
A GAUSS Implementation of Non Uniform Grids for PDE

The PDE library

Jérome Bodeau, Gaël Riboulet and Thierry Roncalli

Groupe de Recherche Opérationnelle
Bercy-Expo — Immeuble Bercy Sud — 4è étage

90quai de Bercy — 75613 Paris Cedex 12 — France

December 15, 2000

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Getting started . 3

1.2.1 The file readme.PDE . 3
1.2.2 Setup . 3

1.3 What is PDE ? . 4
1.4 Using Online Help . 5

2 Partial Differential Equations 7
2.1 The PDE problem . 7
2.2 The PDE algorithm . 8

2.2.1 The case of non-uniform grids . 8
2.2.2 The case of temporal non-uniform grids . 10

2.3 Solution extracting . 10
2.4 Using non-uniform grids . 11
2.5 Other procedures . 12

2.5.1 The derivePDE procedure . 12
2.5.2 The FindIndex procedure . 12
2.5.3 The solveTDG procedure . 13

3 Command Reference 15

4 The tutorial 31

2

Chapter 1

Introduction

1.1 Installation

1. The file libpde.zip is a zipped archive file. Copy this file under the root directory of GAUSS, for
example C:\GAUSS.

2. Unzip it with archive mode. It is automatically recognized by WinZip. With Unzip or PKunzip, use
the -d flag

pkunzip -d libpde.zip

Directories will then be created and files will be copied over them:

target path readme.pde
target path\dlib pde.dll file
target path\examples\pde examples and tutorial files
target path\lib library file
target path\src\pde source code files

3. Run GAUSS. Log on to the src\pde directory1 and add the path to the library file pde.lcg in
the following way:

lib pde /addpath

1.2 Getting started

Gauss 3.2 for OS/2, Windows NT/95 or Unix2 is required to use the PDE routines.

1.2.1 The file readme.PDE

The file readme.PDE contains last minute information on the PDE procedures. Please read it before
using them.

1.2.2 Setup

In order to use these procedures, the PDE library must be active. This is done by including PDE in the
LIBRARY statement at the top of your program:

library PDE;

1You may use the commands ChangeDir or chdir. Note that you can verify that you are in the src\pde directory with
the cdir(0) command.

2see however the paragraph 2.5.3 for using the library with Unix.
3

4 CHAPTER 1. INTRODUCTION

To reset global variables in subsequent executions of the program, the following instruction should be
used:

PDEset;

If you plan to make any right-hand reference to the global variables, you will also need the statement:

#include target path\src\pde\pde.ext;

The PDE library uses a dynamic link library pde.dll. This dll file contains a tridiagonal solver written in
C in order to speed up computations. You have to declare this dll with the following command:

dlibrary PDE.dll;

Nevertheless, if you use the PDEset command at the top of your program, it is done automatically.
Moreover, if you don’t want to use this dll file, you can use the following compiler directive:

#declare not DLLs;

The PDE version number is stored as a global variable:
PDE ver 3 × 1 matrix where the first element indicates the major version number, the

second element the minor version number, and the third element the revision
number

1.3 What is PDE ?

PDE is a GAUSS library for solving Parabolic and Elliptic Partial Differential Equations (PDE) with non
uniform grids. It includes θ-schemes algorithms with finite difference methods.

PDE contains the procedures whose list is given below. See the command reference part for a full
description.

• derivePDE: Computes the numerical first and second derivative of the solution of a PDE problem.

• FindIndex: Returns the indices of the elements of a vector x equal to the elements of a vector v.

• generateGrid1: Generates a uniform grid.

• generateGrid2: Generates a non uniform grid with the inverse distribution method.

• generateGrid3: Geneates a non uniform grid with the Tavella-Randall method.

• loadGrid: Loads the dataset xFile.

• PDE: Initializes the PDE problem.

• PDEset: Resets the global variables declared in pde.dec.

• plotGrid: Plots the (temporal) non uniform grid.

