A GAUSS Implementation of Non Uniform Grids for PDE The PDE library

Jérome Bodeau, Gaël Riboulet and Thierry Roncalli
Groupe de Recherche Opérationnelle
Bercy-Expo - Immeuble Bercy Sud - 4 è étage
90quai de Bercy - 75613 Paris Cedex 12 - France

December 15, 2000

Contents

1 Introduction 3
1.1 Installation 3
1.2 Getting started 3
1.2.1 The file readme.PDE 3
1.2.2 Setup 3
1.3 What is PDE ? 4
1.4 Using Online Help 5
2 Partial Differential Equations 7
2.1 The PDE problem 7
2.2 The PDE algorithm 8
2.2.1 The case of non-uniform grids 8
2.2.2 The case of temporal non-uniform grids 10
2.3 Solution extracting 10
2.4 Using non-uniform grids 11
2.5 Other procedures 12
2.5.1 The derivePDE procedure 12
2.5.2 The FindIndex procedure 12
2.5.3 The solveTDG procedure 13
3 Command Reference 15
4 The tutorial 31

Chapter 1

Introduction

1.1 Installation

1. The file libpde.zip is a zipped archive file. Copy this file under the root directory of GAUSS, for example $\mathbf{C}: \backslash$ GAUSS.
2. Unzip it with archive mode. It is automatically recognized by WinZip. With Unzip or PKunzip, use the -d flag
pkunzip -d libpde.zip

Directories will then be created and files will be copied over them:

target_path	readme.pde
target_path \backslash dlib	pde.dll file
target_path $\backslash \mathbf{e x a m p l e s} \backslash$ pde	examples and tutorial files
target_path \backslash lib	library file
target_path $\backslash \mathbf{s r c} \backslash$ pde	source code files

3. Run GAUSS. Log on to the $\boldsymbol{s r c} \backslash \boldsymbol{p d e}$ directory ${ }^{1}$ and add the path to the library file pde.lcg in the following way:
lib pde /addpath

1.2 Getting started

Gauss 3.2 for $\mathrm{OS} / 2$, Windows NT/95 or Unix ${ }^{2}$ is required to use the PDE routines.

1.2.1 The file readme. PDE

The file readme.PDE contains last minute information on the PDE procedures. Please read it before using them.

1.2.2 Setup

In order to use these procedures, the PDE library must be active. This is done by including PDE in the LIBRARY statement at the top of your program:

library PDE;

[^0]To reset global variables in subsequent executions of the program, the following instruction should be used:

PDEset;

If you plan to make any right-hand reference to the global variables, you will also need the statement:

\#include target_path $\backslash \mathbf{s r c} \backslash$ pde \backslash pde.ext;

The PDE library uses a dynamic link library pde.dll. This dll file contains a tridiagonal solver written in C in order to speed up computations. You have to declare this dll with the following command:

dlibrary PDE.dll;

Nevertheless, if you use the PDEset command at the top of your program, it is done automatically. Moreover, if you don't want to use this dll file, you can use the following compiler directive:

\#declare not_DLLs;

The PDE version number is stored as a global variable:
_PDE_ver $\begin{aligned} & 3 \times 1 \text { matrix where the first element indicates the major version number, the } \\ & \text { second element the minor version number, and the third element the revision } \\ & \text { number }\end{aligned}$

1.3 What is PDE ?

PDE is a GAUSS library for solving Parabolic and Elliptic Partial Differential Equations (PDE) with non uniform grids. It includes θ-schemes algorithms with finite difference methods.

PDE contains the procedures whose list is given below. See the command reference part for a full description.

- derivePDE: Computes the numerical first and second derivative of the solution of a PDE problem.
- FindIndex: Returns the indices of the elements of a vector x equal to the elements of a vector v.
- generateGrid1: Generates a uniform grid.
- generateGrid2: Generates a non uniform grid with the inverse distribution method.
- generateGrid3: Geneates a non uniform grid with the Tavella-Randall method.
- loadGrid: Loads the dataset xFile.
- PDE: Initializes the PDE problem.
- PDEset: Resets the global variables declared in pde.dec.
- plotGrid: Plots the (temporal) non uniform grid.
- readPDE: Extracts solution of the database uFile computed by solvePDE.
- readPDE2: Extracts solution of the database uFile computed by solvePDE2.
- saveGrid: Saves the dataset xFile.
- solvePDE: Solves the PDE problem with non uniform grids.
- solvePDE2: Solves the PDE problem with temporal non uniform grids.
- solveTDG: Solves a tridiagonal system.

