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Remark 1 The first five questions are corrected in TR-GDR1 and in the document of exercise solutions,
which is available in my web page2.

1 The BCBS regulation

2 Market risk

3 Credit risk

4 Counterparty credit risk

5 Operational risk

6 Value-at-risk of an equity portfolio
The main reference for this exercise is TR-GDR (pages 61-63).

1. We note PA (t) (resp. PB (t)) the value of the stock A (resp. B) at the date t. The portfolio value
is:

P (t) = xA · PA (t) + xB · PB (t)

with xA and xB the number of stocks A and B. We deduce that the PnL between t and t+ 1 is:

PnL = P (t+ 1)− P (t)

= xA (PA (t+ 1)− PA (t)) + xB (PB (t+ 1)− PB (t))

= xAPA (t)RA + xBPB (t)RB

= WARA +WBRB

where RA and RB are the asset returns of A and B between the dates t and t + 1. We have also
WA = xAPA (t) and WB = xBPB (t). Because xA = +2 and xB = +1, we have WA = 300 and
WB = 200. It follows that:

PnL = 300×RA + 200×RB
We deduce that the yearly volatility of the PnL is:

σ2 (PnL) = 3002 × 0.22 + 2002 × 0.42 +

2× 300× 200× 0.64× 0.2× 0.4

1Thierry Roncalli, La Gestion des Risques Financiers, Economica, deuxième édition, 2009.
2The direct link is www.thierry-roncalli.com/download/gdr-correction.pdf.
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We obtain σ (PnL) = 127.06 euros. It follows that the Gaussian VaR for a one-week time horizon
and a 99% confidence level:

VaR =
Φ−1 (α)× σ (PnL)√

52

=
2.33× 127.06√

52
= 41.05

The VaR is equal to 41.05 euros (or 8.21% of the portfolio value3).

2. The PnL becomes:
PnL = WARA +WBRB −WIRI

(a) We have:

σ2 (PnL) = 3002 × 0.22 + 2002 × 0.42 + 5002 × 0.22 +

2× 300× 200× 0.64× 0.2× 0.4−
2× 300× 500× 0.80× 0.2× 0.2−
2× 200× 500× 0.80× 0.4× 0.2

We obtain σ (PnL) = 61.19 euros. It follows that the Gaussian VaR for a one-week time
horizon and a 99% confidence level:

VaR =
Φ−1 (α)× σ (PnL)√

52

=
2.33× 61.19√

52
= 19.77

The VaR is equal to 19.77 euros (or 3.95% of the portfolio value).
(b) We have:

σ2 (PnL) = 3002 × 0.22 + 2002 × 0.42 + 5602 × 0.22 +

2× 300× 200× 0.64× 0.2× 0.4−
2× 300× 560× 0.80× 0.2× 0.2−
2× 200× 560× 0.80× 0.4× 0.2

We obtain σ (PnL) = 60 euros. It follows that the Gaussian VaR for a one-week time horizon
and a 99% confidence level:

VaR =
Φ−1 (α)× σ (PnL)√

52

=
2.33× 60√

52
= 19.39

The VaR is equal to 19.39 euros (or 3.88% of the portfolio value).
(c) WI = 500 corresponds to a fully hedged portfolio in terms of notional. Indeed, we have:

WI = WA +WB

However, we observe that WI = 560 is better to hedge the portfolio in terms of value-at-risk.
This means that hedging the portfolio by considering the sum of nominal exposures is not
optimal.

3The portfolio value is equal to 500 euros.
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3. We deduce that the PnL of the hedged portfolio is:

PnL = WARA +WBRB −WIRI

= WA (βARI + εA) +WB (βBRI + εB)−WIRI

= (WAβA +WBβB −WI)RI +WAεA +WBεB

= W ?RI +WAεA +WBεB

where W ? = WAβA +WBβB −WI is the residual exposure on the index.