• readPDE: Extracts solution of the database uFile computed by solvePDE.

• readPDE2: Extracts solution of the database uFile computed by solvePDE2.

• saveGrid: Saves the dataset xFile.

• solvePDE: Solves the PDE problem with non uniform grids.

• solvePDE2: Solves the PDE problem with temporal non uniform grids.

• solveTDG: Solves a tridiagonal system.

1.4. USING ONLINE HELP 5

1.4 Using Online Help

PDE library supports Windows Online Help. Before using the browser, you have to verify that the PDE
library is activated by the library command.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Partial Differential Equations

The library PDE is a GAUSS implementation of the use of non uniform grids for solving PDE in finance
described in Bodeau, Riboulet and Roncalli [2000]. The reader may refer to this article to understand
the notations used in this manual.

2.1 The PDE problem

The PDE problem consists of the linear parabolic equation

∂ u (t, x)
∂ t

+ c (t, x) u (t, x) = Atu (t, x) + d (t, x) (2.1)

where At is the general two-space dimensions differential operator

Atu (t, x) = a (t, x)
∂2 u (t, x)

∂ x2
+ b (t, x)

∂ u (t, x)
∂ x

(2.2)

The PDE library solves the problem (2.1) in the region of the (t, x) space given by T× X with

X =
[
x−, x+

]
(2.3)

and
T =

[
t−, t+

]
(2.4)

We could impose Dirichlet or Neumann conditions:

u
(
t−, x

)
= u(t−) (x)

u
(
t, x−

)
= u(x−) (t)

∨ ∂ u (t, x)
∂ x

∣∣∣∣
x=x−

= u′(x−) (t)

u
(
t, x+

)
= u(x+) (t)

∨ ∂ u (t, x)
∂ x

∣∣∣∣
x=x+

= u′(x+) (t) (2.5)

To initialize the PDE problem, we use the PDE procedure

call PDE(&aProc,&bProc,&cProc,&dProc,&eProc,&tminBound,

&xminBound,&xmaxBound,&yminBound,&ymaxBound);

The general form of the procedures is

proc (1) = aProc(t,x);
local a;

a =
7

8 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

retp(a);
endp;

endp;

Remark 1 e is a special function in order to solve variational inequalities. If it is not initialized to 0,
the PDE algorithm use this function at each iteration m to modify the numerical solution

um := e (t, x,um)

The form of the eProc procedure is also

proc (1) = eProc(t,x,u);
local e;

e =

retp(e);
endp;

Remark 2 In the PDE library, x is treated as a N × 1 column vector and the procedures *Proc must
return a N × 1 vector.

For each bound, you have to specify a boundary condition, either a Dirichlet or a Neumann condition.
For example, if we have the following command line

call PDE(&aProc,&bProc,&cProc,&dProc,&eProc,&tminBound,

0,&xmaxBound,&DxminBound,0);

Dirichlet conditions are imposed for x = x+ and we put a user-defined Neumann condition on x = x−.

Remark 3 The PDE procedure prints information about the boundary nature of the PDE problem if
output is set to 1.

For the precedent example, we have

===
Bound Dirichlet Neumann

xmin *********
xmax *********
===

2.2 The PDE algorithm

2.2.1 The case of non-uniform grids

The procedure solvePDE enables you to solve the PDE problem. Its syntax is

call solvePDE(t,x,uFile,theta);

The variables t and x correspond to the non uniform grid used for solving the PDE. They are respectively
M × 1 and N × 1 vectors. The numerical solution of the PDE problem um

i is stored in the dataset uFile
in the following way:

x0 = x− x1 x2 · · · xN−2 xN−1 = x+

t0 = t− u0
0 u0

1 u0
2 · · · u0

N−2 u0
N−1

t1 u1
0 u1

1 u1
2 · · · u1

N−2 u1
N−1

...
...