1.4 Using Online Help

PDE library supports Windows Online Help. Before using the browser, you have to verify that the PDE library is activated by the library command.

Chapter 2

Partial Differential Equations

The library PDE is a GAUSS implementation of the use of non uniform grids for solving PDE in finance described in Bodeau, Riboulet and Roncalli [2000]. The reader may refer to this article to understand the notations used in this manual.

2.1 The PDE problem

The PDE problem consists of the linear parabolic equation

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}+c(t, x) u(t, x)=\mathcal{A}_{t} u(t, x)+d(t, x) \tag{2.1}
\end{equation*}
$$

where \mathcal{A}_{t} is the general two-space dimensions differential operator

$$
\begin{equation*}
\mathcal{A}_{t} u(t, x)=a(t, x) \frac{\partial^{2} u(t, x)}{\partial x^{2}}+b(t, x) \frac{\partial u(t, x)}{\partial x} \tag{2.2}
\end{equation*}
$$

The PDE library solves the problem (2.1) in the region of the (t, x) space given by $\mathfrak{T} \times \mathfrak{X}$ with

$$
\begin{equation*}
\mathfrak{X}=\left[x^{-}, x^{+}\right] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{T}=\left[t^{-}, t^{+}\right] \tag{2.4}
\end{equation*}
$$

We could impose Dirichlet or Neumann conditions:

$$
\begin{align*}
& u\left(t^{-}, x\right)=u_{\left(t^{-}\right)}(x) \\
& u\left(t, x^{-}\right)=\left.u_{\left(x^{-}\right)}(t) \quad \bigvee \quad \frac{\partial u(t, x)}{\partial x}\right|_{x=x^{-}}=u_{\left(x^{-}\right)}^{\prime}(t) \\
& u\left(t, x^{+}\right)=\left.u_{\left(x^{+}\right)}(t) \quad \bigvee \quad \frac{\partial u(t, x)}{\partial x}\right|_{x=x^{+}}=u_{\left(x^{+}\right)}^{\prime}(t) \tag{2.5}
\end{align*}
$$

To initialize the PDE problem, we use the PDE procedure
call PDE(\&aProc,\&bProc,\&cProc,\&dProc,\&eProc, \&tminBound, \&xminBound,\&xmaxBound,\&yminBound,\&ymaxBound);

The general form of the procedures is

```
proc (1) = aProc(t,x);
    local a;
```

retp(a);
endp;
endp;
Remark $1 e$ is a special function in order to solve variational inequalities. If it is not initialized to 0 , the PDE algorithm use this function at each iteration m to modify the numerical solution

$$
\mathbf{u}_{m}:=e\left(t, x, \mathbf{u}_{m}\right)
$$

The form of the eProc procedure is also

```
proc (1) = eProc(t,x,u);
    local e;
    e =
    retp(e);
endp;
```

Remark 2 In the PDE library, x is treated as a $N \times 1$ column vector and the procedures *Proc must return a $N \times 1$ vector.

For each bound, you have to specify a boundary condition, either a Dirichlet or a Neumann condition. For example, if we have the following command line

```
call PDE(&aProc,&bProc,&cProc,&dProc,&eProc,&tminBound,
    0,&xmaxBound,&DxminBound,0);
```

Dirichlet conditions are imposed for $x=x^{+}$and we put a user-defined Neumann condition on $x=x^{-}$.
Remark 3 The PDE procedure prints information about the boundary nature of the PDE problem if -_output is set to 1 .

For the precedent example, we have

Bound	Dirichlet	Neumann
xmin		*********
xmax	*********	

2.2 The PDE algorithm

2.2.1 The case of non-uniform grids

The procedure solvePDE enables you to solve the PDE problem. Its syntax is

```
call solvePDE(t,x,uFile,theta);
```

The variables t and x correspond to the non uniform grid used for solving the PDE. They are respectively $M \times 1$ and $N \times 1$ vectors. The numerical solution of the PDE problem u_{i}^{m} is stored in the dataset uFile in the following way:

	$x_{0}=x^{-}$	x_{1}	x_{2}	\cdots	x_{N-2}	$x_{N-1}=x^{+}$
$t_{0}=t^{-}$	u_{0}^{0}	u_{1}^{0}	u_{2}^{0}	\cdots	u_{N-2}^{0}	u_{N-1}^{0}
t_{1}	u_{0}^{1}	u_{1}^{1}	u_{2}^{1}	\cdots	u_{N-2}^{1}	u_{N-1}^{1}
\vdots				\vdots		
$t_{M-1}=t^{+}$	u_{0}^{M-1}	u_{1}^{M-1}	u_{2}^{M-1}	\cdots	u_{N-2}^{M-1}	u_{N-1}^{M-1}

with

$$
\begin{aligned}
t_{m} & =t^{-}+\sum_{j=1}^{m-1} k_{j} \\
x_{i} & =x^{-}+\sum_{j=1}^{i-1} h_{j}
\end{aligned}
$$

We have

$$
k_{m}=t_{m}-t_{m-1}
$$

and

$$
h_{i}=x_{i}-x_{i-1}
$$

The first row of the dataset contains the N values $\left\{x_{i}\right\}$. The t_{m} and u_{i}^{m} values are stored in the next N rows. Let \mathbf{u}^{m} be the vector with the (i) entry $\left(u_{i}^{m}\right)$. Then, the storage method corresponds to the following stacking method

$$
\left[\begin{array}{ll}
t_{m} & \operatorname{vec}\left(\mathbf{u}^{m}\right)^{\top}
\end{array}\right]
$$

Remark 4 You could use the _PDE_Elliptic variable to specify that the PDE problem is an elliptic problem. In this case, solvePDE stops iterations if the following condition is verified

$$
\mathbf{u}_{m+1}=\mathbf{u}_{m}
$$

Note that solvePDE uses the fuzzy comparison function feq to perform the test. You could also modify the value taken by ffcmptol.

Remark 5 If you would to save only the last iteration solution, you could use the following syntax

$$
\text { _PDE_SaveLastIter }=1
$$

In this case, the uFile dataset becomes

$$
t_{M-1}=t^{+} \begin{array}{cccccc}
x_{0}=x^{-} & x_{1} & x_{2} & \cdots & x_{N-2} & x_{N-1}=x^{+} \\
u_{0}^{M-1} & u_{1}^{M-1} & u_{2}^{M-1} & \cdots & u_{N-2}^{M-1} & u_{N-1}^{M-1}
\end{array}
$$

Remark 6 You could print the number of iterations accomplished with the variable _PDE_PrintIters.
Remark 7 The solvePDE procedure uses the approximation method for the second derivatives described in Bodeau, Riboulet and Roncalli [2000]. We have

$$
\begin{align*}
h_{i}^{+} & =\frac{2}{h_{i+1}\left(h_{i+1}+h_{i}\right)} \\
h_{i}^{-} & =\frac{2}{h_{i}\left(h_{i+1}+h_{i}\right)} \tag{2.6}
\end{align*}
$$

If you want the approximation method described in the footnote

$$
\begin{align*}
h_{i}^{+} & =4 \frac{h_{i}}{\left(h_{i+1}^{2}+h_{i}^{2}\right)\left(h_{i+1}+h_{i}\right)} \\
h_{i}^{-} & =4 \frac{h_{i+1}}{\left(h_{i+1}^{2}+h_{i}^{2}\right)\left(h_{i+1}+h_{i}\right)} \tag{2.7}
\end{align*}
$$

2.2.2 The case of temporal non-uniform grids

In this case, you must use the solvePDE2 procedure:
call solvePDE2(xFile,uFile,theta);

The variable xFile is a dataset which contains the values of the nodes t_{m} and $x_{i}^{(m)}$. The storage is the following:

$$
\begin{array}{ccccccccc}
\hline t_{0}=t^{-} & x_{0}^{(0)} & x_{1}^{(0)} & x_{2}^{(0)} & \cdots & x_{N^{(0)}-2}^{(0)} & x_{N^{(0)}-1}^{(0)} & \cdot & \cdot \\
t_{1} & x_{0}^{(1)} & x_{1}^{(1)} & x_{2}^{(1)} & \cdots & x_{N^{(1)}-2}^{(1)} & x_{N^{(1)}-1}^{(1)} & \cdot & \cdot \\
\vdots & & & & \vdots & & & & \\
t_{M-1}=t^{+} & x_{0}^{(M-1)} & x_{1}^{(M-1)} & x_{2}^{(M-1)} & \cdots & x_{N^{(M)}-2}^{(M-1)} & x_{N^{(M)}-1}^{(M-1)} & \cdot & \cdot \\
\hline
\end{array}
$$

