
A Gauss Implementation of Particle Filters

The PF library

Thierry Roncalli
University of Evry

Guillaume Weisang
Bentley University

This version: December 24, 2008

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Getting started . 3

1.2.1 readme.txt file . 3
1.2.2 Setup . 3

1.3 What is PF? . 4
1.4 Using Online Help . 4

2 An introduction to particle filters 5
2.1 Framework . 5

2.1.1 Definition of the tracking problem . 5
2.1.2 Bayesian filters . 5

2.2 Particle filters . 6
2.3 Numerical Algorithms . 8

3 Command Reference 13

4 Some examples 21

Bibliography 25

2

Chapter 1

Introduction

1.1 Installation

1. The file pf.zip is a zipped archive file. Copy this file under the root directory of Gauss, for
example D:\GAUSS60.

2. Unzip the file. Directories will then be created and files will be copied over them:

target path readme.txt
target path\dlib DLLs
target path\lib library file
target path\pf\examples example and tutorial files
target path\pf\src source code files
target path\src source code files

3. If your root of Gauss is D:\GAUSS60, the installation is finished, otherwise you have to
modify the paths of the library using notepad or the LibTool. Another way to update the
library is to run Gauss, log on to the pf\src directory, delete the path with the command
lib pf -n and add the path to the library with the command lib pf -a.

1.2 Getting started

Gauss 6.0.57+ for Windows is required to use the PF routines.

1.2.1 readme.txt file

The file readme.txt contains last minute information on the PF procedures. Please read it before
using them.

1.2.2 Setup

In order to use these procedures, the PF library must be active. This is done by including PF in
the LIBRARY statement at the top of your program:

library pf;

3

4 CHAPTER 1. INTRODUCTION

To reset global variables in subsequent executions of the program and in order to load DLLs, the
following instruction should be used:

pfSet;

1.3 What is PF?

PF is a Gauss library for computing particle filters. PF contains the procedures whose list is given
below:

• Particle Filter Set

• Generic Particle Filter

• Particle Smoother

• Regularized Particle Filter

• Simulate Tracking Problem

• SIR Particle Filter

• SIS Particle Filter

1.4 Using Online Help

PF library supports Windows Online Help. Before using the browser, you have to verify that the
PF library is activated by the library command.

Chapter 2

An introduction to particle filters

2.1 Framework

We have developed this library in the context of tracking problems [9]. In the next paragraphs, we
recall the definition of tracking problems and we present Bayesian filters which are generally used
to solve them.

2.1.1 Definition of the tracking problem

We follow [1] and [8] in their definition of the general tracking problem. We note xk ∈ Rnx the
vector of states and zk ∈ Rnz the measurement vector at time index k. In our setting, we assume
that the evolution of xk is given by a first-order Markov model:

xk = f (tk,xk−1,νk) (2.1)

where f is a non-linear function and νk a noise process. In general, the state xk is not observed
directly, but partially through the measurement vector zk. Thus, it is further assumed that the
measurement vector is linked to the target state vector through the following measurement equa-
tion:

zk = h (tk,xk, ηk) (2.2)

where h is a non-linear function, and ηk is a second noise process independent from νk. Our goal
is thus to estimate xk from the set of all available measurements z1:k = {zi, i = 1, . . . , k}. The
goal in a tracking problem is to estimate the state variable xk, the current state of the system at
time tk, using all available measurement z1:k = {z`}`=1:k.

2.1.2 Bayesian filters

The prior density of the state vector at time k is given by the Chapman-Kolmogorov equation:

p (xk | z1:k−1) =
∫

p (xk | x1:k−1) p (xk−1 | z1:k−1) dxk−1 (2.3)

where we used the fact that our model is a first-order Markov model to write
p (xk | x1:k−1, z1:k−1) = p (xk | x1:k−1). This equation is known as the Bayes prediction step.
It gives an estimate of the probability density function of xk given all available information until

5

6 CHAPTER 2. AN INTRODUCTION TO PARTICLE FILTERS

k−1. At time k, as a new measurement value zk becomes available, one can update the probability
density of xk:

p (xk | z1:k) ∝ p (zk | xk) p (xk | z1:k−1) (2.4)

This equation is known as the Bayes update step. The Bayesian filter corresponds to the system
of the two recursive equations (2.3) and (2.4). In order to initialize the recurrence algorithm, we
assume the probability distribution of the initial state vector p (x0) to be known.