tM−1 = t+ uM−1
0 uM−1

1 uM−1
2 · · · uM−1

N−2 uM−1
N−1

2.2. THE PDE ALGORITHM 9

with

tm = t− +
m−1∑

j=1

kj

xi = x− +
i−1∑

j=1

hj

We have
km = tm − tm−1

and
hi = xi − xi−1

The first row of the dataset contains the N values {xi}. The tm and um
i values are stored in the next

N rows. Let um be the vector with the (i) entry (um
i). Then, the storage method corresponds to the

following stacking method [
tm vec (um)>

]

Remark 4 You could use the PDE Elliptic variable to specify that the PDE problem is an elliptic
problem. In this case, solvePDE stops iterations if the following condition is verified

um+1 = um

Note that solvePDE uses the fuzzy comparison function feq to perform the test. You could also modify
the value taken by fcmptol.

Remark 5 If you would to save only the last iteration solution, you could use the following syntax

PDE SaveLastIter = 1

In this case, the uFile dataset becomes

x0 = x− x1 x2 · · · xN−2 xN−1 = x+

tM−1 = t+ uM−1
0 uM−1

1 uM−1
2 · · · uM−1

N−2 uM−1
N−1

Remark 6 You could print the number of iterations accomplished with the variable PDE PrintIters.

Remark 7 The solvePDE procedure uses the approximation method for the second derivatives described
in Bodeau, Riboulet and Roncalli [2000]. We have

h+
i =

2
hi+1 (hi+1 + hi)

h−i =
2

hi (hi+1 + hi)
(2.6)

If you want the approximation method described in the footnote

h+
i = 4

hi(
h2

i+1 + h2
i

)
(hi+1 + hi)

h−i = 4
hi+1(

h2
i+1 + h2

i

)
(hi+1 + hi)

(2.7)

you can specify PDE approx = 2.

10 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

2.2.2 The case of temporal non-uniform grids

In this case, you must use the solvePDE2 procedure:

call solvePDE2(xFile,uFile,theta);

The variable xFile is a dataset which contains the values of the nodes tm and x
(m)
i . The storage is the

following:

t0 = t− x
(0)
0 x

(0)
1 x

(0)
2 · · · x

(0)

N(0)−2
x

(0)

N(0)−1
· · ·

t1 x
(1)
0 x

(1)
1 x

(1)
2 · · · x

(1)

N(1)−2
x

(1)

N(1)−1
· · ·

...
... · · ·

tM−1 = t+ x
(M−1)
0 x

(M−1)
1 x

(M−1)
2 · · · x

(M−1)

N(M)−2
x

(M−1)

N(M)−1
· · ·

The symbol · indicates a missing values. Let N = max N (m) denotes the maximum number of the
discretization points. Because N (m) may change with m, we adopt this stacking method

[
tm vec

([
x(m)

e(m)

])>]

with e(m) a vector of missing values of dimension N − N (m). The dimension of the database is then
M × (N + 1). The dataset uFile is built in the same way. We have

· · · · · · · · · ·
t0 = t− u0

0 u0
1 u0

2 · · · u0
N(0)−2

u0
N(0)−1

· · ·
t1 u1

0 u1
1 u1

2 · · · u1
N(1)−2

u1
N(1)−1

· · ·
...

... · · ·
tM−1 = t+ uM−1

0 uM−1
1 uM−1

2 · · · uM−1

N(M)−2
uM−1

N(M)−1
· · ·

Note that the values of x are not stored, and the first row contains only missing values.

2.3 Solution extracting

You could of course use the GAUSS commands to extract solution from the dataset uFile. The readPDE
and readPDE2 procedures are provided to make it easier. Their syntax are

data = readPDE(uFile,cn);

and
{x,u} = readPDE2(xFile,uFile,t);

The variable cn could take differents values. If cn is the string ’’t’’, then data corresponds to the
column vector {tm}. We obtain the column vector {xi} by setting cn to ’’x’’. We could also extract
specific solutions um

i by using a 2× 1 vector. We have

cn data

’’t’’|tm N × 1 vector with the (i) entry (um
i)

’’x’’|xi M × 1 vector with the (m) entry (um
i)

For the readPDE2 procedure, t can be a scalar (a specific value of tm) or a vector (different values of tm).
If the dimension of t is E × 1, the dimension of x and u is N × E.