The symbol • indicates a missing values. Let $N=\max N^{(m)}$ denotes the maximum number of the discretization points. Because $N^{(m)}$ may change with m, we adopt this stacking method

$$
\left[\begin{array}{ll}
t_{m} & \operatorname{vec}\left(\left[\begin{array}{l}
\mathbf{x}^{(m)} \\
\mathbf{e}^{(m)}
\end{array}\right]\right)^{\top}
\end{array}\right]
$$

with $\mathbf{e}^{(m)}$ a vector of missing values of dimension $N-N^{(m)}$. The dimension of the database is then $M \times(N+1)$. The dataset uFile is built in the same way. We have

| \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{0}=t^{-}$ | u_{0}^{0} | u_{1}^{0} | u_{2}^{0} | \cdots | $u_{N^{(0)}-2}^{0}$ | $u_{N^{(0)}-1}^{0}$ | \cdot | \cdot | \cdot |
| t_{1} | u_{0}^{1} | u_{1}^{1} | u_{2}^{1} | \cdots | $u_{N^{(1)}-2}^{1}$ | $u_{N^{(1)}-1}^{1}$ | \cdot | \cdot | \cdot |
| \vdots | | | | \vdots | | | \cdot | \cdot | |
| $t_{M-1}=t^{+}$ | u_{0}^{M-1} | u_{1}^{M-1} | u_{2}^{M-1} | \cdots | $u_{N^{(M)}-2}^{M-1}$ | $u_{N^{(M)}-1}^{M-1}$ | \cdot | \cdot | \cdot |

Note that the values of x are not stored, and the first row contains only missing values.

2.3 Solution extracting

You could of course use the GAUSS commands to extract solution from the dataset uFile. The readPDE and readPDE2 procedures are provided to make it easier. Their syntax are

```
data = readPDE(uFile,cn);
```

and

$$
\{\mathrm{x}, \mathrm{u}\}=\text { readPDE2 }(\mathrm{xFile}, \mathrm{uFile}, \mathrm{t}) \text {; }
$$

The variable cn could take differents values. If cn is the string ' 't' ', then data corresponds to the column vector $\left\{t_{m}\right\}$. We obtain the column vector $\left\{x_{i}\right\}$ by setting cn to '' x ''. We could also extract specific solutions u_{i}^{m} by using a 2×1 vector. We have

cn	data
''t'' $\mid \mathrm{tm}$	$N \times 1$ vector with the (i) entry $\left(u_{i}^{m}\right)$
'' x '' $\mid \mathrm{xi}$	$M \times 1$ vector with the (m) entry $\left(u_{i}^{m}\right)$

For the readPDE2 procedure, t can be a scalar (a specific value of t_{m}) or a vector (different values of t_{m}). If the dimension of t is $E \times 1$, the dimension of x and u is $N \times E$.

2.4 Using non-uniform grids

There exist different procedures for the management of non-uniform grids. For example, to generate the vector $\left\{x_{i}\right\}$, we can use the generateGrid* procedures. Uniform grids are obtained with the generateGrid1 procedure:

$$
\mathrm{x}=\text { generateGrid1 }(\mathrm{xmin}, \mathrm{xmax}, \mathrm{~N}) ;
$$

generateGrid2 can be used to obtain a non uniform grid with the second method of Bodeau, Riboulet and Roncalli [2000]:

```
x = generateGrid2(xmin,xmax,N,&invcdf);
```

invcdf is a procedure wich compute the quantile of the distribution $\mathbf{F}(x)$. The last method which is called the Tavella-Randall method corresponds to the generateGrid3 method:

```
x = generateGrid3(xmin,xmax,N,xstar,alpha);
```

with xstar and alpha the value of the parameters x^{\star} and α.
We can use the previous procedures directly to define the variable x for the procedure solvePDE. For solvePDE2, we have to build the dataset xFile. We can do that with the commands of GAUSS, but we have included a procedure saveGrid to make it easier. Its syntax is

```
call saveGrid(cn,&gridProc,xFile);
```

