because the default time of the counterparty does not on the past history, for instance the age of the company.
2. We have:

$$
\begin{aligned}
\operatorname{Pr}\left\{\min \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \geq t\right\} & =\operatorname{Pr}\left\{\boldsymbol{\tau}_{1} \geq t \bigcap \ldots \bigcap \tau_{n} \geq t\right\} \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left\{\boldsymbol{\tau}_{i} \geq t\right\} \\
& =\exp \left(-\sum_{i=1}^{n} \lambda_{i} t\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{Pr}\left\{\max \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \leq t\right\} & =\operatorname{Pr}\left\{\boldsymbol{\tau}_{1} \leq t \bigcap \ldots \bigcap \boldsymbol{\tau}_{n} \leq t\right\} \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left\{\boldsymbol{\tau}_{i} \leq t\right\} \\
& =\prod_{i=1}^{n}\left(1-e^{-\lambda_{i} t}\right)
\end{aligned}
$$

We deduce that:

$$
\min \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \sim \mathcal{E}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

The distribution of $\max \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right)$ is not a known probability distribution. Let us consider the case $n=2$. We have:

$$
\begin{aligned}
\operatorname{Pr}\left\{\min \left(\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}\right)=\boldsymbol{\tau}_{2}\right\} & =\operatorname{Pr}\left\{\boldsymbol{\tau}_{2} \leq \boldsymbol{\tau}_{1}\right\} \\
& =\int_{0}^{\infty} \int_{0}^{t_{1}} \lambda_{1} e^{-\lambda_{1} t_{1}} \lambda_{2} e^{-\lambda_{2} t_{2}} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}}\left(\int_{0}^{t_{1}} \lambda_{2} e^{-\lambda_{2} t_{2}} \mathrm{~d} t_{2}\right) \mathrm{d} t_{1} \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}}\left(1-e^{-\lambda_{2} t_{1}}\right) \mathrm{d} t_{1} \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} \mathrm{~d} t_{1}-\lambda_{1} \int_{0}^{\infty} e^{-\left(\lambda_{1}+\lambda_{2}\right) t_{1}} \mathrm{~d} t_{1} \\
& =1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \\
& =\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

We can generalize this result to the case $n>2$ and we finally obtain:

$$
\operatorname{Pr}\left\{\min \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right)=\boldsymbol{\tau}_{i}\right\}=\frac{\lambda_{i}}{\sum_{j=1}^{n} \lambda_{j}}
$$

3. When $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{i}$ are comonotone, we have $\mathbf{S}_{1}\left(\tau_{1}\right)=\mathbf{S}_{i}\left(\tau_{i}\right)$. It follows that:

$$
\boldsymbol{\tau}_{i}=\frac{\lambda_{1}}{\lambda_{i}} \boldsymbol{\tau}_{1}
$$

We note $\lambda^{+}=\max \left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\lambda^{-}=\min \left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We deduce that:

$$
\begin{aligned}
\operatorname{Pr}\left\{\min \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \geq t\right\} & =\operatorname{Pr}\left\{\min \left(\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}\right) \lambda_{1} \boldsymbol{\tau}_{1} \geq t\right\} \\
& =\operatorname{Pr}\left\{\frac{\lambda_{1}}{\lambda^{+}} \boldsymbol{\tau}_{1} \geq t\right\} \\
& =\operatorname{Pr}\left\{\boldsymbol{\tau}_{1} \geq \frac{\lambda^{+}}{\lambda_{1}} t\right\} \\
& =\exp \left(-\lambda_{1} \frac{\lambda^{+}}{\lambda_{1}} t\right) \\
& =\exp \left(-\lambda^{+} t\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{Pr}\left\{\max \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \leq t\right\} & =\operatorname{Pr}\left\{\frac{\lambda_{1}}{\lambda^{-}} \boldsymbol{\tau}_{1} \leq t\right\} \\
& =1-\exp \left(-\lambda_{1} \frac{\lambda^{-}}{\lambda_{1}} t\right) \\
& =1-\exp \left(-\lambda^{-} t\right)
\end{aligned}
$$

We finally obtain:

$$
\min \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \sim \mathcal{E}\left(\lambda^{+}\right)
$$

and:

$$
\max \left(\boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{n}\right) \sim \mathcal{E}\left(\lambda^{-}\right)
$$

12.4.4 Extreme value theory in the bivariate case

1. An extreme value copula \mathbf{C} satisfies the following relationship:

$$
\mathbf{C}\left(u_{1}^{t}, u_{2}^{t}\right)=\mathbf{C}^{t}\left(u_{1}, u_{2}\right)
$$

for all $t>0$.
2. The product copula \mathbf{C}^{\perp} is an EV copula because we have:

$$
\begin{aligned}
\mathbf{C}^{\perp}\left(u_{1}^{t}, u_{2}^{t}\right) & =u_{1}^{t} u_{2}^{t} \\
& =\left(u_{1} u_{2}\right)^{t} \\
& =\left[\mathbf{C}^{\perp}\left(u_{1}, u_{2}\right)\right]^{t}
\end{aligned}
$$

For the copula \mathbf{C}^{+}, we obtain:

$$
\begin{aligned}
\mathbf{C}^{+}\left(u_{1}^{t}, u_{2}^{t}\right) & =\min \left(u_{1}^{t}, u_{2}^{t}\right) \\
& = \begin{cases}u_{1}^{t} \quad \text { if } u_{1} \leq u_{2} \\
u_{2}^{t} & \text { otherwise }\end{cases} \\
& =\left(\min \left(u_{1}, u_{2}\right)\right)^{t} \\
& =\left[\mathbf{C}^{+}\left(u_{1}, u_{2}\right)\right]^{t}
\end{aligned}
$$

However, the EV property does not hold for the Fréchet lower bound copula \mathbf{C}^{-}:

$$
\mathbf{C}^{-}\left(u_{1}^{t}, u_{2}^{t}\right)=\max \left(u_{1}^{t}+u_{2}^{t}-1,0\right) \neq \max \left(u_{1}+u_{2}-1,0\right)^{t}
$$

Indeed, we have $\mathbf{C}^{-}(0.5,0.8)=\max (0.5+0.8-1,0)=0.3$ and:

$$
\begin{aligned}
\mathbf{C}^{-}\left(0.5^{2}, 0.8^{2}\right) & =\max (0.25+0.64-1,0) \\
& =0 \\
& \neq 0.3^{2}
\end{aligned}
$$

3. We have:

$$
\begin{aligned}
\mathbf{C}\left(u_{1}^{t}, u_{2}^{t}\right) & =\exp \left(-\left[\left(-\ln u_{1}^{t}\right)^{\theta}+\left(-\ln u_{2}^{t}\right)^{\theta}\right]^{1 / \theta}\right) \\
& =\exp \left(-\left[\left(-t \ln u_{1}\right)^{\theta}+\left(-t \ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right) \\
& =\exp \left(-t\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right) \\
& =\left(e^{-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}}\right)^{t} \\
& =\mathbf{C}^{t}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

4. The upper tail dependence λ is defined as follows:

$$
\lambda=\lim _{u \rightarrow 1^{+}} \frac{1-2 u+\mathbf{C}\left(u_{1}, u_{2}\right)}{1-u}
$$

It measures the probability to have an extreme in one direction knowing that we have already an extreme in the other direction. If λ is equal to 0 , extremes are independent and the EV copula is the product copula \mathbf{C}^{\perp}. If λ is equal to 1 , extremes are comonotonic and the EV copula is the Fréchet upper bound copula \mathbf{C}^{+}. Moreover, the upper tail dependence of the copula between the random variables is equal to the upper tail dependence of the copula between the extremes.
5. Using L'Hospital's rule, we have:

$$
\begin{aligned}
\lambda & =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+e^{-\left[(-\ln u)^{\theta}+(-\ln u)^{\theta}\right]^{1 / \theta}}}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+e^{-\left[2(-\ln u)^{\theta}\right]^{1 / \theta}}}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+u^{2^{1 / \theta}}}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{0-2+2^{1 / \theta} u 2^{2^{1 / \theta}-1}}{-1} \\
& =\lim _{u \rightarrow 1^{+}} 2-2^{1 / \theta} u^{2^{1 / \theta}-1} \\
& =2-2^{1 / \theta}
\end{aligned}
$$

If θ is equal to 1 , we obtain $\lambda=0$. It comes that the EV copula is the product copula. Extremes are then not correlated. This result is not surprising because the Gumbel-Houggard copula is equal to the product copula when $\theta=1$:

$$
e^{-\left[\left(-\ln u_{1}\right)^{1}+\left(-\ln u_{2}\right)^{1}\right]^{1}}=u_{1} u_{2}=\mathbf{C}^{\perp}\left(u_{1}, u_{2}\right)
$$

6. (a) We have:

$$
\begin{aligned}
\mathbf{C}\left(u_{1}^{t}, u_{2}^{t}\right) & =u_{1}^{t\left(1-\theta_{1}\right)} u_{2}^{t\left(1-\theta_{2}\right)} \min \left(u_{1}^{t \theta_{1}}, u_{2}^{t \theta_{2}}\right) \\
& =\left(u_{1}^{1-\theta_{1}}\right)^{t}\left(u_{2}^{1-\theta_{2}}\right)^{t}\left(\min \left(u_{1}^{\theta_{1}}, u_{2}^{\theta_{2}}\right)\right)^{t} \\
& =\left(u_{1}^{1-\theta_{1}} u_{2}^{1-\theta_{2}} \min \left(u_{1}^{\theta_{1}}, u_{2}^{\theta_{2}}\right)\right)^{t} \\
& =\mathbf{C}^{t}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

(b) If $\theta_{1}>\theta_{2}$, we obtain:

$$
\begin{aligned}
\lambda & =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+u^{1-\theta_{1}} u^{1-\theta_{2}} \min \left(u^{\theta_{1}}, u^{\theta_{2}}\right)}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+u^{1-\theta_{1}} u^{1-\theta_{2}} u^{\theta_{1}}}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{1-2 u+u^{2-\theta_{2}}}{1-u} \\
& =\lim _{u \rightarrow 1^{+}} \frac{0-2+\left(2-\theta_{2}\right) u^{1-\theta_{2}}}{-1} \\
& =\lim _{u \rightarrow 1^{+}} 2-2 u^{1-\theta_{2}}+\theta_{2} u^{1-\theta_{2}} \\
& =\theta_{2}
\end{aligned}
$$

If $\theta_{2}>\theta_{1}$, we have $\lambda=\theta_{1}$. We deduce that the upper tail dependence of the Marshall-Olkin copula is $\min \left(\theta_{1}, \theta_{2}\right)$.
(c) If $\theta_{1}=0$ or $\theta_{2}=0$, we obtain $\lambda=0$. It comes that the copula of the extremes is the product copula. Extremes are then not correlated.
(d) Two extremes are perfectly correlated when we have $\theta_{1}=\theta_{2}=1$. In this case, we obtain:

$$
\mathbf{C}\left(u_{1}, u_{2}\right)=\min \left(u_{1}, u_{2}\right)=\mathbf{C}^{+}\left(u_{1}, u_{2}\right)
$$

12.4.5 Max-domain of attraction in the bivariate case

1. Let $\left(X_{1}, X_{2}\right)$ be a bivariate random variable whose probability distribution is:

$$
\mathbf{F}\left(x_{1}, x_{2}\right)=\mathbf{C}_{\left\langle X_{1}, X_{2}\right\rangle}\left(\mathbf{F}_{1}\left(x_{1}\right), \mathbf{F}_{2}\left(x_{2}\right)\right)
$$

We know that the corresponding EV probability distribution is:

$$
\mathbf{G}\left(x_{1}, x_{2}\right)=\mathbf{C}_{\left\langle X_{1}, X_{2}\right\rangle}^{\star}\left(\mathbf{G}_{1}\left(x_{1}\right), \mathbf{G}_{2}\left(x_{2}\right)\right)
$$

where \mathbf{G}_{1} and \mathbf{G}_{2} are the two univariate EV probability distributions and $\mathbf{C}_{\left\langle X_{1}, X_{2}\right\rangle}^{\star}$ is the EV copula associated to $\mathbf{C}_{\left\langle X_{1}, X_{2}\right\rangle}$.
(a) We deduce that:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =\mathbf{C}^{\perp}\left(\mathbf{G}_{1}\left(x_{1}\right), \mathbf{G}_{2}\left(x_{2}\right)\right) \\
& =\boldsymbol{\Lambda}\left(x_{1}\right) \mathbf{\Psi}_{1}\left(x_{2}-1\right) \\
& =\exp \left(-e^{-x_{1}}+x_{2}-1\right)
\end{aligned}
$$

(b) We have:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =\boldsymbol{\Lambda}\left(x_{1}\right) \mathbf{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right) \\
& =\exp \left(-e^{-x_{1}}-\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha}\right)
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =\mathbf{\Psi}_{1}\left(x_{1}-1\right) \boldsymbol{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right) \\
& =\exp \left(x_{1}-1-\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha}\right)
\end{aligned}
$$

2. We know that the upper tail dependence is equal to zero for the Normal copula when $\rho<1$. We deduce that the EV copula is the product copula. We then obtain the same results as previously.
3. When the parameter ρ is equal to 1 , the Normal copula is the Fréchet upper bound copula \mathbf{C}^{+}, which is an EV copula. We deduce the following results:

$$
\begin{align*}
\mathbf{G}\left(x_{1}, x_{2}\right) & =\min \left(\boldsymbol{\Lambda}\left(x_{1}\right), \mathbf{\Psi}_{1}\left(x_{2}-1\right)\right) \\
& =\min \left(\exp \left(-e^{-x_{1}}\right), \exp \left(x_{2}-1\right)\right) \tag{a}\\
\mathbf{G}\left(x_{1}, x_{2}\right)= & \min \left(\boldsymbol{\Lambda}\left(x_{1}\right), \mathbf{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right)\right) \\
= & \min \left(\exp \left(-e^{-x_{1}}\right), \exp \left(-\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha}\right)\right) \tag{b}\\
\mathbf{G}\left(x_{1}, x_{2}\right)= & \min \left(\mathbf{\Psi}_{1}\left(x_{1}-1\right), \mathbf{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right)\right) \\
= & \min \left(\exp \left(x_{2}-1\right), \exp \left(-\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha}\right)\right) \tag{c}
\end{align*}
$$

4. In the previous exercise, we have shown that the Gumbel-Houggard copula is an EV copula.
(a) We deduce that:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =e^{-\left[\left(-\ln \boldsymbol{\Lambda}\left(x_{1}\right)\right)^{\theta}+\left(-\ln \boldsymbol{\Psi}_{1}\left(x_{2}-1\right)\right)^{\theta}\right]^{1 / \theta}} \\
& =\exp \left(-\left[e^{-\theta x_{1}}+\left(1-x_{2}\right)^{\theta}\right]^{1 / \theta}\right)
\end{aligned}
$$

(b) We obtain:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =e^{-\left[\left(-\ln \boldsymbol{\Lambda}\left(x_{1}\right)\right)^{\theta}+\left(-\ln \boldsymbol{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right)\right)^{\theta}\right]^{1 / \theta}} \\
& =\exp \left(-\left[e^{-\theta x_{1}}+\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha \theta}\right]^{1 / \theta}\right)
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\mathbf{G}\left(x_{1}, x_{2}\right) & =e^{-\left[\left(-\ln \boldsymbol{\Psi}_{1}\left(x_{1}-1\right)\right)^{\theta}+\left(-\ln \boldsymbol{\Phi}_{\alpha}\left(1+\frac{x_{2}}{\alpha}\right)\right)^{\theta}\right]^{1 / \theta}} \\
& =\exp \left(-\left[\left(1-x_{1}\right)^{\theta}+\left(1+\frac{x_{2}}{\alpha}\right)^{-\alpha \theta}\right]^{1 / \theta}\right)
\end{aligned}
$$

Chapter 13

Monte Carlo Simulation Methods

13.4.1 Simulating random numbers using the inversion method

1. Let u_{i} be a uniform random variate.
(a) We have seen that the quantile function of the distribution function $\mathcal{G E} \mathcal{V}(\mu, \sigma, \xi)$ has the following expression:

$$
\mathbf{G}^{-1}(\alpha)=\mu-\frac{\sigma}{\xi}\left(1-(-\ln \alpha)^{-\xi}\right)
$$

It follows that:

$$
x_{i} \leftarrow \mu-\frac{\sigma}{\xi}\left(1-\left(-\ln u_{i}\right)^{-\xi}\right)
$$

(b) The cumulative density function of the log-normal distribution $\mathcal{L N}\left(\mu, \sigma^{2}\right)$ is equal to:

$$
\mathbf{F}(x)=\Phi\left(\frac{\ln x-\mu}{\sigma}\right)
$$

We deduce that:

$$
\mathbf{F}^{-1}(u)=\exp \left(\mu+\sigma \Phi^{-1}(u)\right)
$$

To simulate a log-normal random variate, we then use the following algorithm:

$$
x_{i} \leftarrow \exp \left(\mu+\sigma \Phi^{-1}\left(u_{i}\right)\right)
$$

(c) We have:

$$
\mathbf{F}(x)=\frac{1}{1+(x / \alpha)^{-\beta}}
$$

and:

$$
\mathbf{F}^{-1}(u)=\alpha\left(\frac{u}{1-u}\right)^{1 / \beta}
$$

To simulate a log-logistic random variate $\mathcal{L} \mathcal{L}(\alpha, \beta)$, we use the following transformation:

$$
x_{i} \leftarrow \alpha\left(\frac{u_{i}}{1-u_{i}}\right)^{1 / \beta}
$$

2. (a) Let x_{i} be a random variate simulated from the probability distribution of X. A straightforward algorithm is to keep all the random variates x_{i} 's that are higher than the threshold H :

$$
l_{i} \leftarrow\left\{\begin{array}{l}
x_{i} \text { if } x_{i} \geq H \\
\text { a missing value otherwise }
\end{array}\right.
$$

(b) We have:

$$
\begin{aligned}
\mathbf{F}_{L}(x) & =\operatorname{Pr}\{X \leq x \mid X \geq H\} \\
& =\frac{\operatorname{Pr}\{X \leq x, X \geq H\}}{\operatorname{Pr}\{X \geq H\}} \\
& =\frac{\mathbf{F}_{X}(x)-\mathbf{F}_{X}(H)}{1-\mathbf{F}_{X}(H)}
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\mathbf{F}_{L}(x)=u & \Leftrightarrow \frac{\mathbf{F}_{X}(x)-\mathbf{F}_{X}(H)}{1-\mathbf{F}_{X}(H)}=u \\
& \Leftrightarrow \mathbf{F}_{X}(x)=u+\mathbf{F}_{X}(H)(1-u) \\
& \Leftrightarrow x=\mathbf{F}_{X}^{-1}\left(u+\mathbf{F}_{X}(H)(1-u)\right)
\end{aligned}
$$

It follows that:

$$
\mathbf{F}_{L}^{-1}(u)=\mathbf{F}_{X}^{-1}\left(u+\mathbf{F}_{X}(H)(1-u)\right)
$$

We deduce that the algorithm to simulate the random variate l_{i} is:

$$
l_{i} \leftarrow \mathbf{F}_{X}^{-1}\left(u_{i}+\mathbf{F}_{X}(H)\left(1-u_{i}\right)\right)
$$

(d) Concerning the first algorithm, we simulate n_{X} values of X, but we only kept on average $n_{L}=n_{X}\left(1-\mathbf{F}_{X}(H)\right)$ values of L, meaning that the acceptance ratio is equal to $1-\mathbf{F}_{X}(H)$. For the second algorithm, all the simulated values of u_{i} are kept. For instance, if $\mathbf{F}_{X}(H)$ is equal to 90% and we would like to simulate one million of random numbers for L, we have to simulate approximatively 10 millions of random numbers in the first algorithm, that is 10 more times than for the second algorithm. In this case, the acceptance ratio is only equal to 10%.
(e) When X follows a \log-normal distribution $\mathcal{L N}\left(\mu, \sigma^{2}\right)$, Algorithm (a) becomes:

$$
l_{i} \leftarrow \exp \left(\mu+\sigma \Phi^{-1}\left(u_{i}\right)\right)
$$

with the condition $u_{i} \geq \mathbf{F}_{X}(H)=95.16 \%$. For Algorithm (b), we have:

$$
l_{i} \leftarrow \exp \left(\mu+\sigma \Phi^{-1}\left(u_{i}+\left(1-u_{i}\right) \Phi\left(\frac{\ln H-\mu}{\sigma}\right)\right)\right)
$$

In Figure 13.1, we have represented the random numbers l_{i} generated with the two algorithms. We observe that only 4 simulated values are higher than H in the case of Algorithm (a). With Algorithm (c), all the simulated values are higher than H and it is easier to simulate a random loss located in the distribution tail.
3. (a) Let x_{i} be a simulated value of X_{i}. We have:

$$
x_{1: n}=\min \left(x_{1}, \ldots, x_{n}\right)
$$

and:

$$
x_{n: n}=\max \left(x_{1}, \ldots, x_{n}\right)
$$

(b) We have:

$$
\mathbf{F}_{1: n}(x)=1-(1-\mathbf{F}(x))^{n}
$$

FIGURE 13.1: Simulation of conditional losses $L=X \mid X \geq H$
and:

$$
\mathbf{F}_{1: n}^{-1}(u)=\mathbf{F}^{-1}\left(1-(1-u)^{1 / n}\right)
$$

We deduce that a simulated value x_{i}^{-}of $X_{1: n}$ is given by:

$$
x_{i}^{-} \leftarrow \mathbf{F}^{-1}\left(1-\left(1-u_{i}\right)^{1 / n}\right)
$$

For the maximum order statistic $X_{n: n}$, we have $\mathbf{F}_{1: n}(x)=\mathbf{F}(x)^{n}$ and:

$$
x_{i}^{+} \leftarrow \mathbf{F}^{-1}\left(u_{i}^{1 / n}\right)
$$

(c) In Figure 13.2, we report 1000 simulated values of $X_{1: 50}$ and $X_{50: 50}$ when $X_{i} \sim$ $\mathcal{N}(0,1)$.

13.4.2 Simulating random numbers using the transformation method

1. The density function of $Y=h(X)$ is given by the following relationship:

$$
g(y)=f(x)\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right|
$$

We obtain:

$$
\begin{aligned}
g(y) & =\frac{\beta^{\alpha} x^{-\alpha-1} e^{-\beta / x}}{\Gamma(\alpha)} x^{2} \\
& =\frac{\beta^{\alpha} x^{-\alpha+1} e^{-\beta / x}}{\Gamma(\alpha)} \\
& =\frac{\beta^{\alpha} y^{\alpha-1} e^{-\beta y}}{\Gamma(\alpha)}
\end{aligned}
$$

FIGURE 13.2: Simulation of $X_{1: 50}$ and $X_{50: 50}$ when $X_{i} \sim \mathcal{N}(0,1)$

It follows that $Y \sim \mathcal{G}(\alpha, \beta)$. To simulate X, we draw a gamma random variate Y and set $X=1 / Y$.
2. (a) The density function of $X \sim \mathcal{G}(\alpha, \beta)$ is equal to:

$$
f(x)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
$$

In the case $\alpha=1$, we obtain:

$$
f(x)=\beta e^{-\beta x}
$$

This is the density function of $\mathcal{E}(\beta)$. To simulate X, we apply the following transformation:

$$
x \leftarrow-\frac{\ln u}{\beta}
$$

where u is a uniform random number.
(b) We know that:

$$
\mathcal{G}(n, \beta)=\sum_{j=1}^{n} \mathcal{G}(1, \beta)
$$

We deduce that:

$$
\mathcal{G}(n, \beta)=\sum_{i=1}^{n} E_{i}
$$

where $E_{i} \sim \mathcal{E}(\beta)$ are iid exponential random variables. We deduce that the probability distribution $\mathcal{G}(n, \beta)$ can be simulated by:

$$
x \leftarrow-\frac{1}{\beta} \sum_{i=1}^{n} \ln u_{i}
$$

or:

$$
x \leftarrow-\frac{1}{\beta} \ln \left(\prod_{i=1}^{n} u_{i}\right)
$$

where u_{1}, \ldots, u_{n} are iid uniform random variates.
3. (a) Let $Y \sim \mathcal{G}(\alpha, \delta)$ and $Z \sim \mathcal{G}(\beta, \delta)$ be two independent gamma-distributed random variables. We have:

$$
f_{Y, Z}(y, z)=\frac{\delta^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} y^{\alpha-1} z^{\beta-1} e^{-\delta(y+z)}
$$

We note:

$$
X=\frac{Y}{Y+Z}
$$

and:

$$
S=Y+Z
$$

It follows that $Y=X S$ and $Z=(1-X) S$. The Jacobian of $(y, z)=\varphi(x, s)$ is then equal to:

$$
J_{\varphi}=\left(\begin{array}{cc}
s & x \\
-s & 1-x
\end{array}\right)
$$

Since we have $\operatorname{det} J_{\varphi}=s$, we deduce that:

$$
\begin{aligned}
f_{X, S}(x, s) & =f_{Y, Z}(y, z) \times|s| \\
& =\frac{\delta^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)}(x s)^{\alpha-1}((1-x) s)^{\beta-1} e^{-\delta s} s \\
& =\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}\right) \times \\
& \left(\frac{\delta^{\alpha+\beta}}{\Gamma(\alpha+\beta)} s^{\alpha+\beta-1} e^{-\delta s}\right) \\
& =f_{X}(x) f_{S}(s)
\end{aligned}
$$

It follows that the random variables X and S are independent, $X \sim \mathcal{B}(\alpha, \beta)$ and $S \sim \mathcal{G}(\alpha+\beta, \delta)$.
(b) To simulate a beta-distributed random variate, we consider the following transformation:

$$
x \leftarrow \frac{y}{y+z}
$$

where y and z are two independent random variates from $\mathcal{G}(\alpha, \delta)$ and $\mathcal{G}(\beta, \delta)$.
4. (a) We remind that:

$$
f_{X, Y}(x, y)=f_{R, \Theta}(r, \theta)\left|\frac{1}{\operatorname{det} J_{\varphi}}\right|
$$

where J_{φ} is the Jacobian associated to the change of variables $(x, y)=\varphi(r, \theta)$. We have:

$$
J_{\varphi}=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and:

$$
\operatorname{det} J_{\varphi}=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Since R and Θ are independent, we have $f_{R, \Theta}(r, \theta)=f_{R}(r) f_{\Theta}(\theta)$. Moreover, Θ is a uniform random variable and we have:

$$
f_{\Theta}(\theta)=\frac{1}{2 \pi}
$$

We deduce that:

$$
f_{X, Y}(x, y)=\frac{f_{R}(r)}{2 \pi r}
$$

We also notice that:

$$
\begin{aligned}
X^{2}+Y^{2} & =R^{2} \cos ^{2} \Theta+R^{2} \sin ^{2} \Theta \\
& =R^{2}
\end{aligned}
$$

Finally, we obtain the following result:

$$
f_{X, Y}(x, y)=\frac{f_{R}\left(\sqrt{x^{2}+y^{2}}\right)}{2 \pi \sqrt{x^{2}+y^{2}}}
$$

Concerning the density function of X, we have:

$$
f_{X}(x)=\int_{-\infty}^{\infty} \frac{f_{R}\left(\sqrt{x^{2}+y^{2}}\right)}{2 \pi \sqrt{x^{2}+y^{2}}} \mathrm{~d} y
$$

(b) We assume that $R=\sqrt{2 E}$ where $E \sim \mathcal{E}(1)$.
i. We have:

$$
\begin{aligned}
\mathbf{F}_{R}(r) & =\operatorname{Pr}\{\sqrt{2 E} \leq r\} \\
& =\operatorname{Pr}\left\{E \leq \frac{r^{2}}{2}\right\} \\
& =1-e^{-r^{2} / 2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
f_{R}(r) & =\partial_{r} \mathbf{F}_{R}(r) \\
& =r e^{-r^{2} / 2}
\end{aligned}
$$

ii. We have:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} \frac{f_{R}\left(\sqrt{x^{2}+y^{2}}\right)}{2 \pi \sqrt{x^{2}+y^{2}}} \mathrm{~d} y \\
& =\int_{-\infty}^{\infty} \frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{2 \pi} \mathrm{~d} y \\
& =\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} y \\
& =\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \\
& =\phi(x)
\end{aligned}
$$

We deduce that $X \sim \mathcal{N}(0,1)$. By symmetry, we also have $Y \sim \mathcal{N}(0,1)$. Moreover, we notice that X and Y are independent:

$$
\begin{aligned}
f_{X, Y}(x, y) & =\frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{2 \pi} \\
& =\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \cdot \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} \\
& =f_{X}(x) f_{Y}(y)
\end{aligned}
$$

iii. We have $R=\sqrt{2 E}=\sqrt{-2 \ln U_{1}}$ and $\Theta=2 \pi U_{2}$ where U_{1} and U_{2} are two standard uniform random variables. It follows that X and Y defined by:

$$
\left\{\begin{array}{l}
X=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \\
Y=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right)
\end{array}\right.
$$

are two independent standard Gaussian random variables.
(c) We assume that:

$$
\mathbf{F}_{R}(r)=1-\left(1+\frac{r^{2}}{\nu}\right)^{-\nu / 2}
$$

i. It follows that the density function of R is equal to:

$$
f_{R}(r)=r\left(1+\frac{r^{2}}{\nu}\right)^{-\nu / 2-1}
$$

ii. We deduce that the joint density of (X, Y) is:

$$
\begin{aligned}
f_{X, Y}(x, y) & =\frac{r}{2 \pi r}\left(1+\frac{r^{2}}{\nu}\right)^{-\nu / 2-1} \\
& =\frac{1}{2 \pi}\left(1+\frac{x^{2}+y^{2}}{\nu}\right)^{-\nu / 2-1}
\end{aligned}
$$

iii. We notice that $f_{X, Y}(x, y)$ is an even function of y. We deduce that:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{+\infty} \frac{1}{2 \pi}\left(1+\frac{x^{2}+y^{2}}{\nu}\right)^{-\nu / 2-1} \mathrm{~d} y \\
& =\int_{0}^{+\infty} \frac{1}{\pi}\left(\left(1+\frac{x^{2}}{\nu}\right)\left(1+\frac{y^{2}}{\nu+x^{2}}\right)\right)^{-\nu / 2-1} \mathrm{~d} y
\end{aligned}
$$

We consider the following change of variable:

$$
u=\left(1+\frac{y^{2}}{\nu+x^{2}}\right)^{-1}
$$

We have:

$$
y=\sqrt{\left(\frac{1}{u}-1\right)\left(\nu+x^{2}\right)}
$$

and:

$$
\begin{aligned}
\mathrm{d} y & =-\frac{1}{2} \frac{\left(\nu+x^{2}\right)}{u^{2} \sqrt{\left(u^{-1}-1\right)\left(\nu+x^{2}\right)}} \mathrm{d} u \\
& =-\frac{1}{2} \frac{\sqrt{\nu+x^{2}}}{u^{2} \sqrt{u^{-1}-1}} \mathrm{~d} u
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
f_{X}(x) & =-\int_{1}^{0} \frac{1}{2 \pi}\left(\left(1+\frac{x^{2}}{\nu}\right) \frac{1}{u}\right)^{-\nu / 2-1} \frac{\sqrt{\nu+x^{2}}}{u^{2} \sqrt{u^{-1}-1}} \mathrm{~d} u \\
& =\int_{0}^{1} \frac{1}{2 \pi}\left(\left(1+\frac{x^{2}}{\nu}\right) \frac{1}{u}\right)^{-\nu / 2-1} \frac{\sqrt{\nu+x^{2}}}{u^{2} \sqrt{u^{-1}-1}} \mathrm{~d} u \\
& =\frac{\sqrt{\nu}}{2 \pi}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2} \int_{0}^{1} u^{(\nu-1) / 2}(1-u)^{-1 / 2} \mathrm{~d} u \\
& =\mathcal{B}\left(\frac{\nu+1}{2}, \frac{1}{2}\right) \frac{\sqrt{\nu}}{2 \pi}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}
\end{aligned}
$$

We have:

$$
\begin{aligned}
\mathcal{B}\left(\frac{\nu+1}{2}, \frac{1}{2}\right) \frac{\sqrt{\nu}}{2 \pi} & =\frac{\Gamma\left(\frac{\nu+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\nu}{2}+1\right)} \frac{\sqrt{\nu}}{2 \pi} \\
& =\frac{\Gamma\left(\frac{\nu+1}{2}\right) \sqrt{\pi}}{\frac{\nu}{2} \Gamma\left(\frac{\nu}{2}\right)} \frac{\sqrt{\nu}}{2 \pi} \\
& =\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu} \Gamma\left(\frac{\nu}{2}\right)}
\end{aligned}
$$

We finally deduce that:

$$
f_{X}(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\nu \pi}}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}
$$

This is the probability density function of the t_{ν} random variable.
iv. We have:

$$
\mathbf{F}_{R}^{-1}(u)=\sqrt{\nu\left((1-u)^{-2 / \nu}-1\right)}
$$

We deduce that the random variate r_{i} can be simulated using the inversion method:

$$
r_{i} \leftarrow \sqrt{\nu\left(\left(1-u_{i}\right)^{-2 / \nu}-1\right)}
$$

where u_{i} is a uniform random variate.
v. It follows that:

$$
\left\{\begin{aligned}
X & =\sqrt{\nu\left(\left(1-U_{1}\right)^{-2 / \nu}-1\right)} \cos \left(2 \pi U_{2}\right) \\
Y & =\sqrt{\nu\left(\left(1-U_{1}\right)^{-2 / \nu}-1\right)} \sin \left(2 \pi U_{2}\right)
\end{aligned}\right.
$$

where U_{1} and U_{2} are two independent uniform random variables.
vi. In the Box-Muller algorithm, X and Y are independent. In the Bailey algorithm, this property is not satisfied because:

$$
f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)
$$

13.4.3 Simulating random numbers using rejection sampling

1. (a) It follows that:

$$
\begin{aligned}
h(x) & =\frac{f(x)}{g(x)} \\
& =\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathfrak{B}(\alpha, \beta)}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
h^{\prime}(x) & =\frac{(\alpha-1) x^{\alpha-2}(1-x)^{\beta-1}+(\beta-1) x^{\alpha-1}(1-x)^{\beta-2}}{\mathfrak{B}(\alpha, \beta)} \\
& =((\alpha-1)(1-x)+(\beta-1) x) \frac{x^{\alpha-2}(1-x)^{\beta-2}}{\mathfrak{B}(\alpha, \beta)}
\end{aligned}
$$

and:

$$
\begin{aligned}
h^{\prime}(x)=0 & \Leftrightarrow(\alpha-1)(1-x)+(\beta-1) x=0 \\
& \Leftrightarrow x^{\star}=\frac{\alpha-1}{\alpha+\beta-2}
\end{aligned}
$$

The supremum of $h(x)$ is equal to:

$$
h\left(x^{\star}\right)=\frac{1}{\mathfrak{B}(\alpha, \beta)}\left(\frac{\alpha-1}{\alpha+\beta-2}\right)^{\alpha-1}\left(\frac{\beta-1}{\alpha+\beta-2}\right)^{\beta-1}
$$

We deduce that:

$$
c=\frac{\Gamma(\alpha+\beta)(\alpha-1)^{\alpha-1}(\beta-1)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)(\alpha+\beta-2)^{\alpha+\beta-2}}
$$

(b) We have reported the functions $f(x)$ and $c g(x)$ in Figure 13.3. c takes the value $1.27,1.78,8.00$ and 2.76 . The acceptance ratio is minimum in the third case when $\alpha=1$ and $\beta=8$. In fact, it corresponds to the worst situation for the acceptance-rejection algorithm. Indeed, when one parameter is equal to 1 , we obtain:

$$
c=\frac{\Gamma(1+\beta)(\beta-1)^{\beta-1}}{\Gamma(1) \Gamma(\beta)(\beta-1)^{\beta-1}}=\beta
$$

The acceptance ratio p tends to zero when the second parameter tends to infinity:

$$
\lim _{\beta \rightarrow \infty} p=\lim _{\beta \rightarrow \infty} \frac{1}{c}=0
$$

(c) The acceptance-rejection algorithm becomes:
i. Generate two independent uniform random variates u_{1} and u_{2};
ii. Calculate v such that:

$$
v=\frac{(\alpha+\beta-2)^{\alpha+\beta-2}}{(\alpha-1)^{\alpha-1}(\beta-1)^{\beta-1}} u_{1}^{\alpha-1}\left(1-u_{1}\right)^{\beta-1}
$$

iii. If $u_{2} \leq v$, accept u_{1}; otherwise, reject u_{1}.

FIGURE 13.3: Rejection sampling applied to the beta distribution
2. (a) It follows that:

$$
\begin{aligned}
h(x) & =\frac{f(x)}{g(x)} \\
& =\frac{(1-x)^{\beta-1}}{\alpha \mathfrak{B}(\alpha, \beta)}
\end{aligned}
$$

Its maximum is reached at point $x^{\star}=0$. We deduce that:

$$
c=\frac{1}{\alpha \mathfrak{B}(\alpha, \beta)}
$$

(b) We have $\mathbf{G}(x)=x^{\alpha}$. We use the inversion method to simulate X :

$$
x \leftarrow u^{1 / \alpha}
$$

where u is a uniform random variate.
(c) The acceptance-rejection algorithm becomes:
i. Generate two independent uniform random variates u_{1} and u_{2};
ii. Calculate $x=u_{1}^{1 / \alpha}$;
iii. Calculate v such that:

$$
\begin{aligned}
v & =\frac{f(x)}{c g(x)} \\
& =\left(1-u_{1}^{1 / \alpha}\right)^{\beta-1}
\end{aligned}
$$

iv. If $u_{2} \leq v$, accept x; otherwise, reject x.
3. (a) We have:

$$
\mathbf{G}(x)=\int_{-\infty}^{x} \frac{1}{2} e^{-|t|} \mathrm{d} t
$$

If $x \leq 0$, we obtain:

$$
\begin{aligned}
\mathbf{G}(x) & =\int_{-\infty}^{x} \frac{1}{2} e^{t} \mathrm{~d} t \\
& =\frac{1}{2} e^{x} \\
& =\frac{1}{2}-\frac{1}{2}\left(1-e^{x}\right)
\end{aligned}
$$

If $x>0$, we obtain:

$$
\begin{aligned}
\mathbf{G}(x) & =\frac{1}{2} e^{0}+\int_{0}^{x} \frac{1}{2} e^{-t} \mathrm{~d} t \\
& =\frac{1}{2}+\frac{1}{2}\left(1-e^{x}\right)
\end{aligned}
$$

We deduce that:

$$
\mathbf{G}(x)=\frac{1}{2}+\frac{1}{2} \operatorname{sign}(x)\left(1-e^{-x}\right)
$$

and:

$$
\mathbf{G}^{-1}(u)=-\operatorname{sign}\left(u-\frac{1}{2}\right) \ln \left(1-2\left|u-\frac{1}{2}\right|\right)
$$

To simulate the Laplace distribution, we consider the following transformation:

$$
x \leftarrow-\operatorname{sign}\left(u-\frac{1}{2}\right) \ln \left(1-2\left|u-\frac{1}{2}\right|\right)
$$

where u is a uniform random variate.
(b) We have:

$$
\begin{aligned}
h(x) & =\frac{f(x)}{g(x)} \\
& =\sqrt{\frac{2}{\pi}} e^{-0.5 x^{2}+|x|}
\end{aligned}
$$

We have:

$$
h^{\prime}(x)= \begin{cases}-(x+1) h(x) & \text { if } x<0 \\ -(x-1) h(x) & \text { if } x \geq 0\end{cases}
$$

There are two maxima: $x^{\star}= \pm 1$. We deduce that:

$$
\begin{aligned}
c & =\max (h(-1), h(1)) \\
& =\sqrt{\frac{2}{\pi}} e^{0.5} \\
& \approx 1.32
\end{aligned}
$$

The functions $f(x)$ and $c g(x)$ are reported in Figure 13.4.
(c) The acceptance-rejection algorithm becomes:
i. Generate two independent uniform random variates u_{1} and u_{2};

FIGURE 13.4: Rejection sampling applied to the normal distribution
ii. Calculate $x=\operatorname{sign}\left(u_{1}-0.5\right) \ln \left(1-2\left|u_{1}-0.5\right|\right)$;
iii. Calculate v such that:

$$
\begin{aligned}
v & =\frac{f(x)}{c g(x)} \\
& =e^{-0.5\left(x^{2}-1\right)+|x|}
\end{aligned}
$$

iv. If $u_{2} \leq v$, accept x; otherwise, reject x.
4. (a) We have:

$$
\begin{aligned}
h(x) & =\frac{f(x)}{g(x)} \\
& =\frac{\pi\left(1+x^{2}\right)}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} \\
& =\frac{\pi}{\Gamma(\alpha)}\left(x^{\alpha-1}+x^{\alpha+1}\right) e^{-x} \\
& =\frac{\pi}{\Gamma(\alpha)}\left(e^{(\alpha-1) \ln x}+e^{(\alpha+1) \ln x}\right) e^{-x}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
h(x) & \leq \frac{\pi}{\Gamma(\alpha)}\left(e^{(\alpha+1) \ln x}+e^{(\alpha+1) \ln x}\right) e^{-x} \\
& =\frac{2 \pi}{\Gamma(\alpha)} e^{(\alpha+1) \ln x} e^{-x} \\
& =\frac{2 \pi}{\Gamma(\alpha)} x^{\alpha+1} e^{-x}
\end{aligned}
$$

We have:

$$
\left(x^{\alpha+1} e^{-x}\right)^{\prime}=((\alpha+1)-x) x^{\alpha} e^{-x}
$$

The maximum is reached at the point $x^{\star}=\alpha+1$. We deduce that:

$$
c=\frac{2 \pi}{\Gamma(\alpha)}(\alpha+1)^{\alpha+1} e^{-(\alpha+1)}
$$

(b) We have:

$$
\begin{aligned}
g(x) & =\frac{\Gamma(3 / 2)}{\Gamma(1) \sqrt{2 \pi}}\left(1+\frac{x^{2}}{2}\right)^{-3 / 2} \\
& =\frac{1}{2 \sqrt{2}}\left(1+\frac{x^{2}}{2}\right)^{-3 / 2} \\
& =\left(2+x^{2}\right)^{-3 / 2}
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbf{G}(x) & =\int_{-\infty}^{x}\left(2+t^{2}\right)^{-3 / 2} \mathrm{~d} t \\
& =\left[\frac{t}{2 \sqrt{2+t^{2}}}\right]_{-\infty}^{x} \\
& =\frac{1}{2}\left(1+\frac{x}{\sqrt{2+x^{2}}}\right)
\end{aligned}
$$

We calculate the inverse function $\mathbf{G}^{-1}(u)$:

$$
\begin{aligned}
\frac{1}{2}\left(1+\frac{x}{\sqrt{2+x^{2}}}\right)=u & \Leftrightarrow \frac{x^{2}}{2+x^{2}}=(2 u-1)^{2} \\
& \Leftrightarrow x^{2}=2(2 u-1)^{2}+x^{2}(2 u-1)^{2} \\
& \Leftrightarrow x^{2}=2(2 u-1)^{2}+x^{2}(2 u-1)^{2} \\
& \Leftrightarrow x^{2}=\frac{2(2 u-1)^{2}}{\left(4 u^{2}-4 u\right)} \\
& \Leftrightarrow \mathbf{G}^{-1}(u)=\frac{\sqrt{2}(u-0.5)}{\sqrt{u^{2}-u}}
\end{aligned}
$$

It follows that we can simulate the Student t distribution with 2 degrees of freedom by using the following transformation:

$$
x \leftarrow \frac{\sqrt{2}(u-0.5)}{\sqrt{u^{2}-u}}
$$

(c) In Figure 13.5, we show the acceptance ratio $p=1 / c$ for the two algorithms. It is obvious that algorithm (b) dominates algorithm (a). In particular, the acceptance ratio tends to 0 when α tends to infinity when we use the Cauchy distribution as the proposal distribution.
5. (a) We have:

$$
\begin{aligned}
c & =\sup \frac{p(k)}{q(k)} \\
& =K \times \max p(k)
\end{aligned}
$$

FIGURE 13.5: Acceptance ratio for the Gamma distribution
(b) We obtain $c=5 \times 40 \%=2$. Therefore, the acceptance ratio is equal to 50% and we reject one simulation in two. This is confirmed by Figure 13.6, which shows the number of accepted and rejected values. However, the acceptance ratio is not the same for each states. For instance, it is equal to 100% for the state, which has the highest probability, but it can be low for states with small probabilities. In our experiment, we obtain the following results:

k	$f_{A}(k)$	$f_{A}^{\star}(k)$	$f_{R}(k)$	$f_{R}^{\star}(k)$
1	4.9%	9.7%	16.1%	32.5%
2	9.9%	19.6%	8.5%	17.1%
3	19.6%	38.9%	0.0%	0.0%
4	10.2%	20.2%	9.2%	18.5%
5	5.8%	11.5%	15.8%	31.9%
sum	50.4%	100.0%	49.6%	100.0%

where $f_{A}(k)$ and $f_{R}(k)$ are the frequencies of accepted and rejected values, and $f_{A}^{\star}(k)$ and $f_{R}^{\star}(k)$ are the normalized frequencies. We have rejected 49.6% of simulated values on average. Among these rejected values, 32.5% comes from the first state, 17.1% from the second state, etc. We also verify that the empirical frequencies $f_{A}^{\star}(k)$ are close to the theoretical probabilities $p(k)$.