(a) If WI = 500, we have:

W ? = WAβA +WBβB −WI

= 300× 0.8 + 200× 1.6− 500

= 60

If WI = 560, we have:

W ? = WAβA +WBβB −WI

= 300× 0.8 + 200× 1.6− 500

= 0

We observe that the residual exposure is equal to zero if WI = 560. This is not the case if
WI = 500. The reason is that the second asset has a high beta (βB = 1.6), meaning that the
sensitivity of the portfolio P0 is higher than its current value (500).

(b) We have:
εA = RA − βARI

We deduce that:

σ (εA) =
√
σ2
A + β2

Aσ
2
I − 2βAρA,IσAσI

=
√

0.22 + 0.82 × 0.22 − 2× 0.8× 0.8× 0.2× 0.2

= 12%

Because RA = βARI + εA, we have also:

σ2
A = β2

Aσ
2
I + σ2 (εA)

It follows that:

σ (εA) =
√
σ2
A − β2

Aσ
2
I

=
√

0.22 − 0.82 × 0.22

In a same way, we have σ (εB) = 24%.
(c) If WI = 560, W ? = 0. It follows that:

PnL = WAεA +WBεB

We deduce that:

σ (PnL) =
√

3002 × 0.122 + 2002 × 0.242

= 60

We retrieve the result obtained in Question 2.(b):

VaR =
2.33× 60√

52
= 19.39
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(d) We have:
PnL = W ?RI +WAεA +WBεB

It follows that:
σ (PnL) =

√
W ?2σ2

I +W 2
Aσ

2 (εA) +W 2
Bσ

2 (εB)

In the case of Portfolio P0, we have:

W ? (P0) = WAβA +WBβB = 560

In the case of Portfolio P1, we have:

W ? (P1) = WAβA +WBβB −WI = 560−WI

The VaR of the hedged portfolio P1 is lower than the VaR of the original portfolio P0 if4:

σ (PnL (P1)) ≤ σ (PnL (P0)) ⇔ (W ? (P0))
2 ≥ (W ? (P1))

2

⇔ 5602 ≥ (560−WI)
2

⇔ WI ≤ 1120

7 Risk contribution in the Basle II model
1. We assume that (TR-GDR, page 179):

(a) The loss given default LGDi is independent of the default time τi;
(b) the default times depend on common factors X1, . . . , Xm;
(c) the portfolio is infinitely granular: there is no concentration on a specific credit, meaning that:

EADi

/
I∑
i=1

EADi ' 0

2. Let R be the risk measure. The risk contribution of the credit i is the product of the exposure-at-
default EADi and the marginal risk (TR-GDR, page 497):

RCi = EADi×
∂R

∂ EADi

In the case of a convex risk measure, we have:

R =

I∑
i=1

RCi

The risk measure is then equal to the sum of the different risk contributions.

3. We have:

EL = E [L]

UL = F−1 (α)− EL

where F is the cumulative distribution function of L. If the default times are independent, we
obtain:

E [L | X1, . . . , Xm] =

I∑
i=1

EADi×E [LGDi]× PDi = EL

L is then not random and we have Pr {L = EL} = 1. It follows that F−1 (α) = EL and UL = 0.
4By construction, we have WI > 0.
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4. We set (TR-GDR, page 180):

g (x) =

I∑
i=1

EADi×E [LGDi]× PDi (x)

By definition, we have:
E [L | X = x] = g (x)

We deduce that:
F (`) = Pr {L ≤ `} = Pr {g (X) ≤ `}

Because EADi ≥ 0 and E [LGDi] ≥ 0, g (x) is an increasing (resp. decreasing) function if PDi (x)
is an increasing (resp. decreasing) function of x. In the case where g (x) is an increasing function,
we have:

Pr {g (X) ≤ `} = α

⇔ Pr
{
X ≤ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= α

⇔ ` = g
(
H−1 (α)

)
We deduce that:

F−1 (α) =

I∑
i=1

EADi×E [LGDi]× PDi

(
H−1 (α)

)
In the case where g (x) is a decreasing function, we have:

Pr {g (X) ≤ `} = α

⇔ Pr
{
X ≥ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= 1− α

⇔ ` = g
(
H−1 (1− α)

)
We deduce that:

F−1 (α) =

I∑
i=1

EADi×E [LGDi]× PDi

(
H−1 (1− α)

)
If at least one exposure EADi is negative, the function g (x) is not monotonic. We don’t check
anymore g (X) ≤ `⇔ X ≤ g−1 (`) (increasing case) or g (X) ≤ `⇔ X ≥ g−1 (`) (decreasing case),
implying that the expression F−1 (α) is not valid. We can not use the Basle II model if the credit
portfolio has one (or more) negative exposure. For the management of the credit portfolio, this
implies that buying a CDS protection on the ith credit can only be done to reduce the exposure-
at-default on the counterparty, but not to be short on the counterparty.

5. We have (TR-GDR, pages 181-182):

PDi = Pr {τi ≤Mi}
= Pr {Zi ≤ Bi}
= Φ (Bi)

and Bi = Φ−1 (PDi). We have also:

Pr {τi ≤Mi | X = x} = Pr {Zi ≤ Bi | X = x}

= Pr
{√

ρX +
√

1− ρεi ≤ Bi | X = x
}

= Pr

{
εi ≤

Bi −
√
ρX

√
1− ρ

| X = x

}
= Φ

(
Φ−1 (PDi)−

√
ρx

√
1− ρ

)

5



6. Because the conditional default probability is a decreasing function with respect to x, we have:

F−1 (α) =

I∑
i=1

EADi×E [LGDi]× PDi

(
Φ−1 (1− α)

)
=

I∑
i=1

EADi×E [LGDi]× Φ

(
Φ−1 (PDi)−

√
ρΦ−1 (1− α)

√
1− ρ

)

=

I∑
i=1

EADi×E [LGDi]× Φ

(
Φ−1 (PDi) +

√
ρΦ−1 (α)

√
1− ρ

)

7. ρ is the constant correlation between assets:

cor (Zi, Zj) = E [ZiZj ]

= E
[
ρX2 +

√
ρ (1− ρ)X (εi + εj) + (1− ρ) εiεj

]
= ρ

8. The second pillar concerns the non-respect of the assumptions (H). In particular, we have to
understand the impact on the credit risk measure if the portfolio is not granular or if the asset
correlation is not constant.

8 Correlation and log-normal random variables
1. (a) The density of X ∼ N

(
µ, σ2

)
is:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

Let Y ∼ LN
(
µ, σ2

)
. We have:

Y = eX

It comes that:
g (y) = f (x)

∣∣∣∣dxdy

∣∣∣∣
with x = ln y. We deduce that:

g (y) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
· 1

y

=
1

yσ
√

2π
exp

(
−1

2

(
ln y − µ

σ

)2
)

(b) Let m ≥ 1. We have:

E [Y m] =

∫ ∞
0

ymg (y) dy

=

∫ ∞
0

ym

yσ
√

2π
exp

(
−1

2

(
ln y − µ

σ

)2
)

dy
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By considering the change of variable z = σ−1 (ln y − µ), we have:

E [Y m] =

∫ ∞
−∞

(eµ+σz)
m

√
2π

exp

(
−1

2
z2
)

dz

= emµ
∫ ∞
−∞

1√
2π

exp

(
−1

2
z2 +mσz

)
dz

= emµ
∫ ∞
−∞

1√
2π

exp

(
−1

2
(z −mσ)

2
+

1

2
m2σ2

)
dz

= emµ+
1
2m

2σ2

∫ ∞
−∞

1√
2π

exp

(
−1

2
(z −mσ)

2

)
dz

By considering the change of variable t = z −mσ, we obtain:

E [Y m] = emµ+
1
2m

2σ2

∫ ∞
−∞

1√
2π

exp

(
−1

2
t2
)

dt

= emµ+
1
2m

2σ2

(Φ (∞)− Φ (−∞))

= emµ+
1
2m

2σ2

We deduce that:
E [Y ] = exp

(
µ+

1

2
σ2

)
(c) We have shown that:

E [Y m] = exp

(
mµ+

1

2
m2σ2

)
(d) It follows that:

var (Y ) = E
[
Y 2
]
− E2 [Y ]

= e2µ+2σ2

− e2µ+σ
2

= e2µ+σ
2
(
eσ

2

− 1
)

(e) See TR-GDR on page 239.