Using Bayesian filters, we do not only derive the probability distributions p (xk | z1:k−1) and
p (xk | z1:k), but we may also compute the best estimates x̂k|k−1 and x̂k|k which are given by:

x̂k|k−1 = E [xk | z1:k−1] =
∫

xkp (xk | z1:k−1) dxk

and:
x̂k|k = E [xk | z1:k] =

∫
xkp (xk | z1:k) dxk

When looking at Bayesian filters, the first distinction should be between the type of state
variables. On the one hand, in the case of a state variable with a finite number of discrete states,
one can use Grid-based methods to get an optimal solution to the Bayesian filter, independently
of the form of the density functions. On the other hand, if the state variable is continuous,
then there exists no method in general providing an optimal solution, except for the normal case.
Since the Gaussian family is its own conjugate, models with Gaussian densities have a particular
attraction. If, furthermore, the functions f and h in (2.1) and (2.2) are linear, then the optimal
solution of the Bayesian filter is given by the Kalman filter. Moreover, in the case where the
noise densities are Gaussian but the functions f and h are nonlinear, one can use an approximate
method called Extended Kalman filter (EKF) where the functions f and h are replaced by local
linear approximation using their first derivatives at each recursion. In the more general case of
non Gaussian densities, one has to resort to sub-optimal algorithms, called particle filters, to
approximate the solution to the Bayesian filter. The idea behind particle filters is rather simple.
Since no closed-form solution to the tracking problem can be found in general, one simply simulate
at each step a sample of particles which will be used to provide a discrete estimation of the density
function, the filtering density, p(xk|z1:k).

2.2 Particle filters

Particle filtering methods are techniques to implement recursive Bayesian filters using Monte-
Carlo simulations. The key idea is to represent the posterior density function by a set of random
samples with associated weights and to compute estimates based on these samples and weights
[1, 3, 5, 6, 7, 8]. As the samples become very large Ns À 1, this Monte-Carlo approximation
becomes an equivalent representation on the functional description of the posterior pdf. To clarify
ideas1, let

{
xi

k, wi
k

}Ns

i=1
denotes a set of support points

{
xi

k, i = 1, . . . , Ns

}
and their associated

weights
{
wi

k, i = 1, . . . , Ns

}
characterizing the posterior density p (xk | z0:k). The posterior density

at time k can then be approximated as:

p (xk | zk) ≈
Ns∑

i=1

wi
kδ

(
xk − xi

k

)
(2.5)

1Note that the succinct presentation given here of particle filters is adapted to our first-order Markovian frame-
work.

2.2. PARTICLE FILTERS 7

We have thus a discrete weighted approximation to the true posterior distribution. One common
way of choosing the weights is by way of importance sampling — see for example [1, 3, 5, 8]. This
principle relies on the following idea. In the general case, the probability density p (xk | zk) is such
that it is difficult to draw samples from it. Assume for a moment that p (x) ∝ π (x) is a probability
density from which it is difficult to draw sample from, but for which π (x) is easy to evaluate.
Hence, up to proportionality, so is p (x). Also, let xs ∼ q (x) be samples that are easily drawn from
a proposal q (·), called an importance density. Then, similarly to 2.5, a weighted approximation of
the density p (·) can be obtained by using:

p (x) ≈
Ns∑

i=1

wiδ
(
x− xi

)

where:

wi ∝
π

(
xi

)

q (xi)

is the normalized weight of the i-th particle. Thus, if the samples {xi
k} were drawn from a proposal

density q (xk | zk), then the weights in (2.5) are defined to be:

wi
k ∝

p
(
xi

k | zk

)

q
(
xi

k | zk

) (2.6)

The PF sequential algorithm can thus be subsumed in the following steps. At each iteration, one
has samples constituting an approximation of p

(
xi

k−1 | zk−1

)
and wants to approximate p

(
xi

k | zk

)
with a new set of samples. If the importance density can be chosen so as to factorize in the following
way:

q (xk | zk) = q (xk | xk−1, zk)× q (xk−1 | zk−1) (2.7)

then one can obtain samples {xi
k} by drawing samples from q

(
xi

k | zk

)
. To derive the weight

update equation:

p (xk | zk) =
p (zk | xk, zk−1)× p (xk | zk−1)

p (zk | zk−1)