If cn is a scalar, cn corresponds to the number M of discretization points in t. In this case, the procedure gridProc takes the following form:

```
proc (2) = gridProc(m);
    local t,x;
    t = ...; /* the value of $t_m$ */
    x = ...; /* the vector of the values $x_i^{(m)}$ */
    retp(t,x);
endp;
```

If cn is a vector, cn corresponds to the vector $\left\{t_{m}\right\}$. In this case, the form of the procedure gridProc is

```
proc (1) = gridProc(tm,m);
    local x;
    x = ...; /* the vector of the values $x_i^{(m)}$ */
    retp(x);
endp;
```

The procedure gridProc is called M times to build the dataset xFile. Note that saveGrid can be used with the generateGrid* procedures. Here is an example:

```
proc (1) = gridProc(t,m);
    local x;
    local xstar;
    xstar = 0.5*(xmin+xmax);
    if t < 0.2;
        x = generateGrid1(xmin,xmax,N);
    elseif t < 0.5;
        x = generateGrid1(xmin,xmax, 2*N);
    elseif t < 1;
```

```
        x = generateGrid3(xmin,xmax,N,xstar,20);
    else;
    x = generateGrid3(xmin,xmax,N,xstar,20/t);
    endif;
    retp(x);
endp;
```

Note also that we can load the dataset xFile with the loadGrid procedure:

$$
\{t, x\}=\text { loadGrid(xFile); }
$$

To plot a grid, we employ the command plotGrid:

```
{psym,pline} = plotGrid(t,x,symbol,line,rotate);
```

symbol indicates the type of symbol to mark the nodes. If it is equal to 0 , the nodes are not represented. line take the value one if we want to connect the nodes. rotate can be used to perform different rotation of the graphic. To adjust the size and color of the symbols, we can modify the two global variables _pde_symsiz and _pde_symclr.

2.5 Other procedures

2.5.1 The derivePDE procedure

We could employ the procedure derivePDE to compute the numerical first and second derivatives of the solution of a PDE problem

$$
\{\mathrm{d} 1, \mathrm{~d} 2\}=\operatorname{derivePDE}(\mathrm{x}, \mathrm{u}) ;
$$

2.5.2 The FindIndex procedure

FindIndex returns the indices of the elements of a vector x equal to the elements of a vector v. To understand how the procedure works, let's try an example:

```
new;
library pde;
xmin = -3;
xmax = 3;
Nx = 101;
hx = (xmax-xmin)/(Nx-1);
x = seqa(xmin,hx,Nx);
FindIndex(x,0|3);
    51.000000
    101.00000
indexcat(x,0);
indexcat(x,3);
    101.00000
```

The indexcat procedure does not find the index of an element of x equal to 0 due to numerical truncation. In this case, you may use the FindIndex procedure.

2.5.3 The solveTDG procedure

solveTDG solves the tridiagonal system

$$
[a ; b ; c] x=d
$$

Its syntax is

$$
\mathrm{x}=\operatorname{solveTDG}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) ;
$$

It is used by the procedures solvePDE and solvePDE2 to solve the tridiagonal system. solveTDG requires on the dll file pde.dll, written in C. If you don't want to use it, you have to specify \#declare not_DLLs;. It can be useful for Unix system. Nevertheless, we have included the C code in the dlib directory for Unix users. The .so library can then be created easily by changing the entry point.

Chapter 3

Command Reference

The following global variables and procedures are defined in PDE. They are the reserved words of PDE.

```
derivePDE, FindIndex, generateGrid1, generateGrid2, generateGrid3, loadGrid,
_pde_built, _pde_approx, _pde_aproc, _pde_bproc, _pde_computex, _pde_cproc,
_pde_derivcond, _pde_dproc, _pde_dxmaxbound, _pde_dxminbound, _pde_Elliptic, _pde_eproc,
_pde_eq, _pde_invsinh, _pde_ne, _pde_neumann, _pde_PrintIters, _pde_SaveLastIter,
_pde_solvethesystem, _pde_spline, _pde_symclr, _pde_symsiz, _pde_tminbound,
_pde_computeustar, _pde_writer, _pde_xmaxbound, _pde_xminbound, PDEset, plotGrid,
readPDE, readPDE2, saveGrid, solvePDE, solvePDE2, solveTDG
```

The default global control variables are

_PDE_Elliptic	0
_PDE_approx	1
_PDE_PrintIters	0
_PDE_SaveLastIter	0
_PDE_Built	0
_PDE_symclr	15
_PDE_symsiz	0

derivePDE

Purpose

Computes the numerical first and second derivatives of the solution of a PDE problem.

