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Remark 1 The first five questions are corrected in TR-GDR1 and in the document of exercise solutions,
which is available on my web page2.

1 The BCBS regulation

2 Market risk

3 Credit risk

4 Counterparty credit risk

5 Operational risk

6 Value-at-risk of a long-short portfolio
The main reference for this exercise is TR-GDR on pages 61-63. We note PA (t) (resp. PB (t)) the value
of the stock A (resp. B) at time t. The portfolio value is:

P (t) = xA · PA (t) + xB · PB (t)

with xA and xB the number of stocks A and B. We deduce that the PnL between t and t+ 1 is:

PnL (t; t+ 1) = P (t+ 1)− P (t)
= xA (PA (t+ 1)− PA (t)) + xB (PB (t+ 1)− PB (t))
= xAPA (t)RA (t; t+ 1) + xBPB (t)RB (t; t+ 1)
= WA (t)RA (t; t+ 1) +WB (t)RB (t; t+ 1)

where RA (t; t+ 1) and RB (t; t+ 1) are the asset returns of A and B between t and t + 1, and WA (t)
and WB (t) are the wealth invested in stocks A and B at time t.

1. We have WA = +2 and WB = −1. The PnL (expressed in millions of euros) has the following
expression:

PnL = 2RA −RB
We have PnL ∼ N (0, σPnL) with:

σPnL =
√

(2σA)2 + (−σB)2 + 2ρA,B · (2σA) · (−σB)

=
√

4× 0.202 + (−0.20)2 − 4× 0.5× 0.202

=
√

3× 20%
' 34.64%

1Thierry Roncalli, La Gestion des Risques Financiers, Economica, deuxième édition, 2009.
2The direct link is www.thierry-roncalli.com/download/gdr-correction.pdf.
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The annual volatility (expressed in millions of euros) of the long-short portfolio is then equal to
34.64%. To compute the value at risk for a time horizon of one day, we consider the square root
rule (TR-GDR, page 74). We obtain3:

VaR1D = 1√
260
× Φ−1 (0.99)×

√
3× 20%

= 5.01%

The probability to lose 50 100 euros per day is equal to 1%.

2. We use the historical data to calculate the scenarios of asset returns (RA, RB). We then deduce
the empirical distribution of the PnL, which is equal to 2RA − RB . Finally, we compute the
corresponding empirical quantile. With 250 scenarios, the 1% decile is between the second and
third worst cases:

VaR1D = −
[
−56 850 + 1

2 (−54 270− (−56 850))
]

= 55 560

The probability to lose 55 560 euros per day is equal to 1%. We notice that the difference between
the historical VaR and the gaussian VaR is equal to 11%.

3. If ρA,B = −0.50, the volatility of the PnL becomes:

σPnL =
√

4× 0.202 + (−0.20)2 − 4× (−0.5)× 0.202

=
√

7× 20%

We deduce that:

VaR1D (ρA,B = −50%)
VaR1D (ρA,B = +50%) = σPnL (ρA,B = −50%)

σPnL (ρA,B = +50%) =
√

7
3 = 1.53

The value-at-risk increases because the hedging effect of the positive correlation vanishes. With a
negative correlation, a long-short portfolio becomes more risky than a long-only portfolio.

4. The PnL formula becomes (TR-GDR, pages 91-95) :

PnL (t; t+ 1) = WA (t)RA (t; t+ 1) +WB (t)RB (t; t+ 1)−
(CA (t+ 1)− CA (t))

with CA (t) the call option price. We have:

CA (t+ 1)− CA (t) ' ∆A · (PA (t+ 1)− PA (t))

where ∆A is the delta of the option. If the nominal of the option is 2 millions of euros, we obtain:

PnL = 2RA −RB − 2× 0.5×RA
= RA −RB (1)

and:

σPnL =
√

0.202 + (−0.20)2 − 2× 0.5× 0.202

= 20%

If the nominal of the option is 4 millions of euros, we obtain:

PnL = 2RA −RB − 4× 0.5×RA
= −RB (2)

3because Φ−1 (0.99) = −Φ−1 (0.01).
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and:
σPnL = 20%

In both cases, we have:

VaR1D = 1√
260
× Φ−1 (0.99)× 20%

= 28 900e

The value-at-risk of the long-short portfolio (1) is then equal to the value-at-risk of the short
portfolio (2) because of two effects: the absolute exposure of the long-short portfolio is higher
than the absolute exposure of the short portfolio, but a part of the risk exposure of the long-short
portfolio is hedged by the positive correlation between the two stocks.