=
p (zk | xk, zk−1)× p (xk | xk−1, zk−1)

p (zk | zk−1)
× p (xk−1 | zk−1)

=
p (zk | xk)× p (xk | xk−1)

p (zk | zk−1)
× p (xk−1 | zk−1)

∝ p (zk | xk)× p (xk | xk−1)× p (xk−1 | zk−1) (2.8)

By substituting (2.7) and (2.8) into (2.6), the weight equation can be derived to be:

wi
k ∝ wi

k−1

p
(
zk | xi

k

)× p
(
xi

k | xi
k−1

)

q
(
xi

k | xi
k−1, zk

) (2.9)

and the posterior density p (xk|zk) can be approximated using (2.5). We refer the reader to [1] for a
more detailed but concise exposé of the differences between the different PF algorithms: sequential
importance sampling (SIS), generic particle filter, sampling importance resampling (SIR), auxiliary
particle filter (APF), and regularized particle filter (RPF). We provide a succinct exposé of the
SIS, SIR algorithms as well as the generic particle filter’s and the regularized particle filter’s in the
next section. One important feature of PF is that not one implementation is better than all the
others. In different contexts, different PFs may have wildly different performances.

8 CHAPTER 2. AN INTRODUCTION TO PARTICLE FILTERS

2.3 Numerical Algorithms

In the previous section, we presented the algorithm, known under the name Sequential Importance
Sampling (SIS), which forms the basis for most sequential Monte Carlo filters developed over the
past decade [1]. We start by providing its pseudo code in Algorithm 1, before exposing the more
advanced algorithms we used: a generic Particle Filter (GPF), a Sampling Importance Resampling
(SIR) algorithm, and a regularized Particle Filter (RPF).

Algorithm 1 SIS Particle Filter
procedure SIS Particle Filter(z1:T ,Ns) . Runs a SIS Particle Filter{

xi
0, wi

0

}
i=1:Ns

∼ p0(.) . Initialization
k ← 1
while k < T do{

xi
k, wi

k

}
i=1:Ns

← SIS Step(xi
k−1, wi

k−1, zk)
k ← k + 1

end while
return

{
xi

1:T , wi
1:T

}
i=1:Ns

end procedure

procedure SIS step(xi
k−1, wi

k−1, zk) . Propagates the sample from state k − 1 to state k
for i = 1 : Ns do

Draw xi
k ∼ q

(
xk | xi

k−1, zk

)
Assign the particle a weight, wi

k, according to 2.9
end for
return

{
xi

k, wi
k

}
i=1:Ns

end procedure

The SIS algorithm is thus a very simple algorithm, easy to implement. However, it commonly
suffers from a degeneracy phenomenon, where after only a few iterations, all but one particle will
have negligible weights. This degeneracy problems implies that a large computational effort will
be devoted to updating particles whose contribution to the approximation of the filtering density
p (xk | z1:k) is quasi null. In order to alleviate this problem, more advanced algorithm have been
devised. One way to deal with degeneracy is to carefully choose the importance density function
q
(
xk | xi

k−1, zk

)
. We leave to the reader to consult [1] for a discussion of the importance of the

choice of the importance density. Another simple idea is to resample the particles when a certain
measure of degeneracy becomes too large (or too small). For example, one could calculate the
effective sample size Neff defined as:

Neff =
Ns

1 + σ
(
w∗ik

)2

where w∗ik = p
(
xi

k | z1:k

)
/q

(
xi

k | xi
k−1, zk

)
is referred to as the “true weight.” As this cannot be

valued exactly, this quantity can be estimated using:

N̂eff =
1

∑Ns

i=1

(
wi

k

)2 (2.10)

We provide in Algorithm 2 and in Algorithm 3 respectively the resampling algorithm we used and
the generic Particle Filter which is deduced from the SIS algorithm by adding this resampling step
to avoid degeneracy.