2.4. USING NON-UNIFORM GRIDS 11

2.4 Using non-uniform grids

There exist different procedures for the management of non-uniform grids. For example, to generate
the vector {xi}, we can use the generateGrid* procedures. Uniform grids are obtained with the
generateGrid1 procedure:

x = generateGrid1(xmin,xmax,N);

generateGrid2 can be used to obtain a non uniform grid with the second method of Bodeau, Riboulet
and Roncalli [2000]:

x = generateGrid2(xmin,xmax,N,&invcdf);

invcdf is a procedure wich compute the quantile of the distribution F (x). The last method which is
called the Tavella-Randall method corresponds to the generateGrid3 method:

x = generateGrid3(xmin,xmax,N,xstar,alpha);

with xstar and alpha the value of the parameters x? and α.

We can use the previous procedures directly to define the variable x for the procedure solvePDE. For
solvePDE2, we have to build the dataset xFile. We can do that with the commands of GAUSS, but we
have included a procedure saveGrid to make it easier. Its syntax is

call saveGrid(cn,&gridProc,xFile);

If cn is a scalar, cn corresponds to the number M of discretization points in t. In this case, the procedure
gridProc takes the following form:

proc (2) = gridProc(m);
local t,x;

t = ...; /* the value of t_m */
x = ...; /* the vector of the values $x_i^{(m)}$ */

retp(t,x);
endp;

If cn is a vector, cn corresponds to the vector {tm}. In this case, the form of the procedure gridProc is

proc (1) = gridProc(tm,m);
local x;

x = ...; /* the vector of the values $x_i^{(m)}$ */

retp(x);
endp;

The procedure gridProc is called M times to build the dataset xFile. Note that saveGrid can be used
with the generateGrid* procedures. Here is an example:

proc (1) = gridProc(t,m);
local x;
local xstar;

xstar = 0.5*(xmin+xmax);

if t < 0.2;
x = generateGrid1(xmin,xmax,N);

elseif t < 0.5;
x = generateGrid1(xmin,xmax,2*N);

elseif t < 1;

12 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

x = generateGrid3(xmin,xmax,N,xstar,20);
else;
x = generateGrid3(xmin,xmax,N,xstar,20/t);

endif;

retp(x);
endp;

Note also that we can load the dataset xFile with the loadGrid procedure:

{t,x} = loadGrid(xFile);

To plot a grid, we employ the command plotGrid:

{psym,pline} = plotGrid(t,x,symbol,line,rotate);

symbol indicates the type of symbol to mark the nodes. If it is equal to 0, the nodes are not represented.
line take the value one if we want to connect the nodes. rotate can be used to perform different
rotation of the graphic. To adjust the size and color of the symbols, we can modify the two global
variables pde symsiz and pde symclr.

2.5 Other procedures

2.5.1 The derivePDE procedure

We could employ the procedure derivePDE to compute the numerical first and second derivatives of the
solution of a PDE problem

{d1,d2} = derivePDE(x,u);

2.5.2 The FindIndex procedure

FindIndex returns the indices of the elements of a vector x equal to the elements of a vector v. To
understand how the procedure works, let’s try an example:

new;
library pde;

xmin = -3;
xmax = 3;
Nx = 101;
hx = (xmax-xmin)/(Nx-1);

x = seqa(xmin,hx,Nx);

FindIndex(x,0|3);
51.000000
101.00000

indexcat(x,0);
.

indexcat(x,3);
101.00000

The indexcat procedure does not find the index of an element of x equal to 0 due to numerical truncation.
In this case, you may use the FindIndex procedure.