FIGURE 13.6: Histogram of accepted and rejected values

13.4.4 Simulation of Archimedean copulas

1. Let f be a function. We note $y=f(x)$. We have $\mathrm{d} y=\partial_{x} f(x) \mathrm{d} x, x=f^{-1}(y)$ and $\mathrm{d} x=\partial_{y} f^{-1}(y) \mathrm{d} y$. We deduce that:

$$
\begin{aligned}
\partial_{y} f^{-1}(y) & =\frac{1}{\partial_{x} f(x)} \\
& =\frac{1}{\partial_{x} f\left(f^{-1}(y)\right)}
\end{aligned}
$$

We then obtain the conditional copula function:

$$
\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right)=\frac{\varphi^{\prime}\left(u_{1}\right)}{\varphi^{\prime}\left(\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)\right)\right)}
$$

Let v_{1} and v_{2} be two independent uniform random variates. The simulation algorithm based on the conditional distribution is:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right)=v_{2}
\end{array}\right.
$$

We deduce that:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
u_{2}=\varphi^{-1}\left(\varphi\left(\varphi^{\prime-1}\left(\frac{\varphi^{\prime}\left(v_{1}\right)}{v_{2}}\right)\right)-\varphi\left(v_{1}\right)\right)
\end{array}\right.
$$

This is the Genest-MacKay algorithm.
2. We obtain the Gumbel-Hougaard copula:

$$
\mathbf{C}\left(u_{1}, u_{2}\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)
$$

3. Using the Gumbel-Hougaard copula, we have $\varphi(u)=(-\ln u)^{\theta}, \varphi^{-1}(u)=\exp \left(-u^{1 / \theta}\right)$ and $\varphi^{\prime}(u)=-\theta u^{-1}(-\ln u)^{\theta-1}$. However, it is not possible to obtain an explicit formula for $\varphi^{\prime-1}(u)$. This is why we use a numerical solution $\psi(u)$ for $\varphi^{\prime-1}(u)$. Finally, we obtain the following simulation algorithm:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
u_{2}=\exp \left(-\left[\left(-\ln \left(\psi\left(\frac{-\theta\left(-\ln v_{1}\right)^{\theta-1}}{v_{1} v_{2}}\right)\right)\right)^{\theta}-\left(-\ln v_{1}\right)^{\theta}\right]^{1 / \theta}\right)
\end{array}\right.
$$

4. We have:

$$
\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right)=\partial_{1} \mathbf{C}\left(u_{1}, u_{2}\right)=\frac{e^{-\theta u_{1}}\left(e^{-\theta u_{2}}-1\right)}{\left(e^{-\theta}-1\right)+\left(e^{-\theta u_{1}}-1\right)\left(e^{-\theta u_{2}}-1\right)}
$$

We deduce that:

$$
\begin{aligned}
& \mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right)=v \\
\Leftrightarrow & e^{-\theta u_{1}} e^{-\theta u_{2}}-e^{-\theta u_{1}}=v e^{-\theta}-v e^{-\theta u_{1}}+v\left(e^{-\theta u_{1}}-1\right) e^{-\theta u_{2}} \\
\Leftrightarrow & e^{-\theta u_{2}}\left((1-v) e^{-\theta u_{1}}+v\right)=(1-v) e^{-\theta u_{1}}+v e^{-\theta} \\
\Leftrightarrow & u_{2}=-\frac{1}{\theta} \ln \left(1+\frac{v\left(e^{-\theta}-1\right)}{v+(1-v) e^{-\theta u_{1}}}\right)
\end{aligned}
$$

Finally, we obtain the following simulation algorithm:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
u_{2}=-\frac{1}{\theta} \ln \left(1+\frac{v_{2}\left(e^{-\theta}-1\right)}{v_{2}+\left(1-v_{2}\right) e^{-\theta v_{1}}}\right)
\end{array}\right.
$$

5. We have:

$$
\begin{aligned}
& \varphi(u)=v \\
\Leftrightarrow & \ln \frac{1-\theta(1-u)}{u}=v \\
\Leftrightarrow & 1-\theta(1-u)=u e^{v} \\
\Leftrightarrow & \varphi^{-1}(v)=u=\frac{1-\theta}{e^{v}-\theta}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)\right) & =\frac{1-\theta}{\exp \left(\ln \frac{1-\theta\left(1-u_{1}\right)}{u_{1}}+\ln \frac{1-\theta\left(1-u_{2}\right)}{u_{2}}\right)-\theta} \\
& =\frac{(1-\theta) u_{1} u_{2}}{\left(1-\theta\left(1-u_{1}\right)\right)\left(1-\theta\left(1-u_{2}\right)\right)-\theta u_{1} u_{2}}
\end{aligned}
$$

The denominator is equal to:

$$
\begin{aligned}
D & =\left(1-\theta\left(1-u_{1}\right)\right)\left(1-\theta\left(1-u_{2}\right)\right)-\theta u_{1} u_{2} \\
& =1-\theta\left(1-u_{1}\right)-\theta\left(1-u_{2}\right)+\theta^{2}\left(1-u_{1}\right)\left(1-u_{2}\right)-\theta u_{1} u_{2} \\
& =1-2 \theta+\theta u_{1}+\theta u_{2}-\theta u_{1} u_{2}+\theta^{2}\left(1-u_{1}\right)\left(1-u_{2}\right) \\
& =(1-\theta)-(1-\theta) \theta\left(1-u_{1}\right)\left(1-u_{2}\right) \\
& =(1-\theta)\left(1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right)
\end{aligned}
$$

We finally obtain:

$$
\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)\right)=\frac{u_{1} u_{2}}{1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)}
$$

The conditional copula is given by:

$$
\begin{aligned}
\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right) & =\partial_{1} \mathbf{C}\left(u_{1}, u_{2}\right) \\
& =\frac{u_{2}\left(1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right)-\theta u_{1} u_{2}\left(1-u_{2}\right)}{\left(1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right)^{2}} \\
& =\frac{(1-\theta) u_{2}+\theta u_{2}^{2}}{\left(1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)\right)^{2}} \\
& =\frac{(1-\theta) u_{2}+\theta u_{2}^{2}}{\left(1-\theta+\theta u_{1}+\theta u_{2}\left(1-u_{1}\right)\right)^{2}}
\end{aligned}
$$

To find the inverse conditional copula $\mathbf{C}_{2 \mid 1}^{-1}$, we have to solve the equation $\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right)=v$. It follows that:

$$
(1-\theta) u_{2}+\theta u_{2}^{2}=v\left(1-\theta+\theta u_{1}+\theta u_{2}\left(1-u_{1}\right)\right)^{2}
$$

or:

$$
\begin{aligned}
(1-\theta) u_{2}+\theta u_{2}^{2}= & v\left(1-\theta+\theta u_{1}\right)^{2}+ \\
& 2 \theta v u_{2}\left(1-\theta+\theta u_{1}\right)\left(1-u_{1}\right)+ \\
& v \theta^{2} u_{2}^{2}\left(1-u_{1}\right)^{2}
\end{aligned}
$$

We obtain:

$$
a_{\theta}\left(v, u_{1}\right) u_{2}^{2}+b_{\theta}\left(v, u_{1}\right) u_{2}+c_{\theta}\left(v, u_{1}\right)=0
$$

where:

$$
\begin{aligned}
a_{\theta}\left(v, u_{1}\right) & =v \theta^{2}\left(1-u_{1}\right)^{2}-\theta \\
b_{\theta}\left(v, u_{1}\right) & =2 \theta v\left(1-\theta+\theta u_{1}\right)\left(1-u_{1}\right)-(1-\theta) \leq 0 \\
c_{\theta}\left(v, u_{1}\right) & =v\left(1-\theta+\theta u_{1}\right)^{2} \geq 0
\end{aligned}
$$

We deduce that the solution is equal to:

$$
u_{2}=\Psi_{\theta}\left(v, u_{1}\right)=\frac{-b_{\theta}\left(v, u_{1}\right)-\sqrt{b_{\theta}^{2}\left(v, u_{1}\right)-4 a_{\theta}\left(v, u_{1}\right) c_{\theta}\left(v, u_{1}\right)}}{2 a_{\theta}\left(v, u_{1}\right)}
$$

Finally, we obtain the following simulation algorithm:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
u_{2}=\Psi_{\theta}\left(v_{2}, v_{1}\right)
\end{array}\right.
$$

6. Using the previous algorithms, we obtain the following simulated random vectors:

Gumbel		Frank		AMH	
$\theta=1.8$		$\theta=2.1$		$\theta=0.6$	
u_{1}	u_{2}	u_{1}	u_{2}	u_{1}	u_{2}
0.117	0.240	0.117	0.321	0.117	0.351
0.607	0.478	0.607	0.459	0.607	0.452
0.168	0.141	0.168	0.171	0.168	0.185
0.986	0.993	0.986	0.951	0.986	0.930
0.765	0.299	0.765	0.192	0.765	0.169

13.4.5 Simulation of conditional random variables

1. $Z=(X, Y)$ is a Gaussian random vector defined as follows:

$$
\binom{X}{Y} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)\right)
$$

We have:

$$
\begin{aligned}
\mu_{t} & =\mathbb{E}[T] \\
& =\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x^{\star}-\mu_{x}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\Sigma_{t t} & =\operatorname{cov}(T) \\
& =\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}
\end{aligned}
$$

It follows that:

$$
T \sim \mathcal{N}\left(\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x^{\star}-\mu_{x}\right), \Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}\right)
$$

Let $P_{t t}$ be the Cholesky decomposition of $\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}$. We have:

$$
T=\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x^{\star}-\mu_{x}\right)+P_{t t} U
$$

where $U \sim \mathcal{N}(\mathbf{0}, I)$. We deduce the following algorithm to simulate the random vector T :
(a) We simulate the vector $u=\left(u_{1}, \ldots, u_{n_{y}}\right)$ of independent Gaussian random variates $\mathcal{N}(0,1)$;
(b) We calculate $P_{t t}$ the Cholesky decomposition of $\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}$;
(c) The simulation of the random vector T is given by:

$$
t \leftarrow \mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x^{\star}-\mu_{x}\right)+P_{t t} u
$$

2. We have:

$$
\begin{aligned}
\mathbb{E}[\tilde{T}] & =\mathbb{E}\left[Y-\Sigma_{y x} \Sigma_{x x}^{-1}\left(X-x^{\star}\right)\right] \\
& =\mathbb{E}[Y]-\Sigma_{y x} \Sigma_{x x}^{-1}\left(\mathbb{E}[X]-x^{\star}\right) \\
& =\mu_{y}-\Sigma_{y x} \Sigma_{x x}^{-1}\left(\mu_{x}-x^{\star}\right)
\end{aligned}
$$

We deduce that:

$$
\tilde{T}-\mathbb{E}[\tilde{T}]=\left(Y-\mu_{y}\right)-\Sigma_{y x} \Sigma_{x x}^{-1}\left(X-\mu_{x}\right)
$$

and:

$$
\begin{aligned}
\operatorname{cov}(\tilde{T})= & \mathbb{E}\left[\left(Y-\mu_{y}\right)\left(Y-\mu_{y}\right)^{\top}\right]+ \\
& \Sigma_{y x} \Sigma_{x x}^{-1} \mathbb{E}\left[\left(X-\mu_{x}\right)\left(X-\mu_{x}\right)^{\top}\right] \Sigma_{x x}^{-1} \Sigma_{y x}^{\top}- \\
& 2 \mathbb{E}\left[\left(Y-\mu_{y}\right)\left(X-\mu_{x}\right)^{\top}\right] \Sigma_{x x}^{-1} \Sigma_{y x}^{\top} \\
= & \Sigma_{y y}+\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x x} \Sigma_{x x}^{-1} \Sigma_{x y}-2 \Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y} \\
= & \Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}
\end{aligned}
$$

As \tilde{T} is a linear transformation of the Gaussian random vector Z, we obtain:

$$
\tilde{T} \sim \mathcal{N}\left(\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x^{\star}-\mu_{x}\right), \Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}\right)
$$

We conclude that $\tilde{T}=T$. We deduce the following algorithm to simulate the random vector T :
(a) We simulate the vector $u=\left(u_{1}, \ldots, u_{n_{z}}\right)$ of independent Gaussian random variates $\mathcal{N}(0,1)$;
(b) We calculate $P_{z z}$ the Cholesky decomposition of $\Sigma_{z z}$;
(c) We simulate the random vector Z :

$$
z \leftarrow \mu_{z}+P_{z z} u
$$

(d) We set $x=\left(z_{1}, \ldots, z_{n_{x}}\right)$ and $y=\left(z_{n_{x}+1}, \ldots, z_{n_{x}+n_{y}}\right)$.
(e) The simulation of the random vector T is given by:

$$
t \leftarrow y-\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-x^{\star}\right)
$$

3. We note $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n_{z}}\right)$ and $Z_{i}\left(z_{1}, \ldots, z_{i-1}\right)=Z_{i} \mid Z_{1}=z_{1}, \ldots, Z_{i-1}=$ z_{i-1}. Let $u=\left(u_{1}, u_{2}, \ldots, u_{n_{z}}\right)$ be a vector of independent Gaussian random variates $\mathcal{N}(0,1)$. To simulate $Z_{i}\left(z_{1}, \ldots, z_{i-1}\right)$, we consider the following iteration from $i=2$ to $i=n_{z}$:

$$
\begin{gathered}
z_{i} \leftarrow \mu_{i}+\Sigma_{i, 1: i-1} \Sigma_{1: i-1,1: i-1}^{-1}\left(z_{1: i-1}-\mu_{1: i-1}\right)+ \\
\sqrt{\Sigma_{i, i}-\Sigma_{i, 1: i-1} \Sigma_{1: i-1,1: i-1}^{-1} \Sigma_{1: i-1, i}} u_{i}
\end{gathered}
$$

with:

$$
z_{1} \leftarrow \mu_{1}+\sqrt{\Sigma_{1,1}} u_{1}
$$

4. We obtain the following results:

z_{1}	-0.562	0.437	0.427	0.404	1.984
z_{2}	1.963	2.225	2.234	1.287	2.059
z_{3}	-0.808	4.013	7.643	-3.471	3.236

13.4.6 Simulation of the bivariate Normal copula

1. P is a lower triangular matrix such that we have $\Sigma=P P^{\top}$. We know that:

$$
P=\left(\begin{array}{cc}
1 & 0 \\
\rho & \sqrt{1-\rho^{2}}
\end{array}\right)
$$

We verify that:

$$
\begin{aligned}
P P^{\top} & =\left(\begin{array}{cc}
1 & 0 \\
\rho & \sqrt{1-\rho^{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & \rho \\
0 & \sqrt{1-\rho^{2}}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
\end{aligned}
$$

We deduce that:

$$
\binom{X_{1}}{X_{2}}=\left(\begin{array}{cc}
1 & 0 \\
\rho & \sqrt{1-\rho^{2}}
\end{array}\right)\binom{N_{1}}{N_{2}}
$$

where N_{1} and N_{2} are two independent standardized Gaussian random variables. Let n_{1} and n_{2} be two independent random variates, whose probability distribution is $\mathcal{N}(0,1)$. Using the Cholesky decomposition, we deduce that can simulate X in the following way:

$$
\left\{\begin{array}{l}
x_{1} \leftarrow n_{1} \\
x_{2} \leftarrow \rho n_{1}+\sqrt{1-\rho^{2}} n_{2}
\end{array}\right.
$$

2. We have

$$
\begin{aligned}
\mathbf{C}\left\langle X_{1}, X_{2}\right\rangle & =\mathbf{C}\left\langle\Phi\left(X_{1}\right), \Phi\left(X_{2}\right)\right\rangle \\
& =\mathbf{C}\left\langle U_{1}, U_{2}\right\rangle
\end{aligned}
$$

because the function $\Phi(x)$ is non-decreasing. The copula of $U=\left(U_{1}, U_{2}\right)$ is then the copula of $X=\left(X_{1}, X_{2}\right)$.
3. We deduce that we can simulate U with the following algorithm:

$$
\left\{\begin{array}{l}
u_{1} \leftarrow \Phi\left(x_{1}\right)=\Phi\left(n_{1}\right) \\
u_{2} \leftarrow \Phi\left(x_{2}\right)=\Phi\left(\rho n_{1}+\sqrt{1-\rho^{2}} n_{2}\right)
\end{array}\right.
$$

4. Let X_{3} be a Gaussian random variable, which is independent from X_{1} and X_{2}. Using the Cholesky decomposition, we know that:

$$
X_{2}=\rho X_{1}+\sqrt{1-\rho^{2}} X_{3}
$$

It follows that:

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{2} \leq x_{2} \mid X_{1}=x\right\} & =\operatorname{Pr}\left\{\rho X_{1}+\sqrt{1-\rho^{2}} X_{3} \leq x_{2} \mid X_{1}=x\right\} \\
& =\operatorname{Pr}\left\{X_{3} \leq \frac{x_{2}-\rho x}{\sqrt{1-\rho^{2}}}\right\} \\
& =\Phi\left(\frac{x_{2}-\rho x}{\sqrt{1-\rho^{2}}}\right)
\end{aligned}
$$

Then we deduce that:

$$
\begin{aligned}
\Phi_{2}\left(x_{1}, x_{2} ; \rho\right) & =\operatorname{Pr}\left\{X_{1} \leq x_{1}, X_{2} \leq x_{2}\right\} \\
& =\operatorname{Pr}\left\{X_{1} \leq x_{1}, X_{3} \leq \frac{x_{2}-\rho X_{1}}{\sqrt{1-\rho^{2}}}\right\} \\
& =\mathbb{E}\left[\operatorname{Pr}\left\{X_{1} \leq x_{1}, \left.X_{3} \leq \frac{x_{2}-\rho X_{1}}{\sqrt{1-\rho^{2}}} \right\rvert\, X_{1}\right\}\right] \\
& =\int_{-\infty}^{x_{1}} \Phi\left(\frac{x_{2}-\rho x}{\sqrt{1-\rho^{2}}}\right) \phi(x) \mathrm{d} x
\end{aligned}
$$

5. Using the relationships $u_{1}=\Phi\left(x_{1}\right), u_{2}=\Phi\left(x_{2}\right)$ and $\Phi_{2}\left(x_{1}, x_{2} ; \rho\right)=$ $\mathbf{C}\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right) ; \rho\right)$, we obtain:

$$
\begin{aligned}
\mathbf{C}\left(u_{1}, u_{2} ; \rho\right) & =\int_{-\infty}^{\Phi^{-1}\left(u_{1}\right)} \Phi\left(\frac{\Phi^{-1}\left(u_{2}\right)-\rho x}{\sqrt{1-\rho^{2}}}\right) \phi(x) \mathrm{d} x \\
& =\int_{0}^{u_{1}} \Phi\left(\frac{\Phi^{-1}\left(u_{2}\right)-\rho \Phi^{-1}(u)}{\sqrt{1-\rho^{2}}}\right) \mathrm{d} u
\end{aligned}
$$

6. We have:

$$
\begin{aligned}
\mathbf{C}_{2 \mid 1}\left(u_{2} \mid u_{1}\right) & =\partial_{u_{1}} \mathbf{C}\left(u_{1}, u_{2}\right) \\
& =\Phi\left(\frac{\Phi^{-1}\left(u_{2}\right)-\rho \Phi^{-1}\left(u_{1}\right)}{\sqrt{1-\rho^{2}}}\right)
\end{aligned}
$$

Let v_{1} and v_{2} be two independent uniform random variates. The simulation algorithm corresponds to the following steps:

$$
\left\{\begin{array}{l}
u_{1}=v_{1} \\
\mathbf{C}_{2 \mid 1}\left(u_{1}, u_{2}\right)=v_{2}
\end{array}\right.
$$

We deduce that:

$$
\left\{\begin{array}{l}
u_{1} \leftarrow v_{1} \\
u_{2} \leftarrow \Phi\left(\rho \Phi^{-1}\left(v_{1}\right)+\sqrt{1-\rho^{2}} \Phi^{-1}\left(v_{2}\right)\right)
\end{array}\right.
$$

7. We obtain the same algorithm, because we have the following correspondence:

$$
\left\{\begin{array}{l}
v_{1}=\Phi\left(n_{1}\right) \\
v_{2}=\Phi\left(n_{2}\right)
\end{array}\right.
$$

The algorithm described in Question 6 is then a special case of the Cholesky algorithm if we take $n_{1}=\Phi^{-1}\left(v_{1}\right)$ and $n_{2}=\Phi^{-1}\left(v_{2}\right)$. Whereas n_{1} and n_{2} are directly simulated in the Cholesky algorithm with a Gaussian random generator, they are simulated using the inverse transform in the conditional distribution method.

13.4.7 Computing the capital charge for operational risk

1. We obtain the following results:

α	$\mathbb{E}\left[\widehat{\mathrm{CaR}}_{1}(\alpha)\right]$	$\sigma\left(\widehat{\mathrm{CaR}}_{1}(\alpha)\right)$	$\mathrm{IC}_{95 \%}\left(\widehat{\mathrm{CaR}}_{1}(\alpha)\right)$
90%	251660	180	0.28%
95%	294030	280	0.37%
99%	414810	885	0.84%
99.9%	708840	5410	2.99%

where $\mathrm{IC}_{95 \%}\left(\widehat{\mathrm{CaR}}_{1}(\alpha)\right)$ is the 95% confidence interval ratio:

$$
\underset{95 \%}{\mathrm{IC}}\left(\widehat{\mathrm{CaR}}_{1}(\alpha)\right)=2 \times \Phi^{-1}(97.5 \%) \times \frac{\sigma\left(\widehat{\mathrm{CaR}}_{1}(\alpha)\right)}{\mathbb{E}\left[\widehat{\mathrm{CaR}}_{1}(\alpha)\right]}
$$

Because this ratio is lower than 5%, we conclude that one million of simulations is sufficient even if α is equal to 99.9%.
2. The results become:

α	$\mathbb{E}\left[\widehat{\mathrm{CaR}}_{2}(\alpha)\right]$	$\sigma\left(\widehat{\mathrm{CaR}}_{2}(\alpha)\right)$	$\mathrm{IC}_{95 \%}\left(\widehat{\mathrm{CaR}}_{2}(\alpha)\right)$
90%	183560	128	0.27%
95%	218950	223	0.40%
99%	332870	916	1.08%
99.9%	662420	6397	3.79%

We conclude that one million of simulations is sufficient to calculate the capital-at-risk.

FIGURE 13.7: probability density function of $\ln \left(S_{1}+S_{2}\right)$
3. In Figure 13.7, we have represented the probability density function of $\ln \left(S_{1}+S_{2}\right)$ when the aggregate losses S_{1} and S_{2} are independent (copula \mathbf{C}^{\perp}) and perfectly dependent (copula \mathbf{C}^{+}). We obtain the following capital-at-risk:

α	\mathbf{C}^{\perp}	\mathbf{C}^{+}	DR $\left(\mathbf{C}^{\perp} \mid \mathbf{C}^{+}\right)$
90%	400240	435220	8.04%
95%	453864	512980	11.52%
99%	605927	747680	18.96%
99.9%	993535	1371260	27.55%

where $\operatorname{DR}\left(\mathbf{C}^{\perp} \mid \mathbf{C}^{+}\right)$is the diversification ratio.
4. In Figure 13.8, we have reported the capital-at-risk calculated with the Normal copula and the Gaussian approximation defined as:

$$
\begin{aligned}
\widehat{\mathrm{CaR}}(\alpha)= & \bar{S}_{1}+\bar{S}_{2}+\sqrt{\left(\widehat{\mathrm{CaR}}_{1}(\alpha)-\bar{S}_{1}\right)^{2}+\left(\widehat{\mathrm{CaR}}_{2}(\alpha)-\bar{S}_{2}\right)^{2}+\ldots} \\
& \ldots+2 \rho\left(\widehat{\mathrm{CaR}}_{1}(\alpha)-\bar{S}_{1}\right)\left(\widehat{\mathrm{CaR}}_{2}(\alpha)-\bar{S}_{2}\right)
\end{aligned}
$$

5. Results are given in Figure 13.9.
6. Results are given in Figure 13.10.
7. For a high value of the quantile $(\alpha=99.9 \%)$, the Gaussian approximation overestimates (resp. underestimates) the capital-at-risk when the dependence function is the Normal (resp. t_{1}) copula. We obtain this result, because the Student t_{1} copula produces strong dependence when the correlation parameter ρ is equal to zero. We conclude that the Gaussian approximation is good in this example, except if the copula function highly correlates the extreme losses.

FIGURE 13.8: Capital-at-risk with the Normal copula

FIGURE 13.9: Capital-at-risk with the t_{4} copula

FIGURE 13.10: Capital-at-risk with the t_{1} copula

13.4.8 Simulating a Brownian bridge

1. We remind that:

$$
\mathbb{E}[W(s) W(t)]=\min (s, t)
$$

We deduce that:

$$
\left(\begin{array}{c}
W(s) \\
W(t) \\
W(u)
\end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{ccc}
s & s & s \\
s & t & t \\
s & t & u
\end{array}\right)\right)
$$

2. We rearrange the terms of the random vector in the following way:

$$
\left(\begin{array}{l}
W(s) \\
W(u) \\
W(t)
\end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
s & s & s \\
s & u & t \\
s & t & t
\end{array}\right)\right)
$$

We note:

$$
B(t)=\left\{W(t) \mid W(s)=w_{s}, W(u)=w_{u}\right\}
$$

We know that the conditional distribution of $W(t)$ given that $W(s)=w_{s}$ and $W(u)=$ w_{u} is Gaussian with:

$$
\begin{aligned}
\mathbb{E}[B(t)] & =0+\left(\begin{array}{cc}
s & t
\end{array}\right)\left(\begin{array}{cc}
s & s \\
s & u
\end{array}\right)^{-1}\left(\binom{w_{s}}{w_{u}}-\binom{0}{0}\right) \\
& =\frac{u-t}{u-s} w_{s}+\frac{t-s}{u-s} w_{u}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}(B(t)) & =t-\left(\begin{array}{ll}
s & t
\end{array}\right)\left(\begin{array}{ll}
s & s \\
s & u
\end{array}\right)^{-1}\binom{s}{t} \\
& =\frac{(t-s)(u-t)}{u-s}
\end{aligned}
$$

3. We deduce that:

$$
B(t)=\frac{u-t}{u-s} w_{s}+\frac{t-s}{u-s} w_{u}+\sqrt{\frac{(t-s)(u-t)}{u-s}} \varepsilon
$$

where ε is a standard Gaussian random variable. To simulate $B(t)$, we then use the iterative algorithm based on filling the path and moving the starting point ($s, B(s)$) at each iteration.

13.4.9 Optimal importance sampling

1. Let X be a random variate from the distribution $\mathcal{N}(0,1)$. We have $\hat{p}_{\mathrm{MC}}=\varphi(X)$ where $\varphi=\mathbb{1}\{X \geq c\}$. We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[\hat{p}_{\mathrm{MC}}\right] & =\mathbb{E}[\varphi(X)] \\
& =\int_{-\infty}^{\infty} \mathbb{1}\{x \geq c\} \phi(x) \mathrm{d} x \\
& =\int_{c}^{\infty} \phi(x) \mathrm{d} x \\
& =1-\Phi(c) \\
& =p
\end{aligned}
$$

Recall that $\operatorname{var}\left(\hat{p}_{\mathrm{MC}}\right)=\mathbb{E}\left[\hat{p}_{\mathrm{MC}}^{2}\right]-\mathbb{E}^{2}\left[\hat{p}_{\mathrm{MC}}\right]$. We have ${ }^{1}$:

$$
\begin{aligned}
\mathbb{E}\left[\hat{p}_{\mathrm{MC}}^{2}\right] & =\int_{-\infty}^{\infty} \varphi^{2}(x) \phi(x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \mathbb{1}\{x \geq c\} \phi(x) \mathrm{d} x \\
& =p
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\operatorname{var}\left(\hat{p}_{\mathrm{MC}}\right) & =p-p^{2} \\
& =p(1-p) \\
& =\Phi(c)(1-\Phi(c))
\end{aligned}
$$

We notice that \hat{p}_{MC} is a Bernoulli random variable $\mathcal{B}(\Phi(c))$.
2. We note Z the random variate from the distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$. We have:

$$
\hat{p}_{\mathrm{IS}}=\varphi(Z) \mathcal{L}(Z)
$$

[^44]where $\mathcal{L}(Z)$ is the likelihood ratio:
\[

$$
\begin{aligned}
\mathcal{L}(Z) & =\frac{f(Z)}{g(Z)} \\
& =\frac{\phi(Z)}{\frac{1}{\sigma} \phi\left(\frac{Z-\mu}{\sigma}\right)} \\
& =\sigma \exp \left(\frac{1}{2}\left(\frac{Z-\mu}{\sigma}\right)^{2}-\frac{1}{2} Z^{2}\right)
\end{aligned}
$$
\]

It follows that:

$$
\hat{p}_{\mathrm{IS}}=\mathbb{1}\{Z \geq c\} \sigma e^{\frac{1}{2}\left(\frac{Z-\mu}{\sigma}\right)^{2}-\frac{1}{2} Z^{2}}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[\hat{p}_{\mathrm{IS}}\right] & =\mathbb{E}\left[\mathbb{1}\{Z \geq c\} \sigma e^{\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}-\frac{1}{2} Z^{2}}\right] \\
& =\int_{-\infty}^{\infty} \mathbb{1}\{z \geq c\} e^{\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}-\frac{1}{2} z^{2}} \phi\left(\frac{z-\mu}{\sigma}\right) \mathrm{d} z \\
& =\int_{c}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathrm{~d} z \\
& =1-\Phi(c) \\
& =p
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[\hat{p}_{\mathrm{IS}}^{2}\right] & =\mathbb{E}\left[\mathbb{1}\{Z \geq c\} \sigma^{2} e^{\left(\frac{z-\mu}{\sigma}\right)^{2}-Z^{2}}\right] \\
& =\int_{c}^{\infty} \frac{\sigma}{\sqrt{2 \pi}} e^{\left(\frac{z-\mu}{\sigma}\right)^{2}-z^{2}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}} \mathrm{~d} z \\
& =\int_{c}^{\infty} \frac{\sigma}{\sqrt{2 \pi}} e^{\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}-z^{2}} \mathrm{~d} z
\end{aligned}
$$

We have:

$$
\begin{aligned}
\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}-z^{2} & =\frac{z^{2}-2 \mu z+\mu^{2}-2 \sigma^{2} z^{2}}{2 \sigma^{2}} \\
& =\left(\frac{1-2 \sigma^{2}}{2 \sigma^{2}}\right)\left(z^{2}-\frac{2 \mu}{1-2 \sigma^{2}} z+\frac{\mu^{2}}{1-2 \sigma^{2}}\right) \\
& =\left(\frac{1-2 \sigma^{2}}{2 \sigma^{2}}\right)\left(\left(z-\frac{\mu}{1-2 \sigma^{2}}\right)^{2}-2 \frac{\mu^{2} \sigma^{2}}{\left(1-2 \sigma^{2}\right)^{2}}\right) \\
& =\left(\frac{1-2 \sigma^{2}}{2 \sigma^{2}}\right)\left(z-\frac{\mu}{1-2 \sigma^{2}}\right)^{2}-\frac{\mu^{2}}{1-2 \sigma^{2}}
\end{aligned}
$$

We note ${ }^{2}$:

$$
\tilde{\mu}=\frac{\mu}{1-2 \sigma^{2}}
$$

and

$$
\tilde{\sigma}=\frac{\sigma}{\sqrt{2 \sigma^{2}-1}}
$$

[^45]It follows that:

$$
\begin{aligned}
\mathbb{E}\left[\hat{p}_{\mathrm{IS}}^{2}\right] & =e^{-\frac{\mu^{2}}{1-2 \sigma^{2}}} \int_{c}^{\infty} \frac{\sigma}{\sqrt{2 \pi}} e^{\left(\frac{1-2 \sigma^{2}}{2 \sigma^{2}}\right)\left(z-\frac{\mu}{1-2 \sigma^{2}}\right)^{2}} \mathrm{~d} z \\
& =e^{-\frac{\mu^{2}}{1-2 \sigma^{2}}} \int_{c}^{\infty} \frac{\sigma \tilde{\sigma}}{\tilde{\sigma} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{z-\tilde{\mu}}{\tilde{\sigma}}\right)^{2}} \mathrm{~d} z \\
& =\frac{\sigma^{2}}{\sqrt{2 \sigma^{2}-1}} e^{-\frac{\mu^{2}}{1-2 \sigma^{2}}} \int_{c}^{\infty} \frac{1}{\tilde{\sigma} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{z-\tilde{\mu}}{\tilde{\sigma}}\right)^{2}} \mathrm{~d} z \\
& =\frac{\sigma^{2}}{\sqrt{2 \sigma^{2}-1}} e^{-\frac{\mu^{2}}{1-2 \sigma^{2}}}\left(1-\Phi\left(\frac{c-\tilde{\mu}}{\tilde{\sigma}}\right)\right)
\end{aligned}
$$

We conclude that ${ }^{3}$:

$$
\operatorname{var}\left(\hat{p}_{\mathrm{IS}}\right)=\frac{\sigma^{2}}{\sqrt{2 \sigma^{2}-1}} e^{-\frac{\mu^{2}}{1-2 \sigma^{2}}}\left(1-\Phi\left(\frac{c\left(2 \sigma^{2}-1\right)+\mu}{\sigma \sqrt{2 \sigma^{2}-1}}\right)\right)-(1-\Phi(c))^{2}
$$

The probability distribution of $\hat{p}_{\text {IS }}$ is no longer a Bernoulli distribution.
3. We have $\operatorname{var}\left(\hat{p}_{\mathrm{MC}}\right)=13.48 \times 10^{-4}$. In Figure 13.11 , we report the relationship between μ and $\operatorname{var}\left(\hat{p}_{\text {IS }}\right)$ for different values of σ. We find that the minimum value is approximately obtained for the same value of μ :

σ	μ^{\star}	$\operatorname{var}\left(\hat{p}_{\text {IS }}\right) \times 10^{-4}$	$\operatorname{var}\left(\hat{p}_{\text {IS }}\right) / \operatorname{var}\left(\hat{p}_{\mathrm{MC}}\right)$
0.80	3.158	0.05	0.34%
1.00	3.154	0.06	0.45%
2.00	3.151	0.14	1.03%
3.00	3.151	0.22	1.60%

Therefore, we can make the hypothesis that the optimal value of μ does not highly depend on the parameter σ.
4. When σ is equal to 1 , we obtain:

$$
\operatorname{var}\left(\hat{p}_{\mathrm{IS}}\right)=e^{\mu^{2}}(1-\Phi(c+\mu))-(1-\Phi(c))^{2}
$$

The IS scheme is optimal if the variance $\operatorname{var}\left(\hat{p}_{\text {IS }}\right)$ is minimum. The first-order condition is then:

$$
\frac{\partial \operatorname{var}\left(\hat{p}_{\mathrm{IS}}\right)}{\partial \mu}=2 \mu e^{\mu^{2}}(1-\Phi(c+\mu))-e^{\mu^{2}} \phi(c+\mu)=0
$$

We deduce that the optimal value μ^{\star} satisfies the following nonlinear equation:

$$
2 \mu^{\star}\left(1-\Phi\left(c+\mu^{\star}\right)\right)=\phi\left(c+\mu^{\star}\right)
$$

In Figure 13.12, we draw the relationship between c and μ^{\star}. We notice that:

$$
\lim _{c \rightarrow \infty} \mu^{\star}=c
$$

We can then consider $\mu=c$. In Figure 13.12, we also report the variance ratio $\operatorname{var}\left(\hat{p}_{\mathrm{IS}}\right) / \operatorname{var}\left(\hat{p}_{\mathrm{MC}}\right)$ for the two schemes $\mu=\mu^{\star}$ and $\mu=c$. We conclude that we obtain similar variance reduction with the heuristic scheme when $c>1$.