- Format
$\{\mathrm{d} 1, \mathrm{~d} 2\}=$ derivePDE (x, u);
■ Input
x $N \times E$ matrix, values of $x_{i}^{(m)}$
u $N \times E$ matrix, values of u_{i}^{m}
- Output
d1 $\quad N \times E$ matrix, numerical first derivative
d2 $\quad N \times E$ matrix, numerical second derivative
■ Remark
The second derivative is computed according to formula (2.6).
\square Source
src/pde.src

FindIndex

Purpose

Returns the indices of the elements of a vector x equal to the elements of a vector v.

- Format
$\mathrm{y}=$ FindIndex (x, v);
\square Input

x	$N \times 1$ vector
v	$L \times 1$ vector

- Output
y
$L \times 1$ vector, y [i] contains the indice of the first element of x which is equal to v [i]

■ Globals
fcmptol
scalar (default $=1 \mathrm{e}-15$)
the procedure FindIndex uses fcmptol to fuzz the comparison operations to allow for round off error

- Remarks

The procedure FindIndex is similar to the GAUSS indexcat command. The main difference is that FindIndex returns only one index (or a missing value) for each value v_{i}. Note that the global variable $_\mathrm{fcmptol}$ is used to check the equality $x_{y_{i}}=v_{i}$.
■ Source
src/pde.src

generateGrid1

Purpose

Generates a uniform grid.

- Format
$\mathrm{x}=$ generateGrid1 $(\mathrm{xmin}, \mathrm{xmax}, \mathrm{N})$;
■ Input
xmin scalar, value of x^{-}
xmax scalar, value of x^{+}
N scalar, number of discretization points
■ Output
x
$N \times 1$ vector, values of the grid x_{i}
■ Globals
- Source
src/pde.src

generateGrid2

Purpose

Generates a non uniform grid with the inverse distribution method.
■ Format
$\mathrm{x}=$ generateGrid2(xmin,xmax, $\mathrm{N}, \& i n v c d f)$;

- Input
xmin scalar, value of x^{-}
xmax scalar, value of x^{+}
N scalar, number of discretization points
\&invcdf
pointer to a procedure which computes the inverse of the distribution $\mathbf{F}(x)$
■ Output
x $\quad N \times 1$ vector, values of the grid x_{i}
■ Globals
- Source
src/pde.src

generateGrid3

Purpose

Generates a non uniform grid with the Tavella-Rendall method.
■ Format
$\mathrm{x}=$ generateGrid3(xmin,xmax, $\mathrm{N}, \mathrm{xstar}, \mathrm{alpha})$;
■ Input
xmin scalar, value of x^{-}
xmax scalar, value of x^{+}
N scalar, number of discretization points
xstar scalar, value of the parameter x^{\star}
alpha scalar, value of the parameter α
■ Output
x $\quad N \times 1$ vector, values of the $\operatorname{grid} x_{i}$

■ Globals

- Source
src/pde.src

loadGrid

\square Purpose
Loads the dataset xFile.

- Format
$\{\mathrm{t}, \mathrm{x}\}=\operatorname{loadGrid}(\mathrm{xFile})$;
■ Input
x File string, name of the grid dataset file
- Output
t
x
$M \times 1$ vector, values of t_{m} $N \times M$ matrix, values of $x_{i}^{(m)}$

■ Globals
\square Source
src/pde.src

PDE

Purpose

Initializes the PDE problem.
■ Format
call PDE(aProc,bProc,cProc,dProc,eProc,tminBound, xminBound,xmaxBound,DxminBound,DxmaxBound);

- Input
aProc
bProc
cProc
dProc
eProc
tminBound xminBound xmaxBound DxminBound DxmaxBound
scalar, pointer to a procedure which computes $a(t, x)$
scalar, pointer to a procedure which computes $b(t, x)$ scalar, pointer to a procedure which computes $c(t, x)$ scalar, pointer to a procedure which computes $d(t, x)$ scalar, pointer to a procedure which computes $e(t, x)$ - or scalar 0 scalar, pointer to a procedure which computes $u_{\left(t^{-}\right)}(x)$ scalar, pointer to a procedure which computes $u_{\left(x^{-}\right)}(t)$ scalar, pointer to a procedure which computes $u_{\left(x^{+}\right)}(t)$ scalar, pointer to a procedure which computes $u_{\left(x^{-}\right)}^{\prime}(t)$ scalar, pointer to a procedure which computes $u_{\left(x^{+}\right)}^{\prime}(t)$

■ Output

Globals
__output
scalar
1 - print information about the PDE problem
0 - no printing

- Source
src/pde.src

PDEset

- Purpose

Resets the global control variables declared in PDE.DEC.