2.5. OTHER PROCEDURES 13

2.5.3 The solveTDG procedure

solveTDG solves the tridiagonal system
[a; b; c] x = d

Its syntax is
x = solveTDG(a,b,c,d);

It is used by the procedures solvePDE and solvePDE2 to solve the tridiagonal system. solveTDG
requires on the dll file pde.dll, written in C. If you don’t want to use it, you have to specify #declare
not DLLs;. It can be useful for Unix system. Nevertheless, we have included the C code in the dlib
directory for Unix users. The .so library can then be created easily by changing the entry point.

14 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Chapter 3

Command Reference

The following global variables and procedures are defined in PDE. They are the reserved words of PDE.

derivePDE, FindIndex, generateGrid1, generateGrid2, generateGrid3, loadGrid,
pde built, pde approx, pde aproc, pde bproc, pde computex, pde cproc,
pde derivcond, pde dproc, pde dxmaxbound, pde dxminbound, pde Elliptic, pde eproc,
pde eq, pde invsinh, pde ne, pde neumann, pde PrintIters, pde SaveLastIter,
pde solvethesystem, pde spline, pde symclr, pde symsiz, pde tminbound,
pde computeustar, pde writer, pde xmaxbound, pde xminbound, PDEset, plotGrid,
readPDE, readPDE2, saveGrid, solvePDE, solvePDE2, solveTDG

The default global control variables are

PDE Elliptic 0
PDE approx 1

PDE PrintIters 0
PDE SaveLastIter 0

PDE Built 0
PDE symclr 15
PDE symsiz 0

15

16 CHAPTER 3. COMMAND REFERENCE

derivePDE

Purpose
Computes the numerical first and second derivatives of the solution of a PDE problem.

Format
{d1,d2} = derivePDE(x,u);

Input
x N × E matrix, values of x

(m)
i

u N × E matrix, values of um
i

Output
d1 N × E matrix, numerical first derivative
d2 N × E matrix, numerical second derivative

Remark
The second derivative is computed according to formula (2.6).

Source
src/pde.src

17

FindIndex

Purpose
Returns the indices of the elements of a vector x equal to the elements of a vector v.

Format
y = FindIndex(x,v);

Input
x N × 1 vector
v L× 1 vector

Output
y L × 1 vector, y[i] contains the indice of the first element of x which is equal

to v[i]

Globals
fcmptol scalar (default = 1e-15)

the procedure FindIndex uses fcmptol to fuzz the comparison operations to
allow for round off error

Remarks
The procedure FindIndex is similar to the GAUSS indexcat command. The main difference is
that FindIndex returns only one index (or a missing value) for each value vi. Note that the global
variable fcmptol is used to check the equality xyi = vi.

Source
src/pde.src

18 CHAPTER 3. COMMAND REFERENCE

generateGrid1

Purpose
Generates a uniform grid.

Format
x = generateGrid1(xmin,xmax,N);

Input
xmin scalar, value of x−

xmax scalar, value of x+

N scalar, number of discretization points

Output
x N × 1 vector, values of the grid xi

Globals

Source
src/pde.src

19

generateGrid2

Purpose
Generates a non uniform grid with the inverse distribution method.

Format
x = generateGrid2(xmin,xmax,N,&invcdf);

Input
xmin scalar, value of x−

xmax scalar, value of x+

N scalar, number of discretization points
&invcdf pointer to a procedure which computes the inverse of the distribution F(x)

Output
x N × 1 vector, values of the grid xi

Globals

Source
src/pde.src

20 CHAPTER 3. COMMAND REFERENCE

generateGrid3

Purpose
Generates a non uniform grid with the Tavella-Rendall method.

Format
x = generateGrid3(xmin,xmax,N,xstar,alpha);

Input
xmin scalar, value of x−

xmax scalar, value of x+

N scalar, number of discretization points
xstar scalar, value of the parameter x?

alpha scalar, value of the parameter α

Output
x N × 1 vector, values of the grid xi

Globals

Source
src/pde.src

21

loadGrid

Purpose
Loads the dataset xFile.