5. We have:
PnL (t; t+ 1) = WA (t)RA (t; t+ 1)− (CB (t+ 1)− CB (t))

with CB (t) the call option price. We have:

CB (t+ 1)− CB (t) ' ∆B · (PB (t+ 1)− PB (t))

where ∆B is the delta of the option. If the nominal of the option is x millions of euros, we obtain:

PnL = 2RA − x ·∆B ·RB
= 2RA −

x

2RB

We have4:

σ2
PnL = 4σ2

A + x2

4 σ
2
B + 2ρA,B · (2σA) ·

(
−x2σB

)
= σ2

A

4
(
x2 − 8ρA,Bx+ 16

)
Minimizing the Gaussian value-at-risk is equivalent to minimizing the variance of the PnL. We
deduce that the first-order condition is:

∂ σ2
PnL
∂ x

= σ2
A

4 (2x− 8ρA,B) = 0

We deduce that the minimum value-at-risk is reached when the nominal of the option is:

x = 4ρA,B

We finally obtain:

σPnL = σA
2

√
16ρ2

A,B − 32ρ2
A,B + 16

= 2σA
√

1− ρ2
A,B

and:

VaR1D = 1√
260
× 2.33× 2× 20%×

√
1− ρ2

A,B

' 5.78%×
√

1− ρ2
A,B

If ρA,B is negative (resp. positive), the exposure x is negative meaning that we have to buy (resp. to
sell) a call option on stock B in order to hedge a part of the risk related to stock A. If ρA,B is equal to
zero, the exposure x is equal to zero because a position on stock B adds systematically a supplementary
risk to the portfolio.

4Because σA = σB = 20%.
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7 Estimating frequency and severity distributions for opera-
tional risk

1. (a) The probability density function of LN (µ, σ) is (TR-GDR, page 239):

f (x) = 1
σx
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

For m ≥ 1, the non-centered moment is:

E [Lmi ] =
∫ ∞

0
xm

1
σx
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

dx

By considering the change of variables y = σ−1 (ln x− µ) and z = y − σ, we obtain:

E [Lmi ] =
∫ ∞
−∞

exp (mµ+mσy) 1√
2π

exp
(
−1

2y
2
)

dy

= exp (mµ)×
∫ ∞
−∞

1√
2π

exp
(
−1

2y
2 +mσy

)
dy

= exp (mµ)× exp
(

1
2m

2σ2
)
×
∫ ∞
−∞

1√
2π

exp
(
−1

2 (y −mσ)2
)

dy

= exp (mµ)× exp
(

1
2m

2σ2
)
×
∫ ∞
−∞

1√
2π

exp
(
−1

2z
2
)

dz

= exp (mµ)× exp
(

1
2m

2σ2
)
× [Φ (z)]∞−∞

= exp
(
mµ+ 1

2m
2σ2
)

We can deduce that:
E [Li] = e(µ+ 1

2σ
2)

and:

var (Li) = E
[
L2
i

]
− E2 [Li]

= e(2µ+2σ2) − e(2µ+σ2)

= e(2µ+σ2)
(
eσ

2
− 1
)

We can estimate the parameters µ and σ with the generalized method of moments by using
the following empirical moments (TR-GDR, pages 239):

hi,1 (µ, σ) = Li − e(µ+ 1
2σ

2)

hi,2 (µ, σ) =
(
Li − e(µ+ 1

2σ
2)
)2
− e(2µ+σ2)

(
eσ

2
− 1
)

(b) The log-likelihood function is:

` (µ, σ) =
n∑
i=1

ln f (Li)

= −n2 ln σ2 − n

2 ln 2π −
n∑
i=1

lnLi −
1
2

n∑
i=1

(
lnLi − µ

σ

)2

To find the ML estimators µ̂ and σ̂, we can proceed in two different ways:
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#1 Y ∼ LN (µ, σ) implies that X = ln Y ∼ N (µ, σ). We know that the ML estimators µ̂
and σ̂ associated to X are:

µ̂ = 1
n

n∑
i=1

xi

σ̂ =

√√√√ 1
n

n∑
i=1

(xi − µ̂)2

We deduce that the ML estimators µ̂ and σ̂ associated to the sample {L1, . . . , Ln} are:

µ̂ = 1
n

n∑
i=1

lnLi

σ̂ =

√√√√ 1
n

n∑
i=1

(lnLi − µ̂)2

#2 We maximize the log-likelihood function:

{µ̂, σ̂} = arg max ` (µ, σ)

The first-order condition is: {
∂µ ` (µ, σ) = 0
∂σ ` (µ, σ) = 0

We have:

∂µ ` (µ, σ) = 1
σ2

n∑
i=1

(lnLi − µ) = 0

and:

∂σ ` (µ, σ) = −n
σ

+
n∑
i=1

(lnLi − µ)2

σ3 = 0

We finally obtain:

µ̂ = 1
n

n∑
i=1

lnLi

and:

σ̂ =

√√√√ 1
n

n∑
i=1

(lnLi − µ̂)2

(c) The probability density function is:

f (x) = ∂ Pr {L ≤ x}
∂ x

= θ
x−(θ+1)

x−θ−

For m ≥ 1, we have:

E [Lmi ] =
∫ ∞
x−

xmθ
x−(θ+1)

x−θ−
dx

= θ

x−θ−

∫ ∞
x−

xm−θ−1 dx

= θ

x−θ−

[
xm−θ

m− θ

]∞
x−

= θ

θ −m
xm−
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We deduce that:
E [L] = θ

θ − 1x−

and:

var (L) = E
[
L2]− E2 [L]

= θ

θ − 2x
2
− −

(
θ

θ − 1x−
)2

= θ

(θ − 1)2 (θ − 2)
x2
−

We can then estimate the parameter θ by considering the following empirical moments:

hi,1 (θ) = Li −
θ

θ − 1x−

hi,2 (θ) =
(
Li −

θ

θ − 1x
)2
− θ

(θ − 1)2 (θ − 2)
x2
−

The generalized method of moments can consider either the first moment hi,1 (θ), the second
moment hi,2 (θ) or the joint moments (hi,1 (θ) , hi,2 (θ)). In the first case, the estimator is:

θ̂ =
∑n
i=1 Li∑n

i=1 Li − nx−

(d) The log-likelihood function is:

` (θ) =
n∑
i=1

ln f (Li)

= n ln θ − (θ + 1)
n∑
i=1

lnLi + nθ ln x−

The first-order condition is:

∂θ ` (θ) = n

θ
−

n∑
i=1

lnLi +
n∑
i=1

ln x− = 0

We deduce that:

n = θ

n∑
i=1

ln Li
x−

The ML estimator is then:
θ̂ = n∑n

i=1 (lnLi − ln x−)

(e) The probability density function of (iii) is:

f (x) = ∂ Pr {L ≤ x}
∂ x

= βαxα−1e−βx

Γ (α)

It follows that the log-likelihood function is:

` (α, β) =
n∑
i=1

ln f (Li)

= −n ln Γ (α) + nα ln β + (α− 1)
n∑
i=1

lnLi − β
n∑
i=1

Li
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The first-order conditions ∂α ` (α, β) = 0 and ∂β ` (α, β) = 0 are:

n

(
ln β − Γ′ (α)

Γ (α)

)
+

n∑
i=1

lnLi = 0

and:

n
α

β
−

n∑
i=1

Li = 0

(f) Let Y ∼ Γ (α, β) and X = expY . We have:

fX (x) |dx| = fY (y) |dy|

where fX and fY are the probability density functions of X and Y . We deduce that:

fX (x) = βαyα−1e−βy

Γ (α) · 1
ey

= βα (ln x)α−1
e−β ln x

xΓ (α)

= βα (ln x)α−1

Γ (α)xβ+1

The support of this probability density function is [0,+∞). The log-likelihood function asso-
ciated to the sample of individual losses {L1, . . . , Ln} is:

` (α, β) =
n∑
i=1

ln f (Li)

= −n ln Γ (α) + nα ln β + (α− 1)
n∑
i=1

ln lnLi − (β + 1)
n∑
i=1

lnLi

2. (a) The conditional probability density function is (TR-GDR, page 242):

f (Li = x | Li ≥ H) = f (x)
1− F (H)

=
(
θ
x−(θ+1)

x−θ−

)/(
H−θ

x−θ−

)

= θ
x−(θ+1)

H−θ

The conditional probability function is then a Pareto distribution with the same parameter θ
but with a new threshold x− = H. We can then deduce that the ML estimator θ̂ is:

θ̂ = n

(
∑n
i=1 lnLi)− n lnH

(b) The conditional probability density function is (TR-GDR, page 242):

f (Li = x | Li ≥ H) = f (x)
1− F (H)

=
(
βαxα−1e−βx

Γ (α)

)/∫ ∞
H

βαtα−1e−βt

Γ (α) dt

= βαxα−1e−βx∫∞
H
βαtα−1e−βt dt

The log-likelihood function is:

` (α, β) =
n∑
i=1

ln f (Li | Li ≥ H)

= nα ln β − n ln
(∫ ∞

H

βαtα−1e−βt dt
)

+ (α− 1)
n∑
i=1

lnLi − β
n∑
i=1

Li
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3. (a) We have:
Pr {N = m} = e−λY

λmY
m!

We deduce that the expression of the log-likelihood is:

` (λY ) =
T∑
t=1

ln Pr {N = NYt
}

= −λY T +
(

T∑
t=1

NYt

)
lnλY −

T∑
t=1

lnNYt
!

The first-order condition is:

∂ ` (λY )
∂ λY

= −T + 1
λY

(
T∑
t=1

NYt

)
= 0

We deduce that the ML estimator is:

λ̂Y = 1
T

T∑
t=1

NYt
= n

T

(b) Using the same arguments, we obtain:

λ̂Q = 1
4T

4T∑
t=1

NQt
= n

4T = λ̂Y
4

(c) Considering a quarterly or annual basis has no impact on the capital charge. Indeed, the
capital charge is computed for a one-year time horizon. If we use a quarterly basis, we have
to find the distribution of the annual loss number. In this case, the annual loss number is the
sum of the four quarterly loss numbers:

NY = NQ1 +NQ2 +NQ3 +NQ4

We know that each quarterly loss number follows a Poisson distribution P
(
λ̂Q

)
and that they

are independent. Because the Poisson distribution is infinitely divisible, we obtain:

NQ1 +NQ2 +NQ3 +NQ4 ∼ P
(

4λ̂Q
)

We deduce that the annual loss number follows a Poisson distribution P
(
λ̂Y

)
in both cases.

(d) This result remains valid if we consider the first moment because the MM estimator is exactly
the ML estimator.

(e) Because var (P (λ)) = λ, the MM estimator in the case of annual loss numbers is:

λ̂Y = 1
T

T∑
t=1

N2
Yt
− n2

T 2

If we use a quarterly basis, we obtain:

λ̂Q = 1
4

(
1
T

4T∑
t=1

N2
Qt
− n2

4T 2

)

6= λ̂Y
4

There is no reason that λ̂Y = 4λ̂Q meaning that the capital charge will not be the same.
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8 Counterparty credit risk
1. See TR-GDR on pages 214-215.

2. The exposure-at-default is random because it is not known at the starting date t0. If the counter-
party defaults at time t, we distinguish two cases. If the mark-to-market is negative, the exposure-
at-default is equal to 0. If the mark-to-market is positive, the bank has to buy another OTC
product with the same characteristics as previously in order to replace the existing OTC product.
The exposure-at-default is then equal to the replacement value of the OTC product or the value of
the mark-to-market. We finally obtain:

e (t) = max (MTM (t) , 0)

where MTM (t) is the mark-to-market of the OTC contract at the future date t. The exposure-at-
default e (t) is then a random variable.

3. (a) Let MtMA (C) and MTMB (C) be the mark-to-market values of Bank A and Bank B for the
contract C. We must theoretically verify that:

MtMA+B (C) = MTMA (C) + MTMB (C)
= 0 (3)

In the case of listed products, the previous relationship is verified. In the case of OTC products,
there is no market prices and the bank uses models to valuate them. The mark-to-market value
is then a mark-to-model value. Because the two banks do not use the same model with the
same parameters, we notice a mismatch between the two mark-to-market values:

MTMA (C) + MTMB (C) 6= 0

For instance, we obtain:

MTMA+B (C1) = 10− 11 = −1
MTMA+B (C2) = −5 + 6 = 1
MTMA+B (C3) = 6− 3 = 3
MTMA+B (C4) = 17− 12 = 5
MTMA+B (C5) = −5 + 9 = 4
MTMA+B (C6) = −5 + 5 = 0
MTMA+B (C7) = 1 + 1 = 2

Only the contract C6 satisfies the relationship (3).
(b) We have (TR-GDR, pages 216-217):

EAD =
I∑
i=1

max (MTM (Ci) , 0)