- Format

PDEset;
\square Remarks
The default global control variables are

_PDE_Elliptic	0
_PDE_approx	1
PDE_PrintIters	0
_PDE_SaveLastIter	0
_PDE_Built	0
_PDE_symclr	15
_PDE_symsiz	0

- Source
src/pde.src

plotGrid

Purpose

Plots the grid.
■ Format
$\{$ psym, $\operatorname{pline}\}=\operatorname{plotGrid}(\mathrm{t}, \mathrm{x}$, symbol,line,rotate $) ;$
■ Input
t
x
symbol
line
rotate

- Output
psym matrix of the symbols
pline
- Globals
_pde_symclr scalar, color of the symbol
_pde_symsiz scalar, size of the symbol
$M \times 1$ vector, values of t_{m}
$N \times M$ matrix, values of $x_{i}^{(m)}$
scalar, type of symbol
scalar, 1 to connect the nodes scalar, controls the rotation matrix of the lines

■ Remarks

To draw the grid, we set

$$
\begin{aligned}
\text { _psym } & =\text { psym; } \\
\text { _pline } & =\text { pline; }
\end{aligned}
$$

- Source
src/pde.src

readPDE

Purpose

Extracts solution of the database uFile computed by solvePDE.

- Format
data $=\operatorname{readPDE}($ uFile,cn $) ;$
■ Input
uFile string, name of the solution dataset file
cn
scalar or vector 2×1
- Output
data
$M \times 1$ vector, values t_{m} if cn is the string " t "
$N \times 1$ vector, values x_{i} if cn is the string " x "
- or -
$M \times 1$ vector, values $u\left(t, x_{i}\right)$ if cn is equal to "x"|xi $N \times 1$ vector, values $u\left(t_{m}, x\right)$ if cn is equal to " t " $\mid \mathrm{tm}$
- Source
src/pde.src

readPDE2

Purpose

Extracts solution of the database uFile computed by solvePDE2.

- Format
$\{\mathrm{x}, \mathrm{u}\}=$ readPDE2 $(\mathrm{xFile}, \mathrm{uFile}, \mathrm{t})$;
■ Input
xFile string, name of the grid dataset file
uFile
string, name of the solution dataset file
t
vector $E \times 1$, values of t_{m}
- Output
x
u
$N \times E$, values of $x_{i}^{(m)}$
$N \times E$, values of $u\left(t_{m}, x_{i}^{(m)}\right)$
- Source
src/pde.src

saveGrid

Purpose

Saves the dataset xFile.

- Format
call saveGrid(cn,\&gridProc,xFile);
■ Input
cn
\&gridProc
xFile
scalar or vector
pointer to a procedure which compute t_{m} and $x_{i}^{(m)}$
string, name of the grid dataset file
- Output

Globals

Source
src/pde.src

solvePDE

Purpose

Solves the PDE problem with non uniform grids.

- Format
call solvePDE($\mathrm{t}, \mathrm{x}, \mathrm{uFile}$,theta);
■ Input
t
x
uFile
theta
vector $M \times 1$, values of t_{m} vector $N \times 1$, values of x_{i} string, name of the solution dataset file scalar, value of the parameter θ of the θ-scheme

■ Output

G Globals

_PDE_approx
_PDE_Elliptic \quad scalar $($ default $=0)$
_PDE_PrintIters
_PDE_SaveLastIter
__output

0 if the PDE problem is not an elliptic problem
1 if the PDE problem is an elliptic problem
scalar, the approximation method of the second derivative
1 for the first method
2 for the second method
scalar $($ default $=0)$
0 - does not print iterations
I - printing after each I iterations
scalar (default $=0$)
0 for saving the solution for all the iterations m
1 for saving only the last solution for $t_{m}=t^{+}$
scalar $($ default $=0)$
1 - print informations about the algorithm and the mesh ratios
0 - no printing

Remarks

To extract the solution, you may use the readPDE procedure.