2.3. NUMERICAL ALGORITHMS 9

Algorithm 2 Resampling Algorithm
procedure Resample(

{
xi

k, wi
k

}
i=1:Ns

)
c1 ← 0 . Initialise the CDF
for i = 2 : Ns do . Construct the CDF

ci ← ci−1 + wi
k

end for

i ← 1 . Start at the bottom of the CDF
u1 ∼ U

[
0, N−1

s

]
. Draw a starting point

for j = 1 : Ns do
uj ← u1 + N−1

s (j − 1) . Move along the CDF
while uj > ci do

i ← i + 1
end while
xj∗

k = xi
k . Assign sample

wj
k = N−1

s . Assign weight
parentj ← i . Assign parent

end for
return

{
xj∗

k , wj
k, parentj

}
j=1:Ns

end procedure

Algorithm 3 Generic Particle Filter
procedure Generic Particle Filter(z1:T ,Ns) . Runs a Generic Particle Filter{

xi
0, wi

0

}
i=1:Ns

∼ p0(.) . Initialization
k ← 1
while k < T do{

xi
k, wi

k

}
i=1:Ns

← PF Step(xi
k−1, wi

k−1, zk)
k ← k + 1

end while
return

{
xi

1:T , wi
1:T

}
i=1:Ns

end procedure

procedure PF Step(xi
k−1, wi

k−1, zk)
for i = 1 : Ns do

Draw xi
k ∼ q

(
xk | xi

k−1, zk

)
Assign the particle a weight, wi

k, according to 2.9
end for
t ← ∑Ns

i=1 wi
k . Calculate total weight

for i = 1 : Ns do
wi

k ← t−1wi
k

end for
Calculate N̂eff using 2.10
if N̂eff < Ns then{

xi
k, wi

k,−}
i=1:Ns

← Resample(
{
xi

k, wi
k

}
i=1:Ns

)
end if

end procedure

10 CHAPTER 2. AN INTRODUCTION TO PARTICLE FILTERS

Algorithm 4 SIR Particle Filter
procedure SIR Particle Filter(z1:T ,Ns) . Runs a SIR Particle Filter{

xi
0, wi

0

}
i=1:Ns

∼ p0(.) . Initialization
k ← 1
while k < T do{

xi
k, wi

k

}
i=1:Ns

← SIR Step(xi
k−1, wi

k−1, zk)
k ← k + 1

end while
return

{
xi

1:T , wi
1:T

}
i=1:Ns

end procedure

procedure SIR Step(xi
k−1, wi

k−1, zk)
for i = 1 : Ns do

Draw xi
k ∼ p(xk | xi

k−1)
wi

k ← p(zk | xi
k)

end for
t ← ∑Ns

i=1 wi
k . Calculate total weight

for i = 1 : Ns do
wi

k ← t−1wi
k

end for{
xi

k, wi
k,−}

i=1:Ns
← Resample(

{
xi

k, wi
k

}
i=1:Ns

) . Systematic resampling
end procedure

In many particle filters implementations, one uses the prior density p
(
xk | xi

k−1

)
as the im-

portance density q
(
xk | xi

k−1, zk

)
for even though it is often suboptimal, it simplifies the weights

update equation 2.9 into:
wi

k ∝ wi
k−1 × p

(
zk | xi

k

)

Furthermore, if resampling is applied at every step — this particular implementation is called
the Sampling Importance Resampling (SIR) of which we give the algorithm in pseudo code in
Algorithm 4 — then we have wi

k−1 = 1/Ns ∀i, and so:

wi
k ∝ p

(
zk | xi

k

)
(2.11)

The weights given in 2.11 are normalized before the resampling stage.

The regularized Particle Filter is based on the same idea as the Generic Particle Filter, with
the same resampling condition, but the resampling step provides an entirely new sample based
on a continuous approximation of the posterior filtering density p (xk | zk), such that we have the
following approximation:

p̂ (xk | zk) =
Ns∑

i=1

wi
kKh

(
xk − xi

k

)
(2.12)

where:

Kh (x) =
1

hnx
K

(x
h

)

is the re-scaled Kernel density K (·), h > 0 is the Kernel bandwidth, nx is the dimension of the
state vector x, and wi

k, i = 1, . . . , Ns are normalized weights. The Kernel K (·) and bandwidth

2.3. NUMERICAL ALGORITHMS 11

h should be chosen to minimize the Mean Integrated Square Error (MISE), between the true
posterior density and the corresponding regularized empirical representation in 2.12, defined as:

MISE (p̂) = E
[∫

[p̂ (xk | zk)− p (xk | zk)]2 dxk

]

One can show that in the case where all the samples have the same weight, the optimal choice of
the Kernel is the Epanechnikov Kernel:

Kopt =

{
nx+2
2cnx

(
1− ‖x‖2

)
if ‖x‖< 1,

0 otherwise

where cnx
is the volume of the unit hypersphere in Rnx . Furthermore, when the underlying density

is Gaussian with a unit covariance matrix, the optimal choice for the bandwidth is:

hopt = AN
− 1

nx+4
s

A =
[
8c−1

nx
(nx + 4)

(
2
√

π
)nx

]− 1
nx+4

We can now provide the algorithm for the regularized Particle Filter in Algorithm 5.