[^46]

FIGURE 13.11: Variance of the IS estimator $\hat{p}_{\text {IS }}\left(\times 10^{4}\right)$

FIGURE 13.12: Optimal value μ^{\star} with respect to c

Chapter 14

Stress Testing and Scenario Analysis

14.3.1 Construction of a stress scenario with the GEV distribution

1. We recall that:

$$
\begin{aligned}
\operatorname{Pr}\left\{\frac{X_{n: n}-b_{n}}{a_{n}} \leq x\right\} & =\operatorname{Pr}\left\{X_{n: n} \leq a_{n} x+b_{n}\right\} \\
& =\mathbf{F}^{n}\left(a_{n} x+b_{n}\right)
\end{aligned}
$$

and:

$$
\mathbf{G}(x)=\lim _{n \rightarrow \infty} \mathbf{F}^{n}\left(a_{n} x+b_{n}\right)
$$

(a) We have:

$$
\begin{aligned}
\mathbf{F}^{n}\left(a_{n} x+b_{n}\right) & =\left(1-e^{-\lambda\left(\lambda^{-1} x+\lambda^{-1} \ln n\right)}\right)^{n} \\
& =\left(1-\frac{1}{n} e^{-x}\right)^{n}
\end{aligned}
$$

We deduce that:

$$
\mathbf{G}(x)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n} e^{-x}\right)^{n}=e^{-e^{-x}}=\boldsymbol{\Lambda}(x)
$$

(b) We have:

$$
\begin{aligned}
\mathbf{F}^{n}\left(a_{n} x+b_{n}\right) & =\left(n^{-1} x+1-n^{-1}\right)^{n} \\
& =\left(1+\frac{1}{n}(x-1)\right)^{n}
\end{aligned}
$$

We deduce that:

$$
\mathbf{G}(x)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}(x-1)\right)^{n}=e^{x-1}=\mathbf{\Psi}_{1}(x-1)
$$

(c) We have:

$$
\begin{aligned}
\mathbf{F}^{n}\left(a_{n} x+b_{n}\right) & =\left(1-\left(\frac{\theta}{\theta+\theta \alpha^{-1} n^{1 / \alpha} x+\theta n^{1 / \alpha}-\theta}\right)^{\alpha}\right)^{n} \\
& =\left(1-\left(\frac{1}{\alpha^{-1} n^{1 / \alpha} x+n^{1 / \alpha}}\right)^{\alpha}\right)^{n} \\
& =\left(1-\frac{1}{n}\left(1+\frac{x}{\alpha}\right)^{-\alpha}\right)^{n}
\end{aligned}
$$

We deduce that:

$$
\mathbf{G}(x)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\left(1+\frac{x}{\alpha}\right)^{-\alpha}\right)^{n}=e^{-\left(1+\frac{x}{\alpha}\right)^{-\alpha}}=\boldsymbol{\Phi}_{\alpha}\left(1+\frac{x}{\alpha}\right)
$$

2. The GEV distribution encompasses the three EV probability distributions. This is an interesting property, because we have not to choose between the three EV distributions. We have:

$$
g(x)=\frac{1}{\sigma}\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-\left(\frac{1+\xi}{\xi}\right)} \exp \left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}\right\}
$$

We deduce that:

$$
\begin{aligned}
\ell= & -\frac{n}{2} \ln \sigma^{2}-\left(\frac{1+\xi}{\xi}\right) \sum_{i=1}^{n} \ln \left(1+\xi\left(\frac{x_{i}-\mu}{\sigma}\right)\right)- \\
& \sum_{i=1}^{n}\left[1+\xi\left(\frac{x_{i}-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}
\end{aligned}
$$

3. We notice that:

$$
\lim _{\xi \rightarrow 0}(1+\xi x)^{-1 / \xi}=e^{-x}
$$

Then we obtain:

$$
\begin{aligned}
\lim _{\xi \rightarrow 0} \mathbf{G}(x) & =\lim _{\xi \rightarrow 0} \exp \left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1 / \xi}\right\} \\
& =\exp \left\{-\lim _{\xi \rightarrow 0}\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1 / \xi}\right\} \\
& =\exp \left(-\exp \left(-\left(\frac{x-\mu}{\sigma}\right)\right)\right)
\end{aligned}
$$

4. (a) We have:

$$
\mathbf{G}^{-1}(\alpha)=\mu-\sigma \xi^{-1}\left[1-(-\ln \alpha)^{-\xi}\right]
$$

When the parameter ξ is equal to 1 , we obtain:

$$
\mathbf{G}^{-1}(\alpha)=\mu-\sigma\left(1-(-\ln \alpha)^{-1}\right)
$$

By definition, we have $\mathcal{T}=(1-\alpha)^{-1} n$. The return period \mathcal{T} is then associate to the confidence level $\alpha=1-n / \mathcal{T}$. We deduce that:

$$
\begin{aligned}
R(\mathcal{T}) & \approx-\mathbf{G}^{-1}(1-n / \mathfrak{t}) \\
& =-\left(\mu-\sigma\left(1-(-\ln (1-n / \mathcal{T}))^{-1}\right)\right) \\
& =-\left(\mu+\left(\frac{\mathcal{T}}{n}-1\right) \sigma\right)
\end{aligned}
$$

We then replace μ and σ by their ML estimates $\hat{\mu}$ and $\hat{\sigma}$.
(b) For Portfolio \#1, we obtain:

$$
r(1 \mathrm{Y})=-\left(1 \%+\left(\frac{252}{21}-1\right) \times 3 \%\right)=-34 \%
$$

For Portfolio \#2, the stress scenario is equal to:

$$
r(1 \mathrm{Y})=-\left(10 \%+\left(\frac{252}{21}-1\right) \times 2 \%\right)=-32 \%
$$

We conclude that Portfolio $\# 1$ is more risky than Portfolio $\# 2$ if we consider a stress scenario analysis.

14.3.2 Conditional expectation and linearity

1. Using the conditional distribution theorem, we have:

$$
\left(\frac{Y-\mu_{y}}{\sigma_{y}}\right)=\rho_{x y}\left(\frac{X-\mu_{x}}{\sigma_{x}}\right)+\sqrt{1-\rho_{x y}^{2}} U
$$

where $U \sim \mathcal{N}(0,1)$. It follows that:

$$
Y=\left(\mu_{y}-\rho_{x y} \frac{\sigma_{y}}{\sigma_{x}} \mu_{x}\right)+\rho_{x y} \frac{\sigma_{y}}{\sigma_{x}} X+\sigma_{y} \sqrt{1-\rho_{x y}^{2}} U
$$

We deduce that:

$$
\left\{\begin{array}{l}
\beta_{0}=\mu_{y}-\frac{\rho_{x y} \sigma_{y}}{\sigma_{x}} \mu_{x} \\
\beta=\frac{\rho_{x y}}{\sigma_{x}} \\
\sigma=\sigma_{y} \sqrt{1-\rho_{x y}^{2}}
\end{array}\right.
$$

2. We have:

$$
\begin{aligned}
m(x) & =\mathbb{E}[Y \mid X=x] \\
& =\mathbb{E}\left[\beta_{0}+\beta X+\sigma U \mid X=x\right] \\
& =\beta_{0}+\beta x+\sigma \mathbb{E}[U \mid X=x] \\
& =\beta_{0}+\beta x
\end{aligned}
$$

because U and X are independent.
3. Since we have $Y=\beta_{0}+\beta X+\sigma U$, we deduce that:

$$
\begin{aligned}
\tilde{Y} & =e^{Y} \\
& =e^{\beta_{0}+\beta X+\sigma U} \\
& =e^{\beta_{0}} \tilde{X}^{\beta} \tilde{U}^{\sigma}
\end{aligned}
$$

where $\tilde{U}=e^{U} \sim \mathcal{L} \mathcal{N}(0,1)$. It follows that:

$$
\begin{aligned}
\tilde{m}(x) & =\mathbb{E}[\tilde{Y} \mid \tilde{X}=x] \\
& =e^{\beta_{0}} x^{\beta} \mathbb{E}\left[\tilde{U}^{\sigma}\right] \\
& =e^{\beta_{0}+\frac{1}{2} \sigma^{2}} x^{\beta}
\end{aligned}
$$

because we have $\mathbb{E}\left[\tilde{U}^{\sigma}\right]=\mathbb{E}\left[e^{\sigma U}\right]=e^{\frac{1}{2} \sigma^{2}}$. Finally, we obtain:

$$
\begin{aligned}
\tilde{m}(x) & =\exp \left(\beta_{0}+\frac{1}{2} \sigma^{2}\right) \cdot x^{\beta} \\
& =\exp \left(\mu_{y}-\frac{\rho_{x y} \sigma_{y}}{\sigma_{x}} \mu_{x}+\frac{1}{2} \sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)\right) \cdot x^{\frac{\rho_{x y} \sigma_{y}}{\sigma_{x}}}
\end{aligned}
$$

4. In the Gaussian case, we notice that the conditional expectation is a linear function. This is not the case for the lognormal case. The use of ordinary least squares to compute a conditional stress scenario assumes that the distribution of risk factors are Gaussian.

14.3.3 Conditional quantile and linearity

1. Using the conditional distribution theorem, we know that:

$$
\mathbf{F}(y \mid X=x)=\mathcal{N}\left(\mu_{y \mid x}, \Sigma_{y y \mid x}\right)
$$

where:

$$
\mu_{y \mid x}=\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-\mu_{x}\right)
$$

and:

$$
\Sigma_{y y \mid x}=\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}
$$

We deduce that:

$$
q_{\alpha}(x)=\mu_{y \mid x}+\Phi^{-1}(\alpha) \sqrt{\Sigma_{y y \mid x}}
$$

2. We have:

$$
\begin{aligned}
q_{\alpha}(x) & =\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-\mu_{x}\right)+\Phi^{-1}(\alpha) \sqrt{\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}} \\
& =\beta_{0}(\alpha)+\beta^{\top} x
\end{aligned}
$$

where:

$$
\beta_{0}(\alpha)=\mu_{y}-\Sigma_{y x} \Sigma_{x x}^{-1} \mu_{x}+\Phi^{-1}(\alpha) \sqrt{\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}}
$$

and:

$$
\beta=\Sigma_{x x}^{-1} \Sigma_{x y}
$$

3. We reiterate that the conditional expectation is:

$$
m(x)=\beta_{0}+\beta^{\top} x
$$

where:

$$
\beta_{0}=\mu_{y}-\Sigma_{y x} \Sigma_{x x}^{-1} \mu_{x}
$$

and:

$$
\beta=\Sigma_{x x}^{-1} \Sigma_{x y}
$$

It follows that linear regression and quantile regression produce the same estimate β, but not the same intercept. Indeed, we have:

$$
\beta_{0}(\alpha)=\beta_{0}+\Phi^{-1}(\alpha) \sqrt{\Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}}
$$

If $\alpha>50 \%$, the intercept of the quantile regression is larger than the intercept of the linear regression:

$$
\begin{cases}\beta_{0}(\alpha)>\beta_{0} & \text { If } \alpha>50 \% \\ \beta_{0}(\alpha)=\beta_{0} & \text { If } \alpha=50 \% \\ \beta_{0}(\alpha)<\beta_{0} & \text { If } \alpha<50 \%\end{cases}
$$

We conclude that the median regression coincides with the linear regression if (X, Y) is Gaussian.
4. We know that $Z=\Phi^{-1}\left(\mathbf{F}_{\tau}(\tau)\right) \sim \mathcal{N}(0,1)$. It follows that (X, Z) is Gaussian. The expression of the conditional quantile of Z is then:

$$
q_{\alpha}^{Z}(x)=\beta_{0}(\alpha)+\beta^{\top} x
$$

Since we have $Z=\Phi^{-1}\left(1-e^{-\lambda \tau}\right)$ and:

$$
\tau=-\frac{\ln (1-\Phi(Z))}{\lambda}
$$

we conclude that the conditional quantile of the default time is:

$$
q_{\alpha}^{\tau}(x)=-\frac{\ln \left(1-\Phi\left(\beta_{0}(\alpha)+\beta^{\top} x\right)\right)}{\lambda}
$$

5. By definition, we have $\mathrm{PD}=\mathbf{F}_{\tau}(\tau)$. We deduce that:

$$
q_{\alpha}^{\mathrm{PD}}(x)=\Phi\left(\beta_{0}(\alpha)+\beta^{\top} x\right)
$$

6. By construction, ρ is the correlation between $Z=\Phi^{-1}\left(\mathbf{F}_{\tau}(\tau)\right)$ and X. We note μ_{z} and $\Sigma_{z z}=\sigma_{z}^{2}$ the mean and variance of Z. Since, we have $\Sigma_{x z}=\rho \sigma_{x} \sigma_{z}$, we deduce that:

$$
\begin{aligned}
\beta_{0}(\alpha) & =\mu_{z}-\Sigma_{z x} \Sigma_{x x}^{-1} \mu_{x}+\Phi^{-1}(\alpha) \sqrt{\Sigma_{z z}-\Sigma_{z x} \Sigma_{x x}^{-1} \Sigma_{x z}} \\
& =\mu_{z}-\rho \frac{\sigma_{z}}{\sigma_{x}} \mu_{x}+\Phi^{-1}(\alpha) \sqrt{\sigma_{z}^{2}-\frac{\left(\rho \sigma_{x} \sigma_{z}\right)^{2}}{\sigma_{x}^{2}}} \\
& =\mu_{z}-\rho \frac{\sigma_{z}}{\sigma_{x}} \mu_{x}+\Phi^{-1}(\alpha) \sigma_{z} \sqrt{1-\rho^{2}}
\end{aligned}
$$

and:

$$
\begin{aligned}
\beta & =\Sigma_{x x}^{-1} \Sigma_{x z} \\
& =\frac{\rho \sigma_{x} \sigma_{z}}{\sigma_{x}^{2}} \\
& =\rho \frac{\sigma_{z}}{\sigma_{x}}
\end{aligned}
$$

Because ${ }^{1} \mu_{z}=0$ and $\sigma_{z}=1$, we finally obtain:

$$
\begin{aligned}
q_{\alpha}^{\mathrm{PD}}(x) & =\Phi\left(\beta_{0}(\alpha)+\beta^{\top} x\right) \\
& =\Phi\left(\mu_{z}+\rho \frac{\sigma_{z}}{\sigma_{x}}\left(x-\mu_{x}\right)+\Phi^{-1}(\alpha) \sigma_{z} \sqrt{1-\rho^{2}}\right) \\
& =\Phi\left(\Phi^{-1}(\alpha) \sqrt{1-\rho^{2}}+\rho \frac{\left(x-\mu_{x}\right)}{\sigma_{x}}\right)
\end{aligned}
$$

7. We observe that the conditional quantile of the default probability is not linear with respect to the risk factor X. However, we notice that $\Phi^{-1}\left(q_{\alpha}^{\mathrm{PD}}(x)\right)$ is a linear function of X. This is why we may use the following quantile regression in order to stress the default probability:

$$
\Phi^{-1}(\mathrm{PD})=\beta_{0}+\beta^{\top} X+U
$$

where X is a set of risk factors.

[^47]

Chapter 15

Credit Scoring Models

15.4.1 Elastic net regression

1. (a) Let $f(\beta)$ be the objective function. We have:

$$
\begin{aligned}
f(\beta) & =\frac{1}{2}(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)+\frac{\lambda}{2} \sum_{k=1}^{K} \beta_{k}^{2} \\
& =\frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\frac{1}{2} \mathbf{Y}^{\top} \mathbf{Y}+\frac{\lambda}{2} \beta^{\top} \beta \\
& =\frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right) \beta-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\frac{1}{2} \mathbf{Y}^{\top} \mathbf{Y}
\end{aligned}
$$

We deduce that:

$$
\frac{\partial f(\beta)}{\partial \beta}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right) \beta-\mathbf{X}^{\top} \mathbf{Y}
$$

The first order condition $\partial_{\beta} f(\beta)=\mathbf{0}$ implies that:

$$
\hat{\beta}^{\text {ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

(b) We recall that $\hat{\beta}^{\text {ols }}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$. We deduce that:

$$
\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right) \hat{\beta}^{\text {ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}\right) \hat{\beta}^{\mathrm{ols}}=\mathbf{X}^{\top} \mathbf{Y}
$$

and:

$$
\begin{align*}
\hat{\beta}^{\text {ridge }} & =\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \hat{\beta}^{\mathrm{ols}} \\
& =\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)\right)^{-1} \hat{\beta}^{\mathrm{ols}} \\
& =\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \hat{\beta}^{\mathrm{ols}} \tag{15.1}
\end{align*}
$$

(c) It follows that:

$$
\begin{aligned}
\mathbb{E}\left[\hat{\beta}^{\text {ridge }}\right] & =\mathbb{E}\left[\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \hat{\beta}^{\text {ols }}\right] \\
& =\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \beta
\end{aligned}
$$

where β is the true value. If $\mathbb{E}\left[\hat{\beta}^{\text {ridge }}\right]=\beta$, we obtain:

$$
\begin{aligned}
\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1}=I_{K} & \Leftrightarrow I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=I_{K} \\
& \Leftrightarrow \lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\mathbf{0} \\
& \Leftrightarrow \lambda=0
\end{aligned}
$$

(d) From Equation (15.1), we deduce that:

$$
\begin{aligned}
\operatorname{var}\left(\hat{\beta}^{\text {ridge }}\right) & =\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \operatorname{var}\left(\hat{\beta}^{\mathrm{ols}}\right)\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \\
& =\sigma^{2}\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1}\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)^{-1} \\
& =\sigma^{2}\left(\left(I_{K}+\lambda\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}+2 \lambda I_{K}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}+Q\right)^{-1}
\end{aligned}
$$

where:

$$
Q=\lambda^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}+2 \lambda I_{K}
$$

Since Q is a symmetric positive definite matrix, we have:

$$
\left(\mathbf{X}^{\top} \mathbf{X}+Q\right) \succeq\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

where \succeq is the positive definite ordering. Finally, we obtain:

$$
\operatorname{var}\left(\hat{\beta}^{\mathrm{ols}}\right) \succeq \operatorname{var}\left(\hat{\beta}^{\text {ridge }}\right)
$$

(e) We have:

$$
\begin{aligned}
\hat{\mathbf{Y}} & =\mathbf{X} \hat{\beta}^{\text {ridge }} \\
& =\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y} \\
& =\mathbf{H Y}
\end{aligned}
$$

where $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top}$. We deduce that:

$$
\begin{aligned}
\mathrm{df}^{(\text {model })} & =\operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top}\right) \\
& =\operatorname{tr}\left(\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right)
\end{aligned}
$$

We consider the singular value decomposition $\mathbf{X}=U S V^{\top}$ where U and V are two orthonormal matrices, and S is a diagonal matrix that is composed of the singular values $\left(s_{1}, \ldots, s_{K}\right)$. We have $\mathbf{X}^{\top} \mathbf{X}=V S^{2} V^{\top}$ and:

$$
\begin{aligned}
\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K} & =V S^{2} V^{\top}+\lambda V V^{\top} \\
& =V\left(S^{2}+\lambda I_{K}\right) V^{\top}
\end{aligned}
$$

It follows that $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1}=V\left(S^{2}+\lambda I_{K}\right)^{-1} V^{\top}$ and:

$$
\begin{aligned}
\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} & =V\left(S^{2}+\lambda I_{K}\right)^{-1} V^{\top} V S^{2} V^{\top} \\
& =V\left(S^{2}+\lambda I_{K}\right)^{-1} S^{2} V^{\top}
\end{aligned}
$$

We finally obtain:

$$
\mathrm{df}^{(\text {model })}=\sum_{k=1}^{K} \frac{s_{k}^{2}}{s_{k}^{2}+\lambda}
$$

(f) If \mathbf{X} is an orthonormal matrix, we have $\mathbf{X}^{\top} \mathbf{X}=I_{K}$ and:

$$
\begin{aligned}
\hat{\beta}^{\text {ridge }} & =\left(I_{K}+\lambda I_{K}\right)^{-1} \hat{\beta}^{\text {ols }} \\
& =\frac{\hat{\beta}^{\mathrm{ols}}}{1+\lambda}
\end{aligned}
$$

Since we have $\operatorname{var}\left(\hat{\beta}^{\text {ridge }}\right)=\sigma^{2}\left(I_{K}+Q\right)^{-1}$ and $Q=\lambda^{2} I_{K}+2 \lambda I_{K}$, we deduce that:

$$
\begin{aligned}
\operatorname{var}\left(\hat{\beta}^{\text {ridge }}\right) & =\frac{\sigma^{2}}{\left(1+2 \lambda+\lambda^{2}\right)} I_{K} \\
& =\frac{1}{(1+\lambda)^{2}} \operatorname{var}\left(\hat{\beta}^{\text {ols }}\right)
\end{aligned}
$$

Concerning the model degree of freedom, we obtain:

$$
\mathrm{df}^{(\text {model })}=\sum_{k=1}^{K} \frac{1}{1+\lambda}=\frac{K}{1+\lambda}
$$

2. (a) We have:

$$
\begin{aligned}
f(\beta)= & \frac{1}{2}(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)+ \\
& \frac{\lambda}{2}\left(\alpha \sum_{k=1}^{K}\left|\beta_{k}\right|+(1-\alpha) \sum_{k=1}^{K} \beta_{k}^{2}\right) \\
= & \frac{1}{2} \beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda(1-\alpha) I_{K}\right) \beta-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\frac{1}{2} \mathbf{Y}^{\top} \mathbf{Y}+ \\
& \frac{\lambda \alpha}{2} \sum_{k=1}^{K}\left|\beta_{k}\right|
\end{aligned}
$$

We note $A=\left(\begin{array}{ll}I_{K} & -I_{K}\end{array}\right)$. We introduce the parameter vector $\theta=\left(\beta^{+}, \beta^{-}\right)$ such that $\beta=\beta^{+}-\beta^{-}, \beta^{+} \geq \mathbf{0}$ and $\beta^{-} \geq \mathbf{0}$. We notice that:

$$
\begin{aligned}
\sum_{k=1}^{K}\left|\beta_{k}\right| & =\sum_{k=1}^{K}\left|\beta_{k}^{+}-\beta_{k}^{-}\right| \\
& =\sum_{k=1}^{K} \beta_{k}^{+}+\sum_{k=1}^{K} \beta_{k}^{-} \\
& =\mathbf{1}^{\top} \theta
\end{aligned}
$$

Since we have $\beta=A \theta$, it follows that:

$$
\begin{aligned}
f(\beta)= & \frac{1}{2} \theta^{\top} A^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda(1-\alpha) I_{K}\right) A \theta- \\
& \theta^{\top} A^{\top} \mathbf{X}^{\top} \mathbf{Y}+\frac{1}{2} \mathbf{Y}^{\top} \mathbf{Y}+\frac{\lambda \alpha}{2}\left(\theta^{\top} \mathbf{1}\right)
\end{aligned}
$$

The corresponding QP program is then:

$$
\begin{aligned}
\hat{\theta} & =\quad \arg \min \frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R \\
\text { u.c. } & \theta \geq \mathbf{0}
\end{aligned}
$$

where $Q=A^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda(1-\alpha) I_{K}\right) A$ and $R=A^{\top} \mathbf{X}^{\top} \mathbf{Y}+\frac{\lambda \alpha}{2} \mathbf{1}$.
(b) Results are given in Figure 15.1.
$\alpha=0$

$$
\alpha=0.25
$$

FIGURE 15.1: Comparison of lasso, ridge and elastic net estimates

15.4.2 Cross-validation of the ridge linear regression

1. The objective function is equal to:

$$
\begin{aligned}
\mathcal{L}(\beta ; \lambda) & =\frac{1}{2}(\mathbf{Y}-\mathbf{X} \beta)^{\top}(\mathbf{Y}-\mathbf{X} \beta)+\frac{\lambda}{2} \beta^{\top} \beta \\
& =\frac{1}{2}\left(\mathbf{Y}^{\top} \mathbf{Y}-2 \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}+\beta^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right) \beta\right)
\end{aligned}
$$

The first order condition $\partial_{\beta} \mathcal{L}(\beta ; \lambda)=\mathbf{0}$ is equivalent to:

$$
-\mathbf{X}^{\top} \mathbf{Y}+\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right) \beta=\mathbf{0}
$$

We deduce that:

$$
\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

2. We have:

$$
\begin{aligned}
\hat{\beta}_{-i} & =\left(\mathbf{X}_{-i}^{\top} \mathbf{X}_{-i}+\lambda I_{K}\right)^{-1} \mathbf{X}_{-i}^{\top} \mathbf{Y}_{-i} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}-x_{i} x_{i}^{\top}+\lambda I_{K}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}-x_{i} y_{i}\right) \\
& =\left(Q-x_{i} x_{i}^{\top}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{Y}-x_{i} y_{i}\right)
\end{aligned}
$$

where $Q=\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}$. The Sherman-Morrison-Woodbury formula ${ }^{1}$ leads to:

$$
\begin{aligned}
\left(Q-x_{i} x_{i}^{\top}\right)^{-1} & =Q^{-1}+\left(\frac{1}{1-x_{i}^{\top} Q^{-1} x_{i}}\right) Q^{-1} x_{i} x_{i}^{\top} Q^{-1} \\
& =Q^{-1}+\left(\frac{1}{1-h_{i}}\right) Q^{-1} x_{i} x_{i}^{\top} Q^{-1}
\end{aligned}
$$

where $h_{i}=x_{i}^{\top} Q^{-1} x_{i}=x_{i}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} x_{i}$. We can now obtain a formula that relates the ridge estimators $\hat{\beta}_{-i}$ and $\hat{\beta}$. Indeed, we have:

$$
\begin{aligned}
\hat{\beta}_{-i}= & Q^{-1} \mathbf{X}^{\top} \mathbf{Y}-Q^{-1} x_{i} y_{i}+ \\
& \frac{Q^{-1} x_{i} x_{i}^{\top} Q^{-1}}{1-h_{i}} \mathbf{X}^{\top} \mathbf{Y}-\frac{Q^{-1} x_{i} x_{i}^{\top} Q^{-1}}{1-h_{i}} x_{i} y_{i} \\
= & \hat{\beta}-Q^{-1} x_{i}\left(y_{i}-\frac{x_{i}^{\top}}{1-h_{i}} \hat{\beta}+\frac{h_{i}}{1-h_{i}} y_{i}\right) \\
= & \hat{\beta}-\frac{Q^{-1} x_{i}}{1-h_{i}}\left(\left(1-h_{i}\right) y_{i}-x_{i}^{\top} \hat{\beta}+h_{i} y_{i}\right) \\
= & \hat{\beta}-\frac{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} x_{i} \hat{u}_{i}}{1-h_{i}}
\end{aligned}
$$

where $\hat{u}_{i}=y_{i}-x_{i}^{\top} \hat{\beta}$.
3. We notice that:

$$
\begin{aligned}
\hat{u}_{i,-i} & =y_{i}-\hat{y}_{i,-i} \\
& =y_{i}-x_{i}^{\top} \hat{\beta}_{-i} \\
& =y_{i}-x_{i}^{\top}\left(\hat{\beta}-\frac{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} x_{i} \hat{u}_{i}}{1-h_{i}}\right) \\
& =y_{i}-x_{i}^{\top} \hat{\beta}+\frac{x_{i}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} x_{i} \hat{u}_{i}}{1-h_{i}} \\
& =\hat{u}_{i}+\frac{h_{i} \hat{u}_{i}}{1-h_{i}} \\
& =\frac{\hat{u}_{i}}{1-h_{i}}
\end{aligned}
$$

4. We deduce that the PRESS statistic is equal to:

$$
\begin{aligned}
\text { Press } & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i,-i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\hat{u}_{i}^{2}}{\left(1-h_{i}\right)^{2}}
\end{aligned}
$$

[^48]5. Let $\mathbf{H}(\lambda)=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{n}\right)^{-1} \mathbf{X}^{\top}$ be the hat matrix ${ }^{2}$. By considering the singular value decomposition $\mathbf{X}=U S V^{\top}$, we obtain:
\[

$$
\begin{aligned}
\mathbf{X}^{\top} \mathbf{X} & =V S U^{\top} U S V^{\top} \\
& =V S^{2} V^{\top}
\end{aligned}
$$
\]

and:

$$
\mathbf{X}^{\top} \mathbf{X}+\lambda I_{n}=V\left(S^{2}+\lambda I_{K}\right) V^{\top}
$$

It follows that:

$$
\begin{aligned}
\mathrm{df}^{(\text {model })}(\lambda) & =\operatorname{trace} \mathbf{H}(\lambda) \\
& =\operatorname{trace}\left(\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top}\right) \\
& =\operatorname{trace}\left(\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right)
\end{aligned}
$$

Since we have:

$$
\begin{aligned}
\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{n}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} & =\left(V\left(S^{2}+\lambda I_{K}\right) V^{\top}\right)^{-1} V S^{2} V^{\top} \\
& =\left(V^{\top}\right)^{-1}\left(S^{2}+\lambda I_{K}\right)^{-1} V^{-1} V S^{2} V^{\top} \\
& =V\left(S^{2}+\lambda I_{K}\right)^{-1} S^{2} V^{\top}
\end{aligned}
$$

we finally obtain:

$$
\begin{aligned}
\mathrm{df}^{(\text {model })}(\lambda) & =\operatorname{trace}\left(\left(V^{\top}\right)^{-1}\left(S^{2}+\lambda I_{K}\right)^{-1} S^{2} V^{\top}\right) \\
& =\operatorname{trace}\left(\left(S^{2}+\lambda I_{K}\right)^{-1} S^{2} V^{\top}\left(V^{\top}\right)^{-1}\right) \\
& =\operatorname{trace}\left(\left(S^{2}+\lambda I_{K}\right)^{-1} S^{2}\right) \\
& =\sum_{k=1}^{K} \frac{s_{k}^{2}}{s_{k}^{2}+\lambda}
\end{aligned}
$$

We verify the properties $\mathrm{df}^{(\text {model })}(0)=K$ and $\mathrm{df}^{(\text {model })}(\infty)=0$.
6. Since we have $\hat{\mathbf{Y}}=\mathbf{H}(\lambda) \mathbf{Y}$ and $\hat{\mathbf{U}}=\left(I_{n}-\mathbf{H}(\lambda)\right) \mathbf{Y}$, we can express the PRESS statistic as:

$$
\mathcal{P r e s s}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\left(\left(I_{n}-\mathbf{H}(\lambda)\right) \mathbf{Y}\right)_{i}}{\left(I_{n}-\mathbf{H}(\lambda)\right)_{i, i}}\right)^{2}
$$

whereas the generalized cross-validation statistic is defined by:

$$
G C V=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\left(\left(I_{n}-\mathbf{H}(\lambda)\right) \mathbf{Y}\right)_{i}}{1-\bar{h}}\right)^{2}
$$

where $\bar{h}=n^{-1} \sum_{i=1}^{n} \mathbf{H}(\lambda)_{i, i}$. We verify that the generalized cross-validation statistic corresponds to the PRESS statistic where the elements $\mathbf{H}(\lambda)_{i, i}$ are replaced by their

[^49]mean \bar{h}. We have:
\[

$$
\begin{aligned}
1-\bar{h} & =\frac{1}{n} \sum_{i=1}^{n}\left(I_{n}-\mathbf{H}(\lambda)\right)_{i, i} \\
& =\frac{1}{n} \operatorname{trace}\left(I_{n}-\mathbf{H}(\lambda)\right) \\
& =\frac{1}{n} \sum_{k=1}^{K}\left(\frac{n}{K}-\frac{s_{k}^{2}}{s_{k}^{2}+\lambda}\right) \\
& =\frac{1}{n} \sum_{k=1}^{K} \frac{n\left(s_{k}^{2}+\lambda\right)-K s_{k}^{2}}{K\left(s_{k}^{2}+\lambda\right)} \\
& =\frac{1}{n K} \sum_{k=1}^{K} \frac{(n-K) s_{k}^{2}+n \lambda}{s_{k}^{2}+\lambda}
\end{aligned}
$$
\]

The GCV statistic is then equal to:

$$
\begin{align*}
G C V & =\frac{1}{n} \frac{\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} \hat{\beta}\right)^{2}}{\left(\frac{1}{n K} \sum_{k=1}^{K} \frac{(n-K) s_{k}^{2}+n \lambda}{s_{k}^{2}+\lambda}\right)^{2}} \\
& =n K^{2}\left(\sum_{k=1}^{K} \frac{(n-K) s_{k}^{2}+n \lambda}{s_{k}^{2}+\lambda}\right)^{-2} \operatorname{RSS}(\hat{\beta}(\lambda)) \tag{15.2}
\end{align*}
$$

The effect of λ on the GCV statistic is not obvious since we have:

$$
\lambda \nearrow \Rightarrow \operatorname{RSS}(\hat{\beta}(\lambda)) \nearrow
$$

and:

$$
\lambda \nearrow \Rightarrow \sum_{k=1}^{K} \frac{(n-K) s_{k}^{2}+n \lambda}{s_{k}^{2}+\lambda} \nearrow
$$

7. Since we have $1-\bar{h}=n^{-1}$ trace $\left(I_{n}-\mathbf{H}(\lambda)\right)$, the GCV statistic is equal to:

$$
\begin{aligned}
G C V & =\frac{1}{n}\left(\frac{1}{n^{-1} \operatorname{trace}\left(I_{n}-\mathbf{H}(\lambda)\right)}\right)^{2} \operatorname{RSS}(\hat{\beta}(\lambda)) \\
& =n\left(\operatorname{trace}\left(I_{n}-\mathbf{H}(\lambda)\right)\right)^{-2} \operatorname{RSS}(\hat{\beta}(\lambda))
\end{aligned}
$$

From the Woodbury formula, we have ${ }^{3}$:

$$
\begin{aligned}
I_{n}-\mathbf{H}(\lambda) & =I_{n}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I_{K}\right)^{-1} \mathbf{X}^{\top} \\
& =\left(I_{n}+\frac{\mathbf{X} \mathbf{X}^{\top}}{\lambda}\right)^{-1}
\end{aligned}
$$

${ }^{3}$ The Woodbury matrix identity is:

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

Let λ_{i} be the eigenvalues of the $(n \times n)$ symmetric real matrix $\mathbf{X X}^{\top}$. We have:

$$
\begin{aligned}
\operatorname{trace}\left(I_{n}-\mathbf{H}(\lambda)\right) & =\sum_{i=1}^{n}\left(1+\frac{\lambda_{i}}{\lambda}\right)^{-1} \\
& =\sum_{i=1}^{n} \frac{\lambda}{\lambda+\lambda_{i}} \\
& =\sum_{i=1}^{K} \frac{\lambda}{\lambda+\lambda_{i}}+\sum_{i=K+1}^{n} \frac{\lambda}{\lambda+\lambda_{i}} \\
& =\sum_{i=1}^{K} \frac{\lambda}{\lambda+\lambda_{i}}+(n-K)
\end{aligned}
$$

because the last $n-K$ eigenvalues λ_{i} are equal to 0 . Moreover, we have $\lambda_{k}=s_{k}^{2}$. Finally, we obtain ${ }^{4}$:

$$
\begin{equation*}
G C V=n\left(n-K+\sum_{k=1}^{K} \frac{\lambda}{s_{k}^{2}+\lambda}\right)^{-2} \operatorname{RSS}(\hat{\beta}(\lambda)) \tag{15.3}
\end{equation*}
$$

8. The values of $\hat{\beta}_{-i}$ when λ is equal to 3 are reported in Table 15.1. In the last row, we have also given the ridge estimate $\hat{\beta}$ calculated with the full sample. Using the values of $\hat{y}_{i,-i}, \hat{u}_{i,-i}, \hat{u}_{i}$ and h_{i} (see Table 15.2), we obtain ${ }^{5} \mathcal{P}$ ress $=0.29104$ and $G C V=0.28059$.

15.4.3 K-means and the Lloyd's algorithm

1. We have:

$$
\begin{aligned}
\left\|x_{i}-x_{j}\right\|^{2} & =\sum_{k=1}^{K}\left(x_{i, k}-x_{j, k}\right)^{2} \\
& =\sum_{k=1}^{K} x_{i, k}^{2}+\sum_{k=1}^{K} x_{j, k}^{2}-2 \sum_{k=1}^{K} x_{i, k} x_{j, k}
\end{aligned}
$$

and:

$$
\left\|x_{i}-\bar{x}\right\|^{2}=\sum_{k=1}^{K} x_{i, k}^{2}+\sum_{k=1}^{K} \bar{x}_{(k)}^{2}-2 \sum_{k=1}^{K} x_{i, k} \bar{x}_{(k)}
$$

[^50]${ }^{5}$ We have $\bar{h}=0.24951, s_{1}=58.71914, s_{2}=51.42980, s_{3}=45.83216, s_{4}=37.91501$ and $s_{5}=26.61791$.

TABLE 15.1: LOOCV ridge estimates $\hat{\beta}_{-i}$

i	$\hat{\beta}_{1,-i}$	$\hat{\beta}_{2,-i}$	$\hat{\beta}_{3,-i}$	$\hat{\beta}_{4,-i}$	$\hat{\beta}_{5,-i}$
1	1.2274	-0.9805	0.1298	-0.4923	0.0398
2	1.2307	-0.9865	0.1357	-0.4946	0.0415
3	1.2335	-0.9827	0.1362	-0.4925	0.0410
4	1.2303	-0.9876	0.1355	-0.4957	0.0417
5	1.2296	-0.9849	0.1358	-0.4948	0.0420
6	1.2300	-0.9851	0.1361	-0.4941	0.0422
7	1.2335	-0.9870	0.1287	-0.4898	0.0476
8	1.2219	-0.9838	0.1357	-0.5047	0.0463
9	1.2281	-0.9844	0.1382	-0.5005	0.0445
10	1.2319	-0.9889	0.1401	-0.4912	0.0444
11	1.2299	-0.9856	0.1353	-0.4938	0.0430
12	1.2300	-0.9849	0.1355	-0.4950	0.0411
13	1.2280	-0.9817	0.1320	-0.4974	0.0407
14	1.2307	-0.9855	0.1365	-0.4965	0.0427
15	1.2314	-0.9839	0.1360	-0.4937	0.0426
16	1.2285	-0.9861	0.1390	-0.4944	0.0393
17	1.2289	-0.9843	0.1346	-0.4958	0.0390
18	1.2246	-0.9855	0.1370	-0.4892	0.0426
19	1.2267	-0.9878	0.1356	-0.4920	0.0443
20	1.2459	-0.9890	0.1386	-0.4830	0.0358
$\hat{\beta}$	1.2301	-0.9854	0.1358	-0.4941	0.0420

TABLE 15.2: Computation of $\hat{y}_{i,-i}, \hat{u}_{i,-i}, \hat{u}_{i}$ and h_{i}

i	y_{i}	$\hat{y}_{i,-i}$	$\hat{u}_{i,-i}$	\hat{u}_{i}	h_{i}
1	-23.0	-22.3270	-0.6730	-0.5130	0.2378
2	-21.0	-21.2041	0.2041	0.1796	0.1201
3	-5.0	-5.4804	0.4804	0.3950	0.1778
4	-39.6	-39.7745	0.1745	0.0857	0.5091
5	5.8	5.7076	0.0924	0.0828	0.1040
6	13.6	13.5376	0.0624	0.0525	0.1582
7	14.0	14.7404	-0.7404	-0.4168	0.4371
8	-5.2	-4.3994	-0.8006	-0.5534	0.3087
9	6.9	7.5607	-0.6607	-0.5306	0.1970
10	-5.2	-5.6244	0.4244	0.3106	0.2681
11	0.0	-0.0913	0.0913	0.0595	0.3483
12	3.0	3.2119	-0.2119	-0.1974	0.0682
13	9.2	8.9014	0.2986	0.1664	0.4428
14	26.1	26.3478	-0.2478	-0.1842	0.2568
15	-6.3	-6.4835	0.1835	0.1192	0.3506
16	11.5	10.9309	0.5691	0.4763	0.1631
17	4.8	4.3120	0.4880	0.4360	0.1065
18	35.2	34.4379	0.7621	0.5531	0.2742
19	14.0	13.2528	0.7472	0.6633	0.1123
20	-21.4	-22.5438	1.1438	0.7438	0.3497

where $\bar{x}_{(k)}=n^{-1} \sum_{i=1}^{n} x_{i, k}$. We note $S_{1}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\|x_{i}-x_{j}\right\|^{2}$ and $S_{2}=$ $n \sum_{i=1}^{n}\left\|x_{i}-\bar{x}\right\|^{2}$. We deduce that:

$$
\begin{aligned}
S_{1} & =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{k=1}^{K} x_{i, k}^{2}+\sum_{k=1}^{K} x_{j, k}^{2}-2 \sum_{k=1}^{K} x_{i, k} x_{j, k}\right) \\
& =\sum_{k=1}^{K} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i, k}^{2}+x_{j, k}^{2}-2 x_{i, k} x_{j, k}\right) \\
& =\sum_{k=1}^{K} \frac{1}{2}\left(n \sum_{i=1}^{n} x_{i, k}^{2}+n \sum_{j=1}^{n} x_{j, k}^{2}-2 \sum_{i=1}^{n} x_{i, k}\left(\sum_{j=1}^{n} x_{j, k}\right)\right) \\
& =\sum_{k=1}^{K}\left(n \sum_{i=1}^{n} x_{i, k}^{2}-\sum_{i=1}^{n} x_{i, k} n \bar{x}_{(k)}\right) \\
& =\sum_{k=1}^{K}\left(n \sum_{i=1}^{n} x_{i, k}^{2}-n^{2} \bar{x}_{(k)}^{2}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
S_{2} & =n \sum_{i=1}^{n} \sum_{k=1}^{K} x_{i, k}^{2}+n \sum_{i=1}^{n} \sum_{k=1}^{K} \bar{x}_{(k)}^{2}-2 n \sum_{i=1}^{n} \sum_{k=1}^{K} x_{i, k} \bar{x}_{(k)} \\
& =\sum_{k=1}^{K}\left(n \sum_{i=1}^{n} x_{i, k}^{2}+n \sum_{i=1}^{n} \bar{x}_{(k)}^{2}-2 n \bar{x}_{(k)} \sum_{i=1}^{n} x_{i, k}\right) \\
& =\sum_{k=1}^{K}\left(n \sum_{i=1}^{n} x_{i, k}^{2}+n^{2} \bar{x}_{(k)}^{2}-2 n^{2} \bar{x}_{(k)}^{2}\right) \\
& =\sum_{k=1}^{K}\left(n \sum_{i=1}^{n} x_{i, k}^{2}-n^{2} \bar{x}_{(k)}^{2}\right)
\end{aligned}
$$

We conclude that $S_{1}=S_{2}$.
2. Using the previous result, we have:

$$
\frac{1}{2} \sum_{\mathcal{C}(i)=j} \sum_{\mathcal{C}\left(i^{\prime}\right)=j}\left\|x_{i}-x_{i^{\prime}}\right\|^{2}=n_{j} \sum_{\mathcal{C}(i)=j}\left\|x_{i}-\bar{x}_{j}\right\|^{2}
$$

where \bar{x}_{j} and n_{j} is the mean vector and the number of observations of Cluster \mathcal{C}_{j}.
3. The first-order conditions are:

$$
\frac{\partial f\left(\mu_{1}, \ldots, \mu_{n_{C}}\right)}{\partial \mu_{j}}=\mathbf{0} \quad \text { for } j=1, \ldots, n_{C}
$$

where:

$$
f\left(\mu_{1}, \ldots, \mu_{n_{C}}\right)=\sum_{j=1}^{n_{C}} n_{j} \sum_{\mathcal{C}(i)=j}\left\|x_{i}-\mu_{j}\right\|^{2}
$$

Since we have:

$$
\frac{\partial}{\partial \mu_{j}}\left\|x_{i}-\mu_{j}\right\|^{2}=-2\left(x_{i}-\mu_{j}\right)
$$

it follows that:

$$
\frac{\partial f\left(\mu_{1}, \ldots, \mu_{n_{C}}\right)}{\partial \mu_{j}}=-2 n_{j} \sum_{\mathcal{C}(i)=j}\left(x_{i}-\mu_{j}\right)=\mathbf{0}
$$

We deduce that $\mu_{j}^{\star}=\left(\mu_{j, 1}^{\star}, \ldots, \mu_{j, K}^{\star}\right)$ where:

$$
\mu_{j, k}^{\star}=\frac{1}{n_{j}} \sum_{\mathcal{C}(i)=j} x_{i, k}
$$

Finally, we verify that the optimal solution is $\mu_{j}^{\star}=\bar{x}_{j}$. The Llyod's algorithm exploits this result in order to find the optimal partition.
4. In Figure 15.2, we have reported the classification operated by K-means, LDA and QDA. We notice that the unsupervised K-means algorithm gives the same result as the supervised LDA algorithm.