- Source
src/pde.src

solvePDE2

Purpose

Solves the PDE problem with temporal non uniform grids.

- Format
call solvePDE2(xFile,uFile,theta);
- Input
xFile string, name of the grid dataset file
uFile string, name of the solution dataset file
theta scalar, value of the parameter θ of the θ-scheme

Output

- Globals
_PDE_approx scalar, the approximation method of the second derivative
1 for the first method
2 for the second method

_PDE_Elliptic	scalar $($ default $=0)$ 0 if the PDE problem is not an elliptic problem 1 if the PDE problem is an elliptic problem
_PDE_PrintIters	scalar (default $=0)$ $0-$ does not print iterations I - printing after each I iterations
_PDE_SaveLastIter	scalar (default $=0)$ 0 for saving the solution for all the iterations m 1 for saving only the last solution for $t_{m}=t^{+}$
_-output	scalar (default $=0)$ $1-$ print informations about the algorithm and the mesh ratios $0-$ no printing

\square Remarks
To extract the solution, you may use the readPDE2 procedure.

- Source
src/pde.src

Chapter 4

The tutorial

The programs used for the article "Non-uniform grids for PDE in finance" are included in the examples \backslash pde directory. Moreover, we have added some tutorial files with a very simple example. These files cover all the procedures. Because the use of these procedures are very simple, we just do some remarks and do not provide a full description of them.

The tutor1.prg-tutor11.prg programs consider the linear parabolic PDE problem defined by

$$
\begin{aligned}
a(t, x) & =\frac{1}{2} x^{2} \\
b(t, x) & =x \\
c(t, x) & =1 \\
d(t, x) & =-\left(3 x^{2}+x\right) e^{-t}
\end{aligned}
$$

\mathfrak{X} is set to $[-1,1]$ and we have

$$
\begin{array}{rll}
u(t,-1)=-1 & \bigvee & u_{x}(t,-1)=-e^{-t}+1 \\
u(t, 1)=2 e^{-t}+1 & \bigvee & u_{x}(t, 1)=3 e^{-t}+1
\end{array}
$$

The solution of the Cauchy problem with $u(0, x)=x^{2}+2 x$ is

$$
u(t, x)=\left(x^{2}+x\right) e^{-t}+x
$$

- tutor1: initialisation of the PDE problem with two Dirichlet conditions.
- tutor2: initialisation of the PDE problem with two Neumann conditions.
- tutor3: mixing of Dirichlet and Neumann conditions.
- tutor4: incompatibility of Dirichlet and Neumann conditions.
- tutor5: generates and plots a uniform grids.
- tutor6: generates and plots a non uniform grids (based on the inversion method of distribution).
- tutor7: generates and plots a non uniform grids (based on the Tavella-Rendall method).
- tutor8: solves the PDE problem.
- tutor9: extracts solution computed with the program tutor8.
- tutor10: extracts solution computed with the program tutor8.
- tutor11: generates a temporal non uniform grids and solves the PDE problem.
- tutor12: solves an elliptic PDE problem.

Index

\#declare not_DLLs, 4, 13
derivePDE, 12, 16
FindIndex, 12, 17
generateGrid1, 11, 18
generateGrid2, 11, 19
generateGrid3, 11, 20
installation, 3
loadGrid, 12, 21
PDE, 7
PDE, 22
_PDE_approx, 9, 28, 29
_PDE_Elliptic, 9, 28, 29
_PDE_PrintIters, 9, 28, 29
_PDE_SaveLastIter, 9, 28, 29
PDEset, 4, 23
_pde_symclr, 12, 24
_pde_symsiz, 12, 24
plotGrid, 12, 24
readPDE, 10, 25, 28
readPDE2, 10, 26, 29
saveGrid, 11, 27
solvePDE, 8, 11, 13, 28
solvePDE2, 10, 11, 13, 29
SolveTDG, 13

[^0]: ${ }^{1}$ You may use the commands ChangeDir or chdir. Note that you can verify that you are in the src $\backslash p d e$ directory with the cdir (0) command.
 ${ }^{2}$ see however the paragraph 2.5 .3 for using the library with Unix.