We then obtain:

EADA = 10 + 6 + 17 + 1 = 34
EADB = 6 + 9 + 5 + 1 = 21

(c) We have (TR-GDR, page 217):

EAD = max
(

I∑
i=1

MTM (Ci) , 0
)

We then obtain:

EADA = max(10− 5 + 6 + 17− 5− 5 + 1, 0) = max (19, 0) = 19
EADB = max(−11 + 6− 3− 12 + 9 + 5 + 1, 0) = max (−5, 0) = 0

9



(d) We have (TR-GDR, page 217):

EADA = max(10− 5 + 6, 0) + 17 + 1 = 29
EADB = max(−11 + 6− 3, 0) + 9 + 5 + 1 = 15

4. (a) It is obvious that we cannot use spot measures to compute the capital charge. This excludes
formulas that are defined for a given future date t: potential future exposure, expected exposure
and effective expected exposure. Only the peak exposure, the expected positive exposure and
the effective expected positive exposure can be used to define the exposure-at-default. PE is a
quantile risk measure whereas EPE and EEPE are weighted average risk measure. The Basle
Committee has chosen the EEPE measure to define the exposure-at-default. We generally
have:

EAD = 1.4× EEPE

We can justify this choice because:
i. PE may produce large and non-smoothed EAD;
ii. EPE is not necessarily an increasing function with respect to the time horizon h;
iii. EEPE is an increasing function with respect to the time horizon h.

(b) The cumulative distribution function of X is:

F (x) = Pr {X ≤ x}

=
∫ x

0

ua

a+ 1du

= xa+1

We deduce that:

F[0,t] (e) = Pr {e (t) ≤ e}

= Pr
{
σ
√
tX ≤ e

}
= Pr

{
X ≤ e

σ
√
t

}
=

(
e

σ
√
t

)a+1

and:
f[0,t] (e) = (a+ 1) ea(

σ
√
t
)a+1

It follows that:
PFEα (0; t) = F−1

[0,t] (α) = α1/(a+1)σ
√
t

and:
PEα (0) = α1/(a+1)σ

because T is equal to 1. The expected exposure is:

EE (0; t) =
∫ σ
√
t

0
e

(a+ 1) ea(
σ
√
t
)a+1 de = (a+ 1)σ

√
t

a+ 2

We deduce that:
EEE (0; t) = (a+ 1)σ

√
t

a+ 2
and:

EEPE (0;h) = 1
h

∫ h

0

(a+ 1)σ
√
t

a+ 2 dt = 2 (a+ 1)σ
√
h

3 (a+ 2)
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From a regulatory point of view, the exposure-at-default is calculated with h = 1. We finally
obtain:

EAD = 1.4× EEPE (0; 1)

' (a+ 1)σ
a+ 2

(c) This product can not be an amortizing swap because EE is an increasing function with respect
to t. It is more like an option profile.

9 Risk contribution in the Basle II model
1. The loss L follows a Gaussian probability distribution:

L ∼ N
(

0,
√
x>Σx

)
We deduce that:

VaR (x;α) = Φ−1 (α)
√
x>Σx

2. We have:

∂ VaR (x, α)
∂ x

= ∂

∂ x

(
Φ−1 (α)

(
x>Σx

) 1
2
)

= Φ−1 (α) 1
2
(
x>Σx

)− 1
2 (2Σx)

= Φ−1 (α) Σx√
x>Σx

The marginal value-at-risk of the ith loan is then (TR-GDR, page 497):

MRi = ∂ VaR (α)
∂ xi

= Φ−1 (α)
(Σx)i√
x>Σx

The risk contribution of the ith loan is the product of the exposure by the marginal risk:

RCi = xi ×MRi

= Φ−1 (α)
xi × (Σx)i√

x>Σx

3. We consider the random vector Y = (e, L). By construction, Y is a Gaussian random vector
(TR-GDR, page 497) with: (

e
L

)
∼ N

((
0
0

)
,

(
Σ Σx
x>Σ x>Σx

))
The conditional distribution function of e given that L = ` is Gaussian and we have:

E [e | L = `] = 0 + Σx
(
x>Σx

)−1 (`− 0)

We obtain:

E
[
e | L = F−1 (α)

]
= Σx

(
x>Σx

)−1 Φ−1 (α)
√
x>Σx

= Φ−1 (α) Σx√
x>Σx

= ∂ VaR (x;α)
∂ x

The marginal VaR of the ith loan is then equal to the conditional mean of the individual loss ei
given that the portfolio loss is exactly equal to the value-at-risk.
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4. We have to make the following assumptions (TR-GDR, page 179):

(i) The loss given default is independent from the default time;
(ii) The portfolio is infinitely-grained.