12 CHAPTER 2. AN INTRODUCTION TO PARTICLE FILTERS

Algorithm 5 Regularized Particle Filter
procedure Regularized Particle Filter(z1:T ,Ns) . Runs a Regularized Particle Filter{

xi
0, wi

0

}
i=1:Ns

∼ p0(.) . Initialization
k ← 1
while k < T do{

xi
k, wi

k

}
i=1:Ns

← RPF Step(xi
k−1, wi

k−1, zk)
k ← k + 1

end while
return

{
xi

1:T , wi
1:T

}
i=1:Ns

end procedure

procedure RPF Step(xi
k−1, wi

k−1, zk)
for i = 1 : Ns do

Draw xi
k ∼ q

(
xk | xi

k−1, zk

)
Assign the particle a weight, wi

k, according to 2.9
end for
t ← ∑Ns

i=1 wi
k . Calculate total weight

for i = 1 : Ns do
wi

k ← t−1wi
k

end for
Calculate N̂eff using 2.10
if N̂eff < Ns then

Compute the empirical covariance matrix Sk of
{
xi

k, wi
k

}
i=1:Ns

Compute Dk ← Chol(Sk) . Cholesky decomposition of Sk: DkD>
k = Sk{

xi
k, wi

k,−}
i=1:Ns

← Resample(
{
xi

k, wi
k

}
i=1:Ns

)
for i = 1 : Ns do

Draw εi ∼ Kopt from the Epanechnikov Kernel
xi∗

k ← xi
k + hoptDkεi

end for

return
{
xi∗

k , wi
k

}
i=1:Ns

else
return

{
xi

k, wi
k

}
i=1:Ns

end if
end procedure

Chapter 3

Command Reference

The following global variables and procedures are defined in PF. They are the reserved words of
PF.

pf Ft, pf Ht, pf importance density, pf importance sampling, pf initial density,
pf initial sampling, pf likelihood density, pf Partial Gaussian, pf prior density,
pf prior sampling, pf Qt, pf Resampling Threshold, pf Rt, pf Save Particles, rpf Bounds;
rpf Kernel N.

The default global control variables are

pf Resampling Threshold ∞
pf Save Particles 1

rpf Bounds 0
pf Partial Gaussian 0

rpf Kernel N 201

14 CHAPTER 3. COMMAND REFERENCE

Particle Filter Set

Purpose
Set all the information to run a PF.

Format
call Particle Filter Set(F,Q,H,R,

importance pdf,prior pdf,likelihood pdf,initial pdf,
importance sampling,prior sampling,initial sampling);

Input
F scalar, pointer to a procedure that computes F (t, x)
Q scalar, pointer to a procedure that computes Q (t, x)
H scalar, pointer to a procedure that computes H (t, x)
R scalar, pointer to a procedure that computes R (t, x)
importance pdf scalar, pointer to a procedure that computes the importance

density function q (xk | xk−1, zk)
prior pdf scalar, pointer to a procedure that computes the prior density

function p (xk | xk−1)
likelihood pdf scalar, pointer to a procedure that computes the likelihood

density function p (zk | xk)
initial pdf scalar, pointer to a procedure that computes the initial density

function p (x0)
importance sampling scalar, pointer to a procedure that simulates the state vector

according to the importance density
prior sampling scalar, pointer to a procedure that simulates the state vector

according to the prior density
initial sampling scalar, pointer to a procedure that simulates the initial state

vector x0

Output

Globals

Remarks
The function F , Q, H and R are only need if you want to perform Monte Carlo runs. In this
case, the model considered by the procedure Simulate Particle Filter is the following:

{
xk = F (tk,xk−1) + νk

zk = H (tk,xk) + ηk

with νk ∼ N (0, Q (tk,xk−1)) and ηk ∼ N (0, R (tk,xk)). If you don’t need to use this
procedure, you may set the pointers to these functions equal to 0.