FIGURE 15.2: Comparison of LDA, QDA and K-means classification

15.4.4 Derivation of the principal component analysis ${ }^{6}$

1. We have:

$$
\begin{aligned}
\operatorname{var}\left(Z_{1}\right) & =\operatorname{var}\left(\beta_{1}^{\top} X\right) \\
& =\beta_{1}^{\top} \Sigma \beta_{1}
\end{aligned}
$$

[^51]The objective function is to maximize the variance of Z_{1} under a normalization constraint ${ }^{7}$:

$$
\begin{aligned}
\beta_{1}= & \arg \max \beta^{\top} \Sigma \beta \\
& \text { s.t. }
\end{aligned} \beta^{\top} \beta=1 .
$$

The Lagrange function is then equal to:

$$
\mathcal{L}\left(\beta ; \lambda_{1}\right)=\beta^{\top} \Sigma \beta-\lambda_{1}\left(\beta^{\top} \beta-1\right)
$$

Since, the first derivative $\partial_{\beta} \mathcal{L}\left(\beta ; \lambda_{1}\right)$ is equal to $2 \Sigma \beta-2 \lambda_{1} \beta$, we deduce that the first-order condition is:

$$
\begin{equation*}
\Sigma \beta_{1}=\lambda_{1} \beta_{1} \tag{15.4}
\end{equation*}
$$

or:

$$
\left(\Sigma-\lambda_{1} I_{K}\right) \beta_{1}=\mathbf{0}
$$

It follows that β_{1} is an eigenvector of Σ and λ_{1} is the associated eigenvalue. Moreover, we have:

$$
\begin{aligned}
\operatorname{var}\left(Z_{1}\right) & =\beta_{1}^{\top} \Sigma \beta_{1} \\
& =\lambda_{1}
\end{aligned}
$$

Maximizing var $\left(Z_{1}\right)$ is then equivalent to consider the eigenvector β_{1} that corresponds to the largest eigenvalue.
2. We have:

$$
\begin{aligned}
\operatorname{var}\left(Z_{2}\right) & =\operatorname{var}\left(\beta_{2}^{\top} X\right) \\
& =\beta_{2}^{\top} \Sigma \beta_{2}
\end{aligned}
$$

Using Equation (15.4), we deduce that the covariance is:

$$
\begin{align*}
\operatorname{cov}\left(Z_{1}, Z_{2}\right) & =\beta_{1}^{\top} \Sigma \beta_{2} \\
& =\lambda_{1} \beta_{1}^{\top} \beta_{2} \tag{15.5}
\end{align*}
$$

The objective function is then to maximize the variance of Z_{2} under the constraints of normalization and independence between Z_{1} and Z_{2} :

$$
\begin{aligned}
\beta_{2}= & \arg \max \beta^{\top} \Sigma \beta \\
\text { s.t. } & \left\{\begin{array}{l}
\beta^{\top} \beta=1 \\
\beta_{1}^{\top} \beta=0
\end{array}\right.
\end{aligned}
$$

The Lagrange function has the following expression:

$$
\mathcal{L}\left(\beta ; \lambda_{2}, \varphi\right)=\beta^{\top} \Sigma \beta-\lambda_{2}\left(\beta^{\top} \beta-1\right)-\varphi \beta_{1}^{\top} \beta
$$

We deduce that the first-order condition is:

$$
2 \Sigma \beta_{2}-2 \lambda_{2} \beta_{2}-\varphi \beta_{1}=\mathbf{0}
$$

It follows that:

$$
\beta_{1}^{\top}\left(2 \Sigma \beta_{2}-2 \lambda_{2} \beta_{2}-\varphi \beta_{1}\right)=\beta_{1}^{\top} \mathbf{0}=0
$$

[^52]or:
$$
2 \beta_{1}^{\top} \Sigma \beta_{2}-2 \lambda_{2} \beta_{1}^{\top} \beta_{2}-\varphi \beta_{1}^{\top} \beta_{1}=0
$$

Since the $1^{\text {st }}$ and $2^{\text {nd }}$ PCs are uncorrelated, Equation (15.5) implies that $\beta_{1}^{\top} \Sigma \beta_{2}=0$ and $\beta_{1}^{\top} \beta_{2}=0$. We deduce that $-\varphi \beta_{1}^{\top} \beta_{1}=0$ or $\varphi=0$ because $\beta_{1}^{\top} \beta_{1}=1$. In this case, the first-order condition becomes:

$$
\Sigma \beta_{2}=\lambda_{2} \beta_{2}
$$

Again, β_{2} is an eigenvector of Σ and λ_{2} is the associated eigenvalue. Maximizing the variance of the second PC is then equivalent to consider the eigenvector β_{2} that corresponds to the second largest eigenvalue ${ }^{8}$.

15.4.5 Two-class separation maximization

1. The total scatter matrix is equal to:

$$
\begin{aligned}
\mathbf{S} & =\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{\top} \\
& =\sum_{i=1}^{n} x_{i} x_{i}^{\top}-2 \hat{\mu} \sum_{i=1}^{n} x_{i}^{\top}+n \hat{\mu} \hat{\mu}^{\top} \\
& =\sum_{i=1}^{n} x_{i} x_{i}^{\top}-n \hat{\mu} \hat{\mu}^{\top}
\end{aligned}
$$

For the within-class scatter matrix, we obtain:

$$
\begin{aligned}
\mathbf{S}_{W} & =\sum_{j=1}^{J} \mathbf{S}_{j} \\
& =\sum_{j=1}^{J} \sum_{i \in \mathcal{C}_{j}}\left(x_{i}-\hat{\mu}_{j}\right)\left(x_{i}-\hat{\mu}_{j}\right)^{\top} \\
& =\sum_{j=1}^{J}\left(\sum_{i \in \mathcal{C}_{j}} x_{i} x_{i}^{\top}-n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}\right) \\
& =\sum_{j=1}^{J} \sum_{i \in \mathcal{C}_{j}} x_{i} x_{i}^{\top}-\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top} \\
& =\sum_{i=1}^{n} x_{i} x_{i}^{\top}-\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}
\end{aligned}
$$

[^53]Concerning the between-class scatter matrix, we deduce that:

$$
\begin{aligned}
\mathbf{S}_{B} & =\sum_{j=1}^{J} n_{j}\left(\hat{\mu}_{j}-\hat{\mu}\right)\left(\hat{\mu}_{j}-\hat{\mu}\right)^{\top} \\
& =\sum_{j=1}^{J}\left(n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}-2 n_{j} \hat{\mu} \hat{\mu}_{j}^{\top}+n_{j} \hat{\mu} \hat{\mu}^{\top}\right) \\
& =\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}-2 \hat{\mu} \sum_{j=1}^{J} n_{j} \hat{\mu}_{j}^{\top}+n \hat{\mu} \hat{\mu}^{\top} \\
& =\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}-2 \hat{\mu}\left(n \hat{\mu}^{\top}\right)+n \hat{\mu} \hat{\mu}^{\top} \\
& =\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}-n \hat{\mu} \hat{\mu}^{\top}
\end{aligned}
$$

because $n \hat{\mu}=\sum_{j=1}^{J} n_{j} \hat{\mu}_{j}$. It follows that:

$$
\begin{aligned}
\mathbf{S}_{W}+\mathbf{S}_{B} & =\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}-\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}\right)+\left(\sum_{j=1}^{J} n_{j} \hat{\mu}_{j} \hat{\mu}_{j}^{\top}-n \hat{\mu} \hat{\mu}^{\top}\right) \\
& =\sum_{i=1}^{n} x_{i} x_{i}^{\top}-n \hat{\mu} \hat{\mu}^{\top} \\
& =\mathbf{S}
\end{aligned}
$$

2. We have:

$$
\hat{\mu}=\frac{n_{1} \hat{\mu}_{1}+n_{2} \hat{\mu}_{2}}{n_{1}+n_{2}}
$$

It follows that:

$$
\begin{aligned}
\hat{\mu}_{1}-\hat{\mu} & =\frac{n_{1} \hat{\mu}_{1}+n_{2} \hat{\mu}_{1}}{n_{1}+n_{2}}-\frac{n_{1} \hat{\mu}_{1}+n_{2} \hat{\mu}_{2}}{n_{1}+n_{2}} \\
& =\frac{n_{1} \hat{\mu}_{1}+n_{2} \hat{\mu}_{1}-n_{1} \hat{\mu}_{1}-n_{2} \hat{\mu}_{2}}{n_{1}+n_{2}} \\
& =\frac{n_{2}}{n_{1}+n_{2}}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
\end{aligned}
$$

and:

$$
\hat{\mu}_{2}-\hat{\mu}=\frac{n_{1}}{n_{1}+n_{2}}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

We deduce that:

$$
\begin{aligned}
\mathbf{S}_{B}= & n_{1}\left(\hat{\mu}_{1}-\hat{\mu}\right)\left(\hat{\mu}_{1}-\hat{\mu}\right)^{\top}+n_{2}\left(\hat{\mu}_{2}-\hat{\mu}\right)\left(\hat{\mu}_{2}-\hat{\mu}\right)^{\top} \\
= & n_{1}\left(\frac{n_{2}}{n_{1}+n_{2}}\right)^{2}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\top}+ \\
& n_{2}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)^{2}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)^{\top} \\
= & \frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\top}
\end{aligned}
$$

and ${ }^{9}$:

$$
\begin{aligned}
\beta^{\top} \mathbf{S}_{B} \beta & =\frac{n_{1} n_{2}}{n_{1}+n_{2}} \beta^{\top}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\top} \beta \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}\right)\left(\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}\right)^{\top} \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}\right)^{2} \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}
\end{aligned}
$$

where $\tilde{\mu}_{j}$ is defined as:

$$
\tilde{\mu}_{j}=\frac{1}{n_{j}} \sum_{i \in \mathcal{C}_{j}} y_{i}=\frac{1}{n_{j}} \sum_{i \in \mathcal{C}_{j}} \beta^{\top} x_{i}=\beta^{\top}\left(\frac{1}{n_{j}} \sum_{i \in \mathcal{C}_{j}} x_{i}\right)=\beta^{\top} \hat{\mu}_{j}
$$

3. We have:

$$
\mathbf{S}_{j}=\sum_{i \in \mathcal{C}_{j}}\left(x_{i}-\hat{\mu}_{j}\right)\left(x_{i}-\hat{\mu}_{j}\right)^{\top}
$$

and:

$$
\begin{aligned}
\beta^{\top} \mathbf{S}_{j} \beta & =\beta^{\top} \sum_{i \in \mathcal{C}_{j}}\left(x_{i}-\hat{\mu}_{j}\right)\left(x_{i}-\hat{\mu}_{j}\right)^{\top} \beta \\
& =\sum_{i \in \mathcal{C}_{j}}\left(\beta^{\top} x_{i}-\beta^{\top} \hat{\mu}_{j}\right)^{2} \\
& =\sum_{i \in \mathcal{C}_{j}}\left(y_{i}-\tilde{\mu}_{j}\right)^{2} \\
& =\tilde{\mathbf{S}}_{j} \\
& =\tilde{s}_{j}^{2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\beta^{\top} \mathbf{S}_{W} \beta & =\beta^{\top}\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) \beta \\
& =\beta^{\top} \mathbf{S}_{1} \beta+\beta^{\top} \mathbf{S}_{2} \beta \\
& =\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}
\end{aligned}
$$

4. We have:

$$
\begin{aligned}
J(\beta) & =\frac{\beta^{\top} \mathbf{S}_{B} \beta}{\beta^{\top} \mathbf{S}_{W} \beta} \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}} \frac{\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
\end{aligned}
$$

We finally obtain the following optimization program:

$$
\beta^{\star}=\arg \max \frac{\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
$$

In order to separate the class \mathcal{C}_{1} and \mathcal{C}_{2}, we would like that $\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}$ is the largest, meaning that the projected means must be as far away as possible. At the same time, we would like that the scatters \tilde{s}_{1}^{2} and \tilde{s}_{2}^{2} are the smallest, meaning that the samples of each class are close to the corresponding projected mean.

[^54]5. At the optimum, we know that:
$$
\mathbf{S}_{B} \beta=\lambda \mathbf{S}_{W} \beta
$$

We have:

$$
\begin{aligned}
\mathbf{S}_{B} \beta & =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\top} \beta \\
& =\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\left(\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}\right) \\
& =\gamma\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
\end{aligned}
$$

where:

$$
\gamma=\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}\right)
$$

We deduce that:

$$
\lambda \mathbf{S}_{W} \beta=\gamma\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

or:

$$
\beta=\frac{\gamma}{\lambda} \mathbf{S}_{W}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

It follows that the decision boundary is linear and depends on the direction $\hat{\mu}_{1}-\hat{\mu}_{2}$. Since we have $J\left(\beta^{\prime}\right)=J(\beta)$ if $\beta^{\prime}=c \beta$, we can choose the following optimal value:

$$
\beta^{\star}=\mathbf{S}_{W}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

6. We have:

$$
\begin{aligned}
\mathbf{S}_{W} & =\mathbf{S}_{1}+\mathbf{S}_{2} \\
& =\left(\begin{array}{cc}
16.86 & 8.00 \\
8.00 & 18.00
\end{array}\right)+\left(\begin{array}{ll}
21.33 & 18.33 \\
18.33 & 18.83
\end{array}\right) \\
& =\left(\begin{array}{cc}
38.19 & 26.33 \\
26.33 & 36.83
\end{array}\right)
\end{aligned}
$$

and:

$$
\mathbf{S}_{B}=\left(\begin{array}{cc}
0.89 & -3.10 \\
-3.10 & 10.86
\end{array}\right)
$$

The equation $\mathbf{S}_{B} \beta=\lambda \mathbf{S}_{W} \beta$ is equivalent to $\mathbf{S}_{W}^{-1} \mathbf{S}_{B} \beta=\lambda \beta$. The largest eigenvalue of the matrix $\mathbf{S}_{W}^{-1} \mathbf{S}_{B}$ is equal to 0.856 , and the associated eigenvector is $\beta^{\star}=(0.755,-0.936)$. We deduce that the scores of the 13 observations are -1.117 , $-2.990,-3.352,-0.544,1.147,-1.843,-0.907,0.755,0.573,2.083,0.392,0.784$, and -0.152 . We have $\bar{\mu}_{1}=-1.372$ and $\bar{\mu}_{1}=0.739$. It follows that $\bar{\mu}=-0.317$. The assignment decision is then:

$$
\left\{\begin{aligned}
s_{i}<-0.317 & \Rightarrow i \in \mathcal{C}_{1} \\
s_{i}>-0.317 & \Rightarrow i \in \mathcal{C}_{2}
\end{aligned}\right.
$$

We observe that the $5^{\text {th }}$ observation is incorrectly assigned to Class \mathcal{C}_{2}, because its score 1.147 is larger than -0.317 .

15.4.6 Maximum likelihood estimation of the probit model

1. The probit model is defined by:

$$
p=\operatorname{Pr}\{Y=1 \mid X=x\}=\Phi\left(x^{\top} \beta\right)
$$

We deduce that the log-likelihood function is equal to:

$$
\begin{aligned}
\ell(\beta) & =\sum_{i=1}^{n} \ln \operatorname{Pr}\left\{Y_{i}=y_{i}\right\} \\
& =\sum_{i=1}^{n} \ln \left(\left(1-p_{i}\right)^{1-y_{i}} p_{i}^{y_{i}}\right) \\
& =\sum_{i=1}^{n}\left(1-y_{i}\right) \ln \left(1-p_{i}\right)+y_{i} \ln p_{i} \\
& =\sum_{i=1}^{n}\left(1-y_{i}\right) \ln \left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)+y_{i} \ln \Phi\left(x_{i}^{\top} \beta\right)
\end{aligned}
$$

2. We have:

$$
\begin{aligned}
J_{i, k}(\beta) & =\frac{\partial \ell_{i}(\beta)}{\partial \beta_{k}} \\
& =-\left(1-y_{i}\right) \frac{\phi\left(x_{i}^{\top} \beta\right) x_{i, k}}{1-\Phi\left(x_{i}^{\top} \beta\right)}+y_{i} \frac{\phi\left(x_{i}^{\top} \beta\right) x_{i, k}}{\Phi\left(x_{i}^{\top} \beta\right)}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
J_{i, k}(\beta) & =\frac{-\left(1-y_{i}\right) \Phi\left(x_{i}^{\top} \beta\right)+y_{i}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)}{\Phi\left(x_{i}^{\top} \beta\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)} \phi\left(x_{i}^{\top} \beta\right) x_{i, k} \\
& =\frac{\left(y_{i}-\Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right)}{\Phi\left(x_{i}^{\top} \beta\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)} x_{i, k}
\end{aligned}
$$

It follows that the score vector is equal to:

$$
\mathcal{S}(\beta)=\sum_{i=1}^{n} \frac{\left(y_{i}-\Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right)}{\Phi\left(x_{i}^{\top} \beta\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)} x_{i}
$$

3. The (k, j) element of the Hessian matrix is:

$$
H_{k, j}(\beta)=\sum_{i=1}^{n} \frac{\partial^{2} \ell_{i}(\beta)}{\partial \beta_{k} \partial \beta_{j}}
$$

We have $\phi^{\prime}(z)=-z \phi(z)$ and:

$$
\begin{aligned}
(*) & =\frac{\partial}{\partial \beta_{j}} \Phi\left(x_{i}^{\top} \beta\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right) \\
& =\phi\left(x_{i}^{\top} \beta\right) x_{i, j}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)-\Phi\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right) x_{i, j} \\
& =\left(1-2 \Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right) x_{i, j} \\
(*) & =\frac{\partial}{\partial \beta_{j}}\left(y_{i}-\Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right) \\
& =-\left(y_{i}-\Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right) x_{i, j}-\phi^{2}\left(x_{i}^{\top} \beta\right) x_{i, j} \\
& =\left(-y_{i} x_{i}^{\top} \beta+\Phi\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta-\phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right) x_{i, j}
\end{aligned}
$$

We note:

$$
A_{i}=\frac{\Phi\left(x_{i}^{\top} \beta\right)^{2}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)^{2}}{\phi\left(x_{i}^{\top} \beta\right) x_{i, j} x_{i, k}} \frac{\partial^{2} \ell_{i}(\beta)}{\partial \beta_{k} \partial \beta_{j}}
$$

and:

$$
B_{i}=\frac{\Phi\left(x_{i}^{\top} \beta\right)^{2}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)^{2}}{\phi\left(x_{i}^{\top} \beta\right)} c_{i}
$$

We obtain:

$$
\begin{aligned}
A_{i}= & \left(-y_{i} x_{i}^{\top} \beta+\Phi\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta-\phi\left(x_{i}^{\top} \beta\right)\right) \Phi\left(x_{i}^{\top} \beta\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)- \\
& \left(y_{i}-\Phi\left(x_{i}^{\top} \beta\right)\right)\left(1-2 \Phi\left(x_{i}^{\top} \beta\right)\right) \phi\left(x_{i}^{\top} \beta\right) \\
= & -y_{i} \Phi\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta+\Phi^{2}\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta-\Phi\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)+ \\
& y_{i} \Phi^{2}\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta-\Phi^{3}\left(x_{i}^{\top} \beta\right) x_{i}^{\top} \beta+\Phi^{2}\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)- \\
& y_{i} \phi\left(x_{i}^{\top} \beta\right)+\Phi\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)+2 y_{i} \Phi\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)- \\
& 2 \Phi^{2}\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right) \\
= & \Phi^{3}\left(x_{i}^{\top} \beta\right)\left(-x_{i}^{\top} \beta\right)+\Phi^{2}\left(x_{i}^{\top} \beta\right)\left(\left(1+y_{i}\right) x_{i}^{\top} \beta-\phi\left(x_{i}^{\top} \beta\right)\right)+ \\
& \Phi\left(x_{i}^{\top} \beta\right) y_{i}\left(-x_{i}^{\top} \beta+2 \phi\left(x_{i}^{\top} \beta\right)\right)-y_{i} \phi\left(x_{i}^{\top} \beta\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
B_{i}= & y_{i}\left(\phi\left(x_{i}^{\top} \beta\right)+x_{i}^{\top} \beta \Phi\left(x_{i}^{\top} \beta\right)\right)\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)^{2}+ \\
& \left(1-y_{i}\right) \phi\left(x_{i}^{\top} \beta\right)-x_{i}^{\top} \beta\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right) \Phi\left(x_{i}^{\top} \beta\right)^{2} \\
= & y_{i} \phi\left(x_{i}^{\top} \beta\right)+y_{i} \Phi\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)-2 y_{i} \Phi\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)- \\
& 2 y_{i} \Phi^{2}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)+y_{i} \Phi^{2}\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)+ \\
& y_{i} \Phi^{3}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)+\Phi^{2}\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)- \\
& y_{i} \Phi^{2}\left(x_{i}^{\top} \beta\right) \phi\left(x_{i}^{\top} \beta\right)-\Phi^{2}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)+ \\
& \Phi^{3}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)+y_{i} \Phi^{2}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)-y_{i} \Phi^{3}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right) \\
= & \Phi^{3}\left(x_{i}^{\top} \beta\right)\left(x_{i}^{\top} \beta\right)+\Phi^{2}\left(x_{i}^{\top} \beta\right)\left(-\left(1+y_{i}\right) x_{i}^{\top} \beta+\phi\left(x_{i}^{\top} \beta\right)\right)+ \\
& \Phi\left(x_{i}^{\top} \beta\right) y_{i}\left(x_{i}^{\top} \beta-2 \phi\left(x_{i}^{\top} \beta\right)\right)+y_{i} \phi\left(x_{i}^{\top} \beta\right)
\end{aligned}
$$

Since $B_{i}=-A_{i}$, we deduce that:

$$
\begin{aligned}
H(\beta) & =\sum_{i=1}^{n} \frac{\partial^{2} \ell_{i}(\beta)}{\partial \beta \partial \beta^{\top}} \\
& =\sum_{i=1}^{n} A_{i} \frac{\phi\left(x_{i}^{\top} \beta\right)}{\Phi\left(x_{i}^{\top} \beta\right)^{2}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)^{2}} \cdot\left(x_{i} x_{i}^{\top}\right) \\
& =-\sum_{i=1}^{n} B_{i} \frac{\phi\left(x_{i}^{\top} \beta\right)}{\Phi\left(x_{i}^{\top} \beta\right)^{2}\left(1-\Phi\left(x_{i}^{\top} \beta\right)\right)^{2}} \cdot\left(x_{i} x_{i}^{\top}\right) \\
& =-\sum_{i=1}^{n} H_{i} \cdot\left(x_{i} x_{i}^{\top}\right)
\end{aligned}
$$

4. The Newton-Raphson algorithm becomes:

$$
\beta_{(s+1)}=\beta_{(s)}-H^{-1}\left(\beta_{(s)}\right) \mathcal{S}\left(\beta_{(s)}\right)
$$

where $\beta_{(s)}$ is the value of β at the step s. We may initialize the algorithm with the OLS solution $\beta_{(0)}=\left(X^{\top} X\right)^{-1} X^{\top} Y$.

15.4.7 Computation of feed-forward neural networks

1. We have $u_{i, h}=\sum_{k=1}^{n_{x}} \beta_{h, k} x_{i, k}$ or $U=X \beta^{\top}$ where U is a $n \times n_{z}$ matrix, X is a $n \times n_{x}$ matrix and β is a $n_{z} \times n_{x}$ matrix. Then, we apply the non-linear transform $z_{i, h}=f_{x, z}\left(u_{i, h}\right)$ or we perform the element-by-element function $Z=f_{x, z}(U)$ where Z is a $n \times n_{z}$ matrix. The calculation of $v_{i, j}=\sum_{h=1}^{n_{z}} \gamma_{j, h} z_{i, h}$ is equivalent to compute $V=Z \gamma^{\top}$ where V is a $n \times n_{y}$ matrix and γ is a $n_{y} \times n_{z}$ matrix. Finally, we have $y_{j}\left(x_{i}\right)=f_{z, y}\left(v_{i, j}\right)$ or $\hat{Y}=f_{z, y}(V)$ where \hat{Y} is a $n \times n_{y}$ matrix. It follows that:

$$
\begin{aligned}
\hat{Y} & =f_{z, y}(V) \\
& =f_{z, y}\left(Z \gamma^{\top}\right) \\
& =f_{z, y}\left(f_{x, z}(U) \gamma^{\top}\right) \\
& =f_{z, y}\left(f_{x, z}\left(X \beta^{\top}\right) \gamma^{\top}\right)
\end{aligned}
$$

2. If $f_{x, z}(z)=f_{z, y}(z)=z$, we deduce that:

$$
\hat{Y}=X \beta^{\top} \gamma^{\top}=X A
$$

where $A=(\gamma \beta)^{\top}$ is a $n_{x} \times n_{y}$ matrix. The least squares loss is then equal to:

$$
\begin{aligned}
\mathcal{L}(\theta) & =\sum_{i=1}^{n} \sum_{j=1}^{n_{y}} \mathcal{L}_{i, j}(\theta) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n_{y}} \frac{1}{2}\left(y_{j}\left(x_{i}\right)-y_{i, j}\right)^{2} \\
& =\frac{1}{2} \operatorname{trace}\left((\hat{Y}-Y)^{\top}(\hat{Y}-Y)\right) \\
& =\frac{1}{2} \operatorname{trace}\left((X A-Y)^{\top}(X A-Y)\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\hat{A} & =\arg \min \frac{1}{2} \operatorname{trace}\left((X A-Y)^{\top}(X A-Y)\right) \\
& =\left(X^{\top} X\right)^{-1} X^{\top} Y
\end{aligned}
$$

and:

$$
\hat{\gamma} \hat{\beta}=\hat{A}^{\top}=Y^{\top} X\left(X^{\top} X\right)^{-1}
$$

We conclude that it is not possible to estimate β and γ separately because it depends on the rank of the different matrices. Indeed, A has $n_{x} \times n_{y}$ parameters whereas the product $\gamma \beta$ has $n_{z}\left(n_{x}+n_{y}\right)$ parameters. In particular, the model is overidentified when:

$$
n_{z}>\frac{n_{x} \times n_{y}}{n_{x}+n_{y}}
$$

Otherwise, we obtain a constrained linear regression:

$$
\begin{aligned}
(\hat{\beta}, \hat{\gamma})= & \arg \min \frac{1}{2} \operatorname{trace}\left((X A-Y)^{\top}(X A-Y)\right) \\
\text { s.t. } & \gamma \beta=A^{\top}
\end{aligned}
$$

3. Using chain rule, we have:

$$
\frac{\partial \mathcal{L}_{i, j^{\prime}}(\theta)}{\partial \gamma_{j, h}}=\frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j^{\prime}}} \frac{\partial v_{i, j^{\prime}}}{\partial \gamma_{j, h}}
$$

We notice that:

$$
\frac{\partial v_{i, j^{\prime}}}{\partial \gamma_{j, h}}= \begin{cases}z_{i, h} & \text { if } j=j^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

It follows that:

$$
\frac{\partial \mathcal{L}_{i, j}(\theta)}{\partial \gamma_{j, h}}=\xi^{\prime}\left(y_{j}\left(x_{i}\right), y_{i, j}\right) f_{z, y}^{\prime}\left(v_{i, j}\right) z_{i, h}
$$

and:

$$
\frac{\partial \mathcal{L}_{i, j^{\prime}}(\theta)}{\partial \gamma_{j, h}}=0
$$

We also have:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i, j}(\theta)}{\partial \beta_{h, k}} & =\frac{\partial \xi\left(y_{j}\left(x_{i}\right), y_{i, j}\right)}{\partial y_{j}\left(x_{i}\right)} \frac{\partial y_{j}\left(x_{i}\right)}{\partial v_{i, j}} \frac{\partial v_{i, j}}{\partial z_{i, h}} \frac{\partial z_{i, h}}{\partial u_{i, h}} \frac{\partial u_{i, h}}{\partial \beta_{h, k}} \\
& =\xi^{\prime}\left(y_{j}\left(x_{i}\right), y_{i, j}\right) f_{z, y}^{\prime}\left(v_{i, j}\right) \gamma_{j, h} f_{x, z}^{\prime}\left(u_{i, h}\right) x_{i, k}
\end{aligned}
$$

Finally, we deduce that:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma}=\left(G_{y, y} \odot G_{y, v}\right)^{\top} Z
$$

and:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \beta}=\left(\left(\left(G_{y, y} \odot G_{y, v}\right) \gamma\right) \odot G_{z, u}\right)^{\top} X
$$

where $\partial_{\gamma} \mathcal{L}(\theta)$ is a $n_{y} \times n_{z}$ matrix, $G_{y, y}=\xi^{\prime}(\hat{Y}, Y)$ is a $n \times n_{y}$ matrix, $G_{y, v}=f_{z, y}^{\prime}(V)$ is a $n \times n_{y}$ matrix, $\partial_{\beta} \mathcal{L}(\theta)$ is a $n_{z} \times n_{x}$ matrix and $G_{z, u}=f_{x, z}^{\prime}(U)$ is a $n \times n_{z}$ matrix.
4. We have:

$$
f(z)=\frac{1}{1+e^{-z}}
$$

and:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}} \\
& =\frac{1}{1+e^{-z}}\left(1-\frac{1}{1+e^{-z}}\right) \\
& =f(z)(1-f(z))
\end{aligned}
$$

It follows that $f_{z, y}^{\prime}\left(v_{i, j}\right)=f_{z, y}\left(v_{i, j}\right)\left(1-f_{z, y}\left(v_{i, j}\right)\right)=y_{j}\left(x_{i}\right)\left(1-y_{j}\left(x_{i}\right)\right)$ and $f_{x, z}^{\prime}\left(u_{i, h}\right)=f_{x, z}\left(u_{i, h}\right)\left(1-f_{x, z}\left(u_{i, h}\right)\right)=z_{i, h}\left(1-z_{i, h}\right)$. We also have:

$$
\xi(\hat{y}, y)=\frac{1}{2}(\hat{y}-y)^{2}
$$

and:

$$
\xi^{\prime}(\hat{y}, y)=\hat{y}-y
$$

We deduce that:

$$
\frac{\partial \mathcal{L}_{i, j}(\theta)}{\partial \gamma_{j, h}}=\left(y_{j}\left(x_{i}\right)-y_{i, j}\right) y_{j}\left(x_{i}\right)\left(1-y_{j}\left(x_{i}\right)\right) z_{i, h}
$$

and:

$$
\frac{\partial \mathcal{L}_{i, j}(\theta)}{\partial \beta_{h, k}}=\left(y_{j}\left(x_{i}\right)-y_{i, j}\right) y_{j}\left(x_{i}\right)\left(1-y_{j}\left(x_{i}\right)\right) \gamma_{j, h} z_{i, h}\left(1-z_{i, h}\right) x_{i, k}
$$

The matrix forms are:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma}=((\hat{Y}-Y) \odot G(\hat{Y}))^{\top} Z
$$

and:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \beta}=((((\hat{Y}-Y) \odot G(\hat{Y})) \gamma) \odot G(Z))^{\top} X
$$

where $G(\hat{Y})=\hat{Y} \odot\left(\mathbf{1}_{n \times n_{y}}-\hat{Y}\right)$ and $G(Z)=Z \odot\left(\mathbf{1}_{n \times n_{z}}-Z\right)$.
5. We have:

$$
\xi(\hat{y}, y)=-(y \ln \hat{y}+(1-y) \ln (1-\hat{y}))
$$

and:

$$
\begin{aligned}
\xi^{\prime}(\hat{y}, y) & =-\frac{y}{\hat{y}}+\frac{(1-y)}{(1-\hat{y})} \\
& =\frac{\hat{y}(1-y)-y(1-\hat{y})}{\hat{y}(1-\hat{y})} \\
& =\frac{\hat{y}-y}{\hat{y}(1-\hat{y})}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i}(\theta)}{\partial \gamma_{h}} & =\frac{\left(y\left(x_{i}\right)-y_{i}\right)}{y\left(x_{i}\right)\left(1-y\left(x_{i}\right)\right)} y\left(x_{i}\right)\left(1-y\left(x_{i}\right)\right) z_{i, h} \\
& =\left(y\left(x_{i}\right)-y_{i}\right) z_{i, h}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i}(\theta)}{\partial \beta_{h, k}} & =\frac{\left(y\left(x_{i}\right)-y_{i}\right)}{y\left(x_{i}\right)\left(1-y\left(x_{i}\right)\right)} y\left(x_{i}\right)\left(1-y\left(x_{i}\right)\right) \gamma_{h} z_{i, h}\left(1-z_{i, h}\right) x_{i, k} \\
& =\left(y\left(x_{i}\right)-y_{i}\right) \gamma_{h} z_{i, h}\left(1-z_{i, h}\right) x_{i, k}
\end{aligned}
$$

The matrix forms are:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma}=(\hat{Y}-Y)^{\top} Z
$$

and:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \beta}=(((\hat{Y}-Y) \gamma) \odot Z \odot(\mathbf{1}-Z))^{\top} X
$$

6. In the case of the softmax activation function, the value of $y_{j}\left(x_{i}\right)$ is equal to:

$$
\begin{aligned}
y_{j}\left(x_{i}\right) & =f_{z, y}\left(v_{i, j}\right) \\
& =\frac{e^{v_{i, j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{v_{i, j^{\prime}}}}
\end{aligned}
$$

This implies that $y_{j}\left(x_{i}\right)$ depends on $y_{j^{\prime}}\left(x_{i}\right)$:

$$
\sum_{j=1}^{n_{C}} y_{j}\left(x_{i}\right)=\sum_{j=1}^{n_{C}} \frac{e^{v_{i, j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{v_{i, j^{\prime}}}}=\frac{\sum_{j=1}^{n_{C}} e^{v_{i, j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{v_{i, j^{\prime}}}}=1
$$

The loss function is additive with respect to the index i, but not with respect to the index j.
7. We have:

$$
\xi(\hat{y}, y)=-y \ln \hat{y}
$$

It follows that:

$$
\xi^{\prime}(\hat{y}, y)=-\frac{y}{\hat{y}}
$$

We also have:

$$
f\left(z_{j}\right)=\frac{e^{z_{j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}}
$$

We deduce that:

$$
\begin{aligned}
\frac{\partial f\left(z_{j}\right)}{\partial z_{j}} & =\frac{e^{z_{j}} \sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}-e^{2 z_{j}}}{\left(\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}\right)^{2}} \\
& =\frac{e^{z_{j}}\left(\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}-e^{z_{j}}\right)}{\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}} \sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}} \\
& =\frac{e^{z_{j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}}\left(1-\frac{e^{z_{j}}}{\sum_{j^{\prime}=1}^{n_{C}} e^{z_{j^{\prime}}}}\right) \\
& =f\left(z_{j}\right)\left(1-f\left(z_{j}\right)\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial f\left(z_{j}\right)}{\partial z_{j^{\prime}}} & =-\frac{e^{z_{j}+z_{j^{\prime}}}}{\left(\sum_{j^{\prime \prime}=1}^{n_{C}} e^{z_{j^{\prime \prime}}}\right)^{2}} \\
& =-\frac{e^{z_{j}}}{\sum_{j^{\prime \prime}=1}^{n_{C}} e^{z_{j^{\prime \prime}}} \frac{e^{z_{j^{\prime}}}}{\sum_{j^{\prime \prime}=1}^{n_{C}} e^{z_{j^{\prime \prime}}}}} \\
& =-f\left(z_{j}\right) f\left(z_{j^{\prime}}\right)
\end{aligned}
$$

We notice that:

$$
\begin{aligned}
(*) & =\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j}} \\
& =-\left(\frac{y_{i, j}}{y_{j}\left(x_{i}\right)} \frac{\partial y_{j}\left(x_{i}\right)}{\partial v_{i, j}}+\sum_{j^{\prime} \neq j} \frac{y_{i, j^{\prime}}}{y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j}}\right) \\
& =-\left(\frac{y_{i, j}}{y_{j}\left(x_{i}\right)} f\left(v_{i, j}\right)\left(1-f\left(v_{i, j}\right)\right)-\sum_{j^{\prime} \neq j} \frac{y_{i, j^{\prime}}}{y_{j^{\prime}}\left(x_{i}\right)} f\left(v_{i, j}\right) f\left(v_{i, j^{\prime}}\right)\right) \\
& =-\left(\frac{y_{i, j}}{y_{j}\left(x_{i}\right)} y_{j}\left(x_{i}\right)\left(1-y_{j}\left(x_{i}\right)\right)-\sum_{j^{\prime} \neq j} \frac{y_{i, j^{\prime}}}{y_{j^{\prime}}\left(x_{i}\right)} y_{j}\left(x_{i}\right) y_{j^{\prime}}\left(x_{i}\right)\right) \\
& =-y_{i, j}\left(1-y_{j}\left(x_{i}\right)\right)+y_{j}\left(x_{i}\right) \sum_{j^{\prime} \neq j} y_{i, j^{\prime}} \\
& =-y_{i, j}+y_{j}\left(x_{i}\right) \sum_{j^{\prime}=1}^{n_{C}} y_{i, j^{\prime}} \\
& =y_{j}\left(x_{i}\right)-y_{i, j}
\end{aligned}
$$

because $^{10} \sum_{j^{\prime}=1}^{n_{C}} y_{i, j^{\prime}}=1$. We deduce that:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i}(\theta)}{\partial \gamma_{j, h}} & =\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \sum_{j^{\prime \prime}=1}^{n_{C}} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j^{\prime \prime}}} \frac{\partial v_{i, j^{\prime \prime}}}{\partial \gamma_{j, h}} \\
& =\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j}} z_{i, h} \\
& =\left(\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j}}\right) z_{i, h} \\
& =\left(y_{j}\left(x_{i}\right)-y_{i, j}\right) z_{i, h}
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i}(\theta)}{\partial \beta_{h, k}} & =\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \sum_{j^{\prime \prime}=1}^{n_{C}} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j^{\prime \prime}}} \frac{\partial v_{i, j^{\prime \prime}}}{\partial z_{i, h}} \frac{\partial z_{i, h}}{\partial u_{i, h}} \frac{\partial u_{i, h}}{\partial \beta_{h, k}} \\
& =\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{\left.i, j^{\prime}\right)}\right.}{\partial y_{j^{\prime}}\left(x_{i}\right)} \sum_{j^{\prime \prime}=1}^{n_{C}} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j^{\prime \prime}}} \gamma_{j^{\prime \prime}, h} x_{i, k} \\
& =\sum_{j^{\prime \prime}=1}^{n_{C}}\left(\sum_{j^{\prime}=1}^{n_{C}} \frac{\partial \xi\left(y_{j^{\prime}}\left(x_{i}\right), y_{i, j^{\prime}}\right)}{\partial y_{j^{\prime}}\left(x_{i}\right)} \frac{\partial y_{j^{\prime}}\left(x_{i}\right)}{\partial v_{i, j^{\prime \prime}}}\right) \gamma_{j^{\prime \prime}, h} x_{i, k} \\
& =\left(\sum_{j^{\prime \prime}=1}^{n_{C}}\left(y_{j^{\prime \prime}}\left(x_{i}\right)-y_{i, j^{\prime \prime}}\right) \gamma_{j^{\prime \prime}, h}\right) x_{i, k} \\
& =\left(\sum_{j=1}^{n_{C}}\left(y_{j}\left(x_{i}\right)-y_{i, j}\right) \gamma_{j, h}\right) x_{i, k}
\end{aligned}
$$