2. (a) X1 + X2 is a Gaussian random variable because it is a linear combination of the Gaussian
vector (X1, X2). We have:

E [X1 +X2] = µ1 + µ2

and:
var (X1 +X2) = σ2

1 + 2ρσ1σ2 + σ2
2

We deduce that:
X1 +X2 ∼ N

(
µ1 + µ2, σ

2
1 + 2ρσ1σ2 + σ2

2

)
(b) We have:

cov (Y1, Y2) = E [Y1Y2]− E [Y2]E [Y2]

= E
[
eX1+X2

]
− E [Y2]E [Y2]

Using Question 2.a, we know that eX1+X2 is a log-normal random variables. We deduce that:

E
[
eX1+X2

]
= eµ1+µ2+

1
2 (σ2

1+2ρσ1σ2+σ
2
2)

= eµ1+
1
2σ

2
1eµ2+

1
2σ

2
2eρσ1σ2

We finally obtain:
cov (Y1, Y2) = eµ1+

1
2σ

2
1eµ2+

1
2σ

2
2 (eρσ1σ2 − 1)
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(c) We have:

ρ (Y1, Y2) =
eµ1+

1
2σ

2
1eµ2+

1
2σ

2
2 (eρσ1σ2 − 1)√

e2µ1+σ2
1

(
eσ

2
1 − 1

)√
e2µ2+σ2

2

(
eσ

2
2 − 1

)
=

eρσ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1

ρ (Y1, Y2) is an increasing function with respect to ρ. We deduce that:

ρ (Y1, Y2) = 1⇔
{

ρ = 1
σ1 = σ2

The lower bound is reached if ρ = −1. In this case, we have:

ρ (Y1, Y2) =
e−σ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

> −1

It follows that ρ (Y1, Y2) 6= −1.
(d) A concordance measure reached the lower bound −1 (resp. the upper bound +1) if the

random variables are countermonotonic (resp. comonotonic). It is not the case with the linear
correlation. For instance, if ρ = −1, the dependence function is C− and ρ (Y1, Y2) 6= −1. if
ρ = 1, the dependence function is C+. In this case, ρ (Y1, Y2) = 1 if and only if lnY1 and lnY2
have the same variance.

9 Credit spreads
1. We have (TR-GDR, page 427) :

F (t) = 1− e−λt

S (t) = e−λt

f (t) = λe−λt

Let U = S (τ). We have U ∈ [0, 1] and:

Pr {U ≤ u} = Pr {S (τ) ≤ u}
= Pr

{
τ ≤ S−1 (u)

}
= S

(
S−1 (u)

)
= u

We deduce that S (τ) ∼ U[0,1] (TR-GDR, page 428). It comes that τ = S−1 (U) with U ∼ U[0,1].
Let u be a uniform random variate. Simulating τ is equivalent to transform u into t:

t = − 1

λ
lnu

2. We have (TR-GDR, pages 409-411) :

P− =
1

4
· s ·N

P+ = (1−R) ·N

with s the spread, N the notional, P− the premium leg and P+ the protection leg. The quarterly
payment of the premium leg explains the factor 1/4 in the formula of P−. We deduce the flow chart
given in Figure 1.
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Figure 1: Flow chart from the viewpoint of the protection buyer'
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3. The ATM margin (or spread) is the value of s such that the CDS price is zero (TR-GDR, page
410):

P (t) = E
[(∑

P−

)
− P+

]
= 0

We have the following triangle relationship (TR-GDR, page 410):

s ' λ× (1−R)

4. Let PD be the annual default probability. We have

PD = 1− S (1)

= 1− e−λ

' 1− (1− λ)

' λ

because λ is generally small (λ ≤ 10%). We deduce that:

PD ' s

1−R

We have:
PD =

2%

1− 25%
= 267 bps

10 Extreme value theory and stress-testing
1. See TR-GDR, page 121-129.

2. We have (TR-GDR, pages 131-133):

Gn (x) = Pr {max (X1, . . . , Xn) ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}

=

n∏
i=1

Pr {Xi ≤ x}

= Φ

(
x− µ
σ

)n
3. See TR-GDR, page 139.
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4. (a) An extreme value (EV) copula C satisfies the following relationship:

C
(
ut1, u

t
2

)
= Ct (u1, u2)

for all t > 0.
(b) The product copula is an EV copula because:

C⊥
(
ut1, u

t
2

)
= ut1u

t
2

= (u1u2)
t

=
[
C⊥ (u1, u2)

]t
(c) We have:

C
(
ut1, u

t
2

)
= exp

(
−
[(
− lnut1

)θ
+
(
− lnut2

)θ]1/θ)
= exp

(
−
[
(−t lnu1)

θ
+ (−t lnu2)

θ
]1/θ)

= exp

(
−t
[
(− lnu1)

θ
+ (− lnu2)

θ
]1/θ)

=
[
e−[(− lnu1)

θ+(− lnu2)
θ]

1/θ]t
= Ct (u1, u2)

(d) The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u+ C (u1, u2)

1− u
It indicates the probability to have an extreme in one direction knowing that we have already
an extreme in the other direction. If λ = 0, extremes are independent and the copula of
extreme values is the product copula C⊥. If λ = 1, extremes are comonotonic and the copula
of extreme values is the upper Fréchet copula C+. Moreover, the upper tail dependence of
the copula between the random variables is equal to the upper tail dependence of the copula
between the extremes.

(e) We obtain using L’Hospital’s rule:

λ = lim
u→1+

1− 2u+ e−[(− lnu)θ+(− lnu)θ]
1/θ

1− u

= lim
u→1+

1− 2u+ e−[2(− lnu)θ]
1/θ

1− u

= lim
u→1+

1− 2u+ u2
1/θ

1− u

= lim
u→1+

0− 2 + 21/θu2
1/θ−1

−1

= lim
u→1+

2− 21/θu2
1/θ−1

= 2− 21/θ

(f) If θ = 1, λ = 0. It comes that the copula of the extremes is the product copula. Extremes
are then not correlated. This result is not surprising because the Gumbel-Houggard copula is
equal to the product copula:

e−[(− lnu1)
1+(− lnu2)

1]
1

= u1u2 = C⊥ (u1, u2)
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5. (a) i. We have:

G∞ (x1, x2) = C⊥ (G∞ (x1) ,G∞ (x2))

= Λ (x1) Ψ1 (x2 − 1)

ii. We have:

G∞ (x1, x2) = C⊥ (G∞ (x1) ,G∞ (x2))

= Λ (x1) Φα

(
1 +

x2
α

)
(b) We know that the upper tail dependence is equal to zero for the Gaussian copula if ρ < 1. We

then obtain exactly the same results as previously:

i.
G∞ (x1, x2) = exp

(
−e−x1 + x2 − 1

)
ii.

G∞ (x1, x2) = exp

(
−e−x1 −

(
1 +

x2
α

)−α)
(c) If ρ = 1, the Gaussian copula is the upper Fréchet copula C+, which is an EV copula. We

deduce that:

i.
G∞ (x1, x2) = min (Λ (x1) ,Ψ1 (x2 − 1))

ii.
G∞ (x1, x2) = min

(
Λ (x1) ,Φα

(
1 +

x2
α

))
(d) We have shown that the Gumbel-Houggard copula is an EV copula. We deduce that:

i.

G∞ (x1, x2) = e−[(− lnΛ(x1))
θ+(− lnΨ1(x2−1))θ]

1/θ

= exp

(
−
[
e−θx1 + (1− x2)

θ
]1/θ)

ii.

G∞ (x1, x2) = e
−
[
(− lnΛ(x1))

θ+(− lnΦα(1+ x2
α ))

θ
]1/θ

= exp

(
−
[
e−θx1 +

(
1 +

x2
α

)−αθ]1/θ)
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