Format
{t,x} = loadGrid(xFile);

Input
xFile string, name of the grid dataset file

Output
t M × 1 vector, values of tm

x N ×M matrix, values of x
(m)
i

Globals

Source
src/pde.src

22 CHAPTER 3. COMMAND REFERENCE

PDE

Purpose
Initializes the PDE problem.

Format
call PDE(aProc,bProc,cProc,dProc,eProc,tminBound,

xminBound,xmaxBound,DxminBound,DxmaxBound);

Input
aProc scalar, pointer to a procedure which computes a (t, x)
bProc scalar, pointer to a procedure which computes b (t, x)
cProc scalar, pointer to a procedure which computes c (t, x)
dProc scalar, pointer to a procedure which computes d (t, x)
eProc scalar, pointer to a procedure which computes e (t, x)

– or –
scalar 0

tminBound scalar, pointer to a procedure which computes u(t−) (x)
xminBound scalar, pointer to a procedure which computes u(x−) (t)
xmaxBound scalar, pointer to a procedure which computes u(x+) (t)
DxminBound scalar, pointer to a procedure which computes u′(x−) (t)
DxmaxBound scalar, pointer to a procedure which computes u′(x+) (t)

Output

Globals
output scalar

1 – print information about the PDE problem
0 – no printing

Source
src/pde.src

23

PDEset

Purpose
Resets the global control variables declared in PDE.DEC.

Format
PDEset;

Remarks
The default global control variables are

PDE Elliptic 0
PDE approx 1

PDE PrintIters 0
PDE SaveLastIter 0

PDE Built 0
PDE symclr 15
PDE symsiz 0

Source
src/pde.src

24 CHAPTER 3. COMMAND REFERENCE

plotGrid

Purpose
Plots the grid.

Format
{psym,pline} = plotGrid(t,x,symbol,line,rotate);

Input
t M × 1 vector, values of tm

x N ×M matrix, values of x
(m)
i

symbol scalar, type of symbol
line scalar, 1 to connect the nodes
rotate scalar, controls the rotation

Output
psym matrix of the symbols
pline matrix of the lines

Globals
pde symclr scalar, color of the symbol
pde symsiz scalar, size of the symbol

Remarks
To draw the grid, we set

psym = psym;

pline = pline;

Source
src/pde.src

25

readPDE

Purpose
Extracts solution of the database uFile computed by solvePDE.

Format
data = readPDE(uFile,cn);

Input
uFile string, name of the solution dataset file
cn scalar or vector 2× 1

Output
data M × 1 vector, values tm if cn is the string "t"

N × 1 vector, values xi if cn is the string "x"

– or –

M × 1 vector, values u (t, xi) if cn is equal to "x"|xi
N × 1 vector, values u (tm, x) if cn is equal to "t"|tm

Source
src/pde.src

26 CHAPTER 3. COMMAND REFERENCE

readPDE2

Purpose
Extracts solution of the database uFile computed by solvePDE2.

Format
{x,u}= readPDE2(xFile,uFile,t);

Input
xFile string, name of the grid dataset file
uFile string, name of the solution dataset file
t vector E × 1, values of tm

Output
x N × E, values of x

(m)
i

u N × E, values of u
(
tm, x

(m)
i

)

Source
src/pde.src

27

saveGrid

Purpose
Saves the dataset xFile.

Format
call saveGrid(cn,&gridProc,xFile);

Input
cn scalar or vector
&gridProc pointer to a procedure which compute tm and x

(m)
i

xFile string, name of the grid dataset file

Output

Globals

Source
src/pde.src

28 CHAPTER 3. COMMAND REFERENCE

solvePDE

Purpose
Solves the PDE problem with non uniform grids.