In this case, we have:

E
[
ei | L = F−1 (α)

]
= E [LGDi]× E

[
Di | L = F−1 (α)

]
5. We have:

pi = Pr {τi ≤Mi}
= Pr {Zi ≤ Bi}
= Φ (Bi)

We then deduce:

Pr {τi ≤Mi | X = x} = Pr {Zi ≤ Bi | X = x}

= Pr
{√

ρX +
√

1− ρεi ≤ Bi | X = x
}

= Pr
{
εi ≤

Bi −
√
ρX

√
1− ρ

| X = x

}
= Φ

(
Bi −

√
ρx

√
1− ρ

)
= Φ

(Φ−1 (pi)−
√
ρx

√
1− ρ

)
6. In the Basle II model, we have:

L = g (X)

=
n∑
i=1

xi × E [LGDi]× Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
with g′ (x) < 0. We deduce that:

VaR (x;α) = F−1 (α) ⇔ Pr {g (X) ≤ VaR (x;α)} = α

⇔ Pr
{
X ≥ g−1 (VaR (x;α))

}
= α

⇔ Pr
{
X ≤ g−1 (VaR (x;α))

}
= 1− α

⇔ g−1 (VaR (x;α)) = Φ−1 (1− α)

It follows that:

E
[
ei | L = F−1 (α)

]
= E [LGDi]× E

[
Di | X = Φ−1 (1− α)

]
7. We have (TR-GDR, page 182):

RCi = xi ×MRi
= xi × E

[
ei | L = F−1 (α)

]
= xi × E [LGDi]× E

[
Di | X = Φ−1 (1− α)

]
= xi × E [LGDi]× Φ

(Φ−1 (pi)−
√
ρΦ−1 (1− α)

√
1− ρ

)
= xi × E [LGDi]× Φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
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8. (a) We note:

pi (X) = Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
We have:

ES (x;α) = E [L | L ≥ VaR (x;α)]
= E [L | g (X) ≥ VaR (x;α)]
= E

[
L | X ≤ g−1 (VaR (x;α))

]
= E

[
n∑
i=1

xi × E [LGDi]× pi (X) | X ≤ Φ−1 (1− α)
]

=
n∑
i=1

xi × E [LGDi]× E
[
pi (X) | X ≤ Φ−1 (1− α)

]
=

n∑
i=1

xi × E [LGDi]× E
[
Di | X ≤ Φ−1 (1− α)

]
(b) It follows that:

E
[
pi (X) | X ≤ Φ−1 (1− α)

]
= E

[
Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
| X ≤ Φ−1 (1− α)

]
=

∫ Φ−1(1−α)

−∞
Φ
(

Φ−1 (pi)√
1− ρ

+
−√ρ
√

1− ρ
x

)
φ (x)

Φ (Φ−1 (1− α)) dx

=
Φ2
(
Φ−1 (1− α) ,Φ−1 (pi) ;√ρ

)
1− α

=
C
(
1− α, pi;

√
ρ
)

1− α

where C is the Gaussian copula. We deduce that:

RCi = xi × E [LGDi]×
C
(
1− α, pi;

√
ρ
)

1− α

(c) If ρ = 0, we have:

Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
= Φ

(
Φ−1 (pi)

)
= pi

and:

C
(
1− α, pi;

√
ρ
)

1− α = (1− α) pi
1− α

= pi

The risk contribution is the same for the value-at-risk and the expected shortfall:

RCi = xi × E [LGDi]× pi

It depends on the exposure-at-default xi, the expected loss-given-default E [LGDi] and the
unconditional probability of default pi. If ρ = 1 and α > 50%, we have:

Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
= lim

ρ→1
Φ
(

Φ−1 (pi) + Φ−1 (α)√
1− ρ

)
= 1
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If ρ = 1 and α is high (α > 1− supi pi), we have:

C
(
1− α, pi;

√
ρ
)

1− α = min (1− α; pi)
1− α

= 1

In this case, the risk contribution is the same for the value-at-risk and the expected shortfall:

RCi = xi × E [LGDi]

However, it does not depend on the unconditional probability of default pi.
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