The procedure initial pdf computes the initial weights w0. If its pointer is set to zero, the
initial weights are uniform.

Source
pf.src

15

Generic Particle Filter

Purpose
Run a generic particle filter.

Format
{x,w,m,cov} = Generic Particle Filter(z,Ns);

Input
z matrix N ×G, observed values zk

Ns scalar, number of particles

Output
x array N ×Ns × P , sampled particles at each step
w matrix N ×Ns, weights associated with the samples
m matrix N × P , mean vector of the sample
cov array N × P × P , covariance matrix of the sample

Globals
pf Save Particles scalar, 1 to save the particles (default), 0 if not

Remarks
Combining the outputs provides the empirical posterior density at each step which can be
approximated by:

p (xk = x | zk) =
Ns∑

i=1

wi
kδ

(
x− xi

k

)

Source
pf.src

16 CHAPTER 3. COMMAND REFERENCE

Particle Smoother

Purpose
Run a properly defined particle smoother, by drawing Ns realizations of p (xk | z1:K).

Format
{ps x,ps w} = Particle Smoother(pf x,pf w,Ns);

Input
pf x array N ×Ns × P , stored particles from the run of a particle

filter
pf w matrix N ×Ns, stored weights associated to the samples from

the PF run
Ns scalar, number of simulations

Output
ps x array N ×Ns × P , smoothed particles at each step
ps w matrix N ×Ns, weights associated with the samples ps x

Globals

Remarks
Running a particle smoother requires to run a particle filter first, and feeding the smoothing
procedure with the output of the PF run. This algorithm assumes that the procedures used
are based on Importance Resampling. Finally, the size of the samples of smoothed particles
is equal to the size of the samples from the particle filter.

Source
pf.src

17

Regularized Particle Filter

Purpose
Run a regularized particle filter.

Format
{x,w,m,cov} = Regularized Particle Filter(z,Ns);

Input
z matrix N ×G, observed values zk

Ns scalar, number of particles

Output
x array N ×Ns × P , sampled particles at each step
w matrix N ×Ns, weights associated with the samples
m matrix N × P , mean vector of the sample
cov array N × P × P , covariance matrix of the sample

Globals
pf kernel scalar, defines the kernel for the regularization step (default =

1)
1 for the Epanechnikov kernel
2 for the Gaussian kernel

pf Save Particles scalar, 1 to save the particles (default), 0 if not

Remarks
Combining the outputs provides the empirical posterior density at each step which can be
approximated by:

p (xk = x | zk) =
Ns∑

i=1

wi
kδ

(
x− xi

k

)

Source
pf.src

18 CHAPTER 3. COMMAND REFERENCE

Simulate Tracking Problem

Purpose
Simulate a tracking problem for Monte Carlo analysis.

Format
{t,x,z} = Simulate Tracking Problem(x0,N,Ns);

Input
x0 vector P × 1, initial values x0

N scalar, number of time periods
Ns scalar, number of simulations

Output
t vector N × 1, time index k
x aray N ×Ns × P , sample of xk

z aray N ×Ns ×G, sample of zk

Globals

Remarks
The model considered by the procedure Simulate Tracking Problem is the following:

{
xk = F (tk,xk−1) + νk

zk = H (tk,xk) + ηk

with νk ∼ N (0, Q (tk,xk−1)) and ηk ∼ N (0, R (tk,xk−1)). The functions F , Q, H and R
are initialized using the procedure Particle Filter Set.

Source
pf.src

19

SIR Particle Filter

Purpose
Run a SIR particle filter.

Format
{x,w,m,cov} = SIR Particle Filter(z,Ns);

Input
z matrix N ×G, observed values zk

Ns scalar, number of particles

Output
x array N ×Ns × P , sampled particles at each step
w matrix N ×Ns, weights associated with the samples
m matrix N × P , mean vector of the sample
cov array N × P × P , covariance matrix of the sample

Globals
pf Save Particles scalar, 1 to save the particles (default), 0 if not

Remarks
Combining the outputs provides the empirical posterior density at each step which can be
approximated by:

p (xk = x | zk) =
Ns∑

i=1

wi
kδ

(
x− xi

k

)

Source
pf.src

20 CHAPTER 3. COMMAND REFERENCE

SIS Particle Filter

Purpose
Run a SIS particle filter.