Format
call solvePDE(t,x,uFile,theta);

Input
t vector M × 1, values of tm
x vector N × 1, values of xi

uFile string, name of the solution dataset file
theta scalar, value of the parameter θ of the θ-scheme

Output

Globals
PDE approx scalar, the approximation method of the second derivative

1 for the first method
2 for the second method

PDE Elliptic scalar (default = 0)
0 if the PDE problem is not an elliptic problem
1 if the PDE problem is an elliptic problem

PDE PrintIters scalar (default = 0)
0 – does not print iterations
I – printing after each I iterations

PDE SaveLastIter scalar (default = 0)
0 for saving the solution for all the iterations m
1 for saving only the last solution for tm = t+

output scalar (default = 0)
1 – print informations about the algorithm and the mesh ratios
0 – no printing

Remarks
To extract the solution, you may use the readPDE procedure.

Source
src/pde.src

29

solvePDE2

Purpose
Solves the PDE problem with temporal non uniform grids.

Format
call solvePDE2(xFile,uFile,theta);

Input
xFile string, name of the grid dataset file
uFile string, name of the solution dataset file
theta scalar, value of the parameter θ of the θ-scheme

Output

Globals
PDE approx scalar, the approximation method of the second derivative

1 for the first method
2 for the second method

PDE Elliptic scalar (default = 0)
0 if the PDE problem is not an elliptic problem
1 if the PDE problem is an elliptic problem

PDE PrintIters scalar (default = 0)
0 – does not print iterations
I – printing after each I iterations

PDE SaveLastIter scalar (default = 0)
0 for saving the solution for all the iterations m
1 for saving only the last solution for tm = t+

output scalar (default = 0)
1 – print informations about the algorithm and the mesh ratios
0 – no printing

Remarks
To extract the solution, you may use the readPDE2 procedure.

Source
src/pde.src

30 CHAPTER 3. COMMAND REFERENCE

Chapter 4

The tutorial

The programs used for the article “Non-uniform grids for PDE in finance” are included in the examples\pde
directory. Moreover, we have added some tutorial files with a very simple example. These files cover all
the procedures. Because the use of these procedures are very simple, we just do some remarks and do
not provide a full description of them.

The tutor1.prg–tutor11.prg programs consider the linear parabolic PDE problem defined by

a (t, x) =
1
2
x2

b (t, x) = x

c (t, x) = 1
d (t, x) = − (

3x2 + x
)
e−t

X is set to [−1, 1] and we have

u (t,−1) = −1
∨

ux (t,−1) = −e−t + 1
u (t, 1) = 2e−t + 1

∨
ux (t, 1) = 3e−t + 1

The solution of the Cauchy problem with u (0, x) = x2 + 2x is

u (t, x) =
(
x2 + x

)
e−t + x

• tutor1: initialisation of the PDE problem with two Dirichlet conditions.

• tutor2: initialisation of the PDE problem with two Neumann conditions.

• tutor3: mixing of Dirichlet and Neumann conditions.

• tutor4: incompatibility of Dirichlet and Neumann conditions.

• tutor5: generates and plots a uniform grids.

• tutor6: generates and plots a non uniform grids (based on the inversion method of distribution).

• tutor7: generates and plots a non uniform grids (based on the Tavella-Rendall method).

• tutor8: solves the PDE problem.

• tutor9: extracts solution computed with the program tutor8.

• tutor10: extracts solution computed with the program tutor8.

• tutor11: generates a temporal non uniform grids and solves the PDE problem.

• tutor12: solves an elliptic PDE problem.

31

Index

#declare not DLLs, 4, 13
derivePDE, 12, 16

FindIndex, 12, 17

generateGrid1, 11, 18
generateGrid2, 11, 19
generateGrid3, 11, 20

installation, 3

loadGrid, 12, 21

PDE, 7
PDE, 22
PDE approx, 9, 28, 29
PDE Elliptic, 9, 28, 29
PDE PrintIters, 9, 28, 29
PDE SaveLastIter, 9, 28, 29

PDEset, 4, 23
pde symclr, 12, 24
pde symsiz, 12, 24

plotGrid, 12, 24

readPDE, 10, 25, 28
readPDE2, 10, 26, 29

saveGrid, 11, 27
solvePDE, 8, 11, 13, 28
solvePDE2, 10, 11, 13, 29
SolveTDG, 13

32