The matrix forms are then:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma}=(\hat{Y}-Y)^{\top} Z
$$

and:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \beta}=((\hat{Y}-Y) \gamma)^{\top} X
$$

8. We have $\partial_{\beta_{h, 0}} u_{i, h}=1, \partial_{\gamma_{j, 0}} v_{i, j}=1$ and $\partial_{\gamma_{j, n_{z+k}}} v_{i, j}=x_{i, k}$. We note β_{0} the vector of dimension $n_{z} \times 1$, γ_{0} the vector of dimension $n_{y} \times 1$ and γ_{x} the matrix of dimension $n_{y} \times n_{x}$. If there is a constant between the x 's and the z 's or between the z 's and the y 's, we have:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \beta_{0}}=\left(\left(\left(G_{y, y} \odot G_{y, v}\right) \gamma\right) \odot G_{z, u}\right)^{\top} \mathbf{1}_{n \times 1}
$$

and:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma_{0}}=\left(G_{y, y} \odot G_{y, v}\right)^{\top} \mathbf{1}_{n \times 1}
$$

In the case of direct links between the x 's and the y 's, we obtain:

$$
\frac{\partial \mathcal{L}(\theta)}{\partial \gamma_{x}}=\left(G_{y, y} \odot G_{y, v}\right)^{\top} X
$$

[^55]
15.4.8 Primal and dual problems of support vector machines

Hard margin classification

1. We note $\theta=\left(\beta_{0}, \beta\right)$ the $(1+K) \times 1$ vector of parameters. The objective function is equal to:

$$
\begin{aligned}
f(\theta) & =\frac{1}{2}\|\beta\|_{2}^{2} \\
& =\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
\end{aligned}
$$

where:

$$
Q=\left(\begin{array}{cc}
0 & \mathbf{0}_{K}^{\top} \\
\mathbf{0}_{K} & I_{K}
\end{array}\right)
$$

and $R=\mathbf{0}_{1+K}$. The constraints $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq 1$ are equivalent to $y_{i} \beta_{0}+y_{i} x_{i}^{\top} \beta \geq 1$. The matrix form $C \theta \geq D$ is defined by:

$$
C=\left(\begin{array}{cccc}
y_{1} & y_{1} x_{1,1} & \cdots & y_{1} x_{1, K} \\
\vdots & \vdots & & \vdots \\
y_{n} & y_{n} x_{n, 1} & \cdots & y_{n} x_{n, K}
\end{array}\right)
$$

and $D=\mathbf{1}_{n}$.
2. The associated Lagrange function is:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta ; \alpha\right) & =\frac{1}{2}\|\beta\|_{2}^{2}-\alpha^{\top}\left(y \beta_{0}+y \odot X \beta-\mathbf{1}_{n}\right) \\
& =\frac{1}{2}\|\beta\|_{2}^{2}-\left(\alpha^{\top} y\right) \beta_{0}-\alpha^{\top}(y \odot X \beta)+\alpha^{\top} \mathbf{1}_{n} \\
& =\frac{1}{2}\|\beta\|_{2}^{2}-\beta_{0}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)-\beta^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

where $\alpha \geq \mathbf{0}_{\mathbf{n}}$ is the vector of Lagrange multipliers. The first-order conditions are:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

and:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=\mathbf{0}_{K}
$$

3. At the optimum, we deduce that $\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ and the objective function of the dual problem is:

$$
\begin{aligned}
\mathcal{L}^{*}(\alpha)= & \frac{1}{2}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)-\beta_{0}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)- \\
& \left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)+\sum_{i=1}^{n} \alpha_{i} \\
= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}\right) \\
= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
\end{aligned}
$$

Then, we have:

$$
\begin{aligned}
\hat{\alpha} & =\arg \max \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\
& \text { s.t. } \quad \alpha \geq \mathbf{0}_{n}
\end{aligned}
$$

because the Lagrange multipliers α_{i} are positive.
4. It follows that:

$$
\hat{\alpha}=\arg \min \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}-\sum_{i=1}^{n} \alpha_{i}
$$

Since we have $\sum_{i=1}^{n} \alpha_{i}=\alpha^{\top} \mathbf{1}_{n}$ and:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}=\alpha^{\top} \Gamma \alpha
$$

where $\Gamma_{i, j}=y_{i} y_{j} x_{i}^{\top} x_{j}$, we deduce that:

$$
\begin{aligned}
\hat{\alpha}= & \arg \min \frac{1}{2} \alpha^{\top} \Gamma \alpha-\alpha^{\top} \mathbf{1}_{n} \\
\text { s.t. } & \alpha \geq \mathbf{0}_{n}
\end{aligned}
$$

5. We notice that:

$$
C \theta \geq D \Leftrightarrow-C \theta \leq-D
$$

By applying the direct computation, we deduce that:

$$
\begin{aligned}
\hat{\alpha} & =\arg \min \frac{1}{2} \alpha^{\top} Q^{*} \alpha-\alpha^{\top} R^{*} \\
\text { s.t. } & \alpha \geq \mathbf{0}_{n}
\end{aligned}
$$

where:

$$
\begin{aligned}
Q^{*} & =C Q^{-1} C^{\top} \\
& =C\left(\begin{array}{cc}
0 & \mathbf{0}_{K}^{\top} \\
\mathbf{0}_{K} & I_{K}
\end{array}\right)^{-1} C^{\top} \\
& =\left(\begin{array}{cccc}
y_{1} & y_{1} x_{1,1} & \cdots & y_{1} x_{1, K} \\
\vdots & \vdots & & \vdots \\
y_{n} & y_{n} x_{n, 1} & \cdots & y_{n} x_{n, K}
\end{array}\right)^{\top}\left(\begin{array}{ccc}
\infty & \mathbf{0}_{K}^{\top} \\
\mathbf{0}_{K} & I_{K}
\end{array}\right) \\
& \left(\begin{array}{cccc}
y_{1} & y_{1} x_{1,1} & \cdots & y_{1} x_{1, K} \\
\vdots & \vdots & & \vdots \\
y_{n} & y_{n} x_{n, 1} & \cdots & y_{n} x_{n, K}
\end{array}\right)^{\top} \\
& =\infty\left(y^{\top} y\right)+\Gamma
\end{aligned}
$$

where $\Gamma_{i, j}=y_{i} y_{j} x_{i}^{\top} x_{j}$ and:

$$
\begin{aligned}
R^{*} & =-C Q^{-1} R+D \\
& =-C Q^{-1} \mathbf{0}+\mathbf{1}_{n} \\
& =\mathbf{1}_{n}
\end{aligned}
$$

Finally, we obtain:

$$
\begin{aligned}
\hat{\alpha}= & \arg \min \frac{1}{2} \alpha^{\top}\left(\infty\left(y^{\top} y\right)+\Gamma\right) \alpha-\alpha^{\top} \mathbf{1}_{n} \\
\text { s.t. } & \alpha \geq \mathbf{0}_{n}
\end{aligned}
$$

The singularity of the matrix Q does not allow to define a proper dual problem. In particular, we observe a scaling issue of the Lagrange coefficients. This is why we reintroduce the constraint $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$, and replace the previous dual problem by:

$$
\begin{aligned}
\hat{\alpha} & =\quad \arg \min \frac{1}{2} \alpha^{\top} \Gamma \alpha-\alpha^{\top} \mathbf{1}_{n} \\
\text { s.t. } & \left\{\begin{array}{l}
y^{\top} \alpha=0 \\
\alpha \geq \mathbf{0}_{n}
\end{array}\right.
\end{aligned}
$$

Soft margin classification with binary hinge loss

1. We note $\theta=\left(\beta_{0}, \beta, \xi\right)$ the $(1+K+n) \times 1$ vector of parameters. The objective function is equal to:

$$
\begin{aligned}
f(\theta) & =\frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \\
& =\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
\end{aligned}
$$

where:

$$
Q=\left(\begin{array}{ccc}
0 & \mathbf{0}_{K}^{\top} & \mathbf{0}_{n}^{\top} \\
\mathbf{0}_{K} & I_{K} & \mathbf{0}_{K \times n} \\
\mathbf{0}_{n} & \mathbf{0}_{n \times K} & \mathbf{0}_{n \times n}
\end{array}\right)
$$

and:

$$
R=\binom{\mathbf{0}_{K+1}}{-C \cdot \mathbf{1}_{n}}
$$

The constraints $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq 1-\xi_{i}$ are equivalent to $y_{i} \beta_{0}+y_{i} x_{i}^{\top} \beta+\xi_{i} \geq 1$. The matrix form $C \theta \geq D$ is defined by:

$$
C=\left(\begin{array}{ccccccc}
y_{1} & y_{1} x_{1,1} & \cdots & y_{1} x_{1, K} & 1 & & 0 \\
\vdots & \vdots & & \vdots & & \ddots & \\
y_{n} & y_{n} x_{n, 1} & \cdots & y_{n} x_{n, K} & 0 & & 1
\end{array}\right)
$$

and $D=\mathbf{1}_{n}$. The bounds $\xi_{i} \geq 0$ can be written as $\theta \geq \theta^{-}$where:

$$
\theta^{-}=\binom{-\infty \cdot \mathbf{1}_{1+K}}{\mathbf{0}_{n}}
$$

2. The associated Lagrange function is:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta, \xi ; \alpha, \lambda\right)= & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}- \\
& \sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \lambda_{i} \xi_{i}
\end{aligned}
$$

where $\alpha_{i} \geq 0$ and $\lambda_{i} \geq 0$. The first-order conditions for β_{0} and β are the same:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

and:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=\mathbf{0}_{K}
$$

The first-order condition for ξ is:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \xi}=C \cdot \mathbf{1}_{n}-\alpha-\lambda=\mathbf{0}_{n}
$$

It follows that:

$$
\begin{aligned}
\mathcal{L}^{*}(\alpha, \lambda) & =\mathcal{L}^{*}(\alpha)+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i} \xi_{i}-\sum_{i=1}^{n} \lambda_{i} \xi_{i} \\
& =\mathcal{L}^{*}(\alpha)+\sum_{i=1}^{n} \xi_{i}\left(C-\alpha_{i}-\lambda_{i}\right) \\
& =\mathcal{L}^{*}(\alpha)
\end{aligned}
$$

because of the first-order condition for ξ_{i}. The objective function of the dual problem is then the same as previously, and does not depend on the Lagrange multipliers λ. However, $\lambda_{i} \geq 0$ and $C-\alpha_{i}-\lambda_{i}=0$ implies that $C-\alpha_{i} \geq 0$ or $\alpha_{i} \leq C$. Finally, we obtain the following dual problem:

$$
\begin{aligned}
& \hat{\alpha}= \arg \min \frac{1}{2} \alpha^{\top} \Gamma \alpha-\alpha^{\top} \mathbf{1}_{n} \\
& \text { s.t. } \quad\left\{\begin{array}{l}
y^{\top} \alpha=0 \\
\mathbf{0}_{n} \leq \alpha \leq C \cdot \mathbf{1}_{n}
\end{array}\right.
\end{aligned}
$$

3. Previously, the support vectors correspond to observations such that $\alpha_{i} \neq 0$. Here, the support vectors must also verify that $\xi_{i}=0$, implying that $\lambda_{i} \neq 0$ or $\alpha_{i} \neq C$. Therefore, support vectors corresponds to training points such that $0<\alpha_{i}<C$.
4. The Kuhn-Tucker conditions are $\min \left(\lambda_{i}, \xi_{i}\right)=0$. We also have $\lambda_{i}=C-\alpha_{i}$. If $\alpha_{i}=C$, then $\lambda_{i}=0$ and $\xi_{i}>0$. Otherwise, we have $\lambda_{i}>0$ and $\xi_{i}=0$ in the case where $\alpha_{i}<C$. The two constraints $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$ implies that:

$$
\xi_{i} \geq 1-y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)
$$

At the optimum, we deduce that:

$$
\hat{\xi}_{i}=\max \left(0,1-y_{i}\left(\hat{\beta}_{0}+x_{i}^{\top} \hat{\beta}\right)\right)
$$

5. In Figure 15.3, we have represented the optimal values of $\beta_{0}, \beta_{1}, \beta_{2}, \sum_{i=1}^{n} \xi_{i}$ and the margin M with respect to C. We notice that the paths are not smooth. We verify that the soft margin classifier tends to the hard margin classifier when $C \rightarrow \infty$. In Figure 15.4, we show the optimal hyperplane when $C=0.07$. We verify that the soft margin classifier has a larger margin than the hard margin classifier.

FIGURE 15.3: Optimal values of $\beta_{0}, \beta_{1}, \beta_{2}, \sum_{i=1}^{n} \xi_{i}$ and M

FIGURE 15.4: The hard margin classifier when $C=0.07$

Soft margin classification with squared hinge loss

1. We note $\theta=\left(\beta_{0}, \beta, \xi\right)$ the $(1+K+n) \times 1$ vector of parameters. The objective function is equal to:

$$
\begin{aligned}
f(\theta) & =\frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}^{2} \\
& =\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
\end{aligned}
$$

where:

$$
Q=\left(\begin{array}{ccc}
0 & \mathbf{0}_{K}^{\top} & \mathbf{0}_{n}^{\top} \\
\mathbf{0}_{K} & I_{K} & \mathbf{0}_{K \times n} \\
\mathbf{0}_{n} & \mathbf{0}_{n \times K} & 2 C \cdot I_{n}
\end{array}\right)
$$

and $R=\mathbf{0}_{1+K+n}$. The inequality and bound constraints are the same as the ones we have found for the binary hinge loss.
2. The associated Lagrange function is:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta, \xi ; \alpha, \lambda\right)= & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}^{2}- \\
& \sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \lambda_{i} \xi_{i}
\end{aligned}
$$

where $\alpha_{i} \geq 0$ and $\lambda_{i} \geq 0$. The first-order conditions for β_{0} and β are:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

and:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=\mathbf{0}_{K}
$$

The first-order condition for ξ is:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \xi}=2 \cdot C \xi-\alpha-\lambda=\mathbf{0}_{n}
$$

The Kuhn-Tucker conditions are $\min \left(\lambda_{i}, \xi_{i}\right)=0$, implying that $\lambda_{i} \xi_{i}=0$. This is equivalent to impose that $2 C \cdot \xi-\alpha=\mathbf{0}_{n}$ or $\xi_{i}=\frac{\alpha_{i}}{2 C}$. It follows that:

$$
\begin{aligned}
C \xi_{i}^{2}-\alpha_{i} \xi_{i}-\lambda_{i} \xi_{i} & =C\left(\frac{\alpha_{i}}{2 C}\right)^{2}-\alpha_{i} \frac{\alpha_{i}}{2 C}-0 \cdot \xi_{i} \\
& =\frac{\alpha_{i}^{2}}{4 C}-\frac{\alpha_{i}^{2}}{2 C} \\
& =-\frac{\alpha_{i}^{2}}{4 C}
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathcal{L}^{*}(\alpha, \lambda) & =\mathcal{L}^{*}(\alpha)-\frac{1}{4 C} \sum_{i=1}^{n} \alpha_{i}^{2} \\
& =\alpha^{\top} \mathbf{1}_{n}-\frac{1}{2} \alpha^{\top} \Gamma \alpha-\frac{1}{4 C} \alpha^{\top} \alpha \\
& =\alpha^{\top} \mathbf{1}_{n}-\frac{1}{2} \alpha^{\top}\left(\Gamma+\frac{1}{2 C} I_{n}\right) \alpha
\end{aligned}
$$

Finally, we obtain the following dual problem:

$$
\begin{aligned}
& \hat{\alpha}=\arg \min \frac{1}{2} \alpha^{\top}\left(\Gamma+\frac{1}{2 C} I_{n}\right) \alpha-\alpha^{\top} \mathbf{1}_{n} \\
& \text { s.t. } \quad\left\{\begin{array}{l}
y^{\top} \alpha=0 \\
\alpha \geq \mathbf{0}_{n}
\end{array}\right.
\end{aligned}
$$

This is a hard margin dual problem with a ridge regularization of the Γ matrix.
3. In Figure 15.5, we have represented the optimal values of $\beta_{0}, \beta_{1}, \beta_{2}, \sum_{i=1}^{n} \xi_{i}$ and the margin M with respect to C. We notice that the paths are smooth. We verify that the soft margin classifier tends to the hard margin classifier when $C \rightarrow \infty$.

FIGURE 15.5: Convergence of soft margin classification with squared hinge loss
4. We obtain $\hat{\beta}_{0}=0.853, \hat{\beta}_{1}=-0.371$ and $\hat{\beta}_{1}=0.226$. The optimal values of α_{i} and ξ_{i} are given in Table 15.3.

TABLE 15.3: Soft margin classification with squared hinge loss $(C=1)$

i	1	2	3	4	5	6	7	8	
$\hat{\alpha}_{i}$	0.00	0.40	1.39	0.00	1.09	0.00	0.14	0.99	
$\hat{\xi}_{i}$	0.00	0.20	0.70	0.00	0.55	0.00	0.07	0.50	
$\stackrel{ }{ }$	$\overline{9}$	10	$1 \overline{1}$	$\overline{1} 2$	$1 \overline{3}$	$\overline{14}{ }^{-}$	$\overline{1} 5$	$1 \overline{6}$	17
$\hat{\alpha}_{i}$	0.00	0.00	1.16	0.00	0.00	0.00	0.22	2.48	3.13
$\hat{\xi}_{i}$	0.00	0.00	0.58	0.00	0.00	0.00	0.11	1.24	1.56

Soft margin classification with ramp loss

1. We have represented the four loss functions in Figure 15.6. The 0-1 loss function is not convex. The binary hinge loss function is convex, but not always differentiable. The
squared hinge loss function is convex and everywhere differentiable. Finally, the ramp loss function is bounded. The last three functions can be viewed as an approximation of the $0-1$ loss function. Graphically, the ramp loss function is the best approximation.

FIGURE 15.6: Comparison of SVM loss functions
2. We have:

$$
\begin{aligned}
\mathcal{L}^{\text {ramp }}\left(x_{i}, y_{i}\right)= & \min \left(1, \mathcal{L}^{\text {hinge }}\left(x_{i}, y_{i}\right)\right) \\
= & \min \left(1, \max \left(0,1-y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)\right)\right) \\
= & \max \left(0,1-y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)\right)- \\
& \max \left(0,-y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right)\right) \\
= & \mathcal{L}^{\text {hinge }}\left(x_{i}, y_{i}\right)-\mathcal{L}^{\text {convex }}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

It follows that $\mathcal{L}^{\text {ramp }}$ is not convex, making the optimization problem tricky.

LS-SVM regression

1. We note $\theta=\left(\beta_{0}, \beta, \xi\right)$ the $(1+K+n) \times 1$ vector of parameters. The objective function is equal to:

$$
\begin{aligned}
f(\theta) & =\frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}^{2} \\
& =\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
\end{aligned}
$$

where:

$$
Q=\left(\begin{array}{ccc}
0 & \mathbf{0}_{K}^{\top} & \mathbf{0}_{n}^{\top} \\
\mathbf{0}_{K} & I_{K} & \mathbf{0}_{K \times n} \\
\mathbf{0}_{n} & \mathbf{0}_{n \times K} & 2 C \cdot I_{n}
\end{array}\right)
$$

and $R=\mathbf{0}_{1+K+n}$. Let $Y=\left(y_{i}\right)$ and $X=\left(x_{i, k}\right)$ be the output vector and the design matrix. The equality constraint is $A \theta=B$ where:

$$
A=\left(\begin{array}{ccc}
\mathbf{1}_{n} & X & I_{n}
\end{array}\right)
$$

and $B=Y$.
2. The associated Lagrange function is:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta, \xi ; \alpha\right)= & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}^{2}+ \\
& \sum_{i=1}^{n} \alpha_{i}\left(y_{i}-\beta_{0}-x_{i}^{\top} \beta-\xi_{i}\right)
\end{aligned}
$$

The first-order conditions for β_{0} and β are:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta_{0}}=-\sum_{i=1}^{n} \alpha_{i}=0
$$

and:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \beta}=\beta-\sum_{i=1}^{n} \alpha_{i} x_{i}=\mathbf{0}_{K}
$$

The first-order condition for ξ is:

$$
\frac{\partial \mathcal{L}\left(\beta_{0}, \beta ; \alpha\right)}{\partial \xi}=2 C \cdot \xi-\alpha=\mathbf{0}_{n}
$$

Since we have $\alpha^{\top} \mathbf{1}_{n}=0, \beta=X^{\top} \alpha$ and $\xi=\alpha /(2 C)$, the objective function of the dual problem is equal to:

$$
\begin{aligned}
\mathcal{L}^{*}(\alpha)= & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i}^{2}+ \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}-\beta_{0} \sum_{i=1}^{n} \alpha_{i}-\left(\sum_{i=1}^{n} \alpha_{i} x_{i}^{\top}\right) \beta-\sum_{i=1}^{n} \alpha_{i} \xi_{i} \\
= & \frac{1}{2} \beta^{\top} \beta+C \cdot \xi^{\top} \xi+\alpha^{\top} Y-\beta_{0} \cdot \alpha^{\top} \mathbf{1}_{n}-\beta^{\top} \beta-\alpha^{\top} \xi \\
= & -\frac{1}{2} \beta^{\top} \beta+\frac{C}{4 C^{2}} \alpha^{\top} \alpha+\alpha^{\top} Y-\frac{\alpha^{\top} \alpha}{2 C} \\
= & \alpha^{\top} Y-\frac{1}{2}\left(\alpha^{\top} X X^{\top} \alpha\right)-\frac{\alpha^{\top} \alpha}{4 C}
\end{aligned}
$$

Finally, we obtain the following dual problem:

$$
\begin{aligned}
& \hat{\alpha}=\arg \min \frac{1}{2} \alpha^{\top}\left(X X^{\top}+\frac{1}{2 C} I_{n}\right) \alpha-\alpha^{\top} Y \\
& \text { s.t. } \\
& \alpha^{\top} \mathbf{1}_{n}=0
\end{aligned}
$$

3. We also have $\hat{\beta}=X^{\top} \hat{\alpha}$. In this problem, all the training points are support vectors.

We deduce that $\hat{\beta}_{0}=n^{-1} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} \hat{\beta}\right)$ and $\hat{\xi}_{i}=y_{i}-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}$. We verify that the residuals are centered:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \hat{\xi}_{i} & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} \hat{\beta}\right)-\hat{\beta}_{0} \\
& =0
\end{aligned}
$$

ε-SVM regression

1. We note $\theta=\left(\beta_{0}, \beta, \xi^{-}, \xi^{+}\right)$the $(1+K+2 n) \times 1$ vector of parameters. The objective function is equal to:

$$
\begin{aligned}
f(\theta) & =\frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n}\left(\xi_{i}^{-}+\xi_{i}^{+}\right) \\
& =\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
\end{aligned}
$$

where:

$$
Q=\left(\begin{array}{ccc}
0 & \mathbf{0}_{K}^{\top} & \mathbf{0}_{2 n}^{\top} \\
\mathbf{0}_{K} & I_{K} & \mathbf{0}_{K \times 2 n} \\
\mathbf{0}_{2 n} & \mathbf{0}_{2 n \times K} & \mathbf{0}_{2 n \times 2 n}
\end{array}\right)
$$

and:

$$
R=\left(\begin{array}{c}
0 \\
\mathbf{0}_{K} \\
-C \cdot \mathbf{1}_{n} \\
-C \cdot \mathbf{1}_{n}
\end{array}\right)
$$

The constraints $\beta_{0}+x_{i}^{\top} \beta-y_{i} \leq \varepsilon+\xi_{i}^{-}$and $y_{i}-\beta_{0}-x_{i}^{\top} \beta \leq \varepsilon+\xi_{i}^{+}$are equivalent to $-\beta_{0}-x_{i}^{\top} \beta+\xi_{i}^{-} \geq-y_{i}-\varepsilon$ and $\beta_{0}+x_{i}^{\top} \beta+\xi_{i}^{+} \geq y_{i}-\varepsilon$. The matrix form $C \theta \geq D$ is defined by:

$$
C=\left(\begin{array}{rrcc}
-\mathbf{1}_{n} & -X & I_{n} & \mathbf{0}_{n \times n} \\
\mathbf{1}_{n} & X & \mathbf{0}_{n \times n} & I_{n}
\end{array}\right)
$$

and:

$$
D=\binom{-Y-\varepsilon \cdot \mathbf{1}_{n}}{Y-\varepsilon \cdot \mathbf{1}_{n}}
$$

The bounds $\xi_{i}^{-} \geq 0$ and $\xi_{i}^{+} \geq 0$ can be written as $\theta \geq \theta^{-}$where $\theta^{-}=$ $\left(-\infty \cdot \mathbf{1}_{1+K}, \mathbf{0}_{n}, \mathbf{0}_{n}\right)$.
2. We introduce the Lagrange multipliers $\alpha_{i}^{-} \geq 0, \alpha_{i}^{+} \geq 0, \lambda_{i}^{-} \geq 0$ and $\lambda_{i}^{+} \geq 0$ associated
the four inequality constraints. The associated Lagrange function is:

$$
\begin{aligned}
\mathcal{L}(\cdot)= & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n}\left(\xi_{i}^{-}+\xi_{i}^{+}\right)- \\
& \sum_{i=1}^{n} \alpha_{i}^{-}\left(\varepsilon+\xi_{i}^{-}-\beta_{0}-x_{i}^{\top} \beta+y_{i}\right)- \\
& \sum_{i=1}^{n} \alpha_{i}^{+}\left(\varepsilon+\xi_{i}^{+}+\beta_{0}+x_{i}^{\top} \beta-y_{i}\right)- \\
& \sum_{i=1}^{n} \lambda_{i}^{-} \xi_{i}^{-}-\sum_{i=1}^{n} \lambda_{i}^{+} \xi_{i}^{+}
\end{aligned}
$$

The first-order conditions for β_{0} and β are:

$$
\frac{\partial \mathcal{L}(\cdot)}{\partial \beta_{0}}=\sum_{i=1}^{n} \alpha_{i}^{-}-\sum_{i=1}^{n} \alpha_{i}^{+}=0
$$

and:

$$
\frac{\partial \mathcal{L}(\cdot)}{\partial \beta}=\beta+\sum_{i=1}^{n} \alpha_{i}^{-} x_{i}-\sum_{i=1}^{n} \alpha_{i}^{+} x_{i}=\mathbf{0}_{K}
$$

We deduce that:

$$
\mathbf{1}_{n}^{\top}\left(\alpha^{-}-\alpha^{+}\right)=0
$$

and:

$$
\beta=X^{\top}\left(\alpha^{+}-\alpha^{-}\right)
$$

The first-order condition for ξ^{-}and ξ^{+}are:

$$
\frac{\partial \mathcal{L}(\cdot)}{\partial \xi^{-}}=C \cdot \mathbf{1}_{n}-\alpha^{-}-\lambda^{-}=\mathbf{0}_{n}
$$

and:

$$
\frac{\partial \mathcal{L}(\cdot)}{\partial \xi^{+}}=C \cdot \mathbf{1}_{n}-\alpha^{+}-\lambda^{+}=\mathbf{0}_{n}
$$

This implies that:

$$
C=\alpha_{i}^{-}+\lambda_{i}^{-}=\alpha_{i}^{+}+\lambda_{i}^{+}
$$

It follows that:

$$
\begin{aligned}
(*)= & \sum_{i=1}^{n} \alpha_{i}^{-}\left(\varepsilon+\xi_{i}^{-}-\beta_{0}-x_{i}^{\top} \beta+y_{i}\right)+ \\
& \sum_{i=1}^{n} \alpha_{i}^{+}\left(\varepsilon+\xi_{i}^{+}+\beta_{0}+x_{i}^{\top} \beta-y_{i}\right) \\
= & \varepsilon\left(\alpha^{-}+\alpha^{+}\right)^{\top} \mathbf{1}_{n}-\beta_{0}\left(\alpha^{-}-\alpha^{+}\right)^{\top} \mathbf{1}_{n}- \\
& \left(\alpha^{-}-\alpha^{+}\right)^{\top} X \beta+\left(\alpha^{-}-\alpha^{+}\right)^{\top} Y+ \\
& \sum_{i=1}^{n} \alpha_{i}^{-} \xi_{i}^{-}+\sum_{i=1}^{n} \alpha_{i}^{+} \xi_{i}^{+}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
C \sum_{i=1}^{n}\left(\xi_{i}^{-}+\xi_{i}^{+}\right) & =C \sum_{i=1}^{n} \xi_{i}^{-}+C \sum_{i=1}^{n} \xi_{i}^{+} \\
& =\sum_{i=1}^{n}\left(\alpha_{i}^{-}+\lambda_{i}^{-}\right) \xi_{i}^{-}+\sum_{i=1}^{n}\left(\alpha_{i}^{+}+\lambda_{i}^{+}\right) \xi_{i}^{+}
\end{aligned}
$$

Since $\left(\alpha^{-}-\alpha^{+}\right)^{\top} X=\beta^{\top}$, the objective function of the dual problem becomes:

$$
\begin{aligned}
\mathcal{L}^{*}(\cdot) & =\frac{1}{2}\|\beta\|_{2}^{2}-\varepsilon\left(\alpha^{-}+\alpha^{+}\right)^{\top} \mathbf{1}_{n}+\beta^{\top} \beta-\left(\alpha^{-}-\alpha^{+}\right)^{\top} Y \\
& =-\frac{1}{2} \beta^{\top} \beta-\varepsilon\left(\alpha^{-}+\alpha^{+}\right)^{\top} \mathbf{1}_{n}-\left(\alpha^{-}-\alpha^{+}\right)^{\top} Y
\end{aligned}
$$

Since we have $\lambda_{i}^{-} \geq 0, \lambda_{i}^{+} \geq 0, C \cdot \mathbf{1}_{n}-\alpha^{-}-\lambda^{-}=\mathbf{0}_{n}$ and $C \cdot \mathbf{1}_{n}-\alpha^{+}-\lambda^{+}=\mathbf{0}_{n}$, we deduce that $\alpha_{i}^{-} \leq C$ and $\alpha_{i}^{+} \leq C$. Finally, we obtain the following dual problem:

$$
\begin{aligned}
&\left\{\hat{\alpha}^{-}, \hat{\alpha}^{+}\right\}= \arg \min \frac{1}{2}\left(\alpha^{-}-\alpha^{+}\right)^{\top} X X^{\top}\left(\alpha^{-}-\alpha^{+}\right)+ \\
& \varepsilon\left(\alpha^{-}+\alpha^{+}\right)^{\top} \mathbf{1}_{n}+\left(\alpha^{-}-\alpha^{+}\right)^{\top} Y \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\mathbf{1}_{n}^{\top}\left(\alpha^{-}-\alpha^{+}\right)=0 \\
\mathbf{0}_{n} \leq \alpha^{-} \leq C \cdot \mathbf{1}_{n} \\
\mathbf{0}_{n} \leq \alpha^{+} \leq C \cdot \mathbf{1}_{n}
\end{array}\right.
\end{aligned}
$$

3. We note $\theta=\left(\alpha^{-}, \alpha^{+}\right)$the $2 n \times 1$ vector of parameters. The QP objective function is equal to:

$$
f(\theta)=\frac{1}{2} \theta^{\top} Q \theta-\theta^{\top} R
$$

where:

$$
Q=\left(\begin{array}{rr}
X X^{\top} & -X X^{\top} \\
-X X^{\top} & X X^{\top}
\end{array}\right)
$$

and:

$$
R=\binom{-Y-\varepsilon \cdot \mathbf{1}_{n}}{Y-\varepsilon \cdot \mathbf{1}_{n}}
$$

The equality constraint is $A \theta=B$ where $A=\left(\begin{array}{ll}\mathbf{1}_{n}^{\top} & -\mathbf{1}_{n}^{\top}\end{array}\right)$ and $B=0$. The bounds are $\theta^{-}=\mathbf{0}_{2 n}$ and $\theta^{+}=C \cdot \mathbf{1}_{2 n}$.
4. We have:

$$
\begin{aligned}
\hat{\beta} & =X^{\top}\left(\hat{\alpha}^{+}-\hat{\alpha}^{-}\right) \\
& =\sum_{i=1}^{n}\left(\hat{\alpha}_{i}^{+}-\hat{\alpha}_{i}^{-}\right) x_{i}
\end{aligned}
$$

The Kuhn-Tucker conditions are:

$$
\left\{\begin{array}{l}
\min \left(\alpha_{i}^{-}, \varepsilon+\xi_{i}^{-}-\beta_{0}-x_{i}^{\top} \beta+y_{i}\right)=0 \\
\min \left(\alpha_{i}^{+}, \varepsilon+\xi_{i}^{+}+\beta_{0}+x_{i}^{\top} \beta-y_{i}\right)=0 \\
\min \left(\lambda_{i}^{-}, \xi_{i}^{-}\right)=0 \\
\min \left(\lambda_{i}^{+}, \xi_{i}^{+}\right)=0
\end{array}\right.
$$

We also remind that $C=\alpha_{i}^{-}+\lambda_{i}^{-}=\alpha_{i}^{+}+\lambda_{i}^{+}$. The set $\mathcal{S V}^{-}$of negative support
vectors corresponds then to the observations such that $0<\alpha_{i}^{-}<C$. In this case, we have $\varepsilon+\xi_{i}^{-}-\beta_{0}-x_{i}^{\top} \beta+y_{i}=0$ and $\xi_{i}^{-}=0$. We deduce that $\hat{\beta}_{0}=y_{i}+\varepsilon-x_{i}^{\top} \hat{\beta}$ when $i \in \mathcal{S V}{ }^{-}$. The set $\mathcal{S} \mathcal{V}^{+}$of positive support vectors corresponds to the observations such that $0<\alpha_{i}^{+}<C$. In this case, we have $\varepsilon+\xi_{i}^{+}+\beta_{0}+x_{i}^{\top} \beta-y_{i}=0$ and $\xi_{i}^{+}=0$. We deduce that $\hat{\beta}_{0}=y_{i}-\varepsilon-x_{i}^{\top} \hat{\beta}$ when $i \in \mathcal{S} \mathcal{V}^{+}$. Finally, we obtain:

$$
\hat{\beta}_{0}=\frac{\sum_{i \in \mathcal{S} \mathcal{V}^{-}}\left(y_{i}+\varepsilon-x_{i}^{\top} \hat{\beta}\right)+\sum_{i \in \mathcal{S} \mathcal{V}^{+}}\left(y_{i}-\varepsilon-x_{i}^{\top} \hat{\beta}\right)}{n_{\mathcal{S} \mathcal{V}^{-}}+n_{\mathcal{S} \mathcal{V}^{+}}}
$$

where $n_{\mathcal{S} \mathcal{V}^{-}}$and $n_{\mathcal{S} \mathcal{V}^{+}}$are the number of negative and positive support vectors.
5. If $\alpha_{i}^{-}<C$, we have $\lambda_{i}^{-}>0$ and $\xi_{i}^{-}=0$. Otherwise, we have $\lambda_{i}^{-}=0$ and $\xi_{i}^{-}>0$. More precisely, we have $\varepsilon+\xi_{i}^{-}-\beta_{0}-x_{i}^{\top} \beta+y_{i}=0$ or:

$$
\hat{\xi}_{i}^{-}=-\left(y_{i}+\varepsilon-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}\right)
$$

If $\alpha_{i}^{+}<C$, we have $\lambda_{i}^{+}>0$ and $\xi_{i}^{+}=0$. Otherwise, we have $\lambda_{i}^{+}=0$ and $\xi_{i}^{+}>0$. More precisely, we have $\varepsilon+\xi_{i}^{+}+\beta_{0}+x_{i}^{\top} \beta-y_{i}=0$ or:

$$
\hat{\xi}_{i}^{+}=y_{i}-\varepsilon-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}
$$

6. When ε is equal to zero, the term $\varepsilon\left(\alpha^{-}+\alpha^{+}\right)^{\top} \mathbf{1}_{n}$ disappears in the objective function of the dual problem:

$$
-\mathcal{L}^{*}(\cdot)=\frac{1}{2}\left(\alpha^{-}-\alpha^{+}\right) X X^{\top}\left(\alpha^{-}-\alpha^{+}\right)+\left(\alpha^{-}-\alpha^{+}\right)^{\top} Y
$$

By setting $\delta=\alpha^{+}-\alpha^{-}$, we obtain the following QP problem:

$$
\begin{aligned}
& \hat{\delta}= \arg \min \frac{1}{2} \delta X X^{\top} \delta-\delta^{\top} Y \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\mathbf{1}_{n}^{\top} \delta=0 \\
-C \cdot \mathbf{1}_{n} \leq \delta \leq C \cdot \mathbf{1}_{n}
\end{array}\right.
\end{aligned}
$$

The bounds are obtained by combining the inequalities $\mathbf{0}_{n} \leq \alpha^{-} \leq C \cdot \mathbf{1}_{n}$ and $\mathbf{0}_{n} \leq$ $\alpha^{+} \leq C \cdot \mathbf{1}_{n}$. We have $\hat{\beta}=X^{\top} \hat{\delta}$. The set $\mathcal{S V}$ of support vectors corresponds to the observations such that $-C<\delta_{i}<C$. It follows that:

$$
\hat{\beta}_{0}=\frac{1}{n_{\mathcal{S V}}} \sum_{i \in \mathcal{S V}}\left(y_{i}-x_{i}^{\top} \hat{\beta}\right)
$$

where $n_{\mathcal{S V}}$ is the number of support vectors. Moreover, we have:

$$
\hat{\xi}_{i}^{-}=\mathbb{1}\left\{\hat{\delta}_{i}=-C\right\} \cdot \max \left(0,-\left(y_{i}-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}\right)\right)
$$

and:

$$
\hat{\xi}_{i}^{+}=\mathbb{1}\left\{\hat{\delta}_{i}=C\right\} \cdot \max \left(0, y_{i}-\hat{\beta}_{0}-x_{i}^{\top} \hat{\beta}\right)
$$

15.4.9 Derivation of the AdaBoost algorithm as the solution of the additive logit model

The following derivation comes from Section 10.4 in Hastie et al. (2009).

1. The objective function is equal to:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{(s)}, f_{(s)}\right) & =\sum_{i=1}^{n} \mathcal{L}\left(y_{i}, \hat{g}_{(s-1)}\left(x_{i}\right)+\beta_{(s)} f_{(s)}\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{n} e^{-y_{i}\left(\hat{g}_{(s-1)}\left(x_{i}\right)+\beta_{(s)} f_{(s)}\left(x_{i}\right)\right)} \\
& =\sum_{i=1}^{n} w_{i, s} e^{-y_{i} \beta_{(s)} f_{(s)}\left(x_{i}\right)}
\end{aligned}
$$

where the expression of $w_{i, s}$ is equal to:

$$
w_{i, s}=e^{-y_{i} \hat{g}_{(s-1)}\left(x_{i}\right)}
$$

2. Since we have $y_{i} f_{(s)}\left(x_{i}\right)=1$ if $y_{i}=y_{i, s}$ and $y_{i} f_{(s)}\left(x_{i}\right)=-1$ if $y_{i} \neq y_{i, s}$, we obtain:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{(s)}, f_{(s)}\right)= & \sum_{i=1}^{n} w_{i, s} e^{-y_{i} \beta_{(s)} f_{(s)}\left(x_{i}\right)} \cdot \mathbb{1}\left\{y_{i}=y_{i, s}\right\}+ \\
& \sum_{i=1}^{n} w_{i, s} e^{-y_{i} \beta_{(s)} f_{(s)}\left(x_{i}\right)} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\} \\
= & e^{-\beta_{(s)}} \sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i}=y_{i, s}\right\}+ \\
& e^{\beta_{(s)}} \sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\}
\end{aligned}
$$

We notice that:

$$
\sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i}=y_{i, s}\right\}=\sum_{i=1}^{n} w_{i, s}-\sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\}
$$

It follows that:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{(s)}, f_{(s)}\right) & =e^{-\beta_{(s)}} \sum_{i=1}^{n} w_{i, s}+\left(e^{\beta_{(s)}}-e^{-\beta_{(s)}}\right) \sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\} \\
& =\left(e^{-\beta_{(s)}}+\left(e^{\beta_{(s)}}-e^{-\beta_{(s)}}\right) \frac{\sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\}}{\sum_{i=1}^{n} w_{i, s}}\right) \sum_{i=1}^{n} w_{i, s} \\
& =\left(\left(e^{\beta_{(s)}}-e^{-\beta_{(s)}}\right) \mathcal{L}_{(s)}+e^{-\beta_{(s)}}\right) \sum_{i=1}^{n} w_{i, s}
\end{aligned}
$$

where $\mathcal{L}_{(s)}$ is the error rate:

$$
\mathcal{L}_{(s)}=\frac{\sum_{i=1}^{n} w_{i, s} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\}}{\sum_{i=1}^{n} w_{i, s}}
$$

3. It follows that the minimum is reached when:

$$
\frac{\partial \mathcal{L}\left(\beta_{(s)}, f_{(s)}\right)}{\partial \beta}=0
$$

We have:

$$
\frac{\partial \mathcal{L}\left(\beta_{(s)}, f_{(s)}\right)}{\partial \beta}=\left(\left(e^{\beta_{(s)}}+e^{-\beta_{(s)}}\right) \mathcal{L}_{(s)}-e^{-\beta_{(s)}}\right) \sum_{i=1}^{n} w_{i, s}
$$

We deduce that:

$$
\left(e^{\beta_{(s)}}+e^{-\beta_{(s)}}\right) \mathcal{L}_{(s)}-e^{-\beta_{(s)}}=0
$$

If we consider the change of variable $\alpha=e^{\beta_{(s)}}>0$, we obtain:

$$
\left(\alpha+\frac{1}{\alpha}\right) \mathcal{L}_{(s)}-\frac{1}{\alpha}=0
$$

or:

$$
\alpha^{2}=\frac{1-\mathcal{L}_{(s)}}{\mathcal{L}_{(s)}}
$$

The solution is:

$$
\alpha^{\star}=\sqrt{\frac{1-\mathcal{L}_{(s)}}{\mathcal{L}_{(s)}}}
$$

The optimal value of $\beta_{(s)}$ is then:

$$
\begin{aligned}
\hat{\beta}_{(s)} & =\ln \left(\frac{1-\mathcal{L}_{(s)}}{\mathcal{L}_{(s)}}\right)^{1 / 2} \\
& =\frac{1}{2} \ln \left(\frac{1-\mathcal{L}_{(s)}}{\mathcal{L}_{(s)}}\right)
\end{aligned}
$$

4. We have:

$$
\begin{aligned}
\hat{g}_{(s)}(x) & =\sum_{s^{\prime}=1}^{s-1} \hat{\beta}_{\left(s^{\prime}\right)} \hat{f}_{\left(s^{\prime}\right)}(x)+\hat{\beta}_{(s)} \hat{f}_{(s)}(x) \\
& =\hat{g}_{(s-1)}(x)+\hat{\beta}_{(s)} \hat{f}_{(s)}(x)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
w_{i, s+1} & =e^{-y_{i} \hat{g}_{(s)}\left(x_{i}\right)} \\
& =e^{-y_{i} \hat{g}_{(s-1)}(x)-y_{i} \hat{\beta}_{(s)} \hat{f}_{(s)}\left(x_{i}\right)} \\
& =w_{i, s} e^{-y_{i} \hat{\beta}_{(s)} \hat{f}_{(s)}\left(x_{i}\right)}
\end{aligned}
$$

Using the fact that $-y_{i} \hat{f}_{(s)}\left(x_{i}\right)=2 \cdot \mathbb{1}\left\{y_{i} \neq \hat{y}_{i, s}\right\}-1$, the expression of $w_{i, s+1}$ becomes:

$$
\begin{aligned}
w_{i, s+1} & =w_{i, s} e^{2 \hat{\beta}_{(s)} \mathbb{1}\left\{y_{i} \neq \hat{y}_{i, s}\right\}} e^{-\hat{\beta}_{(s)}} \\
& =w_{i, s} e^{w_{s} \cdot \mathbb{1}\left\{y_{i} \neq \hat{y}_{i, s}\right\}} e^{-\hat{\beta}_{(s)}}
\end{aligned}
$$

where:

$$
w_{s}=2 \hat{\beta}_{(s)}=\ln \left(\frac{1-\mathcal{L}_{(s)}}{\mathcal{L}_{(s)}}\right)
$$

The normalized weights are then:

$$
\begin{aligned}
w_{i, s+1} & =\frac{w_{i, s} e^{w_{s} \cdot 1\left\{y_{i} \neq \hat{y}_{i, s}\right\}} e^{-\hat{\beta}_{(s)}}}{\sum_{i^{\prime}=1}^{n} w_{i^{\prime}, s} e^{w_{s} \cdot \mathbb{1}\left\{y_{i^{\prime}} \neq \hat{y}_{i^{\prime}, s}\right\}} e^{-\hat{\beta}_{(s)}}} \\
& =\frac{w_{i, s} e^{w_{s} \cdot \mathbb{1}\left\{y_{i} \neq \hat{y}_{i, s}\right\}}}{\sum_{i^{\prime}=1}^{n} w_{i^{\prime}, s} e^{w_{s} \cdot \mathbb{1}\left\{y_{i^{\prime}} \neq \hat{y}_{i^{\prime}, s}\right\}}}
\end{aligned}
$$

5. The AdaBoost model can be viewed as an additive model, which is estimated using the forward stagewise method and the softmax loss function. However, there is a strong difference. Indeed, the solution $\hat{f}_{(s)}$ is given by:

$$
\hat{f}_{(s)}=\arg \min \sum_{i=1}^{n} w_{i, s} e^{-w_{s} \cdot \mathbb{1}\left\{y_{i} \neq f_{s}\left(x_{i}\right)\right\}}
$$

because $-y_{i} \hat{\beta}_{(s)} f_{(s)}\left(x_{i}\right)=2 \hat{\beta}_{(s)} \cdot \mathbb{1}\left\{y_{i} \neq y_{i, s}\right\}-\hat{\beta}_{(s)}$ and:

$$
\mathcal{L}\left(\hat{\beta}_{(s)}, f_{(s)}\right)=e^{-\hat{\beta}_{(s)}} \sum_{i=1}^{n} w_{i, s} e^{-w_{s} \cdot 1\left\{y_{i} \neq y_{i, s}\right\}}
$$

In the AdaBoost algorithm, the objective function for finding $\hat{f}_{(s)}$ is exogenous.

15.4.10 Weighted estimation

1. (a) We have:

$$
\hat{\theta}=\arg \max \boldsymbol{\ell}_{w}(\theta)
$$

(b) The Jacobian matrix is:

$$
J_{w}(\theta)=w^{\top} \odot J(\theta)
$$

where $J(\theta)$ is the Jacobian matrix associated to the unweighted log-likelihood function $\ell(\theta)=\sum_{i=1}^{n} \ell_{i}(\theta)$. For the Hessian matrix, we have:

$$
H_{w}(\theta)=\sum_{i=1}^{n} w_{i} H_{i}(\theta)
$$

where $H_{i}(\theta)$ is the unweighted Hessian matrix:

$$
H_{i}(\theta)=\left(\begin{array}{cccc}
\frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{1} \partial \theta_{1}} & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{1} \partial \theta_{2} \ell_{i}(\theta)} & \cdots & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{1} \partial \theta_{K}} \\
\frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{2} \partial \theta_{2}} & & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{2} \partial \theta_{K}} \\
& & \ddots & \\
\frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{K} \partial \theta_{1}} & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{K} \partial \theta_{2}} & & \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta_{K} \partial \theta_{K}}
\end{array}\right)
$$

2. (a) The least squares loss function becomes:

$$
\mathcal{L}_{w}(\theta)=\sum_{i=1}^{n} w_{i} \sum_{j=1}^{n_{y}} \frac{1}{2}\left(y_{j}\left(x_{i}\right)-y_{i, j}\right)^{2}
$$

We also have:

$$
\frac{\partial \mathcal{L}_{w}(\theta)}{\partial \gamma}=\left(G_{y, y} \odot G_{y, v}\right)^{\top}(w \odot Z)
$$

and:

$$
\frac{\partial \mathcal{L}_{w}(\theta)}{\partial \beta}=\left(\left(\left(G_{y, y} \odot G_{y, v}\right) \gamma\right) \odot G_{z, u}\right)^{\top}(w \odot X)
$$

where the matrices $G_{y, y}, G_{y, v}, G_{z, u}, Z, X$ and γ are those defined in Exercise 15.4.7 on page 303.
(b) The cross-entropy loss function becomes:

$$
\mathcal{L}_{w}(\theta)=-\sum_{i=1}^{n} w_{i}\left(y_{i} \ln y_{j}\left(x_{i}\right)+\left(1-y_{i}\right)\left(1-\ln y_{j}\left(x_{i}\right)\right)\right)
$$

We also have:

$$
\frac{\partial \mathcal{L}_{w}(\theta)}{\partial \gamma}=(\hat{Y}-Y)^{\top}(w \odot Z)
$$

and:

$$
\frac{\partial \mathcal{L}_{w}(\theta)}{\partial \beta}=(((\hat{Y}-Y) \gamma) \odot Z \odot(\mathbf{1}-Z))^{\top}(w \odot X)
$$

where the matrices \hat{Y}, Y, Z, X and γ are those defined in Exercise 15.4.7 on page 303.
3. (a) The soft margin classification problem becomes:

$$
\begin{aligned}
&\left\{\hat{\beta}_{0}, \hat{\beta}, \hat{\xi}\right\}=\quad \arg \min \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} w_{i} \xi_{i} \\
& \text { s.t. } \quad\left\{\begin{array}{l}
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array} \quad \text { for } i=1, \ldots, n\right.
\end{aligned}
$$

(b) For the primal problem, the difference concerns the vector R :

$$
R=\binom{\mathbf{0}_{K+1}}{-C w}
$$

For the dual problem, the difference concerns the bounds:

$$
\begin{aligned}
& \hat{\alpha}=\arg \min \frac{1}{2} \alpha^{\top} \Gamma \alpha-\alpha^{\top} \mathbf{1}_{n} \\
& \text { s.t. } \quad\left\{\begin{array}{l}
y^{\top} \alpha=0 \\
\mathbf{0}_{n} \leq \alpha \leq C w
\end{array}\right.
\end{aligned}
$$

It follows that the support vectors corresponds to training points such that $0<$ $\alpha_{i}<C w_{i}$.
(c) Hard margin classification assumes that the training set is linearly separable. So, there is no impact of weights on the solution. This is why it is impossible to introduce weights in the objective function of the hard margin classification problem.

Appendix A

Technical Appendix

A.4.1 Discrete-time random process

1. (a) We have $x_{0} \in\{0\}$ and $\mathcal{F}_{0}=\{0\}$. For $t=1, x_{1}$ can take the value 0 or 1 . We deduce that $x_{1} \in\{0,1\}$ and $\mathcal{F}_{1}=\{\{0\},\{1\},\{0,0\},\{0,1\}\}$. Similarly, we have $x_{2} \in\{0,1,2\}$ and:

$$
\mathcal{F}_{2}=\left\{\begin{array}{c}
\{0\},\{1\},\{2\},\{0,0\},\{0,1\},\{0,2\},\{1,1\},\{1,2\} \\
\{0,0,0\},\{0,0,1\},\{0,1,1\},\{0,1,2\}
\end{array}\right\}
$$

(b) We have ${ }^{1} \mathbb{E}[|X(t)|]=t \sqrt{2 / \pi}<\infty$. It $s<t$, we have:

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[X_{t-1}+\varepsilon_{t} \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[X_{s}+\sum_{n=0}^{t-s+1} \varepsilon_{t-n} \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[X_{s} \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[\sum_{n=0}^{t-s+1} \varepsilon_{t-n} \mid \mathcal{F}_{s}\right] \\
& =x_{s}+0 \\
& =x_{s}
\end{aligned}
$$

We deduce that X_{t} is a martingale.
2. We have:

$$
\begin{aligned}
X_{t} & =\phi X_{t-1}+\varepsilon_{t} \\
& =\phi\left(\phi X_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =\phi^{2} X_{t-2}+\phi \varepsilon_{t-1}+\varepsilon_{t} \\
& =\sum_{n=0}^{\infty} \phi^{n} \varepsilon_{t-n}
\end{aligned}
$$

because $\lim _{n \rightarrow \infty} \phi^{n}=0$.
(a) We have:

$$
\begin{aligned}
\mathbb{E}\left[X_{t}^{2}\right] & =\sum_{n=0}^{\infty} \phi^{2 n} \mathbb{E}\left[\varepsilon_{t-n}^{2}\right] \\
& =\sigma^{2} \sum_{n=0}^{\infty} \phi^{2 n} \\
& =\frac{\sigma^{2}}{1-\phi^{2}} \\
& <\infty
\end{aligned}
$$

[^56]$\forall t \in \mathbb{Z}$, we have $\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[\sum_{n=0}^{\infty} \phi^{n} \varepsilon_{t-n}\right]=0$. We deduce that:
$$
\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{s}\right]
$$
$\forall(s, t) \in \mathbb{Z}$ with $t \geq s$ and $\forall u \geq 0$, we have:
\[

$$
\begin{aligned}
\mathbb{E}\left[X_{s+u} X_{t+u}\right] & =\mathbb{E}\left[\sum_{n=0}^{\infty} \phi^{n} \varepsilon_{s+u-n} \sum_{n=0}^{\infty} \phi^{n} \varepsilon_{t+u-n}\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\infty} \phi^{n} \varepsilon_{s+u-n} \sum_{n=t-s}^{\infty} \phi^{n} \varepsilon_{t+u-n}\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\infty} \phi^{n} \varepsilon_{s+u-n} \sum_{n=0}^{\infty} \phi^{t-s+n} \varepsilon_{s+u-n}\right] \\
& =\phi^{t-s} \mathbb{E}\left[\sum_{n=0}^{\infty} \phi^{2 n} \varepsilon_{s+u-n}^{2}\right] \\
& =\frac{\phi^{t-s}}{1-\phi^{2}} \sigma^{2} \\
& =\mathbb{E}\left[X_{s} X_{t}\right]
\end{aligned}
$$
\]

We deduce that X_{t} is a weak-sense stationary process.
(b) We have:

$$
\mathbb{P}\left\{X_{t} \in \mathcal{A}\right\}=\int_{\mathcal{A}} \frac{\sqrt{1-\phi^{2}}}{\sigma^{2} \sqrt{2 \pi}} \exp \left(-\frac{\left(1-\phi^{2}\right) x^{2}}{2 \sigma^{2}}\right) \mathrm{d} x
$$

The probability $\mathbb{P}\left\{X_{t} \in \mathcal{A}\right\}$ does not depend on t. We deduce that:

$$
\mathbb{P}\left\{X_{t} \in \mathcal{A}\right\}=\mathbb{P}\left\{X_{s} \in \mathcal{A}\right\}
$$

(c) We have:

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right] & =\mathbb{E}\left[\phi X_{t-1}+\varepsilon_{t} \mid \mathcal{F}_{t-1}\right] \\
& =\phi x_{t-1} \\
& \neq x_{t-1}
\end{aligned}
$$

It follows that X_{t} is a Markov process only if ϕ is equal to 0 .
(d) We have:

$$
\begin{aligned}
\mathbb{E}\left[X_{t}^{2}\right] & =\mathbb{E}\left[\left(\varepsilon_{t}+\theta \varepsilon_{t-1}\right)^{2}\right] \\
& =\left(1+\theta^{2}\right) \sigma^{2} \\
& <\infty
\end{aligned}
$$

$\forall t \in \mathbb{Z}$, we have $\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[\varepsilon_{t}+\theta \varepsilon_{t-1}\right]=0$. We deduce that $\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{s}\right]$. $\forall(s, t) \in \mathbb{Z}$ with $t \geq s$ and $\forall u \geq 0$, we have:

$$
\begin{aligned}
\mathbb{E}\left[X_{s+u} X_{t+u}\right]= & \mathbb{E}\left[\left(\varepsilon_{s+u}+\theta \varepsilon_{s+u-1}\right)\left(\varepsilon_{t+u}+\theta \varepsilon_{t+u-1}\right)\right] \\
= & \mathbb{E}\left[\varepsilon_{s+u} \varepsilon_{t+u}\right]+\theta \mathbb{E}\left[\varepsilon_{s+u-1} \varepsilon_{t+u}\right]+ \\
& \theta \mathbb{E}\left[\varepsilon_{s+u} \varepsilon_{t+u-1}\right]+\theta^{2} \mathbb{E}\left[\varepsilon_{s+u-1} \varepsilon_{t+u-1}\right] \\
= & \begin{cases}\left(1+\theta^{2}\right) \sigma^{2} & \text { if } t=s \\
\theta \sigma^{2} & \text { if }|t-s|=1 \\
0 & \text { if }|t-s|>1\end{cases}
\end{aligned}
$$

Since we have $\mathbb{E}\left[X_{s+u} X_{t+u}\right]=\mathbb{E}\left[X_{s} X_{t}\right]$, we conclude that X_{t} is a weak-sense stationary process. It is easy to show that the probability $\mathbb{P}\left\{X_{t} \in \mathcal{A}\right\}$ does not depend on t. This implies that X_{t} is a strong-sense stationary process. We have:

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right] & =\mathbb{E}\left[\varepsilon_{t}+\theta \varepsilon_{t-1} \mid \mathcal{F}_{t-1}\right] \\
& =\theta e_{t-1} \\
& \neq e_{t-1}+\theta e_{t-2} \\
& \neq x_{t-1}
\end{aligned}
$$

The MA(1) process is not a Markov process.

A.4.2 Properties of Brownian motion

1. (a) We have:

$$
\begin{aligned}
\mathbb{E}[W(t)] & =\mathbb{E}[W(t)-W(0)] \\
& =0
\end{aligned}
$$

(b) We assume that $s<t$. We have:

$$
\begin{aligned}
\operatorname{cov}(W(s) W(t))= & \mathbb{E}[W(s) W(t)] \\
= & \mathbb{E}[W(s)(W(t)-W(s)+W(s))] \\
= & \mathbb{E}[W(s)(W(t)-W(s))]+\mathbb{E}\left[W^{2}(s)\right] \\
= & \mathbb{E}[(W(s)-W(0))(W(t)-W(s))]+ \\
& \mathbb{E}\left[(W(s)-W(0))^{2}\right] \\
= & 0+s \\
= & s
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\mathbb{E}[|W(t)|] & =\int_{-\infty}^{\infty} \frac{|x|}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}} \mathrm{~d} x \\
& =2 \int_{0}^{\infty} \frac{x}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}} \mathrm{~d} x \\
& =\sqrt{\frac{2}{\pi t}}\left[-t e^{-\frac{1}{2 t} x^{2}}\right]_{0}^{\infty} \\
& =\sqrt{\frac{2 t}{\pi}} \\
& <\infty
\end{aligned}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[W(t) \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[W(s)+(W(t)-W(s)) \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[W(s) \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[W(t)-W(s) \mid \mathcal{F}_{s}\right] \\
& =w_{s}+0 \\
& =w_{s}
\end{aligned}
$$

2. We only consider $h \rightarrow 0^{+}$because the case $h \rightarrow 0^{-}$is symmetric. We have ${ }^{2}$:

$$
\begin{aligned}
\mathbb{P}\{|W(t+h)-W(t)|>\varepsilon\} & =2 \int_{-\infty}^{-\varepsilon} \frac{1}{\sqrt{2 \pi h}} \exp \left(-\frac{1}{2 h} x^{2}\right) \mathrm{d} x \\
& =2 \int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi h}} e^{-\frac{1}{2 h}(\sqrt{h} y+\varepsilon)^{2}} \sqrt{h} \mathrm{~d} y \\
& =\sqrt{\frac{2}{\pi}} \exp \left(-\frac{\varepsilon^{2}}{2 h}\right) \int_{-\infty}^{0} e^{-\frac{y^{2}}{2}-\frac{y \varepsilon}{\sqrt{h}}} \mathrm{~d} y
\end{aligned}
$$

We note $f(y)=-\frac{y^{2}}{2}-\frac{y \varepsilon}{\sqrt{h}}$. We have:

$$
f^{\prime}(y)=-y-\frac{\varepsilon}{\sqrt{h}}
$$

Therefore, $f(y)$ is an increasing function on $\left.]-\infty,-h^{-1 / 2} \varepsilon\right]$ and a decreasing function on $\left[-h^{-1 / 2} \varepsilon, 0\right]$. We deduce that:

$$
0 \leq f(y) \leq \frac{\varepsilon^{2}}{2 h}
$$

and:

$$
\int_{-\infty}^{0} \exp \left(-\frac{y^{2}}{2}-\frac{y \varepsilon}{\sqrt{h}}\right) \mathrm{d} y \leq C
$$

where $C \in \mathbb{R}^{+}$. It follows that:

$$
0 \leq \mathbb{P}\{|W(t+h)-W(t)|>\varepsilon\} \leq C \sqrt{\frac{2}{\pi}} \exp \left(-\frac{\varepsilon^{2}}{2 h}\right)
$$

and:

$$
0 \leq \lim _{h \rightarrow 0^{+}} \mathbb{P}\{|W(t+h)-W(t)|>\varepsilon\} \leq C \sqrt{\frac{2}{\pi}} \lim _{h \rightarrow 0^{+}} \exp \left(-\frac{\varepsilon^{2}}{2 h}\right)
$$

Since $\lim _{h \rightarrow 0^{+}} \exp \left(-\frac{\varepsilon^{2}}{2 h}\right)=0$, we deduce that:

$$
\lim _{h \rightarrow 0^{+}} \mathbb{P}\{|W(t+h)-W(t)|>\varepsilon\}=0
$$

3. We have:

$$
\mathbb{E}\left[W^{2}(t)\right]=t
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[W^{2}(t) \mid \mathcal{F}_{s}\right]= & \mathbb{E}\left[(W(t)-W(s)+W(s))^{2} \mid \mathcal{F}_{s}\right] \\
= & \mathbb{E}\left[W(s)^{2} \mid \mathcal{F}_{s}\right]+2 \mathbb{E}\left[(W(t)-W(s)) W(s) \mid \mathcal{F}_{s}\right]+ \\
& \mathbb{E}\left[(W(t)-W(s))^{2} \mid \mathcal{F}_{s}\right] \\
= & 0+0+(t-s) \\
= & t-s
\end{aligned}
$$

[^57]If $X \sim \mathcal{N}(0,1)$, we know that $\mathbb{E}\left[X^{3}\right]=0$ and $\mathbb{E}\left[X^{4}\right]=3$. We deduce that $\mathbb{E}\left[W^{3}(t)\right]=0$ and:

$$
\begin{aligned}
\mathbb{E}\left[W^{4}(t)\right] & =\mathbb{E}\left[\left(t^{1 / 2} \mathcal{N}(0,1)\right)^{4}\right] \\
& =3 t^{2}
\end{aligned}
$$

We remind that $\mathbb{E}\left[\exp \left(\mathcal{N}\left(\mu, \sigma^{2}\right)\right)\right]=\exp \left(\mu+0.5 \sigma^{2}\right)$. We deduce that:

$$
\mathbb{E}\left[e^{W(t)}\right]=e^{\frac{1}{2} t}
$$

and:

$$
\begin{aligned}
\mathbb{E}\left[e^{W(t)} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[e^{W(s)+W(t)-W(s)} \mid \mathcal{F}_{s}\right] \\
& =e^{W(s)} \mathbb{E}\left[e^{W(t)-W(s)} \mid \mathcal{F}_{s}\right] \\
& =e^{W(s)} e^{\frac{1}{2}(t-s)} \\
& =e^{\frac{1}{2}(t-s) W(s)}
\end{aligned}
$$

4. If $X \sim \mathcal{N}(0,1)$ and $n \in \mathbb{N}^{\star}$, we have:

$$
\begin{aligned}
\mathbb{E}\left[X^{2 n}\right] & =(2 n-1) \mathbb{E}\left[X^{2(n-1)}\right] \\
& =(2 n-1)(2 n-3) \mathbb{E}\left[X^{2(n-2)}\right] \\
& =(2 n-1)(2 n-3) \cdots 5 \cdot 3 \cdot 1 \cdot \mathbb{E}\left[X^{2}\right] \\
& =(2 n-1)!!
\end{aligned}
$$

and:

$$
\mathbb{E}\left[X^{n+1}\right]=0
$$

where $n!$! denotes the double factorial. We can also show that:

$$
(2 n-1)!!=\frac{(2 n)!}{2^{n} n!}
$$

It follows that:

$$
\mathbb{E}\left[W^{2 n}(t)\right]=\frac{(2 n)!}{2^{n} n!} t^{n}
$$

and:

$$
\mathbb{E}\left[W^{n+1}(t)\right]=0
$$

For an even integer n, we deduce that:

$$
\mathbb{E}\left[W^{n}(t)\right]=\frac{n!}{2^{n / 2}(n / 2)!} t^{n / 2}
$$

whereas for an odd integer $n, \mathbb{E}\left[W^{n}(t)\right]$ is equal to 0 .

A.4.3 Stochastic integral for random step functions

1. We note $(*)=\int_{a}^{b}(\alpha f+\beta g)(t) \mathrm{d} W(t)$. We have:

$$
\begin{aligned}
(*)= & \sum_{i=0}^{n-1}(\alpha f+\beta g)\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
= & \sum_{i=0}^{n-1}\left(\alpha f\left(t_{i}\right)+\beta g\left(t_{i}\right)\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
= & \alpha \sum_{i=0}^{n-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)+ \\
& \beta \sum_{i=0}^{n-1} g\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
= & \alpha \int_{a}^{b} f(t) \mathrm{d} W(t)+\beta \int_{a}^{b} g(t) \mathrm{d} W(t)
\end{aligned}
$$

We conclude that the stochastic integral verifies the linearity property. We now introduce the following partition:

$$
a=t_{0}<t_{1}<\cdots<t_{k}=c<\cdots<t_{n}<b
$$

We deduce that:

$$
\begin{aligned}
\int_{a}^{b} f(t) \mathrm{d} W(t) & =\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
& =\sum_{i=0}^{k-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)+ \\
& \sum_{i=k}^{n-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \\
& =\int_{a}^{c} f(t) \mathrm{d} W(t)+\int_{c}^{b} f(t) \mathrm{d} W(t)
\end{aligned}
$$

It follows that the Chasles decomposition property holds.
2. We have:

$$
\begin{aligned}
\mathbb{E}\left[\int_{a}^{b} f(t) \mathrm{d} W(t)\right] & =\mathbb{E}\left[\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right] \\
& =\sum_{i=0}^{n-1} \mathbb{E}\left[f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right] \\
& =\sum_{i=0}^{n-1} \mathbb{E}\left[f\left(t_{i}\right)\right] \cdot \mathbb{E}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right] \\
& =0
\end{aligned}
$$

We note $(*)=\mathbb{E}\left[\int_{a}^{b} f(t) \mathrm{d} W(t) \int_{a}^{b} g(t) \mathrm{d} W(t)\right]$. We have:

$$
\begin{aligned}
(*)= & \mathbb{E}\left[\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right) \sum_{i=0}^{n-1} g\left(t_{i}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\right] \\
= & \mathbb{E}\left[\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f\left(t_{i}\right) g\left(t_{j}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
= & \sum_{i=0}^{n-1} \mathbb{E}\left[f\left(t_{i}\right) g\left(t_{j}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2}\right]+ \\
& 2 \sum_{i>j} \mathbb{E}\left[f\left(t_{i}\right) g\left(t_{j}\right)\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right]
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
(*)= & \sum_{i=0}^{n-1} \mathbb{E}\left[f\left(t_{i}\right) g\left(t_{j}\right)\right] \cdot \mathbb{E}\left[\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)^{2}\right]+ \\
& 2 \sum_{i>j} \mathbb{E}\left[f\left(t_{i}\right) g\left(t_{j}\right)\right] \cdot \mathbb{E}\left[\left(W\left(t_{i+1}\right)-W\left(t_{i}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \\
= & \sum_{i=0}^{n-1} \mathbb{E}\left[f\left(t_{i}\right) g\left(t_{j}\right)\right]\left(t_{i+1}-t_{i}\right) \\
= & \mathbb{E}\left[\sum_{i=0}^{n-1} f\left(t_{i}\right) g\left(t_{j}\right)\left(t_{i+1}-t_{i}\right)\right] \\
= & \mathbb{E}\left[\int_{a}^{b} f(t) g(t) \mathrm{d} t\right]
\end{aligned}
$$

This result is known as the Itô isometry property. It is particularly useful for computing the covariance between two Itô processes $X_{1}(t)$ and $X_{2}(t)$:

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}(t), X_{1}(t)\right) & =\mathbb{E}\left[\int_{a}^{b} \sigma_{1}(t) \mathrm{d} W(t) \int_{a}^{b} \sigma_{2}(t) \mathrm{d} W(t)\right] \\
& =\mathbb{E}\left[\int_{a}^{b} \sigma_{1}(t) \sigma_{2}(t) \mathrm{d} t\right]
\end{aligned}
$$

where $\sigma_{1}(t)$ and $\sigma_{2}(t)$ are the diffusion coefficients of $X_{1}(t)$ and $X_{2}(t)$.
3. We remind that:

$$
\begin{aligned}
\operatorname{var}\left(\int_{a}^{b} f(t) \mathrm{d} W(t)\right)= & \mathbb{E}\left[\left(\int_{a}^{b} f(t) \mathrm{d} W(t)\right)^{2}\right]- \\
& \mathbb{E}^{2}\left[\int_{a}^{b} f(t) \mathrm{d} W(t)\right]
\end{aligned}
$$

It follows that:

$$
\operatorname{var}\left(\int_{a}^{b} f(t) \mathrm{d} W(t)\right)=\mathbb{E}\left[\int_{a}^{b} f(t)^{2} \mathrm{~d} t\right]-0^{2}
$$

Since the mathematical expectation and the Riemann-Stieltjes are both linear, we conclude that:

$$
\operatorname{var}\left(\int_{a}^{b} f(t) \mathrm{d} W(t)\right)=\int_{a}^{b} \mathbb{E}\left[f^{2}(t)\right] \mathrm{d} t
$$

A.4.4 Power of Brownian motion

1. We apply the Itô formula with $\mu(t, x)=0, \sigma(t, x)=1$ and $f(t, x)=x^{2}$. Since we have $\partial_{t} f(t, x)=0, \partial_{x} f(t, x)=2 x$ and $\partial_{x}^{2} f(t, x)=2$, we deduce that:

$$
\begin{aligned}
\mathrm{d} W^{2}(t) & =\mathrm{d} f(t, W(t)) \\
& =\left(0+2 W(t) \times 0+\frac{1}{2} \times 2 \times 1\right) \mathrm{d} t+(2 W(t) \times 1) \mathrm{d} W(t) \\
& =\mathrm{d} t+2 W(t) \mathrm{d} W(t)
\end{aligned}
$$

2. It follows that:

$$
\int_{0}^{t} \mathrm{~d} W^{2}(s)=\int_{0}^{t} \mathrm{~d} s+2 \int_{0}^{t} W(s) \mathrm{d} W(s)
$$

and:

$$
W^{2}(t)=t+2 \int_{0}^{t} W(s) \mathrm{d} W(s)
$$

Therefore, we obtain:

$$
\begin{aligned}
I(t) & =\int_{0}^{t} W(s) \mathrm{d} W(s) \\
& =\frac{1}{2}\left(W^{2}(t)-t\right)
\end{aligned}
$$

If follows that the expected value is equal to:

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{t} W(s) \mathrm{d} W(s)\right] & =\mathbb{E}\left[\frac{1}{2}\left(W^{2}(t)-t\right)\right] \\
& =\frac{\mathbb{E}\left[W^{2}(t)\right]-t}{2} \\
& =0
\end{aligned}
$$

Concerning the variance, we obtain:

$$
\begin{aligned}
\operatorname{var}\left(\int_{0}^{t} W(s) \mathrm{d} W(s)\right) & =\operatorname{var}\left(\frac{1}{2}\left(W^{2}(t)-t\right)\right) \\
& =\frac{1}{4} \operatorname{var}\left(W^{2}(t)\right) \\
& =\frac{1}{4}\left(\mathbb{E}\left[W^{4}(t)\right]-\mathbb{E}^{2}\left[W^{2}(t)\right]\right) \\
& =\frac{1}{4}\left(3 t^{2}-t^{2}\right) \\
& =\frac{t^{2}}{2}
\end{aligned}
$$

We also notice that we can directly find this result by using the Itô isometry property:

$$
\begin{aligned}
\operatorname{var}\left(\int_{0}^{t} W(s) \mathrm{d} W(s)\right) & =\mathbb{E}\left[\left(\int_{0}^{t} W(s) \mathrm{d} W(s)\right)^{2}\right] \\
& =\int_{0}^{t} \mathbb{E}\left[W^{2}(s)\right] \mathrm{d} s \\
& =\int_{0}^{t} s \mathrm{~d} s \\
& =\frac{t^{2}}{2}
\end{aligned}
$$

3. We use the function $f(t, x)=x^{n}$. We have $\partial_{t} f(t, x)=0, \partial_{x} f(t, x)=n x^{n-1}$ and $\partial_{x}^{2} f(t, x)=n(n-1) x^{n-2}$. The Itô formula gives:

$$
\begin{align*}
\mathrm{d} W^{n}(t) & =\mathrm{d} f(t, W(t)) \\
& =\frac{1}{2} n(n-1) W(t)^{n-2} \mathrm{~d} t+n W^{n-1}(t) \mathrm{d} W(t) \tag{A.1}
\end{align*}
$$

4. Since $I_{n}(t)$ is an Itô integral, we have:

$$
\mathbb{E}\left[I_{n}(t)\right]=0
$$

and ${ }^{3}$:

$$
\begin{aligned}
\operatorname{var}\left(I_{n}(t)\right) & =\int_{0}^{t} \mathbb{E}\left[W^{2 n}(s)\right] \mathrm{d} s \\
& =\int_{0}^{t} \frac{(2 n)!}{2^{n} n!} s^{n} \mathrm{~d} s \\
& =\frac{(2 n)!}{2^{n} n!} \int_{0}^{t} s^{n} \mathrm{~d} s \\
& =\frac{(2 n)!}{2^{n}(n+1)!} t^{n+1}
\end{aligned}
$$

Finally, we obtain the following values of $\operatorname{var}\left(I_{n}(t)\right)$:

n	1	2	3	4	5	6
$\operatorname{var}\left(I_{n}(t)\right)$	$\frac{1}{2} t^{2}$	t^{3}	$\frac{15}{4} t^{4}$	$21 t^{5}$	$\frac{315}{2} t^{5}$	$1485 t^{5}$

5. In Question 4 of Exercise A.4.2, we have shown that:

$$
\begin{aligned}
\mathbb{E}\left[J_{n}(t)\right] & =\mathbb{E}\left[W^{n}(t)\right] \\
& = \begin{cases}\frac{n!}{2^{n / 2}(n / 2)!} t^{n / 2} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Let us assume that n is odd. We have:

$$
\begin{aligned}
\operatorname{var}\left(J_{n}(t)\right) & =\mathbb{E}\left[W^{2 n}(t)\right] \\
& =\frac{(2 n)!}{2^{n} n!} t^{n}
\end{aligned}
$$

[^58]In the case where n is even, we deduce that:

$$
\begin{aligned}
\operatorname{var}\left(J_{n}(t)\right) & =\mathbb{E}\left[W^{2 n}(t)\right]-\mathbb{E}^{2}\left[W^{n}(t)\right] \\
& =\left(\frac{(2 n)!}{(n)!}-\left(\frac{n!}{(n / 2)!}\right)^{2}\right) \frac{t^{n}}{2^{n}}
\end{aligned}
$$

6. We have:

$$
\begin{aligned}
\mathbb{E}\left[K_{n}(t)\right] & =\mathbb{E}\left[\int_{0}^{t} W^{n}(s) \mathrm{d} s\right] \\
& =\int_{0}^{t} \mathbb{E}\left[W^{n}(s)\right] \mathrm{d} s
\end{aligned}
$$

If n is odd, we deduce that:

$$
\begin{aligned}
\mathbb{E}\left[K_{n}(t)\right] & =\int_{0}^{t} 0 \mathrm{~d} s \\
& =0
\end{aligned}
$$

If n is even, we deduce that:

$$
\begin{aligned}
\mathbb{E}\left[K_{n}(t)\right] & =\int_{0}^{t} \frac{n!}{2^{n / 2}(n / 2)!} s^{n / 2} \mathrm{~d} s \\
& =\frac{n!}{2^{n / 2}(n / 2)!} \int_{0}^{t} s^{n / 2} \mathrm{~d} s \\
& =\frac{n!}{2^{n / 2}(n / 2)!}\left[\frac{s^{n / 2+1}}{n / 2+1}\right]_{0}^{t} \\
& =\frac{n!}{2^{n / 2}(n / 2+1)!} t^{n / 2+1}
\end{aligned}
$$

7. Concerning the second non-central moment, we have:

$$
\begin{aligned}
\mathbb{E}\left[K_{n}^{2}(t)\right] & =\mathbb{E}\left[\left(\int_{0}^{t} W^{n}(s) \mathrm{d} s\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\int_{0}^{t} W^{n}(s) \mathrm{d} s\right)\left(\int_{0}^{t} W^{n}(u) \mathrm{d} u\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{t} \int_{0}^{t} W^{n}(s) W^{n}(u) \mathrm{d} s \mathrm{~d} u\right] \\
& =\int_{0}^{t} \int_{0}^{t} \mathbb{E}\left[W^{n}(s) W^{n}(u)\right] \mathrm{d} s \mathrm{~d} u
\end{aligned}
$$

by using Fubini's theorem. The challenge lies in computing the term $\mathbb{E}\left[W^{n}(s) W^{n}(u)\right]$. We face two difficulties. First, $W^{n}(s)$ and $W^{n}(u)$ are not independent. Therefore, the covariance involves the power series of $W(s)$. Second, we must distinguish the case $s<u$ and $u \geq u$. This is why it is long and tedious to compute the variance for high order n.
8. In the case $n=1$, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[K_{1}^{2}(t)\right] & =\int_{0}^{t} \int_{0}^{t} \mathbb{E}[W(s) W(u)] \mathrm{d} s \mathrm{~d} u \\
& =\int_{0}^{t}\left(\int_{0}^{t} \min (s, u) \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\int_{0}^{u} \min (s, u) \mathrm{d} s+\int_{u}^{t} \min (s, u) \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\int_{0}^{u} s \mathrm{~d} s+\int_{u}^{t} u \mathrm{~d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\frac{u^{2}}{2}+u(t-u)\right) \mathrm{d} u \\
& =\left[\frac{u^{3}}{6}+\frac{u^{2}}{2} t-\frac{u^{3}}{3}\right]_{0}^{t} \\
& =\frac{t^{3}}{3}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}\left(K_{1}(t)\right) & =\mathbb{E}\left[K_{1}^{2}(t)\right]-\mathbb{E}^{2}\left[K_{1}(t)\right] \\
& =\frac{1}{3} t^{3}
\end{aligned}
$$

For $n=2$ and $s<u$, we have:

$$
\begin{aligned}
W^{2}(s) W^{2}(u)= & (W(s)-W(0))^{2}(W(u)-W(0))^{2} \\
= & (W(s)-W(0))^{2}(W(s)-W(0)+W(u)-W(s))^{2} \\
= & (W(s)-W(0))^{4}+2(W(s)-W(0))^{3}(W(u)-W(s))+ \\
& (W(s)-W(0))^{2}(W(u)-W(s))^{2}
\end{aligned}
$$

Since $W(s)-W(0)$ and $W(u)-W(s)$ are two independent random variables, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[W^{2}(s) W^{2}(u)\right] & =3 s^{2}+2 \cdot 0+s(u-s) \\
& =2 s^{2}+u s
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[K_{2}^{2}(t)\right] & =\int_{0}^{t} \int_{0}^{t} \mathbb{E}\left[W^{2}(s) W^{2}(u)\right] \mathrm{d} s \mathrm{~d} u \\
& =\int_{0}^{t}\left(\int_{0}^{u}\left(2 s^{2}+u s\right) \mathrm{d} s+\int_{u}^{t}\left(2 u^{2}+u s\right) \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\left[\frac{2}{3} s^{3}+\frac{1}{2} u s^{2}\right]_{0}^{u}+\left[2 u^{2} s+\frac{1}{2} u s^{2}\right]_{u}^{t}\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(2 u^{2} t+\frac{1}{2} u t^{2}-\frac{4}{3} u^{3}\right) \mathrm{d} u \\
& =\left[\frac{2}{3} u^{3} t+\frac{1}{4} u^{2} t^{2}-\frac{1}{3} u^{4}\right]_{0}^{t} \\
& =\frac{7}{12} t^{4}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}\left(K_{2}(t)\right) & =\mathbb{E}\left[K_{2}^{2}(t)\right]-\mathbb{E}^{2}\left[K_{2}(t)\right] \\
& =\frac{7}{12} t^{4}-\left(\frac{2!}{2 \cdot 2!} t^{2}\right)^{2} \\
& =\frac{1}{3} t^{4}
\end{aligned}
$$

For $n=3$ and $s<u$, we have:

$$
\begin{aligned}
W^{3}(s) W^{3}(u)= & (W(s)-W(0))^{3}(W(u)-W(0))^{3} \\
= & (W(s)-W(0))^{3}(W(s)-W(0)+W(u)-W(s))^{3} \\
= & (W(s)-W(0))^{6}+3(W(s)-W(0))^{5}(W(u)-W(s))+ \\
& 3(W(s)-W(0))^{4}(W(u)-W(s))^{2}+ \\
& (W(s)-W(0))^{3}(W(u)-W(s))^{3}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\mathbb{E}\left[W^{3}(s) W^{3}(u)\right] & =\left(\frac{6!}{2^{3} \cdot 3!} s^{3}\right)+3 \cdot 0+3 \cdot\left(\frac{4!}{2^{2} \cdot 2!} s^{2}\right)(u-s)+0 \\
& =6 s^{3}+9 u s^{2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[K_{3}^{2}(t)\right] & =\int_{0}^{t} \int_{0}^{t} \mathbb{E}\left[W^{3}(s) W^{3}(u)\right] \mathrm{d} s \mathrm{~d} u \\
& =\int_{0}^{t}\left(\int_{0}^{u}\left(6 s^{3}+9 u s^{2}\right) \mathrm{d} s+\int_{u}^{t}\left(6 u^{3}+9 u^{2} s\right) \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\left[\frac{3}{2} s^{4}+3 u s^{3}\right]_{0}^{u}+\left[6 u^{3} s+\frac{9}{2} u^{2} s^{2}\right]_{u}^{t}\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(-6 u^{4}+6 u^{3} t+\frac{9}{2} u^{2} t^{2}\right) \mathrm{d} u \\
& =\left[-\frac{6}{5} u^{5}+\frac{3}{2} u^{4} t+\frac{3}{2} u^{3} t^{2}\right]_{0}^{t} \\
& =\frac{9}{5} t^{5}
\end{aligned}
$$

and:

$$
\begin{aligned}
\operatorname{var}\left(K_{3}(t)\right) & =\mathbb{E}\left[K_{3}^{2}(t)\right]-\mathbb{E}^{2}\left[K_{3}(t)\right] \\
& =\frac{9}{5} t^{5}
\end{aligned}
$$

9. Using Equation (A.1), we deduce that:

$$
\begin{aligned}
I_{n}(t) & =\int_{0}^{t} W^{n}(s) \mathrm{d} W(s) \\
& =\frac{1}{n+1} W^{n+1}(t)-\frac{n}{2} \int_{0}^{t} W^{n-1}(s) \mathrm{d} s \\
& =\frac{1}{n+1} J_{n+1}(t)-\frac{n}{2} K_{n-1}(t)
\end{aligned}
$$

and:

$$
\begin{aligned}
J_{n}(t) & =W^{n}(t) \\
& =\frac{1}{2} n(n-1) \int_{0}^{t} W^{n-2}(s) \mathrm{d} s+n \int_{0}^{t} W^{n-1}(s) \mathrm{d} W(s) \\
& =\frac{n(n-1)}{2} K_{n-2}(t)+n I_{n-1}(t)
\end{aligned}
$$

We also have:

$$
\begin{aligned}
K_{n}(t) & =\int_{0}^{t} W^{n}(s) \mathrm{d} s \\
& =\frac{2}{(n+2)(n+1)} J_{n+2}(t)-\frac{2}{(n+1)} I_{n+1}(t)
\end{aligned}
$$

A.4.5 Exponential of Brownian motion

1. We apply the Itô formula with $\mu(t, x)=0, \sigma(t, x)=1$ and $f(t, x)=e^{x}$. Since we have $\partial_{t} f(t, x)=0, \partial_{x} f(t, x)=e^{x}$ and $\partial_{x}^{2} f(t, x)=e^{x}$, we deduce that:

$$
\begin{aligned}
\mathrm{d} e^{W(t)} & =\mathrm{d} f(t, W(t)) \\
& =\frac{1}{2} e^{W(t)} \mathrm{d} t+e^{W(t)} \mathrm{d} W(t)
\end{aligned}
$$

and:

$$
\int_{0}^{t} \mathrm{~d} e^{W(s)}=\frac{1}{2} \int_{0}^{t} e^{W(s)} \mathrm{d} s+\int_{0}^{t} e^{W(s)} \mathrm{d} W(s)
$$

It follows that:

$$
e^{W(t)}=1+\frac{1}{2} \int_{0}^{t} e^{W(s)} \mathrm{d} s+\int_{0}^{t} e^{W(s)} \mathrm{d} W(s)
$$

or:

$$
\begin{equation*}
X(t)=1+\frac{1}{2} Y(t)+Z(t) \tag{A.2}
\end{equation*}
$$

2. $X(t)=e^{W(t)}$ is lognormal random variable with $\mathbb{E}[X(t)]=e^{\frac{1}{2} t}$ and $\operatorname{var}(X(t))=$ $e^{2 t}-e^{t}$. In the case $Z(t)=\int_{0}^{t} e^{W(s)} \mathrm{d} W(s)$, we have:

$$
\mathbb{E}[Z(t)]=0
$$

and:

$$
\begin{aligned}
\operatorname{var}(Z(t)) & =\int_{0}^{t} \mathbb{E}\left[e^{2 W(s)}\right] \mathrm{d} s \\
& =\int_{0}^{t} e^{2 s} \mathrm{~d} s \\
& =\frac{1}{2}\left(e^{2 t}-1\right)
\end{aligned}
$$

In the case of $Y(t)=\int_{0}^{t} e^{W(s)} \mathrm{d} s$, we have:

$$
\begin{aligned}
\mathbb{E}[Y(t)] & =\int_{0}^{t} \mathbb{E}\left[e^{W(s)}\right] \mathrm{d} s \\
& =\int_{0}^{t} e^{\frac{1}{2} s} \mathrm{~d} s \\
& =\left[2 e^{\frac{1}{2} s}\right]_{0}^{t} \\
& =2\left(e^{\frac{1}{2} t}-1\right)
\end{aligned}
$$

and ${ }^{4}$:

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}(t)\right] & =\mathbb{E}\left[\left(\int_{0}^{t} e^{W(s)} \mathrm{d} s\right)\left(\int_{0}^{t} e^{W(u)} \mathrm{d} u\right)\right] \\
& =\int_{0}^{t} \int_{0}^{t} \mathbb{E}\left[e^{W(s)+W(u)}\right] \mathrm{d} s \mathrm{~d} u \\
& =\int_{0}^{t} \int_{0}^{t} e^{\frac{1}{2}(s+u+2 \min (s, u))} \mathrm{d} s \mathrm{~d} u \\
& =\int_{0}^{t}\left(\int_{0}^{u} e^{\frac{1}{2}(3 s+u)} \mathrm{d} s+\int_{u}^{t} e^{\frac{1}{2}(s+3 u)} \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(\left[\frac{2}{3} e^{\frac{1}{2}(3 s+u)}\right]_{0}^{u}+\left[2 e^{\frac{1}{2}(s+3 u)}\right]_{u}^{t}\right) \mathrm{d} u \\
& =\int_{0}^{t}\left(2 e^{\frac{1}{2}(t+3 u)}-\frac{2}{3} e^{2 u}-\frac{2}{3} e^{\frac{1}{2} u}\right) \mathrm{d} u \\
& =\left[\frac{4}{3} e^{\frac{1}{2}(t+3 u)}-\frac{4}{6} e^{2 u}-\frac{4}{3} e^{\frac{1}{2} u}\right]_{0}^{t} \\
& =\frac{2}{3} e^{2 t}-\frac{8}{3} e^{\frac{1}{2} t}+2
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\operatorname{var}(Y(t)) & =\mathbb{E}\left[\left(\int_{0}^{t} e^{W(s)} \mathrm{d} s\right)^{2}\right]-\mathbb{E}^{2}\left[\int_{0}^{t} e^{W(s)} \mathrm{d} s\right] \\
& =\left(\frac{2}{3} e^{2 t}-\frac{8}{3} e^{\frac{1}{2} t}+2\right)-4\left(e^{\frac{1}{2} t}-1\right)^{2} \\
& =\frac{2}{3} e^{2 t}-4 e^{t}+\frac{16}{3} e^{\frac{1}{2} t}-2
\end{aligned}
$$

[^59]3. From Equation (A.2), we deduce that:
\[

$$
\begin{aligned}
\operatorname{cov}(Y(t), Z(t))= & \frac{1}{4} \operatorname{var}(Y(t))+\operatorname{var}(Z(t))-\operatorname{var}(X(t)) \\
= & \frac{1}{4}\left(\frac{2}{3} e^{2 t}-4 e^{t}+\frac{16}{3} e^{\frac{1}{2} t}-2\right)+\frac{1}{2}\left(e^{2 t}-1\right)- \\
& \left(e^{2 t}-e^{t}\right) \\
= & -\frac{1}{3} e^{2 t}+\frac{4}{3} e^{\frac{1}{2} t}-1
\end{aligned}
$$
\]

Finally, we obtain:

$$
\rho(Y(t), Z(t))=\frac{-1 / 3 e^{2 t}+4 / 3 e^{t / 2}-1}{\sqrt{\left(1 / 3 e^{2 t}-2 e^{t}+8 / 3 e^{t / 2}-1\right)\left(e^{2 t}-1\right)}}
$$

In Figure A.1, we have reported the correlation $\rho(Y(t), Z(t))$ with respect to the time.

FIGURE A.1: Correlation between $\int_{0}^{t} e^{W(s)} \mathrm{d} s$ and $\int_{0}^{t} e^{W(s)} \mathrm{d} W(s)$

A.4.6 Exponential martingales

1. We have $x_{s}=X(s)=e^{W(s)}$ and:

$$
\begin{aligned}
\mathbb{E}\left[e^{W(t)} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[e^{W(s)+W(t)-W(s)} \mid \mathcal{F}_{s}\right] \\
& =e^{W(s)} \mathbb{E}\left[e^{W(t)-W(s)} \mid \mathcal{F}_{s}\right] \\
& =e^{W(s)} e^{\frac{1}{2}(t-s)} \\
& \neq x_{s}
\end{aligned}
$$

Therefore, $X(t)$ is not a martingale.
2. The previous question suggests that $m(t)$ is equal to $e^{-\frac{1}{2} t}$. We have:

$$
\begin{aligned}
M(t) & =e^{-\frac{1}{2} t} e^{W(t)} \\
& =e^{W(t)-\frac{1}{2} t}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\mathbb{E}\left[M(t) \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\left.e^{W(t)-\frac{1}{2} t} \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\left.e^{W(s)+W(t)-W(s)-\frac{1}{2} t} \right\rvert\, \mathcal{F}_{s}\right] \\
& =e^{W(s)} e^{\frac{1}{2}(t-s)} e^{-\frac{1}{2} t} \\
& =e^{W(s)-\frac{1}{2} s} \\
& =M(s)
\end{aligned}
$$

3. By applying Itô's lemma with $f(t, y)=e^{y}$, we obtain:

$$
\begin{aligned}
\mathrm{d} M(t) & =\left(-\frac{1}{2} e^{Y(t)} g^{2}(t)+\frac{1}{2} e^{Y(t)} g^{2}(t)\right) \mathrm{d} t+e^{Y(t)} g(t) \mathrm{d} W(t) \\
& =M(t) g(t) \mathrm{d} W(t)
\end{aligned}
$$

It follows that:

$$
\begin{align*}
M(t)-M(0) & =\int_{0}^{t} \mathrm{~d} M(s) \\
& =\int_{0}^{t} M(s) g(s) \mathrm{d} W(s) \tag{A.3}
\end{align*}
$$

Since $g(t)$ is not random, we deduce that $Y(t)$ is a Gaussian process. We have:

$$
\mathbb{E}[Y(t)]=-\frac{1}{2} \int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

and:

$$
\begin{aligned}
\operatorname{var}(Y(t)) & =\mathbb{E}\left[\left(\int_{0}^{t} g(s) \mathrm{d} W(s)\right)^{2}\right] \\
& =\int_{0}^{t} g^{2}(s) \mathrm{d} s
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[M(t) \mid \mathcal{F}_{s}\right]= & \mathbb{E}\left[\left.e^{-\frac{1}{2} \int_{0}^{t} g^{2}(u) \mathrm{d} u+\int_{0}^{t} g(u) \mathrm{d} W(u)} \right\rvert\, \mathcal{F}_{s}\right] \\
= & e^{-\frac{1}{2} \int_{0}^{s} g^{2}(u) \mathrm{d} u+\int_{0}^{s} g(u) \mathrm{d} W(u)} \\
& \mathbb{E}\left[\left.e^{-\frac{1}{2} \int_{s}^{t} g^{2}(u) \mathrm{d} u+\int_{s}^{t} g(u) \mathrm{d} W(u)} \right\rvert\, \mathcal{F}_{s}\right] \\
= & M(s) e^{-\frac{1}{2} \int_{s}^{t} g^{2}(u) \mathrm{d} u+\frac{1}{2} \int_{s}^{t} g^{2}(u) \mathrm{d} u} \\
= & M(s)
\end{aligned}
$$

We conclude that $M(t)$ is a martingale.
4. We notice that $M(0)=1$. From Equation (A.3), we have:

$$
\begin{equation*}
M(t)=1+\int_{0}^{t} M(s) g(s) \mathrm{d} W(s) \tag{A.4}
\end{equation*}
$$

Since $\int_{0}^{t} M(s) g(s) \mathrm{d} W(s)$ is an Itô integral, we deduce that $M(t)$ is a \mathcal{F}_{t}-martingale. We say that $M(t)$ is the exponential martingale of $X(t)=g(t)$ and we have:

$$
\mathbb{E}[M(t)]=1
$$

We also notice that Equation (A.4) is related to the martingale representation theorem:

$$
M(t)=\mathbb{E}[M(0)]+\int_{0}^{t} f(s) \mathrm{d} W(s)
$$

where $f(s)=M(s) g(s)$.

A.4.7 Existence of solutions to stochastic differential equations

1. We have $\mu(t, x)=1+x$ and $\sigma(t, x)=4$. It follows that:

$$
\begin{aligned}
|\mu(t, x)-\mu(t, y)| & =|1+x-1-y| \\
& \leq 1 \cdot|x-y|
\end{aligned}
$$

and:

$$
\begin{aligned}
|\sigma(t, x)-\sigma(t, y)|=|4-4| & =0 \\
& \leq 1 \cdot|x-y|
\end{aligned}
$$

We deduce that $K_{1}=1$. Using the Cauchy-Schwarz inequality, we also have:

$$
\begin{aligned}
|\mu(t, x)|=|1+x| & \leq|1|+|x| \\
& \leq 4 \cdot(1+|x|)
\end{aligned}
$$

and:

$$
\begin{aligned}
|\sigma(t, x)| & =4 \\
& \leq 4 \cdot(1+|x|)
\end{aligned}
$$

We deduce that $K_{2}=2$. We deduce that there exists a solution to the SDE and this solution is unique.
2. We have:

$$
\begin{aligned}
|\mu(t, x)-\mu(t, y)| & =|a(b-x)-a(b-y)| \\
& =|a| \cdot|x-y|
\end{aligned}
$$

and:

$$
\begin{aligned}
|\sigma(t, x)-\sigma(t, y)| & =|c x-c y| \\
& =|c| \cdot|x-y|
\end{aligned}
$$

By applying the Yamada-Watanabe theorem with $K=|a|$ and $h(u)=|c| u$, we conclude that the solution exists and is unique.

A.4.8 Itô calculus and stochastic integration

1. We consider the transform function:

$$
\begin{aligned}
Y(t) & =f(t, X(t)) \\
& =(1+t) X(t)-X(0)
\end{aligned}
$$

We have $\partial_{t} f(t, x)=x, \partial_{x} f(t, x)=1+t$ and $\partial_{x}^{2} f(t, x)=0$. It follows that:

$$
\begin{aligned}
\mathrm{d} Y(t) & =\left(X(t)-(1+t) \frac{X(t)}{1+t}\right) \mathrm{d} t+(1+t) \frac{1}{1+t} \mathrm{~d} W(t) \\
& =\mathrm{d} W(t)
\end{aligned}
$$

and $Y(0)=X(0)-X(0)=0$. We deduce that $Y(t)=W(t)$ and:

$$
X(t)=\frac{X(0)+W(t)}{1+t}
$$

2. Using $f(t, x)=x_{0}^{-1}-x^{-1}$, we have $\partial_{t} f(t, x)=0, \partial_{x} f(t, x)=x^{-2}$ and $\partial_{x}^{2} f(t, x)=$ $-2 x^{-3}$. It follows that:

$$
\begin{aligned}
\mathrm{d} Y(t) & =\left(\frac{X(t)}{X^{2}(t)}-\frac{1}{2} \frac{2 X^{2}(t)}{X^{3}(t)}\right) \mathrm{d} t+\frac{X^{2}(t)}{X^{2}(t)} \mathrm{d} W(t) \\
& =\mathrm{d} W(t)
\end{aligned}
$$

and $Y(0)=0$. We deduce that $Y(t)=W(t)$ and:

$$
X(t)=\frac{1}{X^{-1}(0)-W(t)}
$$

3. We have:

$$
\begin{aligned}
\mathrm{d} X(t) & =-\left(\int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W(s)\right) \mathrm{d} t+\left(\frac{1-t}{1-t}\right) \mathrm{d} W(t) \\
& =-\frac{1}{1-t}\left(\int_{0}^{t} \frac{1-t}{1-s} \mathrm{~d} W(s)\right) \mathrm{d} t+\mathrm{d} W(t) \\
& =-\frac{X(t)}{1-t} \mathrm{~d} t+\mathrm{d} W(t)
\end{aligned}
$$

4. We have $f(t, x)=(1-t)^{-1} x, \partial_{t} f(t, x)=(1-t)^{-2} x, \partial_{x} f(t, x)=(1-t)^{-1}$ and $\partial_{x}^{2} f(t, x)=0$. It follows that:

$$
\begin{aligned}
\mathrm{d} Y(t) & =\left(\frac{X(t)}{(1-t)^{2}}-\frac{X(t)}{(1-t)^{2}}\right) \mathrm{d} t+\frac{1}{1-t} \mathrm{~d} W(t) \\
& =\frac{1}{1-t} \mathrm{~d} W(t)
\end{aligned}
$$

We deduce that:

$$
Y(t)-Y(0)=\int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W(s)
$$

Since we have $X(0)=0$, it follows that $Y(0)=0$ and:

$$
Y(t)=\int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W(s)
$$

5. Using Ito's lemma, we have:

$$
\mathrm{d} X(t)=\left(\partial_{t} f(t, W(t))+\frac{1}{2} \partial_{x}^{2} f(t, W(t))\right) \mathrm{d} t+\partial_{x} f(t, W(t)) \mathrm{d} W(t)
$$

Since $X(t)$ is a martingale, it satisfies the martingale representation theorem:

$$
X(t)=\mathbb{E}[X(0)]+\int_{0}^{t} Z(s) \mathrm{d} W(s)
$$

where $Z(t)$ is a $\mathcal{F}_{t^{-}}$-adapted process. We deduce that:

$$
Z(t)=\partial_{x} f(t, W(t))
$$

and:

$$
\frac{\partial f(t, W(t))}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(t, W(t))}{\partial x^{2}}=0
$$

Then, $X(t)$ is a \mathcal{F}_{t}-martingale if this condition is satisfied.
6. In the case of the cubic martingale, we have $f(t, x)=x^{3}-3 t x, \partial_{t} f(t, x)=-3 x$, $\partial_{x} f(t, x)=3 x^{2}-3 t, \partial_{x}^{2} f(t, x)=6 x$ and:

$$
\begin{aligned}
\frac{\partial f(t, W(t))}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(t, W(t))}{\partial x^{2}} & =-3 W(t)+\frac{1}{2} 6 W(t) \\
& =0
\end{aligned}
$$

In the case of the quartic martingale, we have $f(t, x)=x^{4}-6 t x^{2}+3 t^{2}, \partial_{t} f(t, x)=$ $-6 x^{2}+6 t, \partial_{x} f(t, x)=4 x^{3}-12 t x, \partial_{x}^{2} f(t, x)=12 x^{2}-12 t$ and:

$$
\begin{aligned}
\frac{\partial f(t, W(t))}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(t, W(t))}{\partial x^{2}} & =-6 W^{2}(t)+6 t+\frac{1}{2}\left(12 W^{2}(t)-12 t\right) \\
& =0
\end{aligned}
$$

We conclude that the necessary condition is satisfied for the cubic and quartic martingales.
7. We note $f(t, x)=e^{t / 2} \cos (x)$. Since we have $\partial_{t} f(t, x)=\frac{1}{2} e^{t / 2} \cos (x), \partial_{x} f(t, x)=$ $-e^{t / 2} \sin (x), \partial_{x}^{2} f(t, x)=-e^{t / 2} \cos (x)$, we obtain:

$$
\mathrm{d} X(t)=\left(\frac{1}{2} e^{t / 2} \cos W(t)-\frac{1}{2} e^{t / 2} \cos W(t)\right) \mathrm{d} t-e^{t / 2} \sin W(t) \mathrm{d} W(t)
$$

It follows that:

$$
X(t)=1-\int_{0}^{t} e^{s / 2} \sin W(s) \mathrm{d} W(s)
$$

$X(t)$ is an Itô integral. Moreover, we verify the condition:

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{t}\left|e^{s / 2} \sin W(s)\right|^{2} \mathrm{~d} s\right] & \leq \mathbb{E}\left[\int_{0}^{t} e^{s} \mathrm{~d} s\right] \\
& \leq t e^{t} \\
& <\infty
\end{aligned}
$$

Then, we deduce that $X(t)=e^{t / 2} \cos W(t)$ is a martingale.

A.4.9 Solving a PDE with the Feynman-Kac formula

1. The function $g(t)=1$ satisfies the Novikov condition:

$$
\mathbb{E}\left[\exp \left(\frac{1}{2} \int_{0}^{t} g^{2}(s) \mathrm{d} s\right)\right]=e^{\frac{t}{2}}<\infty
$$

We deduce that $Z(t)=W(t)-\int_{0}^{t} \mathrm{~d} s$ is a Brownian motion under the probability measure \mathbb{Q} defined by:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}} & =\exp \left(\int_{0}^{t} \mathrm{~d} W(s)-\frac{1}{2} \int_{0}^{t} \mathrm{~d} s\right) \\
& =e^{W(t)-\frac{t}{2}}
\end{aligned}
$$

Since we have $\mathrm{d} Z(t)=\mathrm{d} W(t)-\mathrm{d} t$, we finally obtain that:

$$
\begin{aligned}
\mathrm{d} X(t) & =\mathrm{d} t+\mathrm{d} Z(t)+\mathrm{d} t \\
& =2 \mathrm{~d} t+\mathrm{d} Z(t)
\end{aligned}
$$

2. Under the natural filtration \mathcal{F}_{t}, we have:

$$
X(5)=X(t)+(5-t)+(W(5)-W(t))
$$

and ${ }^{5}$:

$$
\mathbb{E}\left[X(5) \mid \mathcal{F}_{t}\right]=x+(5-t)
$$

If we now consider the filtration \mathcal{G}_{t} generated by the Brownian motion $Z(t)$, we obtain:

$$
X(5)=X(t)+2(5-t)+(Z(5)-Z(t))
$$

and:

$$
\mathbb{E}\left[X(5) \mid \mathcal{G}_{t}\right]=x+2(5-t)
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[X(5) \mid \mathcal{G}_{0}\right] & =x+2(5-0) \\
& =x+10
\end{aligned}
$$

3. We notice that:

$$
-\partial_{t} V(t, x)+10 V(t, x) \neq \mathcal{A}_{t} V(t, x)+4
$$

where \mathcal{A}_{t} is the infinitesimal generator of $X(t)$ with respect to the filtration \mathcal{F}_{t}. Therefore, we cannot apply the Feynman-Kac formula. However, by changing the probability measure, we have:

$$
\begin{aligned}
-\partial_{t} V(t, x)+3 V(t, x) & =\frac{1}{2} \partial_{x}^{2} V(t, x)+2 \partial_{x} V(t, x)+4 \\
& =\mathcal{A}_{t}^{\prime} V(t, x)+4
\end{aligned}
$$

where \mathcal{A}_{t}^{\prime} is the infinitesimal generator of $X(t)$ with respect to the filtration \mathcal{G}_{t}. We

[^60]can then apply the Feynman-Kac formula and we have ${ }^{6}$:
\[

$$
\begin{aligned}
V(t, x) & =\mathbb{E}\left[X(5) e^{-\int_{t}^{5} 3 \mathrm{~d} s}+\int_{t}^{5} 4\left(e^{-\int_{t}^{s} 3 \mathrm{~d} u}\right) \mathrm{d} s \mid \mathcal{G}_{t}\right] \\
& =e^{-3(5-t)} \cdot \mathbb{E}\left[X(5) \mid \mathcal{G}_{t}\right]+\int_{t}^{5} 4 e^{-3(s-t)} \mathrm{d} s \\
& =e^{-3(5-t)} \cdot \mathbb{E}\left[X(5) \mid \mathcal{G}_{t}\right]+\left[-\frac{4}{3} e^{-3(s-t)}\right]_{t}^{5} \\
& =(x+10-2 t) e^{3 t-15}+\frac{4}{3}\left(1-e^{3 t-15}\right)
\end{aligned}
$$
\]

given that $X(t)=x$. We check the terminal condition:

$$
\begin{aligned}
V(5, x) & =(x+10-2 \times 5) e^{3 \times 5-15}+\frac{4}{3}\left(1-e^{3 \times 5-15}\right) \\
& =x
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\partial_{t} V(t, x) & =3(x+8-2 t) e^{3 t-15} \\
\partial_{x} V(t, x) & =e^{3 t-15} \\
\partial_{x}^{2} V(t, x) & =0
\end{aligned}
$$

It follows that $V(t, x)$ satisfies the PDE:

$$
\begin{aligned}
-\partial_{t} V(t, x)+3 V(t, x)= & -3(x+8-2 t) e^{3 t-15}+4\left(1-e^{3 t-15}\right)+ \\
& 3(x+10-2 t) e^{3 t-15} \\
= & 2 e^{3 t-15}+4 \\
= & \frac{1}{2} \partial_{x}^{2} V(t, x)+2 \partial_{x} V(t, x)+4
\end{aligned}
$$

4. If the terminal value is $V(T, x)=e^{x}$, we obtain:

$$
\begin{aligned}
V(t, x) & =\mathbb{E}\left[e^{X(5)} e^{-\int_{t}^{5} 3 \mathrm{~d} s}+\int_{t}^{5} 4\left(e^{-\int_{t}^{s} 3 \mathrm{~d} u}\right) \mathrm{d} s \mid \mathcal{G}_{t}\right] \\
& =e^{-3(5-t)} \cdot \mathbb{E}\left[e^{X(5)} \mid \mathcal{G}_{t}\right]+\frac{4}{3}\left(1-e^{-3(5-t)}\right)
\end{aligned}
$$

We have:

$$
X(5) \mid \mathcal{G}_{t} \sim \mathcal{N}(x+10-2 t, 5-t)
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}\left[e^{X(5)} \mid \mathcal{G}_{t}\right] & =e^{x+10-2 t+\frac{1}{2}(5-t)} \\
& =e^{x+12.5-2.5 t}
\end{aligned}
$$

[^61]We finally obtain the following solution ${ }^{7}$:

$$
\begin{aligned}
V(t, x) & =e^{-3(5-t)} \cdot e^{x+12.5-2.5 t}+\frac{4}{3}\left(1-e^{-3(5-t)}\right) \\
& =e^{x-2.5+0.5 t}+\frac{4}{3}\left(1-e^{3 t-15}\right)
\end{aligned}
$$

We check the terminal condition:

$$
\begin{aligned}
V(5, x) & =e^{x-2.5+0.5 \times 5}+\frac{4}{3}\left(1-e^{3 \times 5-15}\right) \\
& =e^{x}
\end{aligned}
$$

We also have:

$$
\begin{aligned}
\partial_{t} V(t, x) & =0.5 e^{x-2.5+0.5 t}-4 e^{3 t-15} \\
\partial_{x} V(t, x) & =e^{x-2.5+0.5 t} \\
\partial_{x}^{2} V(t, x) & =e^{x-2.5+0.5 t}
\end{aligned}
$$

It follows that $V(t, x)$ satisfies the PDE:

$$
\begin{aligned}
-\partial_{t} V(t, x)+3 V(t, x) & =2.5 e^{x-2.5+0.5 t}+4 \\
& =0.5 e^{x-2.5+0.5 t}+2 e^{x-2.5+0.5 t}+4 \\
& =\frac{1}{2} \partial_{x}^{2} V(t, x)+2 \partial_{x} V(t, x)+4
\end{aligned}
$$

A.4.10 Fokker-Planck equation

1. If we consider the following PDE:

$$
\left\{\begin{array}{l}
-\partial_{t} V(t, x)=\frac{1}{2} \sigma^{2} \partial_{x}^{2} V(t, x)+(a(b-x)) \partial_{x} V(t, x) \\
V(T, x)=\mathbb{1}\left\{x=x_{T}\right\}
\end{array}\right.
$$

the solution is given by the Feynman-Kac formula:

$$
\begin{aligned}
V(t, x) & =\mathbb{E}\left[\mathbb{1}\left\{X(T)=x_{T}\right\} \mid X(t)=x\right] \\
& =\mathbb{P}\left\{X(T)=x_{T} \mid X(t)=x\right\}
\end{aligned}
$$

We have:

$$
\partial_{x}[a(b-x) U(t, x)]=-a U(t, x)+a(b-x) \partial_{x} U(t, x)
$$

and:

$$
\partial_{x}^{2}\left[\sigma^{2} U(t, x)\right]=\sigma^{2} \partial_{x}^{2} U(t, x)
$$

We deduce that the Fokker-Planck equation is:

$$
\left\{\begin{array}{l}
\partial_{t} U(t, x)=a U(t, x)-a(b-x) \partial_{x} U(t, x)+\frac{1}{2} \sigma^{2} \partial_{x}^{2} U(t, x) \\
U(0, x)=\mathbb{1}\left\{x=x_{0}\right\}
\end{array}\right.
$$

[^62]In Figure A.2, we have represented the probability density function $\mathbb{P}\{X(1)=x \mid X(0)=0\}$ using the two approaches. For that, we solve the two PDE using finite difference methods. Let u_{m}^{i} be the numerical solution of $U\left(t_{i}, x_{m}\right)$. By construction, we have:

$$
\begin{aligned}
u_{m}^{i} & =\mathbb{P}\left\{X\left(t_{i}\right)=x_{m} \mid X(0)=0\right\} \cdot \mathrm{d} x \\
& =\mathbb{P}\left\{X\left(t_{i}\right)=x_{m} \mid X(0)=0\right\} \cdot h
\end{aligned}
$$

where h is the spatial mesh spacing meaning. Therefore, we have to divide the numerical solution by h in order to obtain the density.

Feynman-Kac solution

FIGURE A.2: Density function of the Ornstein-Uhlenbeck process
2. The solution is given by the Feynman-Kac PDE:

$$
\left\{\begin{array}{l}
-\partial_{t} V(t, x)=\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} V(t, x)+\mu x \partial_{x} V(t, x) \\
V(T, x)=\mathbb{1}\left\{x=x_{T}\right\}
\end{array}\right.
$$

and the Fokker-Planck equation:

$$
\left\{\begin{array}{l}
\partial_{t} U(t, x)=\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} U(t, x)+\left(2 \sigma^{2} x-\mu x\right) \partial_{x} U(t, x)+\left(\sigma^{2}-\mu\right) U(t, x) \\
U(0, x)=\mathbb{1}\left\{x=x_{0}\right\}
\end{array}\right.
$$

because:

$$
\partial_{x}[\mu x U(t, x)]=\mu U(t, x)+\mu x \partial_{x} U(t, x)
$$

and:

$$
\partial_{x}^{2}\left[\sigma^{2} x^{2} U(t, x)\right]=2 \sigma^{2} U(t, x)+4 \sigma^{2} x \partial_{x} U(t, x)+\sigma^{2} x^{2} \partial_{x}^{2} U(t, x)
$$

In Figure A.3, we have represented the probability density function $\mathbb{P}\{X(1)=x \mid X(0)=0\}$ using the two approaches.

FIGURE A.3: Density function of the Geometric Brownian motion

A.4.11 Dynamic strategy based on the current asset price

1. We have:

$$
\begin{aligned}
\mathrm{d} V(t) & =n(t) \mathrm{d} S(t) \\
& =f(S(t)) \mu(t, S(t)) \mathrm{d} t+f(S(t)) \sigma(t, S(t)) \mathrm{d} W(t)
\end{aligned}
$$

2. We notice that $\partial_{x} F(x)=f(x)$ and $\partial_{x}^{2} F(x)=f^{\prime}(x)$. Using Itô's lemma, we have:

$$
\begin{aligned}
\mathrm{d} Y(t)= & \left(\frac{\partial F}{\partial S} \mu(t, S(t))+\frac{1}{2} \frac{\partial^{2} F}{\partial S^{2}} \sigma^{2}(t, S(t))\right) \mathrm{d} t+ \\
& \frac{\partial F}{\partial S} \sigma(t, S(t)) \mathrm{d} W(t)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\mathrm{d} Y(t)= & f(S(t)) \mu(t, S(t)) \mathrm{d} t+f(S(t)) \sigma(t, S(t)) \mathrm{d} W(t)+ \\
& \frac{1}{2} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t
\end{aligned}
$$

3. Since we have:

$$
\mathrm{d} Y(t)=\mathrm{d} V(t)+\frac{1}{2} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t
$$

it follows that:

$$
\mathrm{d} V(t)=\mathrm{d} Y(t)-\frac{1}{2} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t
$$

We deduce that:

$$
\begin{aligned}
V(T)-V(0) & =Y(T)-Y(0)-\frac{1}{2} \int_{0}^{T} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t \\
& =F(S(T))-F(S(0))-\frac{1}{2} \int_{0}^{T} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t
\end{aligned}
$$

Finally, we obtain:

$$
\begin{aligned}
V(T) & =V(0)+\int_{S(0)}^{S(T)} f(x) \mathrm{d} x-\frac{1}{2} \int_{0}^{T} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t \\
& =G(T)+C(T)
\end{aligned}
$$

where:

$$
G(T)=V(0)+\int_{S(0)}^{S(T)} f(x) \mathrm{d} x
$$

and:

$$
C(T)=-\frac{1}{2} \int_{0}^{T} f^{\prime}(S(t)) \sigma^{2}(t, S(t)) \mathrm{d} t
$$

The first term $G(T)$ can be interpreted as the option profile of the dynamic strategy at the maturity date, whereas $C(T)$ is the cost associated to the continuous trading strategy.
4. If $f(S(t))=\mathbb{1}\left\{S(t)>S_{\star}\right\}$, we have:

$$
\int_{S(0)}^{S(T)} \mathbb{1}\left\{x>S_{\star}\right\} \mathrm{d} x= \begin{cases}S(T)-S(0) & \text { if } S_{\star} \leq S(T) \\ S_{\star}-S(0) & \text { if } S(T)<S_{\star}\end{cases}
$$

and:

$$
f^{\prime}(x)=-\delta\left(x-S_{\star}\right)
$$

where $\delta(x)$ is the Dirac delta function. By assuming that $V(0)=S(0)$, we deduce that:

$$
V(T)=S(T)+\left(S_{\star}-S(T)\right)_{+}-\frac{1}{2} \int_{0}^{T} \delta\left(S(t)-S_{\star}\right) \sigma^{2}(t, S(t)) \mathrm{d} t
$$

The option profile of this strategy is the underlying asset plus a put option where the strike is equal to S^{\star}. The cost of the stop-loss strategy is equal to:

$$
\begin{aligned}
C(T) & =-\frac{1}{2} \int_{0}^{T} \delta\left(S(t)-S_{\star}\right) \sigma^{2}(t, S(t)) \mathrm{d} t \\
& <0
\end{aligned}
$$

5. If $f(S(t))=\mathbb{1}\left\{S(t)<S_{\star}\right\}$, we have:

$$
\int_{S(0)}^{S(T)} \mathbb{1}\left\{x<S_{\star}\right\} \mathrm{d} x= \begin{cases}S(T)-S(0) & \text { if } S(T) \leq S_{\star} \\ S_{\star}-S(0) & \text { if } S(T)>S_{\star}\end{cases}
$$

and:

$$
f^{\prime}(x)=\delta\left(x-S_{\star}\right)
$$

Use the results of the previous question, we have:

$$
V(T)=S(T)-\left(S(T)-S_{\star}\right)_{+}+\frac{1}{2} \int_{0}^{T} \delta\left(S(t)-S_{\star}\right) \sigma^{2}(t, S(t)) \mathrm{d} t
$$

The option profile of the stop-gain strategy is the underlying asset minus un call option where the strike is equal to S_{\star}. The cost of the strategy is positive, because if we cross the gain level $\left(S(t)>S_{\star}\right)$, we obtain an additional positive $\mathrm{P} \& \mathrm{~L}$ that is equal to $S(t)-S_{\star}$.
6. (a) We buy the asset $(n(t)>0)$ when the asset price $S(t)$ is below the price target S_{\star}. And we sell the asset $(n(t)<0)$ when the asset price $S(t)$ is above the price target S_{\star}. This is a contrarian or mean-reverting strategy.
(b) We have:

$$
\begin{aligned}
\int_{S(0)}^{S(T)} m \frac{S_{\star}-x}{x} \mathrm{~d} x & =m S_{\star}\left[\ln x-\frac{x}{S_{\star}}\right]_{S(0)}^{S(T)} \\
& =m S_{\star} \ln \frac{S(T)}{S(0)}-m(S(T)-S(0))
\end{aligned}
$$

and:

$$
f^{\prime}(x)=-m \frac{S_{\star}}{x^{2}}
$$

We deduce that:

$$
\begin{aligned}
V(T)-V(0)= & m S_{\star}(\ln S(T)-\ln S(0))-m(S(T)-S(0))+ \\
& \frac{m}{2} S_{\star} \int_{0}^{T} \frac{\sigma^{2}(t, S(t))}{S^{2}(t)} \mathrm{d} t
\end{aligned}
$$

(c) When we have $\sigma(t, S(t))=\sigma(t) S(t)$, we obtain:

$$
V(T)-V(0)=m S_{\star} \ln \frac{S(T)}{S(0)}-m(S(T)-S(0))+\frac{m}{2} S_{\star} \int_{0}^{T} \sigma^{2}(t) \mathrm{d} t
$$

and:

$$
C(T)=\frac{m}{2} S_{\star} \operatorname{IV}(T)
$$

where IV (T) is the integrated variance:

$$
\operatorname{IV}(T)=\int_{0}^{T} \sigma^{2}(t) \mathrm{d} t
$$

(d) When the asset volatility $\sigma(t)$ is low, the trend of the asset price is strong. It means that the asset price can continuously increase or decrease. This is the bad scenario for the strategy. The good scenario is when the asset price crosses many times the target price S_{\star}. This is why the strategy is more performing when the realized volatility is high. In Figure A.4, we have illustrated the strategy when the asset price follows a geometric Brownian motion and the target price is equal to the initial price ${ }^{8}$. We notice that the number of times that $S(t)$ crosses S_{\star} increases with the volatility. Therefore, the vega of the strategy is positive.

[^63]

FIGURE A.4: Impact of the volatility on the mean-reverting strategy

A.4.12 Strong Markov property and maximum of Brownian motion

1. We have:

$$
\operatorname{Pr}\{W(t) \geq x\}=\operatorname{Pr}\{W(t) \geq x, M(t) \geq x\}+\operatorname{Pr}\{W(t) \geq x, M(t)<x\}
$$

Since $M(t) \geq W(t)$, we have $\operatorname{Pr}\{W(t) \geq x, M(t)<x\}=0$ and:

$$
\begin{aligned}
\operatorname{Pr}\{W(t) \geq x\} & =\operatorname{Pr}\{W(t) \geq x, M(t) \geq x\} \\
& =\operatorname{Pr}\{W(t) \geq x \mid M(t) \geq x\} \cdot \operatorname{Pr}\{M(t) \geq x\} \\
& =\operatorname{Pr}\left\{W(t) \geq x \mid \tau_{x} \leq t\right\} \cdot \operatorname{Pr}\{M(t) \geq x\}
\end{aligned}
$$

Using the strong Markov property, we also have:

$$
\begin{aligned}
\operatorname{Pr}\left\{W(t) \geq x \mid \tau_{x} \leq t\right\} & =\operatorname{Pr}\left\{W(t)-W\left(\tau_{x}\right) \geq 0 \mid \tau_{x} \leq t\right\} \\
& =\operatorname{Pr}\left\{W\left(\tau_{x}+t-\tau_{x}\right)-W\left(\tau_{x}\right) \geq 0 \mid \tau_{x} \leq t\right\} \\
& =\operatorname{Pr}\left\{W\left(t-\tau_{x}\right) \geq 0 \mid \tau_{x} \leq t\right\} \\
& =\frac{1}{2}
\end{aligned}
$$

We deduce that:

$$
\operatorname{Pr}\{W(t) \geq x\}=\frac{1}{2} \operatorname{Pr}\{M(t) \geq x\}
$$

and:

$$
\begin{aligned}
\operatorname{Pr}\{M(t) \geq x\} & =2 \operatorname{Pr}\{W(t) \geq x\} \\
& =2\left(1-\Phi\left(\frac{x}{\sqrt{t}}\right)\right)
\end{aligned}
$$

2. Let $z=x-y \geq 0$. We have:

$$
\begin{aligned}
\operatorname{Pr}\{W(t) \geq 2 x-y\}= & \operatorname{Pr}\{W(t) \geq x+z, M(t) \geq x\}+ \\
& \operatorname{Pr}\{W(t) \geq x+z, M(t)<x\} \\
= & \operatorname{Pr}\{W(t) \geq x+z, M(t) \geq x\}
\end{aligned}
$$

Indeed, we have:

$$
\operatorname{Pr}\{W(t) \geq x+z, M(t)<x\}=0
$$

because $z \geq 0$. It follows that:

$$
\begin{aligned}
\operatorname{Pr}\{W(t) \geq 2 x-y\}= & \operatorname{Pr}\{W(t) \geq x+z, M(t) \geq x\} \\
= & \operatorname{Pr}\left\{W\left(\tau_{x}+t-\tau_{x}\right)-W\left(\tau_{x}\right) \geq z \mid M(t) \geq x\right\} \\
& \operatorname{Pr}\{M(t) \geq x\}
\end{aligned}
$$

Using the strong Markov property and the symmetry of the Brownian motion, we deduce that:

$$
\begin{aligned}
& \operatorname{Pr}\left\{W\left(\tau_{x}+t-\tau_{x}\right)-W\left(\tau_{x}\right) \geq z \mid M(t) \geq x\right\} \\
= & \operatorname{Pr}\left\{W\left(\tau_{x}+t-\tau_{x}\right)-W\left(\tau_{x}\right) \geq z \mid \tau_{x} \leq t\right\} \\
= & \operatorname{Pr}\left\{W\left(t-\tau_{x}\right) \geq z \mid \tau_{x} \leq t\right\} \\
= & \operatorname{Pr}\left\{W\left(t-\tau_{x}\right) \leq-z \mid \tau_{x} \leq t\right\} \\
= & \operatorname{Pr}\{W(t) \leq x-z \mid M(t) \geq x\}
\end{aligned}
$$

We conclude that:

$$
\begin{aligned}
\operatorname{Pr}\{W(t) \geq 2 x-y\} & =\operatorname{Pr}\{W(t) \leq x-z \mid M(t) \geq x\} \cdot \operatorname{Pr}\{M(t) \geq x\} \\
& =\operatorname{Pr}\{W(t) \leq x-z, M(t) \geq x\} \\
& =\operatorname{Pr}\{W(t) \leq y, M(t) \geq x\}
\end{aligned}
$$

3. The joint density function of $(M(t), W(t))$ is defined as follows:

$$
f(x, y)=-\frac{\partial^{2} \operatorname{Pr}\{W(t) \leq y, M(t) \geq x\}}{\partial x \partial y}
$$

We have:

$$
\begin{aligned}
\operatorname{Pr}\{W(t) \leq y, M(t) \geq x\} & =\operatorname{Pr}\{W(t) \geq 2 x-y\} \\
& =1-\Phi\left(\frac{2 x-y}{\sqrt{t}}\right)
\end{aligned}
$$

We deduce that:

$$
\frac{\partial \operatorname{Pr}\{W(t) \leq y, M(t) \geq x\}}{\partial x}=-\frac{2}{\sqrt{t}} \phi\left(\frac{2 x-y}{\sqrt{t}}\right)
$$

It follows that:

$$
\begin{aligned}
f(x, y) & =-\frac{\partial}{\partial y}\left(-\frac{2}{\sqrt{t}} \phi\left(\frac{2 x-y}{\sqrt{t}}\right)\right) \\
& =\frac{2}{\sqrt{2 \pi t}} \frac{\partial}{\partial y}\left(\exp \left(-\frac{(2 x-y)^{2}}{2 t}\right)\right) \\
& =\frac{(2 x-y)}{t^{3 / 2}} \sqrt{\frac{2}{\pi}} \exp \left(-\frac{(2 x-y)^{2}}{2 t}\right)
\end{aligned}
$$

4. $W^{\mathbb{Q}}(t)=\mu t+W(t)$ is a standard Wiener process under the probability measure \mathbb{Q} defined by ${ }^{9}$:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} & =\exp \left(-\mu W(t)-\frac{1}{2} \mu^{2} t\right) \\
& =\exp \left(-\mu W^{\mathbb{Q}}(t)+\frac{1}{2} \mu^{2} t\right)
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
f_{\left(M_{X}, X\right)}(x, y) & =f_{\left(M_{\left.W_{\mathbb{Q}}, W^{\mathbb{Q}}\right)}\right.}(x, y)\left|\frac{\mathrm{d} \mathbb{P}}{\mathrm{~d} \mathbb{Q}}\right| \\
& =\exp \left(\mu y-\frac{1}{2} \mu^{2} t\right) \frac{(2 x-y)}{t^{3 / 2}} \sqrt{\frac{2}{\pi}} \exp \left(-\frac{(2 x-y)^{2}}{2 t}\right) \\
& =\frac{(2 x-y)}{t^{3 / 2}} \sqrt{\frac{2}{\pi}} \exp \left(\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}\right)
\end{aligned}
$$

5. To compute the density of $M_{X}(t)$, we use the fact that it is the marginal ${ }^{10}$ of $f_{\left(M_{X}, X\right)}(x, y):$

$$
\begin{aligned}
f_{M_{X}}(x) & =\int_{-\infty}^{x} f_{\left(M_{X}, X\right)}(x, y) \mathrm{d} y \\
& =\sqrt{\frac{2}{\pi t}} \int_{-\infty}^{x} \frac{(2 x-y)}{t} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}} \mathrm{~d} y \\
& =\sqrt{\frac{2}{\pi t}}\left(\left[e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}}\right]_{-\infty}^{x}-\mu \int_{-\infty}^{x} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}} \mathrm{~d} y\right) \\
& =\sqrt{\frac{2}{\pi t}} e^{\mu x-\frac{1}{2} \mu^{2} t-\frac{(2 x-x)^{2}}{2 t}}-\mu \int_{-\infty}^{x} \sqrt{\frac{2}{\pi t}} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}} \mathrm{~d} y \\
& =\frac{2}{\sqrt{2 \pi t}} e^{-\frac{(x-\mu t)^{2}}{2 t}}-\mu \int_{-\infty}^{x} \sqrt{\frac{2}{\pi t}} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}} \mathrm{~d} y
\end{aligned}
$$

Using the change of variable $z=t^{-1 / 2}(y-\mu t-2 x)$, we have:

$$
\begin{aligned}
\int_{-\infty}^{x} \sqrt{\frac{2}{\pi t}} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}} \mathrm{~d} y & =2 \int_{-\infty}^{\frac{-x-\mu t}{\sqrt{t}}} \frac{1}{\sqrt{2 \pi}} e^{2 \mu x-\frac{1}{2} z^{2}} \mathrm{~d} z \\
& =2 e^{2 \mu x} \Phi\left(\frac{-x-\mu t}{\sqrt{t}}\right)
\end{aligned}
$$

Finally, we obtain:

$$
f_{M_{X}}(x)=\frac{2}{\sqrt{t}} \phi\left(\frac{x-\mu t}{\sqrt{t}}\right)-2 \mu e^{2 \mu x} \Phi\left(\frac{-x-\mu t}{\sqrt{t}}\right)
$$

[^64]6. We verify that:
\[

$$
\begin{aligned}
\frac{\partial F(x)}{\partial x}= & \frac{\partial \operatorname{Pr}\left\{M_{X}(t) \leq x\right\}}{\partial x} \\
= & \frac{1}{\sqrt{t}} \phi\left(\frac{x-\mu t}{\sqrt{t}}\right)+e^{2 \mu x} \frac{1}{\sqrt{t}} \phi\left(\frac{-x-\mu t}{\sqrt{t}}\right) \\
& -2 \mu e^{2 \mu x} \Phi\left(\frac{-x-\mu t}{\sqrt{t}}\right) \\
= & \frac{2}{\sqrt{t}} \phi\left(\frac{x-\mu t}{\sqrt{t}}\right)-2 \mu e^{2 \mu x} \Phi\left(\frac{-x-\mu t}{\sqrt{t}}\right) \\
= & f_{M_{X}}(x)
\end{aligned}
$$
\]

Moreover, we have $F(0)=1$ and $F(\infty)=1$. We conclude that $F(x)$ is the probability distribution of $M_{X}(t)$.

A.4.13 Moments of the Cox-Ingersoll-Ross process

1. We recall that:

$$
\mathbb{E}[Y(\nu, \zeta)]=\nu+\zeta
$$

We deduce that:

$$
\begin{aligned}
\mathbb{E}[X(t)] & =\frac{1}{c}\left(\frac{4 a b}{\sigma^{2}}+c x_{0} e^{-a t}\right) \\
& =\frac{\left(1-e^{-a t}\right) \sigma^{2}}{4 a}\left(\frac{4 a b}{\sigma^{2}}+\frac{4 a}{\left(1-e^{-a t}\right) \sigma^{2}} x_{0} e^{-a t}\right) \\
& =x_{0} e^{-a t}+b\left(1-e^{-a t}\right)
\end{aligned}
$$

2. We recall that:

$$
\operatorname{var}(Y(\nu, \zeta))=2(\nu+2 \zeta)
$$

We deduce that:

$$
\begin{aligned}
\operatorname{var}(X(t)) & =\frac{2}{c^{2}}\left(\frac{4 a b}{\sigma^{2}}+2 c x_{0} e^{-a t}\right) \\
& =\frac{\left(1-e^{-a t}\right)^{2} \sigma^{4}}{8 a^{2}}\left(\frac{4 a b}{\sigma^{2}}+\frac{8 a}{\left(1-e^{-a t}\right) \sigma^{2}} x_{0} e^{-a t}\right) \\
& =\left(1-e^{-a t}\right)^{2} \sigma^{2}\left(\frac{b}{2 a}+\frac{1}{\left(1-e^{-a t}\right) a} x_{0} e^{-a t}\right) \\
& =\frac{\sigma^{2} x_{0}}{a}\left(e^{-a t}-e^{-2 a t}\right)+\frac{\sigma^{2} b}{a} \frac{\left(1-e^{-a t}\right)^{2}}{2}
\end{aligned}
$$

3. We recall that:

$$
\gamma_{1}(Y(\nu, \zeta))=(\nu+3 \zeta) \sqrt{\frac{8}{(\nu+2 \zeta)^{3}}}
$$

We deduce that:

$$
\begin{aligned}
\gamma_{1}(X(t)) & =\left(\frac{4 a b}{\sigma^{2}}+3 c x_{0} e^{-a t}\right) \sqrt{\frac{8}{\left(4 a b \sigma^{-2}+2 c x_{0} e^{-a t}\right)^{3}}} \\
& =\frac{\sigma\left(3 x_{0} e^{-a t}+b\left(1-e^{-a t}\right)\right)}{\sqrt{a}} \sqrt{\frac{2\left(1-e^{-a t}\right)}{\left(2 x_{0} e^{-a t}+b\left(1-e^{-a t}\right)\right)^{3}}}
\end{aligned}
$$

The excess kurtosis coefficients of $Y(\nu, \zeta)$ is equal to:

$$
\gamma_{2}(Y(\nu, \zeta))=\frac{12(\nu+4 \zeta)}{(\nu+2 \zeta)^{2}}
$$

It follows that:

$$
\begin{aligned}
\gamma_{2}(X(t)) & =\frac{12 \sigma^{2}\left(4 a b+4 c \sigma^{2} x_{0} e^{-a t}\right)}{\left(4 a b+2 c \sigma^{2} x_{0} e^{-a t}\right)^{2}} \\
& =\frac{3 \sigma^{2}\left(1-e^{-a t}\right)\left(4 x_{0} e^{-a t}+b\left(1-e^{-a t}\right)\right)}{a\left(x_{0} e^{-a t}+b\left(1-e^{-a t}\right)\right)^{2}}
\end{aligned}
$$

A.4.14 Probability density function of Heston and SABR models

1. The Fokker-Planck equation is:

$$
\begin{aligned}
\partial_{t} U\left(t, x_{1}, x_{2}\right)= & -\partial_{x_{1}}\left[\mu x_{1} U\left(t, x_{1}, x_{2}\right)\right]-\partial_{x_{2}}\left[a\left(b-x_{2}\right) U\left(t, x_{1}, x_{2}\right)\right]+ \\
& \frac{1}{2} \partial_{x_{1}}^{2}\left[x_{1}^{2} x_{2} U\left(t, x_{1}, x_{2}\right)\right]+\frac{1}{2} \partial_{x_{2}}^{2}\left[\sigma^{2} x_{2} U\left(t, x_{1}, x_{2}\right)\right]+ \\
& \rho \partial_{x_{1}, x_{2}}^{2}\left[\sigma x_{1} x_{2} U\left(t, x_{1}, x_{2}\right)\right]
\end{aligned}
$$

The first-order derivatives are:

$$
\begin{aligned}
\partial_{x_{1}}\left[\mu x_{1} U\left(t, x_{1}, x_{2}\right)\right] & =\mu x_{1} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+\mu U\left(t, x_{1}, x_{2}\right) \\
\partial_{x_{2}}\left[a\left(b-x_{2}\right) U\left(t, x_{1}, x_{2}\right)\right] & =a\left(b-x_{2}\right) \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)-a U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

The second-order derivatives are:

$$
\begin{aligned}
\partial_{x_{1}}^{2}\left[x_{1}^{2} x_{2} U\left(t, x_{1}, x_{2}\right)\right]= & x_{1}^{2} x_{2} \partial_{x_{1}}^{2} U\left(t, x_{1}, x_{2}\right)+4 x_{1} x_{2} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& 2 x_{2} U\left(t, x_{1}, x_{2}\right) \\
\partial_{x_{2}}^{2}\left[\sigma^{2} x_{2} U\left(t, x_{1}, x_{2}\right)\right]= & \sigma^{2} x_{2} \partial_{x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+2 \sigma^{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\partial_{x_{1}, x_{2}}^{2}\left[\sigma x_{1} x_{2} U\left(t, x_{1}, x_{2}\right)\right]= & \sigma x_{1} x_{2} \partial_{x_{1}, x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& \sigma x_{1} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& \sigma x_{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+\sigma U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\partial_{t} U\left(t, x_{1}, x_{2}\right)= & \frac{1}{2} x_{1}^{2} x_{2} \partial_{x_{1}}^{2} U\left(t, x_{1}, x_{2}\right)+\frac{1}{2} \sigma^{2} x_{2} \partial_{x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& \rho \sigma x_{1} x_{2} \partial_{x_{1}, x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(2 x_{2}+\rho \sigma-\mu\right) x_{1} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(\sigma^{2}+\rho \sigma x_{2}-a\left(b-x_{2}\right)\right) \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(a+x_{2}+\rho \sigma-\mu\right) U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

2. The Fokker-Planck equation is:

$$
\begin{aligned}
\partial_{t} U\left(t, x_{1}, x_{2}\right)= & \frac{1}{2} \partial_{x_{1}}^{2}\left[x_{1}^{2 \beta} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]+\frac{1}{2} \partial_{x_{2}}^{2}\left[\nu^{2} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]+ \\
& \rho \partial_{x_{1}, x_{2}}^{2}\left[\nu x_{1}^{\beta} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]
\end{aligned}
$$

The second-order derivatives are:

$$
\begin{aligned}
\partial_{x_{1}}^{2}\left[x_{1}^{2 \beta} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]= & x_{1}^{2 \beta} x_{2}^{2} \partial_{x_{1}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& 4 \beta x_{1}^{2 \beta-1} x_{2}^{2} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& 2 \beta(2 \beta-1) x_{1}^{2 \beta-2} x_{2}^{2} U\left(t, x_{1}, x_{2}\right) \\
\partial_{x_{2}}^{2}\left[\nu^{2} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]= & \nu^{2} x_{2}^{2} \partial_{x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& 4 \nu^{2} x_{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+ \\
& 2 \nu^{2} U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\partial_{x_{1}, x_{2}}^{2}\left[\nu x_{1}^{\beta} x_{2}^{2} U\left(t, x_{1}, x_{2}\right)\right]= & \nu x_{1}^{\beta} x_{2}^{2} \partial_{x_{1}, x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& 2 \nu x_{1}^{\beta} x_{2} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& \beta \nu x_{1}^{\beta-1} x_{2}^{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+ \\
& 2 \beta \nu x_{1}^{\beta-1} x_{2} U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\partial_{t} U\left(t, x_{1}, x_{2}\right)= & \frac{1}{2} x_{1}^{2 \beta} x_{2}^{2} \partial_{x_{1}}^{2} U\left(t, x_{1}, x_{2}\right)+\frac{1}{2} \nu^{2} x_{2}^{2} \partial_{x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& \rho \nu x_{1}^{\beta} x_{2}^{2} \partial_{x_{1}, x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& 2\left(\beta x_{1}^{\beta-1} x_{2}+\rho \nu\right) x_{1}^{\beta} x_{2} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(2 \nu^{2}+\rho \beta \nu x_{1}^{\beta-1} x_{2}\right) x_{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(\beta(2 \beta-1) x_{1}^{2 \beta-2} x_{2}^{2}+\nu^{2}+2 \rho \beta \nu x_{1}^{\beta-1} x_{2}\right) U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

When β is equal to 1 , we obtain:

$$
\begin{aligned}
\partial_{t} U\left(t, x_{1}, x_{2}\right)= & \frac{1}{2} x_{1}^{2} x_{2}^{2} \partial_{x_{1}}^{2} U\left(t, x_{1}, x_{2}\right)+\frac{1}{2} \nu^{2} x_{2}^{2} \partial_{x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& \rho \nu x_{1} x_{2}^{2} \partial_{x_{1}, x_{2}}^{2} U\left(t, x_{1}, x_{2}\right)+ \\
& 2\left(x_{2}+\rho \nu\right) x_{1} x_{2} \partial_{x_{1}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(2 \nu^{2}+\rho \nu x_{2}\right) x_{2} \partial_{x_{2}} U\left(t, x_{1}, x_{2}\right)+ \\
& \left(x_{2}^{2}+\nu^{2}+2 \rho \nu x_{2}\right) U\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

3. We have reported the probability density function of Heston and SABR models in Figures A. 5 and A. 6.

A.4.15 Discrete dynamic programming

1. (a) We have five states $s(k) \in\{1,1.5,2,2.5\}$ and eight control values $c(k) \in$ $\{1,2,3,4,5,6,7,8\}$. We deduce that:

$$
\boldsymbol{J}=\left(\begin{array}{lllll}
1.141 & 1.108 & 1.075 & 1.038 & 1.000 \\
1.121 & 1.343 & 1.563 & 1.782 & 2.000 \\
1.842 & 2.134 & 2.425 & 2.714 & 3.000 \\
2.759 & 3.071 & 3.382 & 3.691 & 4.000
\end{array}\right)
$$

FIGURE A.5: Probability density function of the Heston model

FIGURE A.6: Probability density function of the SABR model
and:

$$
\boldsymbol{C}=\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3
\end{array}\right)
$$

For instance, we have $\mathcal{J}(2,2)=(\boldsymbol{J})_{3,2}=2.134$ because $s_{3}=2$ and $k=2$.
(b) We deduce that $\mathcal{J}(1,1)=1.141$.
(c) We notice that $c^{\star}(1)=1$ if $s(1)=1, c^{\star}(1)=2$ if $s(1)=1.5$ or $s(1)=2$, $c^{\star}(1)=3$ if $s(1)=2.5, c^{\star}(2)=1$ if $s(1)=1, c^{\star}(2)=2$ if $s(1)=1.5$, etc. When k is small, the objective function is mainly explained by $-\frac{\alpha}{k}(c(k)-s(k))^{2}$. Therefore, maximizing $f(k, s(k), c(k))$ implies that $c^{\star}(k) \approx s(k)$. This is why $c^{\star}(k)$ cannot be greater than or equal to 4 .

FIGURE A.7: Values taken by $\mathcal{J}(k, s(k))$ and $c^{\star}(k)$
2. (a) We have represented $\mathcal{J}(k, s(k))$ in the first panel in Figure A.7.
(b) In the second panel, we have reported $\mathcal{J}(1, s(k))$. The maximum is reached for $s(k)=39$.
(c) In the third panel, we have reported the optimal control $c^{\star}(k)$ when $s(k)$ is equal to 3,13 and 22 . We notice that $c^{\star}(k) \approx s(k)$ when $k=1$ and $c^{\star}(k)=25$ when $k=100$. The case $k=1$ has been explained in Question 1(c). In the case $k=100$, we have:

$$
f(k, s(k), c(k)) \approx-\frac{1}{s(k)} \ln s(k)+\beta c(k)+\gamma \sqrt{s(k)} e^{\sin s(k)}
$$

Therefore, maximizing $f(k, s(k), c(k))$ implies that $c^{\star}(k)=\max c_{j}=25$.

A.4.16 Matrix computation

1. (a) We have $A=Q T Q^{*}$ where:

$$
Q=\left(\begin{array}{rrr}
0.737 & -0.553 & -0.390 \\
0.526 & 0.107 & 0.844 \\
0.425 & 0.826 & -0.370
\end{array}\right)
$$

et :

$$
T=\left(\begin{array}{rrr}
1.761 & 0.000 & 0.000 \\
0.000 & -0.143 & 0.000 \\
0.000 & 0.000 & 0.581
\end{array}\right)
$$

(b) We obtain:

$$
e^{A}=\left(\begin{array}{lll}
3.693 & 1.617 & 1.682 \\
1.617 & 2.895 & 0.820 \\
1.682 & 0.820 & 1.887
\end{array}\right)
$$

and:

$$
\ln A=\left(\begin{array}{rrr}
-0.371+0.961 i & 0.512-0.185 i & 0.989-1.435 i \\
0.512-0.185 i & -0.251+0.036 i & 0.124+0.277 i \\
0.989-1.435 i & 0.124+0.277 i & -1.302+2.145 i
\end{array}\right)
$$

(c) We have:

$$
\cos A=\frac{e^{i A}+e^{-i A}}{2}
$$

and:

$$
\sin A=\frac{i e^{-i A}-i e^{i A}}{2}
$$

Therefore, we can calculate $\cos A$ and $\sin A$ from the matrix exponential. We obtain:

$$
\cos A=\left(\begin{array}{rrr}
0.327 & -0.406 & -0.391 \\
-0.406 & 0.554 & -0.216 \\
-0.391 & -0.216 & 0.756
\end{array}\right)
$$

and:

$$
\sin A=\left(\begin{array}{lll}
0.573 & 0.209 & 0.451 \\
0.209 & 0.661 & 0.036 \\
0.451 & 0.036 & 0.155
\end{array}\right)
$$

We have:

$$
\cos ^{2} A+\sin ^{2} A=I_{3}
$$

(d) For transcendental functions $f(x)$, we have $f(A)=Q f(T) Q^{*}$. Using $f(x)=$ \sqrt{x}, we obtain:

$$
A^{1 / 2}=\left(\begin{array}{ccc}
0.836+0.115 i & 0.264-0.022 i & 0.525-0.173 i \\
0.264-0.022 i & 0.910+0.004 i & 0.059+0.033 i \\
0.525-0.173 i & 0.059+0.033 i & 0.344+0.258 i
\end{array}\right)
$$

2. The eigenvalues of Σ are $-0.00038,0.00866,0.01612$ and $0.05060 . \Sigma$ is not a positive semi-definite matrix because one eigenvalue is negative. We have $\Sigma=\left(A_{1}+i A_{2}\right)^{2}$ where:

$$
A_{1}=\left(\begin{array}{rrrr}
0.19378 & 0.04539 & 0.01365 & -0.01440 \\
0.04539 & 0.13513 & -0.03221 & -0.03445 \\
0.01365 & -0.03221 & 0.02740 & -0.02833 \\
-0.01440 & -0.03445 & -0.02833 & 0.08866
\end{array}\right)
$$

and:

$$
A_{2}=\left(\begin{array}{rrrr}
0.00024 & -0.00073 & -0.00184 & -0.00083 \\
-0.00073 & 0.00224 & 0.00563 & 0.00255 \\
-0.00184 & 0.00563 & 0.01417 & 0.00642 \\
-0.00083 & 0.00255 & 0.00642 & 0.00291
\end{array}\right)
$$

We deduce that the nearest covariance matrix is:

$$
\tilde{\Sigma}=A_{1}^{2}=\left(\begin{array}{rrrr}
0.04000 & 0.01499 & 0.00196 & -0.00602 \\
0.01499 & 0.02254 & -0.00364 & -0.00745 \\
0.00196 & -0.00364 & 0.00278 & -0.00237 \\
-0.00602 & -0.00745 & -0.00237 & 0.01006
\end{array}\right)
$$

3. We obtain $\rho(B)=C_{5}(-25 \%)$. This is the lower bound of constant correlation matrix. More generally, we have:

$$
\rho\left(C_{n}(r)\right)=C_{n}\left(r^{\star}\right)
$$

where $r^{\star}=\max (r,-1 /(n-1))$. If $r<-1 /(n-1)$, the nearest correlation matrix is then the lower bound.
4. We obtain:

$$
\rho(C)=\left(\begin{array}{rrrrr}
1.0000 & & & & \\
0.6933 & 1.0000 & & & \\
0.6147 & 0.4571 & 1.0000 & & \\
0.2920 & 0.7853 & 0.0636 & 1.0000 & \\
0.7376 & 0.2025 & 0.7876 & -0.0901 & 1.0000
\end{array}\right)
$$

[^0]: ${ }^{1}$ The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002).

[^1]: ${ }^{1}$ Coupons 3% or more are called big coupons (or BC) and coupons less than 3% are called small coupons (SC). When the maturity is greater than $20 \mathrm{Y}, K(t)$ is equal to 6.00% for big coupons and 12.50% for small coupons.

[^2]: ${ }^{2} \mathrm{We}$ assume that the beta of the portfolio with respect to the $\mathrm{S} \& \mathrm{P} 500$ index is equal to one.

[^3]: ${ }^{3}$ The total matched position is equal to $2 \times 2200=4400$ (long + short $)$.

[^4]: ${ }^{4}$ We remind that the mean and the variance of the distribution $\mathcal{U}(0,1)$ is $1 / 2$ and $1 / 12$.

[^5]: ${ }^{5}$ The moment exists if $n \neq \theta$.

[^6]: ${ }^{6}$ We have $p_{1, i}=\operatorname{Pr}\left\{L_{1}=\ell_{i}\right\}$ and $p_{2, i}=\operatorname{Pr}\left\{L_{2}=\ell_{i}\right\}$.

[^7]: ${ }^{7}$ Because $\sigma_{A}=\sigma_{B}=20 \%$.
 ${ }^{8}$ See Exercise 2.4.2 on page 8.

[^8]: ${ }^{9}$ We use the following correspondence: 10 days is equivalent to 2 weeks and one year is equivalent to 52 weeks.
 ${ }^{10} \mathrm{We}$ assume that the specific capital charge for an equity index is 4%.

[^9]: ${ }^{11}$ because $\phi^{\prime}(x)=-x \phi(x)$.
 ${ }^{12}$ Here, h is equal to one day.

[^10]: ${ }^{13}$ You may easily verify that we obtained this formula in the case $n=2$ by developing the different polynomials.

[^11]: ${ }^{14}$ Because we have $\Phi^{-1}(1-\alpha)=-\Phi^{-1}(\alpha)$. the partial derivatives $D \varphi$ is $\sqrt{1-\rho^{2}}$.
 ${ }^{16}$ We use the fact that:

 $$
 \mathbb{E}\left[\Phi\left(\frac{\Phi^{-1}(p)-\rho T}{\sqrt{1-\rho^{2}}}\right)\right]=p
 $$

[^12]: ${ }^{17}$ We have $2.5 \% \times 250=6.25$.

[^13]: ${ }^{1}$ We include the accrued premium.

[^14]: ${ }^{2}$ We recall that the one-year default probability is approximately equal to λ :

 $$
 \begin{aligned}
 \mathrm{PD} & =1-\mathbf{S}(1) \\
 & =1-e^{-\lambda} \\
 & \simeq 1-(1-\lambda) \\
 & \simeq \lambda
 \end{aligned}
 $$

[^15]: ${ }^{3}$ An example is a company whose has a monopoly because of a strong technology, but faces a hard competition because technology is evolving fast in its domain (e.g. Blackberry at the end of 2000s).
 ${ }^{4}$ The junior, mezzanine and senior tranches can be viewed as FtD, StD and LtD.

[^16]: ${ }^{5}$ We use the convention $t_{0}^{\star}=0$.

[^17]: ${ }^{6}$ If we consider the approximated formulas, the solutions are $\hat{\lambda}_{1}=166.7 \mathrm{bps}, \hat{\lambda}_{2}=375.0 \mathrm{bps}$ and $\hat{\lambda}_{3}=308.3 \mathrm{bps}$.

[^18]: ${ }^{7}$ Contrary to the Vasicek model, the conditional probability of default $p_{i}(X)$ is an increasing function of X in the CreditRisk + model. Therefore, we have $x_{\alpha}=\mathbf{H}^{-1}(\alpha)$ and not $x_{\alpha}=\mathbf{H}^{-1}(1-\alpha)$.

[^19]: ${ }^{8}$ We do not obtained the same result than Gordy (2003), who finds that:

 $$
 H_{\mathcal{C}_{j}}=\frac{\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}^{2}}{\left(\sum_{i \in \mathcal{C}_{j}} \mathrm{EAD}_{i}\right)^{2}}
 $$

[^20]: ${ }^{2}$ We have $\lim _{x \rightarrow \infty} \gamma(s, x)=\Gamma(s)$.

[^21]: ${ }^{3} f(0, T)$ is known at time $t=0$.

[^22]: ${ }^{4}$ We notice that $\psi_{w}=\sum_{i=1}^{n} \psi_{i}$.

[^23]: ${ }^{1}$ In order to simplify the calculation, we assume that the USD/EUR exchange rate is equal to 1 .

[^24]: ${ }^{2}$ We use the change of variable $x=b t$.

[^25]: ${ }^{3} \mathrm{An}$ alternative approach to find the values of r and p consists in match the first two moments. Indeed, we know that:

 $$
 \mathbb{E}[\mathcal{N B}(r, p)]=\frac{p r}{1-p}
 $$

 and:

 $$
 \operatorname{var}(\mathcal{N B}(r, p))=\frac{p r}{(1-p)^{2}}
 $$

 We deduce that:

 $$
 \begin{aligned}
 \left\{\begin{array}{l}
 \frac{\alpha}{\beta}=\frac{p r}{1-p} \\
 \frac{\alpha(\beta+1)}{\beta^{2}}=\frac{p r}{(1-p)^{2}}
 \end{array}\right. & \Leftrightarrow\left\{\begin{array}{l}
 \frac{\alpha}{\beta}=\frac{p r}{1-p} \\
 \frac{\beta+1}{\beta}=\frac{1}{1-p}
 \end{array}\right. \\
 & \Leftrightarrow\left\{\begin{array}{l}
 \alpha=\beta \frac{p r}{1-p} \\
 \beta^{-1}=\frac{1}{1-p}-1
 \end{array}\right. \\
 & \Leftrightarrow\left\{\begin{array}{l}
 \alpha=r \\
 \beta=\frac{1-p}{p}
 \end{array}\right. \\
 & \Leftrightarrow\left\{\begin{array}{l}
 r=\alpha \\
 p=\frac{1}{1+\beta}
 \end{array}\right.
 \end{aligned}
 $$

[^26]: ${ }^{1}$ We use the change of variable $v=u-t$.

[^27]: ${ }^{2}$ The solution of $y^{\prime}(t)=a y(t)+b$ is equal to:

 $$
 y(t)=C e^{a t}-\frac{b}{a}
 $$

[^28]: ${ }^{3}$ In the case where $r(t)$ is constant, we notice that:

 $$
 \begin{aligned}
 \mathbb{E}\left[\int_{0}^{\infty} e^{-r(t) t} \mathrm{~d} t\right] & =\int_{0}^{\infty} e^{-r t} \mathrm{~d} t \\
 & =\left[-\frac{e^{-r t}}{r}\right]_{0}^{\infty} \\
 & =\frac{1}{r}
 \end{aligned}
 $$

[^29]: ${ }^{4}$ This is the arbitrage condition found by Jarrow and van Deventer (1998).

[^30]: ${ }^{1}$ We have $f(0,0)=r_{0}$.

[^31]: ${ }^{2}$ In Part two, we have shown that $\mathrm{d} W^{\mathbb{Q}^{\star}}(t)=\mathrm{d} W^{\mathbb{Q}}(t)-g(t) \mathrm{d} t$ where $g(t)=\sigma_{N}(t)-\sigma_{M}(t)$. Here, we assume that $M(t)=1$, implying that $\sigma_{M}(t)=0$.

[^32]: ${ }^{3}$ We use the fact that:

 $$
 S_{0} \phi\left(d_{1}\right)=K e^{-b T} \phi\left(d_{2}\right)
 $$

[^33]: ${ }^{4}$ Van der Kamp, R. (2009), Local Volatility Modeling, Master of Science Dissertation, University of Twente.

[^34]: ${ }^{5}$ Hagan et al. (2002), Equation (A.64) on page 101.
 ${ }^{6}$ Hagan et al. (2002), Equation (A.69) on page 102.

[^35]: ${ }^{7}$ We remind that the solution of the ODE:

 $$
 \frac{\mathrm{d} f(t)}{\mathrm{d} t}=\alpha f(t)+\beta(t)
 $$

 is equal to:

 $$
 f(t)=e^{a t} \int_{0}^{t} e^{-a s} \beta(s) \mathrm{d} s
 $$

[^36]: ${ }^{8}$ Donati-Martin, C., Ghomrasni, R., and Yor, M. (2001), On Certain Markov Processes Attached to Exponential Functionals of Brownian Motion; Applications to Asian Options, Revista Matematica Iberoamericana, 17(1), pp. 179-193.

[^37]: ${ }^{9}$ We recall that:

[^38]: ${ }^{1}$ We have $\mathbf{Y}^{\top} \mathbf{X} \beta=\left(\mathbf{Y}^{\top} \mathbf{X} \beta\right)^{\top}=\beta^{\top} \mathbf{X}^{\top} \mathbf{Y}$ because $\mathbf{Y}^{\top} \mathbf{X} \beta$ is a scalar.

[^39]: ${ }^{2}$ We use the following properties:

 - $\operatorname{trace}(a)=a$ if a is a scalar;
 - trace $(A B)=\operatorname{trace}(B A)$ if the matrix multiplication $B A$ is defined.

[^40]: ${ }^{3}$ We use the change of variable $y=\sigma^{-1}(x-\mu)$.

[^41]: ${ }^{4}$ Another way to find this result is to notice that $(1-L)^{2}=1-2 L+L^{2}$. Therefore, we have:

 $$
 \begin{aligned}
 \left|\left(1-e^{-i \lambda}\right)^{2}\right|^{2} & =\left|1-2 e^{-i \lambda}+\left(e^{-i \lambda}\right)^{2}\right|^{2} \\
 & =\left|1-2 e^{-i \lambda}+e^{-2 i \lambda}\right|^{2} \\
 & =|(1-2 \cos \lambda+\cos 2 \lambda)+i(2 \sin \lambda-\sin 2 \lambda)|^{2} \\
 & =(1-2 \cos \lambda+\cos 2 \lambda)^{2}+(2 \sin \lambda-\sin 2 \lambda)^{2} \\
 & =1-4 \cos \lambda+4 \cos ^{2} \lambda+2 \cos 2 \lambda-4 \cos \lambda \cos 2 \lambda+\cos ^{2} 2 \lambda+ \\
 & =4 \sin ^{2} \lambda-4 \sin \lambda \sin 2 \lambda+\sin ^{2} 2 \lambda \\
 & =6-4 \cos \lambda+2 \cos 2 \lambda-4(\cos \lambda \cos 2 \lambda+\sin \lambda \sin 2 \lambda) \\
 & =6-8 \cos \lambda+2 \cos 2 \lambda-4 \cos 2 \lambda-2 \lambda) \\
 & =4-8 \cos \lambda+2(1+\cos 2 \lambda) \\
 & =4-8 \cos \lambda+2\left(1+\cos ^{2} \lambda-\sin ^{2} \lambda\right) \\
 & =4-8 \cos \lambda+4 \cos ^{2} \lambda \\
 & =4(1-\cos \lambda)^{2}
 \end{aligned}
 $$

[^42]: ${ }^{5}$ We use the following trigonometric identity:

 $$
 \sin \alpha \sin \beta=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta))
 $$

[^43]: ${ }^{1}$ Another expression of $c\left(u_{1}, u_{2}\right)$ is:

 $$
 \begin{aligned}
 c\left(u_{1}, u_{2}\right)= & \left(\frac{\alpha+1}{\alpha}\right)\left(\left(1-u_{1}\right)\left(1-u_{2}\right)\right)^{1 / \alpha} \times \\
 & \left(\left(1-u_{1}\right)^{1 / \alpha}+\left(1-u_{2}\right)^{1 / \alpha}-\left(1-u_{1}\right)^{1 / \alpha}\left(1-u_{2}\right)^{1 / \alpha}\right)^{-\alpha-2}
 \end{aligned}
 $$

[^44]: ${ }^{1}$ We notice that $\varphi^{2}(x)=\mathbb{1}\{x \geq c\}$.

[^45]: ${ }^{2}$ We assume that $2 \sigma^{2}-1>0$.

[^46]: ${ }^{3}$ In the case where $\mu=0$ and $\sigma=1$, we retrieve the formula of the MC estimator:
 $\operatorname{var}\left(\hat{p}_{\text {IS }}\right)=(1-\Phi(c))-(1-\Phi(c))^{2}$ $=\Phi(c)-\Phi^{2}(c)$

[^47]: ${ }^{1}$ Indeed, $\mathbf{F}_{\tau}(\tau) \sim U_{[0,1]}$ and $\Phi^{-1}\left(U_{[0,1]}\right) \sim \mathcal{N}(0,1)$.

[^48]: ${ }^{1}$ Suppose u and v are two vectors and A is an invertible square matrix. It follows that:

 $$
 \left(A+u v^{\top}\right)^{-1}=A^{-1}-\frac{1}{1+v^{\top} A^{-1} u} A^{-1} u v^{\top} A^{-1}
 $$

[^49]: ${ }^{2} \mathbf{H}$ transforms \mathbf{Y} into $\hat{\mathbf{Y}}$ (pronounced " y -hat").

[^50]: ${ }^{4}$ We verify that Equations (15.2) and (15.3) are equivalent, because we have:

 $$
 \begin{aligned}
 \frac{1}{K} \sum_{k=1}^{K} \frac{(n-K) s_{k}^{2}+n \lambda}{s_{k}^{2}+\lambda} & =\frac{1}{K} \sum_{k=1}^{K} \frac{(n-K)\left(s_{k}^{2}+\lambda\right)+K \lambda}{s_{k}^{2}+\lambda} \\
 & =(n-K)+\sum_{k=1}^{K} \frac{\lambda}{s_{k}^{2}+\lambda}
 \end{aligned}
 $$

[^51]: ${ }^{6}$ The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002).

[^52]: ${ }^{7}$ Joliffe (2002) notices that the solution is $\beta_{1}=\infty$ without this normalization.

[^53]: ${ }^{8}$ We cannot use the first eigenvector because $\beta_{1}^{\top} \beta_{2}$ must be equal to zero.

[^54]: ${ }^{9}$ because $\beta^{\top} \hat{\mu}_{1}-\beta^{\top} \hat{\mu}_{2}$ is a scalar.

[^55]: ${ }^{10}$ All values $y_{i, j^{\prime}}$ are equal to zero except one value that is equal to one.

[^56]: ${ }^{1}$ See Question 1(c) of Exercise A.4.2.

[^57]: ${ }^{2}$ We use the change of variable $y=h^{-1} / 2(x-\varepsilon)$.

[^58]: ${ }^{3}$ We use the result obtained in Question 4 of Exercise A.4.2.

[^59]: ${ }^{4}$ We have $\mathbb{E}[W(s)+W(u)]=0$ and:

 $$
 \operatorname{var}(W(s)+W(u))=s+u+2 \min (s, u)
 $$

[^60]: ${ }^{5}$ We note $X(t)=x$.

[^61]: ${ }^{6}$ At the initial date $t=0$, we have:

 $$
 V(0, x)=(x+10) e^{-15}+\frac{4}{3}\left(1-e^{-15}\right)
 $$

[^62]: ${ }^{7}$ At the initial date $t=0$, we have:

 $$
 V(0, x)=e^{x-2.5}+\frac{4}{3}\left(1-e^{-15}\right)
 $$

[^63]: ${ }^{8}$ We have $S_{\star}=S(0)=100$.

[^64]: ${ }^{9}$ Using notations used to state the Girsanov theorem, we have $g(t)=\mu$.
 ${ }^{10}$ We have:

 $$
 \frac{\mathrm{d}}{\mathrm{~d} y} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}}=\mu e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}}+\frac{(2 x-y)}{t} e^{\mu y-\frac{1}{2} \mu^{2} t-\frac{(2 x-y)^{2}}{2 t}}
 $$