Format
{x,w,m,cov} = SIS Particle Filter(z,Ns);

Input
z matrix N ×G, observed values zk

Ns scalar, number of particles

Output
x array N ×Ns × P , sampled particles at each step
w matrix N ×Ns, weights associated with the samples
m matrix N × P , mean vector of the sample
cov array N × P × P , covariance matrix of the sample

Globals
pf Save Particles scalar, 1 to save the particles (default), 0 if not

Remarks
Combining the outputs provides the empirical posterior density at each step which can be
approximated by:

p (xk = x | zk) =
Ns∑

i=1

wi
kδ

(
x− xi

k

)

Source
pf.src

Chapter 4

Some examples

1. example1.prg
We consider the example1 of Arulampalam et al. [1]:

{
p (xk | xk−1) = N (Fk (xk−1) , Qk)
p (zk | xk) = N

(
x2

k

20 , Rk

)

or equivalently: {
xk = Fk (xk−1) + νk

zk = x2
k

20 + ηk

where:
Fk (xk−1) =

xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos (1.2k)

We have νk ∼ N (0, Qk) and ηk ∼ N (0, Rk). We use Qk = 1 and Rk = 10. Using the
procedure Particle Filter Set, we build the corresponding tracking problem. We consider
1000 particles and perform a Monte Carlo analysis in order to compare the RMSE between
SIS, GPF, SIR and RPF algorithms (Figure 4.1). In Figure 4.2, we report the results of one
MC trial.

2. example2.prg
We use the previous tracking problem in order to illustrate the influence of the number of
particles in the convergence of the SIS algorithm. Results are reported in Figure 4.3.

3. example3.prg
Same example than the example2.prg program, but with the SIR algorithm. Results are
reported in Figure 4.4.

4. example4.prg
We estimate the probability density of the state variables using the RPF algorithm and
represent it in Figures 4.5 and 4.6.

5. example5.prg
In this program, we reproduce the example2 of Roncalli and Weisang [9]. Results are reported
in Figure 4.7.

1This example has been already studied by Carlin et al. [2] and Kitagawa [4].
2Appendix C, Figure 28, page 65.

21

22 CHAPTER 4. SOME EXAMPLES

Figure 4.1: Density of the RMSE statistic

Figure 4.2: An example of a MC run

23

Figure 4.3: Density of the RMSE statistic for the SIS algorithm

Figure 4.4: Density of the RMSE statistic for the SIR algorithm

24 CHAPTER 4. SOME EXAMPLES

Figure 4.5: Probability density evolution (particles representation)

Figure 4.6: Probability density evolution (mass probability representation)

25

6. example6.prg
An example to illustrate the procedure Particle Smoother.

Figure 4.7: Solving a GTAA tracking problem with particle filters

26 CHAPTER 4. SOME EXAMPLES

Bibliography

[1] Sanjeev Arulampalam, Simon Maskell, Neil J. Gordon, and Tim Clapp. A tutorial on parti-
cle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transaction on Signal
Processing, 50(2):174–188, February 2002.

[2] Bradley P. Carlin, Nicholas G. Polson, and David S. Stoffer. A monte carlo approach to
nonnormal and nonlinear state space modeling. Journal of the American Statistical Association,
87(418):493–500, 1992.

[3] Michael S. Johannes and Nick Polson. Particle filtering and parameter learning. University of
Chicago, Working Paper, March 2007.

[4] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5(1):1–25, 1996.

[5] Michael K. Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. Journal
of the American Statistical Association, 94(446):590–599, June 1999.

[6] George Poyiadjis, Arnaud Doucet, and Sumeetpal S. Singh. Maximum likelihood parameter
estimation in general state-space models using particle methods. In Proceedings of the American
Statistical Association, JSM 05, August 2005.

[7] George Poyiadjis, Arnaud Doucet, and Sumeetpal S. Singh. Particle methods for optimal filter
derivative: application to parameter estimation. In Proceedings IEEE International Conference
on Acoustics, Speech, and Signal Processing, March 2005.

[8] Branko Ristic, Sanjeev Arulampalam, and Neil J. Gordon. Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Artech House, Boston, 1st edition, 2004.

[9] Thierry Roncalli and Guillaume Weisang. Tracking problems, hedge fund replication and alter-
native beta. Working Paper, 2008. Available at SSRN: http://ssrn.com/abstract=1325190.

27

http://ssrn.com/abstract=1325190�

